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EXECUTIVE SUMMARY 
The goal of this research was to examine via data analysis whether American Community Survey 
estimates with missing survey items imputed by models including response mode as an explanatory 
variable are markedly different from analogous estimates based on a similar model ignoring mode. 
To make the results relevant to the question of whether American Community Survey hot-deck 
imputation methodology should be modified to account explicitly for response mode, the relation 
between item imputations done via fitted models as opposed to hot-deck was also explored. 

Analysis focused on 17 American Community Survey outcome variables, known from previous 
research to show different frequencies across mode of being missing. All were binary, 8 at housing-
unit level and 9 at person-level, and most were defined as indicators that multi-level variables 
fall in a specified interval of values. American Community Survey data from 2012 were analyzed 
to fit logistic-regression and regression-tree predictive models for these binary outcomes in terms 
of other American Community Survey variables not including mode, based on complete-case data 
with no missing predictors or outcomes. The models were used to decompose the case universe 
for each outcome into cells (ranging in number from 7 to 13). The cases with missing outcome 
were imputed in three ways: with 2012 hot-deck values, using the complete-case outcome=1 
proportion for the cell containing the case requiring imputation, and using the complete-case 
outcome proportion for a system of cells cross-classifying the model-based ones by mode. 

This research found no evidence that model-based imputation of binary outcomes would be 
improved by cross-classification of single-outcome imputation cells with mode of response. Data 
analyses were done to assess the quality of the models fitted; to compare the mode-pooled and 
mode-crossed cell outcome proportions for the complete cases from 2012 versus the cases with 
non-missing outcome and at least one missing predictor; and to compare the survey-weighted 
total estimates for the imputed case-outcomes across the three methods of imputation. 

The conclusions of the research can be briefly summarized as follows: 

(1) The cases with missing covariates or responses show dramatically different relationships 
between covariates and outcomes than the complete cases, for almost all outcomes. 

(2) Because of (1), the Missing-at-Random assumptions implicitly governing almost all Amer
ican Community Survey analyses to adjust for item nonresponse are in serious doubt. 

(3) Logistic regression models for binary outcomes in terms of plausible predictors, with 
variables selected by criteria such as BIC, do not easily achieve statistical adequacy when mode 
is ignored. When mode terms and interactions are included, many such interactions are needed. 
Since the resulting cells formed by cross-classifying logistic-prediction scores by mode are already 
quite small, with sizes of hundreds rather than thousands in many cases, such models may be 
too noisy even for full-year data to be used in imputation applications. 

(4) When item imputation is based on moderate numbers (7–13) of mode-pooled cells defined 
through logistic regression or regression-tree models, and compared with imputations done using 
mode-crossed cells, the differences in imputed totals behave very differently for housing-unit 
level than for Person-level outcomes. Housing-unit-level total differences are highly significant, 
although they amount to at most a few percent of the imputed cases, which in turn range from a 
few percent up to ten percent of all cases. Person-level outcome totals show virtually no difference 
between mode-pooled and mode-crossed imputations. 
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1 INTRODUCTION  

Census Bureau research on the American Community Survey (ACS) [1], based on data from 
2005, showed that the degree and patterns of item nonresponse are quite different for the different 
response modes: Mail, Computer-Aided Telephone Interview (CATI), Computer-Aided Personal-
Interview (CAPI) with no mailable address, CAPI-subsampled after CATI, and now Internet. 
Yet current ACS practice is to impute item nonresponses, for households from which a form is 
accepted as a “response” to ACS, without restriction of imputation donors by mode. 

The original ACS imputation process was apparently designed by Don Dalzell following pro
cedures used for the 1990 long form ([2], p. 4 under sub-heading “Edit and Imputation”). So the 
pooling of imputations for mail returns and personal interviews in the 1990 long-form census was 
carried over to ACS, apparently from lack of resources or time to modify it [3]. Also according to 
[3], Chip Alexander and Lynn Weidman distinguished this in internal Census Bureau reports as 
one of the highest-priority problems with ACS methods, and it appeared on an extensive list of 
ACS problems prepared by Debbie Griffin as a precursor to developing an ACS research agenda. 

The purpose of this project was to understand whether there is a practical need to modify 
ACS residential-unit hot-deck item allocation (or imputation) procedures to take account of 
response mode in defining the hot-deck donor pool. However, the ACS hot-deck specifications 
are sufficiently complicated that the ACS item imputation process would never change to depend 
explicitly on response mode unless some data analysis showed that this would have a serious 
impact on reported results, for at least some ACS tabulations of important attributes. This 
project was proposed as preliminary data-analytic research to investigate the likely effect on ACS 
data quality of possible changes in the ACS imputation methodology, which is mode-pooled in 
the sense of combining data without regard to response mode. The research reported here aims 
to inform decisions being made in the near future about imputation methodology as the Census 
Bureau moves to the new Control and Response Data System (CARDS) that will in the future 
perform final processing and analysis steps for Census Bureau surveys including the ACS. 

Since it is not feasible in a limited project to investigate detailed, fully specified alternatives to 
the production methods for ACS hot-deck imputation, the effect of mode-based imputations will 
instead be assessed within the context of a simplified form of model-based or mass imputation. 
This entails model-building and assessment for key survey item-response variables, based on pre
dictors that are themselves either frame-level housing variables, housing-level survey outcomes, 
or person-level survey outcomes. It also requires a model-based rule for imputing missing survey 
outcomes – based on models which either do or do not use response-Mode as a categorical predic
tor – and a comparison of the survey-weighted estimates derived by standard ACS weighting and 
estimation methodology from these imputations with those for the current hot-deck imputations. 
That comparison, with differences measured by the standard errors of the estimates generated 
from the current hot-deck imputations, will enable us to formulate tentative conclusions about 
the impact of mode-based versus mode-pooled imputations on ACS survey estimates. 

The following Section provides the background to this research in four subsections: first, a 
review of the literature relevant to ACS allocation by mode, next a brief summary of literature 
on survey inference under hot-deck imputation, third a discussion of model-based imputation 
through conditional models for single items in terms of other survey outcomes and background 
variables, and finally, information on the data materials for this project, the full year’s data on 
ACS residential Housing Units processed within 2012, and the survey outcomes to be investigated. 
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2 BACKGROUND  

2.1 ACS Item Nonresponse and Imputation 

Beyond the passage of [2] cited above concerning the similar imputation methodology to that 
of the 1990 long-form census used in ACS tests and later in ACS production, there seems to 
be little published literature containing details of the ACS hot-deck imputation methodology. 
There is very limited discussion of imputation allocation in the ACS Methodology document [4], 
with references only to Census Bureau subject-definition documentation. Various research and 
evaluation reports have been issued over the years concerning ACS nonresponse and allocation 
(item-imputation) rates [5, 6, 7, 8] and summaries of allocation rates by survey variable are now 
regularly published in online ACS documentation, currently at 

www.census.gov/acs/www/methodology/item_allocation_rates_data/ 

The report [1], which distinguishes patterns of response by different modes for ACS variables, 
guided the choice of ACS outcome variables to study in this research. 

2.2 Model-Based versus Hot-Deck Imputation 

In many major censuses and surveys, missing data at the unit or item level are imputed. In United 
States Census Bureau censuses and surveys, this is most often done by hot-deck imputation, in 
which sampled units are ordered by some frame variables and a unit’s missing items are assigned 
from a unit – usually the nearest unit in the ordered frame list – within the subset of “donors” 
defined as units sharing certain geographic, frame, and possibly demographic attributes with the 
unit to be imputed. (In particular, the hot-deck approach ensures that the donor is usually not far 
separated geographically from the unit with the missing data item, so that neighborhood effects 
automatically play a role in the assignment, a feature that is hard to reproduce in the covariates 
incorporated into models.) The imputed data fields are indicated through an imputation flag, 
but are for most purposes treated as though they had been observed directly. That is, the 
imputation flags play no role in most direct survey-weighted estimates, although they may play a 
role in survey variance estimates. While there is high-quality statistical methodological literature 
on estimation of variances in surveys with hot-deck imputation [9, 10, 11, 12], these methods are 
not implemented in ACS variance estimation, so that the item allocations are treated as having 
been made without error. This topic is beyond the scope of the present literature review and 
project, and here also the variances of estimators will be assessed using replication methods as in 
ACS, not taking account of the sampling variablility of the imputation model parameters used. 

The current ACS hot-deck imputation methodology is documented as part of edit and impu
tation procedures, differently for each ACS survey variable. Hot-deck donor pools are specified 
through a series of conditional rules, in specification files that are occasionally updated, stored 
in ACS shared file directories with access restricted to the U.S. Census Bureau. A mode-based 
specification would have required defining and implementing in software new rules creating alter
native donor pools based on response mode under all of the existing conditions for defining donor 
pools. This would have been a large job, requiring input from the subject-matter experts who 
designed the existing allocation rules for all variables studied, as well as new software coding and 
checking. Accordingly, such an approach was viewed as being beyond the scope of this research. 
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There is journal literature on model-based imputation, or “mass imputation” as distinguished 
from imputation at individual case level by methods such as hot-deck imputation. In principle, 
any model-based estimation (e.g., by cell-based cross-tabulation or some sort of regression mod
eling) might be used, and in that sense mass imputation is related to models used in small-area 
estimation [13]. Papers with particular reference to Census Bureau examples are [14, 15] in which 
loglinear models are proposed for model-assisted imputation. A recent treatment of inference 
from multiple-frame household surveys using model-based mass imputation is [16]. 

The basic building block for models of missing variables in terms of predictors that are never 
missing is a conditional model, often of generalized linear type, possibly with random effects 
(GLMMs). If the model could be fitted based only on complete-case data, and if one could 
assume that the same conditional model holds (a Missing at Random or MAR assumption) 
even when the outcome variable is missing, then the conditional model could be used either to 
simulate multiple possible values of the missing variable or to generate a single best predictor for 
the missing value according to some criterion. 

The use of models for imputation of a missing survey variable is complicated by the strong 
possibility that for many sampled survey units, at least one desirable predictor variable may also 
be missing for the same unit. There are three distinct approaches, summarized well in [17]: 

(i) monotone missingness	 means that the pattern of missing data is monotone in the sense 
that there is an ordering of variables X1, . . . , XK in which Xj is missing only when all of 
{Xi}K are also missing; i=j+1 

(ii) joint multivariate modeling	 means that all of the relevant outcome variables and pre
dictors that might be missing are treated as joint outcomes for which a joint probability 
model can be specified; or 

(iii) fully conditional specification	 is the strategy of modeling each relevant outcome vari
able and predictor that might be missing in terms of all other variables. 

Approach (i), where applicable, is a direct extension of the building-block idea allowing miss
ing items to be singly or multiply imputed from a conditional model in terms of non-missing 
predictors. In the case of monotone missing variables {Xj }K , assume there is a block of neveri=1

missing covariates Z, and that for each j ≥ 1 there are sufficiently many cases with (Z, {Xi}j )i=1

non-missing to fit a conditional model for Xj given (Z, {Xi}j−1). Then missing values X1 would i=1 
be imputed from the conditional model given Z; missing X2 from the conditional model given 
(X1, Z) where  X1 is already imputed from its conditional model in those cases where it was 
missing; and inductively, after imputing all missing values among X1, . . . , Xj−1, the  value  Xj 

is imputed from its conditional model given Z, {Xi}j−1. This  use  of  cascaded models had been i=1 
developed in various papers mentioned by [17], leading up to [18]. 

If missingness is not monotone, but variables {Xi}K can be modeled jointly given a block i=1 
of never-missing variables Z, then the joint multivariate modeling approach (ii) can be used, as 
developed particularly in [19]. 

Finally, in many applications one can fit – for example, from complete cases – a variety of 
conditional GLMM models for variables Xi given (Z, {Xj : 1  ≤ j ≤ K, j �= i}). Assuming such 
a set of full conditional models, of all variables modeled in terms of all others, then under a com
prehensive Missing-at-Random (MAR) assumption saying that all these conditional relationships 
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are the same regardless of the missingness status of predictors or outcome variables, one can fill 
in missing values iteratively using the following idea. Start with some set of imputed values, such 
as those generated by a hot-deck imputation, for the missing (predictors and) outcome variables. 
Now successively use the full conditional predictors to impute missing Xi from the conditional 
model given (Z, {Xj : 1  ≤ j ≤ K, j �= i}), first for i = 1;  next  for  i = 2 with missing X1 

values already replaced by their first conditional-model imputed values; and so on as i ranges 
up to K, each time imputing Xi from the conditional model Z, {Xj : 1  ≤ j ≤ K, j =� i} with 
the current set of imputed values substituted for missing values of the predictors. Next continue 
this process again as i ranges from 1 up through K, always updating missing values of Xj values 
with their most recent conditional-model imputed values. Repeat the process until approximate 
convergence of the distribution of survey estimates based on the multiple imputations. Although 
this idea may have had precursors elsewhere, it seems to have appeared first in [18] under the 
rubric of successive multiple imputations and to have been cited thereafter as the ‘method of 
chained equations’. See the reports [20, 21] for recent efforts at using conditional models and 
chained equations as in [18] for the purposes of imputation in Census Bureau surveys. 

The idea behind the iterative chained equations in [18] is similar to the idea of repeated Monte 
Carlo simulations of posterior densities based on full conditional distributions within the Gibbs 
Sampler. [17] indicates, however, that there are known theoretical compatibility requirements for 
convergence in this process, equivalent to the existence of a joint distribution for all predictor and 
imputed variables. When ‘incompatibility’ occurs, convergence will happen only in the weaker 
sense that the cycle of successive conditional distributions stabilizes. However, [17] points out 
that the survey estimates resulting from imputations obtained after stopping the iterations may 
still be well-behaved. 

A further requirement necessary to make all of the conditional steps of iterative chained 
equations work is a very stringent comprehensive MAR condition: that is, the conditional distri
butional relationships in models specified using complete data, must be assumed to hold exactly 
when either the predictors or outcome variables are missing. In discussing “fully conditional spec
ification”, [17] does allude to the necessity of assuming essentially that all of the MAR conditions 
for separate conditional models hold simultaneously, which (under full-support conditions) re
quires that the conditional joint density for all sometimes-missing predictors and outcomes given 
the never-missing covariates is the same for cases with some missing data as for the complete 
cases. If that were true, then the joint cross-tabulated behavior of the data with some predictors 
missing using imputed predictor values ought to be the same as for the complete-case data. 

We will investigate in the present report the extent to which the modeled relationships among 
variables within ACS complete cases also persist when some predictors or outcome variables are 
missing. For some of the conditional models developed, we will see that this last condition is 
clearly not true, implying either that the current hot-deck imputations are seriously flawed or 
that the needed MAR-type assumptions are invalid. It is generally hard to distinguish which of 
these reasons best explains failures of some of the models on missing-data cases. 

The discussion about model-based imputation methods of [17], which we have generally fol
lowed here, was primarily intended to support multiple imputations derived from Monte Carlo 
simulations drawn from conditional models. Since our objective here is to work with model-based 
single imputations, specific rules are needed for defining imputations as conditional predictions 
to optimize some criterion. Appendices A and C address the choice of predictions derived from 
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one or more conditional predictive models under criteria of maximum correlation or minimum 
misclassification error on complete cases. 

Although GLM’s are the conditional models used in many implementations of chained-
equation multiple imputation, as in [18], we consider here Classification and Regression Tree 
(CART) models based on recursive partitioning (Appendix B) as alternatives. Such models have 
previously been considered in multiple-imputation settings by [22] and papers referenced there. 
In this report, CART type models are investigated as a way to develop relevant interactions and 
to define moderate sets of population subgroups for the display of survey outcomes with and 
without cross-classification by mode. 

2.3 Data Materials 

The analysis undertaken in this project is based on 2012 ACS data, in the form of the 2012 edited 
swapped data-files for all cases processed toward ACS estimates in calendar 2012, for occupied 
Housing Units. The variables used in the analysis will include the principal demographic, geo
graphic, housing-type and other control variables currently used in defining hot-deck imputation 
donor pools; approximately 23 survey outcome variables chosen with reference to [1]; and the 
allocation flags needed to distinguish in which cases the control and outcome variable values were 
allocated (hot-deck imputed) as opposed to being reported or assigned. The decision to restrict 
to 2012 data was made primarily because the project builds on knowledge about Mode item
response-rate differences studied in earlier ACS reports before the Internet mode came on-line, 
and it would not make sense to use data cutting across the period (April 2013) when recent CATI 
changes (as described and documented in [23]) first came into effect. In addition, predictive mod
els of imputed outcome means will be explored that make use of explanatory variables derived 
from the Planning Data Base [24] (PDB), as block-group aggregates of 2010 Census variables. 
The variables proposed for use in this research are summarized in Table 1. 

The final list of outcome variables analyzed below is shorter than the list of housing and 
person variables in Table 1. The overall list was informed by the research of [1] on patterns 
of item nonresponse across response modes, with the idea that these missing items must be 
imputed much more frequently for responses in some modes than others. As will be explained 
further below, for simplicity of prediction and interpretation of cross-classified outcome patterns, 
it seemed methodologically clearest to focus on binary outcome variables. Therefore, some purely 
quantitative variables such as income or yearly taxes were omitted. For others, such as property 
insurance or time-related variables (year last married, or year house was built), it was easier to 
construct thresholds from which binary variables could be defined and interpreted. The binary 
variables were chosen in more than one way, with very different probabilities of a positive outcome. 
Some of the multicategory discrete variables, like household type, seemed too complex to describe 
as outcomes, and simpler versions, such as a spousal household indicator, were used as predictors 
but were not chosen as outcomes for lack of clear predictors among other variables on the list. 
The reduced list involved some arbitrary choices, but made the project more manageable. 

The list of binary outcome variables analyzed in this Report is as follows. Housing-Unit
level outcome variables include FS (= HU indicator of receiving Food Stamps), OWN (= HU-level 
indicator of being occupied by Owner rather than Renter), MULTI (= indicator of HU within a 
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Table 1: Variables proposed for use in the Mode-Based Imputation Study. 

Variable Name Brief description Allocation flag 

HU-level control 
MODE resp. mode (mail, CATI, CAPI) * 
BLD type of building (4-val. recode) FBLD 
TEN tenure (owner/renter status) FTEN 
VACS vacancy status (binary recode) FVACS 
HHT household/family type FSEX, FREL 
CCS MSA status (central, MSA, other) * 

HU outcome 
FS yearly food stamp recipiency FFS 
INS property insurance FINS 
MRG, MRGX mortgage payment, status FMRGX 
TAX yearly real estate taxes FTAX 
YBL year (HU) built FYBL 
FINC family income FFINC 
CENRACE race (multiple, census coding) FRAC 

Person control 
AGE age FAGE 
HIS Hispanic origin (binary) FHIS 
MAR marital status FMAR 
REL relationship to HU ref. person FREL 
SCHL educational attainment FSCHL 
SEX sex FSEX 

Person outcome 
CIT citizenship FCIT 
ESR employment status recode FESR 
JWD time of departure for work FJWD 
LANX speak another language at home FLANX 
PA cash public assistance income FPA 
TI total income FTI 
HICOV any health insur. coverage FHICOV 
MARHY year last married FMARHY 

Block-group PDB 
MAILRET 2010 census mail-return rate * 
perc.black.cen percent Black in 2010 census * 
popdensity.cen pop’n density from 2010 census * 
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Multi-unit building), PIns (= yearly Property Insurance payment for property owner, thresholded 
at 960 or 1310 to make binary variables), MRGX (=indicator of property owner having a mortgage), 
YBL (=year HU built, with binary indicators for < 1960 or between 1950 and 1979). Person-level 
outcome variables modeled include MARHY (= year last married, with binary indicators for < 1970 
or < 1990), NoHS (recode of educational-level variable SCHL to indicator of never having completed 
High School), Coll (recode to indicate attainment of 4-year College degree), PostGR (recode of 
SCHL to indicator of a post-college degree), BLACK (recode of RACE to indicator of Black alone), 
NILF (indicator for not in labor force, ESR=6), HICOV (indicator of any health insurance coverage), 
LANX (indicator of language other than English spoken in the home), and JWD (daily departure 
time for work, thresholded at 0620). The further HU-level variables used in conditional predictive 
models are: CCS (3-level factor, distinguishing MSA Central City, MSA other, and non-MSA), 
City indicator (of CCS=1), RACE of reference person (4 levels), HSP (Hispanic origin of reference 
person), BLD (3- or 4-level code for building type), SPOU (spousal HU, i.e., husband and wife 
living together), REG (4-level Census region), and DIV (9-level Census groupings of states refining 
REG). Additional person-level predictors include: AGE in years, RACE (often recoded to indicators 
WHITE for White alone and BLACK for Black Alone), and HIS (hispanic indicator). Some of the 
PDB variables were tried in the models but were found not to be useful predictors in the presence 
of individual HU and person-level predictors and were not retained in any of the final models. 

RESEARCH QUESTIONS 

This research was conducted to answer two broad questions related to the possible impact of 
taking response mode directly into account for missing items in ACS data. The first is method
ological, concerning the adequacy of evaluating imputation methods in a model-based framework. 

Q1.	 Can a model-based imputation rule (without mode as explanatory variable) imitate the 
current (2012) ACS hot-deck imputation for the important ACS outcome variables listed 
in Table 1 sufficiently well that the corresponding weighted ACS estimates are close ? 

The rationale for studying the impact of mode-based imputation in a model-based framework 
was to learn whether response-mode would have a strong or even a noticeable predictive effect 
beyond the covariates used in defining the universe for each variable together with the (mostly 
housing-level or demographic) covariates used to define hot-deck donor pools. The idea was that 
a finding of important mode-based effects in a model-based setting would strongly suggest the 
need to include response-mode explicitly in the specifications for hot-deck donor pools in the 
future. Beyond that, it was thought useful to learn how closely a model-based imputation would 
resemble the hot-deck imputations currently produced by ACS. It was known that, at least for 
some ACS variables, the hot-deck imputations contain a strong geographic component which 
would be hard to reproduce in a covariate-based model. 

The models would have to be assessed at a minimum by examining ACS estimates, nationally 
and on subdomains, and checking that the mass-imputation based estimates fall within confidence 
intervals with standard errors of the ACS estimates themselves estimated by ACS successive-
difference replicate-weight methodology. The subdomains on which to study the behavior of 
ACS estimates in this way, should include both geographic (states and larger counties) and 
demographic (cross-classifications by age groups, race, ethnicity and sex) aggregates. 
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The second research question is the main one motivating this project. 

Q2.	 Are the ACS estimates based on an imputation model, designed to satisfy the requirements 
of Q1 without mode as an explanatory variable, markedly different from those based on a 
similar model explicitly incorporating mode as an explanatory variable ? 

While mass imputation (with or without mode pooling) based on cellwise conditional expec
tations or other model predictions would not directly account for the variability of ACS survey 
weighted estimates, it would provide two different sources of imputed data from which estimates 
could be produced. The differences between the mode-pooled and mode-based model estimates 
can be compared with the margins of error for the survey-weighted ACS estimates (national 
and subdomain) corresponding to the same outcome variable. Additional subsidiary research 
questions, not separately stated here because they are contingent on the forms of the best-fitting 
models that can be found for imputed items, involve the investigation of properties of the model 
related to their stability with respect to slight changes in the set of selected explanatory variables 
and interactions chosen. If the answers to the two stated research questions are positive, it would 
still be necessary to show that the chosen mass-imputation models are reasonable, both by com
parison with the existing hot-deck imputation method and by model goodness-of-fit assessments, 
which might be done either by likelihood-based criteria or cross-validation. 

METHODOLOGY AND LIMITATIONS 

As mentioned above in Section 2.3, the analysis in this report is restricted to binary outcome 
variables. This restriction results in several kinds of simplification: in the classes of models to be 
considered; in the interpretation and display of the model results; in the algorithms embodying 
model predictions as imputations of feasible outcome values; and in the extension of a model 
omitting mode to a cross-classified predictive model and imputation algorithm including mode. In  
particular, as discussed in Section 4.2 and Appendix C, imputation for each HU- or person-level 
outcome variable is then based either on the predicted probability that the outcome is 1 or on 
thresholding that probability at a computed optimal threshold. 

Briefly, the predictive conditional models considered for the binary outcome variables in 
terms of other variables are of two types: generalized linear models (GLMs) such as logistic 
regression, and regression trees based on recursive partitioning (CART type models as in [25, 26]), 
as will be discussed in detail in Section 4.1, where the models are compared in terms of general 
criteria of fit. Next, in Section 4.2, the predictive models are compared also with respect to 
criteria of faithfulness of binary classification (on complete classes), and the optimal thresholds 
for imputation are computed. Further discussion of the models relates to their generalizability to 
cases in which some of the predictors are missing and have hot-deck imputed values substituted or 
in which the outcomes themselves are missing and imputed, and this examination of the outcome 
variables is undertaken in Section 4.3, in the spirit of [6]. Finally, Section 4.4 describes the method 
used to compare ACS-style survey estimates produced with model-imputed outcomes – separately 
for models that do and do not take account of mode – versus estimates and standard errors using 
the current ACS hot-deck-imputed missing values and replicate-weight based standard errors. 
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4.1 Fitting and Selection of Complete-case Models 

This section together with Sections 4.2 and 4.3 primarily address research question Q1 from 
Section 3. The fitting and selection of predictive models is done for invidual outcome variables 
in terms of other variables. Recalling that the goal of the model-fitting is imputation for binary 
outcome variables, the most important task for the model is to define a set of cells – not too 
numerous, perhaps 7 to 13, and none very small – in terms of predictor variables other than 
mode, for which the within-cell proportions of 1 outcomes are as different as possible from one 
another. The outcome variables analyzed, and the variables other than mode selected for them 
in the best models fitted, are displayed in Table 2. The specified forms of the logistic regression 
models for all of the outcome variables listed in Table 2 are given in Appendix D. 

Separate models could have been developed including mode. That was not done in this research 
project because many interactions between mode and existing predictors were suggested by early 
modeling efforts, and the main objective of the analysis was not to develop complicated models 
with interactions so much as to examine whether outcome rates within population decompositions 
cross-classified by mode did seriously depend on mode. Thus, this section restricts attention only 
to models defined without explicit reference to mode. The complete-case models are viewed as a 
way of first assessing how predictable each outcome is in terms of a natural set of predictors and 
their (mostly pairwise) interactions, and then defining a decomposition of the population into 
covariate-based cells, which are called nodes because they often correspond to terminal nodes in 
a CART-type  model.  Outcome=1 rates in these cells are compared with the rates observed in 
further decompositions of the cell by mode. 

The strategy used in this project to develop conditional predictive models was to fit models 
initially using all plausible demographic and related control variables from Table 1 (restricting to 
housing-level predictors for housing-level outcomes), first by a recursive-partitioning or CART-
type tree model using rpart, next by logistic-regression models incorporating the variables and 
some of the interactions appearing in the tree-based models, but generally avoiding interactions 
of order higher than 2. Within each type of model, we removed variables or interactions that 
had only very small effects on predictions, or where these effects made a difference only in very 
small complete-case subgroups. The subgroups considered in this way included the terminal-
node groups within the tree-based models, and small quantile-interval groups within logistic 
regressions. In those few cases where the rpart software did not produce any meaningful data 
splits based on an “Information” criterion – usually because the overall rate of values 1 for a 
specific outcome variable was small, 0.1 or less in the entire respondent population – the groups 
were entirely based on (at most 10–12) quantile intervals of fitted probabilities of outcome 1. 
Whether from tree-based models or logistic regressions, groups of 3000 or less were avoided where 
possible, both because of their unstable identification within the complete cases, and because the 
corresponding subgroups of subjects with missing predictors or missing outcomes would then be 
extremely small (often less than 1000) even before cross-classification by mode. 

The model-fitting process was far from exhaustive, and was driven by the goal of finding 
population subdivisions into 7–13 cells each containing at least thousands of single-year ACS 
complete-class observations. More detailed and predictively successful models could undoubtedly 
be found, by incorporating higher-order interactions as well as local geographic terms down to 
state level and below, for example by restricting new model terms to those which improve model 
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Table 2: Binary outcome variables, universe and mean and number of model coefficients (df), 
and quality metrics for best model fitted. Misclassification-rate (Miscl) and Correlation (Cor) 
are the metrics of Appendix C comparing the continuous predictor and binary outcome. 

Model Metrics 
Outcome Universe Mean df AUC Miscl Cor 

HU-level 
FS all .121 31 
OWN all .712 27 
MULTI all .194 25 
PIns > 960 OWN=1 .336 80 
PIns > 1310 OWN=1 .163 80 
MRGX OWN=1 .604 72 
YBL < 1960 BLD�= 1 .339 44 
YBL 1950–1979 all .382 53 

Person level 
MARHY< 1970 Ever-married, .198 38 

AGE≥ 15 
MARHY< 1990 same .524 38 
NoHS AGE> 15 .148 79 
PostGR AGE> 21 .112 64 
BLACK all .092 78 
HICOV all .873 28 
LANX AGE> 4 .167 20 
JWD < 620 ESR≤ 4 .212 91 

JWTR�= 11  
NILF AGE> 15 .360 64 

.754 .184 .362 

.820 .245 .634 

.776 .176 .662 

.645 .411 .284 

.660 .257 .244 

.622 .446 .260 

.665 .403 .317 

.567 .464 .129 

.660 .137 .753 

.804 .306 .622 

.570 .186 .509 

.634 .192 .178 

.708 .153 .287 

.638 .193 .351 

.687 .189 .567 

.645 .312 .253 

.584 .299 .594 

Source: American Community Survey, 2012. 

deviance by at least 15 per degree of freedom. Choosing such a high deviance per model parameter 
as entry criterion has the effect of limiting model dimension but possibly worsening cross-validated 
prediction. (This number 15 should be compared with the Bayesian Information Criterion (BIC) 
– the most severe deviance-penalty term in common use for model selection – equal to natural 
logarithm of sample size n. Since  n could be taken either to be the number ofcomplete cases 
among approximately 2 million HU’s or 5.2 million persons, the BIC would require deviance 
improvements per degree of freedom of no more than log(5.2e6) = 15.5.) Such additional model 
terms are not easy to find, although the search for them would be a worthwhile subject of future 
research if model-based imputation methods are desired for practical implementation. 
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Table 3: Counts and Occurrence rates for HU level Outcomes within defined universe, in 2012 
ACS Data. Case subgroups are: Comp = Complete-cases, MissPrd = cases with incomplete pre
dictors but non-imputed outcomes, MissRsp = cases with hot-deck imputed outcomes. Outcomes 
with suffix a or b are the two choices used to define indicators, in same order as Table 2. 

COUNTS RATES 
Outcome Comp MissPrd MissRsp Comp MissPrd MissRsp 
FS 1,994,021 143,256 25,704 0.1207 0.2006 0.1149 
OWN 2,001,600 137,806 23,575 0.7124 0.6306 0.6528 
MULTI 2,001,600 137,544 23,837 0.1944 0.1959 0.5287 
PINSa 1,138,943 61,678 328,627 0.3365 0.3165 0.2853 
PINSb 1,138,943 61,678 328,627 0.1631 0.1549 0.1338 
MRGX 1,416,378 84,571 28,299 0.6045 0.6018 0.7743 
YBLa 1,688,274 113,706 225,726 0.3386 0.3517 0.3888 
YBLb 1,798,781 121,889 242,311 0.3822 0.3882 0.4151 

Source: American Community Survey, 2012. 

4.1.1 Housing-level outcomes 

The occupied housing-unit outcomes analyzed in this Report are listed in Tables 2 and 3. 
The variables included as predictors for these, listed in the logistic-regression specifications of 
Appendix D, are other housing variables together with some demographic variables for the HU 
reference person when those were found to be useful. Three metrics describing the fit of the 
models are listed in Table 2, and will be interpreted beginning in Section 5.1. The size of the 
Complete-case dataset used to fit each model is determined by the universe for the outcome 
intersected with the cases for which none of the model outcomes or predictors is missing. (Here 
‘missing’ means that the corresponding allocation flag indicated a survey variable that was im
puted for a given case.) Table 3 displays for each outcome variable the number of complete cases 
in this sense, as well as the number of cases for which the outcome-variable was not missing but 
at least one predictor variable was missing, and those for which the outcome-variable itself was 
missing. These three sets of cases, respectively denoted Comp, MissPrd, and  MissRsp in Table 3, 
are populations that may be qualitatively different, and they will be compared in Section 5.2 
with respect to relationships between predictor and outcome variables, after some preliminary 
discussion in Section 4.3 about the Rates columns of Table 3, which show the proportion of their 
cases for which the outcome-variable indicator is 1. 

4.1.2 Person-level outcome variables 

The person-level outcome variables analyzed in this Report are listed in Tables 2 and 4. The vari
ables included as predictors for these, listed in the logistic-regression specifications of Appendix D, 
are housing-level variables (including HU and the variable SPOU denoting spousal family struc
ture) together with person-level demographic variables including Age, Race, Hisp, AIAN, REL 
(relationship to HU reference-person), and indicators of educational attainment (NoHS, Coll, 
PostGR). Other possible predictor variables, such as personal or family income or poverty indi
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Table 4: Counts and Occurrence rates for Person level Outcomes within defined universe, in 2012 
ACS Data. Case subgroups are: Comp = Complete-cases, MissPrd = cases with incomplete pre
dictors but non-imputed outcomes, MissRsp = cases with hot-deck imputed outcomes. Outcomes 
with suffix a or b are the two choices used to define indicators, in same order as Table 2. 

COUNTS RATES 
Outcome Comp MissPrd MissRsp Comp MissPrd MissRsp 
MARHYa 2,794,403 68,137 301,395 0.198 0.207 0.182 
MARHYb 2,794,403 68,137 301,395 0.524 0.513 0.552 
NoHS 3,961,156 84,391 197,094 0.148 0.207 0.289 
PostGR 3,629,500 76,088 165,227 0.112 0.089 0.060 
BLACK 4,735,122 459,261 97,524 0.092 0.161 0.076 
HICOV 4,346,677 317,176 628,054 0.874 0.827 0.933 
LANX 4,458,073 343,733 187,781 0.167 0.265 0.177 
JWDa 1,899,403 97,942 278,098 0.212 0.235 0.215 
NILF 3,765,380 229,040 248,221 0.360 0.393 0.545 

Source: American Community Survey, 2012. 

cators, were thought to be less reliable in the sense that despite their predictive value they will 
more frequently be missing than the other predictors variables used. Three metrics describing 
the fit of the models are listed in Table 2, and will be interpreted beginning in Section 5.1 be
low. The counts of complete cases, cases with at least one missing predictor but non-missing 
outcome, and cases with missing outcome are determined as described in Section 4.1.1 above. 
These counts, along with the corresponding rates of the outcome indicator variable being 1 in 
these populations, are shown in Table 4. Also for the Person-level outcomes, these populations 
of Comp, MissPrd, and  MissRsp cases may be qualitatively different, and they will be compared 
in Sections 4.3 and 5.2. 

4.2 Model-based Imputation 

The methods described so far, which take no explicit account of mode of response, consist of: 

(i) the definition for each binary outcome variable of a complete-case population defined by 
the non-missing (non-allocated) status not only of the outcome variable but also of all 
predictors used in fitting a best logistic regression model; 

(ii) a decomposition into cells of that complete-case population, defined in most cases by a 
CART model (for which, see Appendix B) on a subset of the predictor variables in the 
logistic regression, and in other cases (when CART software gives either no splits or too 
many terminal nodes) by quantile intervals for the logistic-regression model scores. 

This Section describes how to use these models and cells to impute the binary outcome 
variables when they are missing, first by a method that continues to ignore response mode, and  
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second by a method that explicitly takes mode into account. There are many choices to be made 
in defining the method of imputation, and a rationale is provided for the method adopted. 

The primary methodological issue arising in imputations from a propensity-type model is how 
to convert an estimated probability into a set of case-level binary decisions. This question arises 
whether the model does or does not explicitly account for response mode. The main methods 
available are: (a) to assign an outcome to individual cases at random and independently with 
the respective probabilities given by the model, (b) to assign outcomes not to individuals but 
to aggregates such as strata, in proportions defined by the model (which essentially means to 
assign fractional propensities rather than binary outcomes to individuals), (c) using the model to 
provide individual probabilities of binary outcomes, to assign binary outcomes to individuals in 
such a way as to optimize some decision-theoretic criterion, like correlation or expected weighted 
squared difference, between individual probability and assigned outcome, and (d) to assign 
individual binary outcomes randomly according to the model, as in (a), but to do this multiple 
times independently to account for the uncertainty at the individual level. These methods are 
all discussed in general references on imputation and missing data, such [19] and the handbook 
containing [17], although perhaps (c) is covered more thoroughly in references on machine learning 
and classification, as is discussed in Section 4.2 above and Appendix C below. 

In surveys where the numbers of individuals with outcomes needing imputation is large, the 
Law of Large Numbers makes the difference between methods (a) and (b) not very important. 
(Note, however, that the method in (b) differs from the fractional imputation idea advanced in 
[12], which is another method that could be added to the list (a)-(d).) On the other hand, some 
classification and prediction applications require that a single binary decision be made for each 
individual imputation, and perhaps the same constraint is important in census as opposed to 
survey applications. In such settings where single imputation is an individual-level prediction 
problem, methods (c) must be considered, and the methods first considered in this research 
were of type (c). The intention was first to apply mode-free models with propensities constant 
on large strata defined from covariates in CART-type models, and then simply to augment the 
strata to a full cross-classification by mode of the mode-free CART groups (called nodes) within  
the complete-cases. However, imputations of type (c) in many of the outcome variables would 
have the characteristic of imputing all or none of each CART node to have Outcome=1, and  to  
have that property persist without drawing any distinctions between the mode subgroups of each 
node. Moreover, logistic-type models which provide distinctions between individual propensities 
(probabilities of Outcome=1) seemed to require extensive mode-by-covariate interactions to fit 
much better than mode-pooled models. Instead of careful re-fitting of logistic models for each 
outcome with appropriate interactions by mode, it was judged simpler to look directly to empirical 
outcome distributions on node by mode decompositions of the complete cases, using method (b) 
to assign propensities rather than {0, 1} outcomes to individuals. 

In mathematical notation, suppose that for a given {0, 1}-valued outcome k there are nodes 
j = 1, . . . , J  with nj complete cases in the outcome-k sample universe within node group j, of  
which njm cases are in response mode m = 1, 2, 3, and let rj and rj,m respectively denote the 
numbers of outcome-k values 1 within the node-j group and within the node-j by mode m group. 
(The number J = J(k) of nodes does depend on the specific outcome k.) Then for all cases with 
missing (i.e. allocated or hot-deck-imputed) outcome in ACS data, within the universe for that 
outcome, the mode-free imputed fraction for cases with covariate-defined node j is taken to be 
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rj/nj , and the corresponding imputed fraction for cases in node j and mode m to be rjm/njm. 
The assignment of individual cases to node groups is based on survey variables observed or 
imputed for those cases, according to rules obtained in one of several ways: either the groups are 
obtained from CART-type regression trees (in some cases by using nodes that were not actually 
the terminal nodes for the CART models fitted), or by cross-classifying the predictor variables 
appearing prominently in the CART and logistic models fitted, or by creating quantile intervals 
from the fitted logistic-regression scores. The variables figuring in the node definitions are listed 
in Table 11 in Appendix E. As an indication of the types of cells used, the specific cell definitions 
in terms of survey variables are given in Appendix E for the HU-level outcome variables. 

Research Question 2 asks whether the model-based imputation of outcomes are materially 
different when the model takes direct account of response mode. One way to assess this, strictly 
within the Complete-case population for a specific outcome (where recall that by Complete we 
mean that the outcome along with the relevant model-based predictors displayed in Appendix D 
for that outcome are not missing), is to ask whether the mode-by-(Outcome=1) decomposition of 
the population is approximately row-column independent within each node group. This is done 
by calculating for each outcome k the corresponding chi-square test statistic (with 2 · J nominal 
degrees of freedom) 

J  3   1    2
(k) rj nj 1 

XRC = rjm − njm · + (1) 
nj njm rj nj − rjj=1 m=1

Here and in later sections where chi-square type statistics are used as metrics of similarity of 
populations, if those statistics were to be used for formal hypothesis testing it would be proper 
to follow [28] in modifying the standard chi-square definition to incorporate survey weights. 
However, chi-squares are used in this report as descriptive tools rather than as test statistics, 
partly because the selection of the node groups was itself the result of model fitting on the survey 
data. So the Rao-Scott survey-weighted chi-squares are not used here. 

4.3 Comparisons between Complete and Incomplete Cases 

Whether imputation is done by the piecewise-constant propensity method just described, or 
by a more elaborate logistic model with and without mode as a predictive covariate, all of the 
methods make an assumption that the relation between outcome propensities is the same in the 
cases where outcome was missing (hot-deck-imputed) as in those cases where the outcome was 
observed. Following Rubin’s missing-data terminology ([19]), this is a Missing at Random (MAR) 
assumption. Some such assumption is needed for models for missing outcomes conditional on 
covariates to be identifiable from complete-case data, yet this assumption may be incorrect. 

The same kind of assumption is implicit in the hot-deck imputation methodology currently 
used by ACS, if we view the similarity of outcomes between ‘neighbors’ (in a suitably re-ordered 
frame list) to be a model assumption whose validity does not depend on whether an individual 
case has a particular outcome observed or missing. It is well known (cf. [6]) that the population 
of nearest-neighbors – the donors of substituted item values under hot-deck imputation – of indi
viduals (or of HU’s) with specific missing items is often far different from the general population 
of individuals (or respectively, of HU’s). The uncheckable assumption, analogous to MAR, is 
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that despite this difference, the nearest-neighbor donors are much more similar to the individuals 
with missing items than is the general population. 

In the present research, each specific binary outcome can be compared in three populations 
with respect to the relation between their covariates (or membership in CART-defined node 
groups) and their (observed or imputed) outcomes. The three populations are: the Complete-
cases, i.e., those individuals (or HU’s, for HU-level outcome variables) for whom neither the 
outcome nor the relevant predictive variables are missing; the Missing-Predictor cases for whom 
the outcome of interest is observed but for whom at least one relevant predictive variable is 
missing; and the Missing-Response cases, for whom the outcome of interest is observed rather than 
imputed. In Tables 3 and 4, these three populations are respectively labeled Comp, MissPrd, and  
MissRsp, and their sizes in the 2012 ACS sample along the rates with which the binary outcome 
indicators are equal to 1. Considering the sizes of these populations, the outcome occurrence 
rates can be strikingly different, depending on the outcome-variable. For example, although the 
hot-deck-imputed rate of usage of Food Stamps is not much different than the rate seen among 
complete cases, the rate among HU’s in which at least one of the key predictors HSP, RACE, SEX 
(of reference person), or SPOU, OWN, BLD is missing is much higher. (See Appendix D for the 
predictors of FS.) Compare also the MRGX=1 outcome rates for the three populations: HU’s with 
missing predictors and observed response have virtually the same rate as the Complete cases, but 
HU’s with missing response are imputed by the hot deck at much higher rates. This is probably 
well justified, since the geographic grouping of HU types may make owners without mortgages 
more likely to be neighbors in the frame list and also more likely to provide MRGX information in 
ACS. MULTI is another variable where the contrast between Complete-case and Imputed rates 
is striking, but likely justified. 

Since the differences between the three indicated populations are of great interest for what 
they suggest about the validity of MAR assumptions and hot-deck imputations, we measure their 
differences in two ways in Section 5.2 below. First, we use a chi-squared test statistic as metric for 
differences between the distribution across node groups of the model-pooled Missing-Predictor 
or Missing-Response populations as contrasted with the Complete-case population. We also use 
chi-squared metrics to measure the differences between the way these populations are distributed 
into node-by-mode cells. For both of these calculations, summarized in Table 7 below, the precise 
definitions are as follows. If populations A and B of total size nA, nB are decomposed into cells 
c = 1, . . . , C, with  numbers  ncA, ncB respectively falling into the c’th cell, then the rates ncA/nA 

are used as estimated probabilities of cell-c membership in computing the expected number falling 
into cell c in population B, yielding the chi-square type statistic 

C 
ncA 2 � ncA · nB

d(A, B) =  ncB − nB (2) 
nA nA c=1 

regarded as a distance between the two populations. This distance does depend strongly on the 
number of cells and the size nB of the second population, so these quantities accompany the 
metric values in Table 7. 
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4.4 Evaluation of Survey-weighted Imputed Estimates 

The ultimate answer to Research Question 2 requires the comparison of survey-weighted total 
estimates of ACS outcome variables, between data in which imputations are made by comparable 
methods either with or without response mode as a predictor. The imputation methodology 
described so far uses models only to define subgroups of the population, called node groups, 
from survey-variable covariates without reference to mode, and then further decomposes these 
groups by mode in calculating mode-based imputations for comparison. Although ultimately 
model-based, this method has been designed to be as close as possible to design-based. The 
imputation method, described in Section 4.2 above, is synthetic in estimating probabilities of 
outcome-indicators equal to 1 according to the observed rates of occurrence of outcome 1 in the 
node or node-by-mode groups. 

To compare the mode-pooled versus mode-based imputation methods, initially only the na
tional aggregate survey-weighted totals are calculated. The standard used to assess differences 
for each outcome variable is the replicate-weight-based standard error calculated on the hot
deck-imputed ACS totals on the domain of missing-outcome cases falling within the universe for 
that outcome. One might instead have used the replicate-weight-based standard errors for the 
whole-population survey-weighted total. Those standard errors are much larger than the ones 
based only on the missing-outcome domain. But since the imputations do not affect the sur
vey observations used for outcomes that did not require imputation, it seems more reasonable to 
assess the extent of imputation differences only on the domain of imputed cases for each outcome. 

Beyond the national-level comparisons of imputed-outcome survey-weighted totals, it would 
make sense to look also for differences in subnational analyses. However, for imputations created 
according to cells as done here, the greatest differences will occur on the mode-based cells within 
node groups which differ most in outcome-rates from the full node group. So in the the present 
report, imputation methods are compared only based on national survey totals and row-column 
chi-squares (1) as described in Section 4.2. 

4.5 Limitations 

The use of the methodology just described to answer the two main Research Questions of this 
research project has several limitations. 

(1) While the goal of the present research is to assess the possible impact of modifying ACS hot-
deck imputation methods by restricting donor pools within response mode, the synthetic 
cell-based imputation scheme implemented here with and without cross-classification by 
mode is very different from hot-deck imputation and so cannot precisely justify conclusions 
about mode-based hot-deck modifications. 

(2) The Missing-at-Random assumptions needed for the validity of either model-based or hot-
deck imputation may not hold. 

(3) Exhaustive model search has not been undertaken, although reasonably good predictive 
models do appear to have been found for the selected outcome variables studied. Since 
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predictive models that are sufficiently strong tend to diminish the importance of mode-
based cross-classification in the definition of imputation cells, it is possible that a concerted 
effort to find stronger predictive models for HU-level outcome variables would remove most 
of the changes in estimates that this research finds may result from mode-based imputation. 

(4) The outcome variables studied here have been chosen or constructed to be binary from 
those known to have mode-based variations in allocation fractions. However, one cannot 
easily extrapolate results to other outcome variables, or even to the fully quantitative form 
of survey variables like Earnings or Year Built. 

(5) The method by which model-based imputations are done relies on imputation cells defined 
from covariates some of which can themselves be missing. This may affect the results, 
either in strengthening or (more likely) weakening the impact of cross-classifying model-
based imputation cells by mode. To mitigate this effect of partially imputed covariates 
defining the cells, a more elaborate ‘chained-equation’ version ([17, 18]) of the imputation 
method could have been adopted. This could be done for completeness in further research, 
although it would be unlikely to change the overall conclusions. 

5 RESULTS  

5.1 Metrics and Best-fitting models 

Logistic regression models were fitted to the HU- and Person-level outcome variables in the ACS 
2012 data by the methods described in Sections 4.1, 4.1.1 and 4.1.2. The predictor-variable 
specifications of the fitted models are given in Appendix D, with the universes and coefficient 
vector dimensions listed in Table 2. The quality of these models can be assessed in several ways. 
First, with motivations and formulas given in Appendices A and C, the metric values Area Under 
ROC Curve (AUC), Misclassification percentage, and Correlation (between predicted probability 
of Outcome=1 and the Outcome value) were calculated and are displayed in the last three columns 
of Table 2. 

Folklore about AUC’s says that values in the range of .7 or .8 are good, and values below 
.6 are bad. But when the AUC values are compared across the different outcome variables 
in Table 2, they are seen roughly to be larger when min(Mean, 1 − Mean) is smaller. Simi
larly, misclassification rates for binary outcome variables are roughly increasing with respect 
to min(Mean, 1 − Mean). Correlations do not seem to show a direct relationship with Mean. 
Any of the three might be an approporiate measure of model quality in an imputation setting, 
depending on the loss function chosen. The quality of the models is also not directly related to 
the numbers of terms (df in Table 2) in the model: the interaction terms making up most of the 
terms in  models with  large  numbers of  coefficients actually have only a small incremental effect 
on predictive accuracy, even when they are highly significant as required by BIC. 

Since the purpose of all fitted models in this report is imputation, the models can also be 
judged according to how well they enable the construction of cells defined from predictor variables 
with well separated Outcome=1 occurrence rates. Such cells are readily defined from logistic 
regression models by decomposing the population of cases according to quantile intervals for the 
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Table 5: Chi-square statistics for mode-by-Outcome Independence of Complete-case counts within 
node groups. CompCt denotes complete-case count, in thousands. MARHY is shortened to MYR. 

HU items FS OWN MULTI PINSa PINSb MRGX YBLa YBLb 
Df’s 14 14 26 24 24 18 18 18 
CompCt 1,994 2,002 2,002 1,139 1,139 1,416 1,688 1,799 
χ2 12234 69016 8538 2120 688.2 6025 3891 2269 

Person items MYRa MYRb NoHS PostGR BLACK HICOV LANX JWDa NILF 
Df’s 20 20 14 24 20 18 20 20 22 
CompCt 2,794 2,794 3,961 3,630 4,735 4,347 4,458 1,899 3,766 
χ2 14.0 29.0 16.6 30.9 25.1 49.5 38.5 19.5 15.3 

Source: American Community Survey, 2012. 

model-predicted probability of Outcome=1. Alternatively, if it is only the cells that are desired, 
one may directly fit a CART or rpart (‘recursive partitioning’) type model (cf. Appendix B). 
This was done in as many cases as possible, subject to the R rpart package [27] converging and 
providing useful covariate-based splits without generating groups that were too small. Generally, 
splits resulting in groups of less than 1000 among the complete cases were disallowed. 

The Outcome=1 rates in the separate node groups are shown, for all outcome variables except 
MULTI and PostGR due to the larger number of node groups for those outcomes, in Table 12 of 
Appendix E. Note that the cells have not necessarily been chosen for overall greatest separation 
of rates, and that the construction of cells by quantiles of logistic-regression predictors is slightly 
more effective than rpart in achieving better overall separation. 

All of the logistic regression models fit well enough to produce chi-square goodness of fit 
values small enough to be nonsignificant if the degrees of freedom were those of a fully specified 
model. Since the models did have many estimated coefficients, the effective degrees of freedom are 
smaller than than the number of node groups minus 1, and by this criterion many of the models 
do not show adequate fit. However, since the purpose of this research was primarily to examine 
the imputation differences between the mode-pooled and mode-crossed cell decompositions, and 
since fit of models including mode would have required many interaction terms between mode and 
other predictor variables, the lack of fit was not pursued further. 

Finally, in response to the major question of Research Question 2, the Row-Column Chi-
squares are used to examine the hypothesis that the outcome rates are constant over modes 
within node groups, via the chi-square descriptive statistics (1), in Table 5. 

The dramatic and immediate result of the chi-square statistics (1) in Table 5 is the order-
of-magnitudes difference between the values for the HU-level versus the Person-level outcomes. 
The Person-level outcomes yield chi-square values that would be either non-significant or only 
slightly significant, although as mentioned in Section 4.2, the proper way to implement a formal 
test would have been the Rao-Scott survey-weighted chi-square of [28]. However, despite being 
applied to a smaller population (HU’s as opposed to persons), the chi-square values on HU-level 
outcomes are all (except for PINSb) in the thousands, typically two full orders of magnitude 
larger than on Person outcomes. Examination of the tables of Outcome=1 rates in node groups 
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Table 6: Cross-tabulated rates of occurrence of FS=1 and of HICOV=1 on node-by-mode subgroups 
of the respective complete-case populations of HU’s and ACS persons. 

FS counts and rates 

Node Counts FS=1 rates 
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 
2 
3 
4 
5 
6 
7 

1,060,791 180,889 180,109 
295,285 33,624 149,037 

7,095 1,705 6,121 
24,851 3,400 24,399 
4,162 1,466 4,923 

566 210 1,032 
5,841 1,839 6,676 

.0527 .0815 .1080 

.2048 .2946 .2685 

.2751 .2985 .2815 

.4290 .4641 .4223 

.4671 .4816 .4532 

.6078 .5762 .5262 

.5511 .5269 .5052 

HICOV counts and rates 

Node Counts HICOV=1 rates 
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

55,241 9,288 23,231 
96,971 15,667 36,787 

102,561 17,032 41,434 
247,962 40,749 98,571 
188,773 32,663 77,590 
431,432 69,881 165,614 
441,305 73,360 172,102 
429,551 72,086 174,123 
808,368 127,072 297,263 

.5572 .5734 .5548 

.6584 .6654 .6606 

.7504 .7477 .7456 

.7844 .7888 .7837 

.8172 .8170 .8135 

.8434 .8430 .8441 

.8970 .8981 .8974 

.9366 .9391 .9381 

.9498 .9504 .9483 

Source: American Community Survey, 2012. 

cross-classified by mode, illustrated in Table 6 on complete cases for a single HU outcome (FS) 
and a single Person-level outcome (HICOV), shows that there are small but real differences of 
rates for different modes within node of the order of a few percent for the HU outcome, and a 
remarkable lack of difference for the Person-level outcome. This distinction between the effect of 
mode on imputation at HU and Person levels shows itself again in the survey-weighted outcomes 
based on missing-Response cases, in Table 8 in Section 5.3 below. 

It was mentioned above in Section 3 that, at least for some ACS variables, the hot-deck impu
tations contain a strong geographic component difficult to reproduce in a covariate-based model. 
Indeed, attempts at fitting models with geographic (regional or state-level) intercepts did not 
produce greater concordance with hot-deck results than the best-fitting models described below 
in Appendix D. The reason for this is conjectured to be that the truly useful hot-deck geographic 
effects, for example in such housing variables as indicators of multiple-unit unit dwellings or or 
property insurance payments about a specified threshold, are local neighborhood effects. 
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5.2 Results on Subpopulations Defined by Missing Data 

Section 4.3 described the idea for comparing the Complete-case and Missing-Predictor popu
lations for each outcome variable, by examining the different proportions of those populations 
appearing in cells defined either by the covariate-based node groups given in Appendix E or by 
the cross-classification of these node groups by mode. The results of both kinds of comparisons are 
given by the chi-square statistics d(A, B) of formula (2). The sizes nB of the Missing-Predictor 
population are given in the second column of Table 7, for each outcome. For each outcome 
variable, the relevant population is the universe for that outcome, given within Table 2. 

First, in examining the distribution of the populations into node group cells, defined by 
covariates without regard to mode, the proportions of the Complete Case population falling into 
the node-groups j are the ratios njA/nA appearing in (2), and the chi-square value d(A, B) 
is given in column 4 of the Table. All of these chi-square values are large compared to the 
number of node-groups. However, the relatively small values of d(A, B), near 100, for PINS, 
MRGX, YBL, MARHY, indicate that the differences between Complete-case and Missing-predictor 
population node-group proportions for these outcomes are really quite small, and the differences 
for PostGR, HICOV, JWD, NILF and OWN are only slightly larger. By contrast, the differences for 
FS, NoHS, BLACK and LANX are much larger. 

Next consider the comparison of the distribution of the Complete-case and Missing-Predictor 
populations into cross-classified node-by-mode groups. The Missing-Predictor population sizes nB 

by outcome are as before, but now the node-by-mode proportions of the Complete-case population 
are the ratios njA/nA. The interesting feature of these chi-squares d(A, B) appearing in the last 
column of Table 7 as compared with those in column 4 is that the Mode-crossed final column is 
only slightly larger for the Person-level outcomes, but with the sole exception of PINSa the HU-
level outcomes show a much larger difference between these chi-square columns. This observation 
is different from the finding in Table 5 that for Person-level outcomes, the Outcome=1 rates are all 
essentially the same across mode within node for Complete cases. Table 7 does not at all reflect 
Outcome=1 proportions, but only the proportions of Complete and Missing-Predictor cases falling 
in covariate-defined subgroups. The near-equality of columns 4 and 6 for Person-level outcomes in 
Table 7 says that the population distribution difference for Person outcomes is almost completely 
due to the node cells which ignore mode, while for HU outcomes (other than PINSa), there are 
additional population differences relating to mode within node. 

5.3 Weighted survey estimates and contrasts 

Finally, the survey-weighted ACS totals using three possible imputation rules are displayed and 
interpreted in Table 8, on the set of cases for each outcome that fall within the universe for that 
outcome variable and that were allocated (imputed) in 2012 ACS. The three imputation rules, 
described fully in Section 4.2, are respectively the fractional Complete-case rates of Outcome=1 for 
each covariate-defined node group, the rates of Outcome=1 for the node group by mode combina
tion, and the Hot-Deck imputation as done in ACS 2012. Differences among the survey-weighted 
totals for the three sets of imputations Table 8 can be compared to the replicate-weight-based 
standard error estimated by the method used in the ACS. 
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Table 7: Chi-square Discrepancies between Complete-case and Missing-Predictor Populations 

Outcome 
# Cases  
MissPrd 

Mo
Cells 

de-pooled 
Chi-square 

Mo
Cells 

de-crossed 
Chi-square 

HU FS 143,256 7 5707. 21 8665. 
OWN 137,806 7 232.3 21 502.7 
MULTI 137,544 13 423.3 39 631.3 
PINSa 61,678 11 92.9 33 110.8 
PINSb 61,678 11 58.6 33 100.2 
MRGX 84,571 9 92.5 27 189.8 
YBLa 113,706 9 102.0 27 372.4 
YBLb 121,889 9 76.7 27 192.7 

Person MARHYa 68,137 10 124.9 30 138.2 
MARHYb 68,137 10 112.8 30 118.3 
NoHS 84,391 7 3522. 21 3530. 
PostGR 76,088 12 312.3 36 334.1 
BLACK 459,261 10 12150. 30 12205. 
HICOV 317,176 9 235.2 27 238.7 
LANX 343,733 10 6057. 30 6084. 
JWDa 97,942 10 379.1 30 397.6 
NILF 229,040 11 185.8 33 198.7 

Source: American Community Survey, 2012. 

The glaring results in Table 8 are that the totals of the Hot-Deck imputed outcomes are 
dramatically different from the totals of the other sets of imputed outcome variables, and also 
that the totals of the Mode-pooled or Mode-crossed imputed Person-level outcomes are virtually 
identical. On the other hand, the Mode-pooled and Mode-crossed cell-based total imputations 
in the HU-level outcomes are clearly different by up to about 1%, an amount which is small 
relatively but amounts to tens to hundreds of thousands of individuals, and is highly statistically 
significant. Even this 1% is only relative to the imputed cases, themselves only a small fraction 
of the numbers of total cases (1 to 2 million) in the 2012 universe for the HU-level outcomes. 

The sharp discrepancies between hot-deck and the other imputation methods are consistent 
with the findings of Section 5.2 that the Complete-case population for each outcome differs 
markedly from the Missing-Predictors and Missing-Response population. Table 7 shows that 
the distribution of Complete-cases by node group was far from the distribution in the Missing-
Predictor case population, and similar chi-square metrics (not shown) could similarly be used to 
document the difference between Complete and Missing-Response cases. The mode-based and 
mode-pooled imputed totals were nearly identical for person outcomes, and showed small but 
highly significant differences in HU level outcomes, not always in the same direction. 

The degree of difference between national weighted survey totals of Mode-pooled versus Mode-
crossed imputed outcomes is very slight in relative terms, tiny for Person-level outcomes and 
small but significant for HU-level outcomes among the cases requiring imputation. However, for 
Table 8 and tables like the first half of Table 6 (shown for FS)) and similar tables for other HU
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level outcomes, within subnational pockets of the population with larger incidence of missing HU 
outcomes, the discrepancies of up to a few percent among Outcome=1 rates across mode within 
node groups could be large enough to be noticeable. 

Table 8: Survey-weighted Outcome Totals in Missing-Item Cases within the Universe for each 
Outcome, Imputed by Cell-based method with Mode pooled or cross-classified, and by Hot Deck. 

Miss-Rsp 
Outcome # cases Mode-pooled Mode-crossed Hot-Deck SE 

HU 
FS 25,704 229,790 237,834 251,091 4394 
OWN 23,575 856,319 820,113 864,969 8220 
MULTI 23,837 746,929 721,596 1,084,545 12719 
PInsa 328,627 4,122,103 3,710,699 5,645,709 25442 
PInsb 328,627 2,038,684 1,795,918 2,702,354 15345 
MRGX 28,299 918,663 956,011 1,217,538 10834 
YBLa 225,726 5,973,867 6,358,998 5,890,227 20463 
YBLb 242,311 6,868,641 6,534,449 7,439,669 27302 

Person 
MARHYa 301,395 3,582,769 3,582,676 2,697,515 15224 
MARHYb 301,395 6,922,163 6,922,066 8,911,170 34219 
NoHS 197,094 1,950,023 1,950,051 3,065,463 22907 
PostGR 165,227 1,078,684 1,078,722 592,823 10713 
BLACK 97,524 348,576 348,561 376,680 9371 
HICOV 628,054 25,264,785 25,264,956 26,822,927 65767 
LANX 187,781 1,698,556 1,698,566 1,792,469 22963 
JWDa 278,098 1,796,942 1,797,023 3,376,229 20640 
NILF 248,221 4,074,087 4,074,101 6,332,555 30113 

Source: American Community Survey, 2012. 

CONCLUSIONS AND FUTURE RESEARCH 

The answers to the Research Questions posed in Section 3 are largely but not completely negative. 
First, for all of the outcome variables studied in this research, the distribution within covariate-
defined (node-group) cells of the Hot-Deck imputed ACS cases is quite different from the distri
bution of the Complete-case and Missing-Predictor (hot-deck-imputed) population. This effect, 
which provides a strongly negative answer to Q1, is much stonger than any of the effects found 
in this research concerning differences between mode-pooled versus mode-crossed cell-based impu
tation. Tables 7 and 8 together document these differences, and call into question any Missing 
at Random assumptions used here or that might be used in other model-based imputation, but 
also suggest that the joint hot-deck-imputed outcome distributions based on the hot-deck donor 
population might be very different in important ways from the (unobservable) joint outcome-
variable distributions of the cases with missing outcomes requiring imputation. As a result, ACS 
estimates of national and subdomain totals of imputed single survey outcomes might be fairly 
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accurate, while survey-based models of relationships between multiple ACS outcome variables – 
due to the prevalence of cases in which at least one of those outcomes was imputed – might be 
quite poor, in a way that few ACS users would anticipate. 

Question Q2 in this research project asked whether ignoring mode, as is done in current 
ACS imputation methodology, might be leading to ACS nonsampling estimation errors. At least 
with respect to the binary person-level outcome variables studied here, the answer seems to be 
No: as displayed in the bottom halves of Tables 5, 6 and 8, this research has found no evidence 
that the model-based imputation of binary person-level outcomes is noticeably affected by cross-
classification of single-outcome imputation cells with mode of response. With respect to HU-level 
outcome variables, the situation is less clear. The top halves of Tables 5 and 6 indicate that the 
node-by-mode distribution within node-groups of Outcome=1 cases by mode shows signficant 
dependence, and the survey-weighted totals of imputed housing-level outcomes are significantly 
different in the top half of Table 8 according to whether node-group model-based imputations 
are done by mode subgroup. Although mode-based imputation alters the housing-level imputed 
item totals significantly, with differences in survey-weighted imputed national totals of tens of 
thousands to hundreds of thousands, the differences are actually quite small, amounting to at 
most a few percent of cases imputed, and for each item the cases with missing data requiring 
imputation are themselves only a few percent of ACS cases. 

These and other related conclusions of this research can be briefly summarized as follows: 

(1) The populations defined by missing covariates and responses appear to be dramatically 
different in their relationship between covariates and outcomes from the complete-case 
population, for almost all outcomes. (The outcomes used in this comparison for missing 
outcomes are Hot-Deck-imputed ACS values in the 2012 data.) 

(2) Because of (1), the Missing-at-Random assumptions implicitly governing almost all ACS 
analyses to adjust for item nonresponse are in serious doubt. 

(3) Logistic regression models to fit binary outcomes in terms of plausible predictors, using 
variable-selection criteria such as BIC, do not easily achieve statistical adequacy, when 
mode is ignored. When mode terms and interactions are included, many such interactions 
are needed. Since the resulting cells formed by cross-classifying logistic-prediction scores by 
mode are already quite small (with sizes of hundreds rather than thousands in many cases, 
such models may be too noisy even for full-year data to be used in imputation applications. 

(4) When moderate numbers (7–13) of mode-pooled cells defined through recursive-partitioning 
(CART or rpart) models or logistic regression are used in imputation, and compared with 
imputations done using mode-crossed cells, the differences in imputed totals behave very 
differently for HU-level than for Person-level outcomes. HU-level total differences are large 
enough to be highly significant, even though they amount to at most a few percent of 
the imputed cases. The Person-level outcome totals show virtually no difference between 
mode-pooled and mode-crossed imputations. 

The very different joint behavior of multiple survey variables depending on the missing status 
of those variables may be partly due to the failure of the Missing at Random (MAR) assumption 
on which imputation is ultimately based. Without additional information on the true values of 
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missing items, there is no way to check this MAR assumption. One possibkly fruitful avenue 
for research along this line, suggested to the author by Nathan Walters, may be to use Failed 
Edit Followup (FEFU) cases in older ACS datasets [8] as a ‘truth deck’. That is, by comparing 
the item values recorded after resolution in FEFU interviews with the values that would have 
been imputed for those cases based on their pre-FEFU data, one may obtain helpful information 
relevant to MAR on the accuracy of hot-deck and other imputation methods in the ACS context. 

More broadly, ACS imputation research might be dramatically advanced by creating research 
data-files on past years of ACS data containing for all non-imputed case variables what their 
imputed values would have been if they were treated as missing, along with the corresponding 
case data that actually was missing. This would be a computationally intensive endeavor, but 
would allow for the first time a detailed study of the extent to which donor-derived data from 
the hot deck differs from the data that ACS measures. 

Further research into model-based imputation may be motivated by an undoubted lack of fit 
of the models arrived at in Appendix D, and also by the large differences between the impu
tations generated by the models and the ACS hot-deck method. It was mentioned at the end 
of Section 5.1 that some of the lack of fit and some of the lack of correspondence to hot-deck 
may both be due to not accounting for local neighborhood effects in the covariates used. For this 
reason, an interesting topic for future imputation research is to explore whether models including 
neighbor-averaged results can incorporate the best features of predictive models along with the 
geographic specificity of hot-deck. 

It still seems likely that models including neighborhood-average values of key predictors would 
not alter the main finding that imputation via response-mode makes only a very small difference 
in overall ACS estimates. However, model-based imputations may still be considered in the 
future as a way to improve the joint behavior of multiple imputed characteristics for single cases 
(housing units or persons). 
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Appendix A. ROC curves and AUC 

The Receiver Operating Characteristic or ROC Curve is a method of displaying the performance 
of a binary classification rule based on data through a statistic or quantitative measure exceeding 
a threshold. That is, if a quantity S is to be used as a decision rule in the form that S ≥ c 
corresponds to a positive decision to declare that D = 1, where conventionally D is the unknown 
indicator of a state of interest (such as diseased members of a population), then the ROC curve 
is the plot of points (P (S ≥ c|D = 0), (P (S ≥ c|D = 1))  as  c varies. Here P (S ≥ c|D = 1), called 
the Sensitivity (of classification based on S ≥ c) or  True-Positive (TP) rate, is determined from 
knowledge or estimation of probabilities from a model connecting the random variable S with 
the binary indicator D for a member of a population. The quantity P (S < c|D = 0) is called 
the Specificity and 1 − P (S < c|D = 0) =  P (S ≥ c|D = 0)  the  False Positive (FP) rate of the 
classification based on S ≥ c. 

A typical definition for the random score S is the value P (D = 1  |X) from a probability 
model based on a vector of covariate observations X on a population member which may be in 

none of two conditions D = 0  or  D = 1. Based on a training set of observed data {(Xi, Di)}i=1 
on (randomly selected) population members, the conditional probability P (D = 1|X) may  be  
estimated as a function (perhaps of an assumed specified form) of X ; then for another member 
of the population for whom X but not D is observed the quantity S = P (D = 1|X) is  used  
in the form I[S≥c] as a predictor for D = 1 after choosing a threshold c. The strength of the 
predictor S is sometimes expressed through the AUC or “Area Under [the ROC] Curve”, which 
is usually based on estimates of Sensitivity and Specificity (or TP and FP rates) for a set of 
values c. Conceptually, one may view the area AUC under the ROC curve defined by (FP,TP) 
points for all thresholds c, as a mathematically defined quantity (integral) summarizing the 
curve. However, the AUC also has the following interpretation as a probability [20] measuring 
the quality of threshold-based binary predictors created from the variable S. Suppose that two 
members of the population are selected at random, respectively one with values (X, S) from  the  
subpopulation satisfying D = 1 and the other with values (X ', S') from the subpopulation with 
D = 0.  Then  AUC = P (S > S'). This quantity is given by a double-integral expression (the 
first displayed equation in Appendix C) when the conditional densities of S given D = 0 and  
D = 1 exist, but is usually estimated from a few estimated points (FP(tj ), TP(tj )) on the ROC 
curve (0 ≡ t0 < t1 < · · · < tJ < tJ+1 = ∞), via a trapezoid-rule approximation 

J AAUC = (FP(tj+1) − FP(tj )) · (TP(tj+1) + TP(tj ))/2  (3)  
j=0 

Values of AUC close to 1/2 indicate a very weak predictor S, since it can be seen that a 
uniformly distributed random variable S independent of D leads to AUC = 1/2. A perfect 
predictor, for which there is some value c so that S ≥ c if and only if D = 1,  would  have  
AUC = 1. Generally, values AUC in the range (0.7, 0.9) are considered ‘good’, although the 
meaning of ‘good’ predictions varies with the application. Many other numerical features of the 
AUC curve can also be used to summarize the quality of prediction. This is a topic actively 
studied in Machine Learning, cf. [30]. 

Metrics for prediction quality, based on estimates of misclassification probability or correlation 
between predictor and D, are discussed in Appendix C, along with the choice of optimal classifiers. 
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Appendix B. CART and Recursive Partitioning 

There are many applications, with imputation a particularly salient one, where it is crucially 
important to determine a not-too-numerous set of subgroups or population cells, determined by 
population (predictive) covariates Vi, which have the property that a response variable of interest 
behaves as differently as possible in different cells and roughly homogeneously within cells. If 
the response variable Yi of interest is binary, which is the case of greatest interest in this report, 
that means simply that the probability of the response being 1 is as different as possible across 
cells, in some sense. This might be accomplished through a conventional (e.g., generalized-linear) 
predictive model for Yi in terms of Vi, in which case the response-probabilities si = P (Yi = 1  | Vi) 
would be well-separated into covariate-defined groups by ordering and grouping, for example 
defining groups i ∈ Gj from the j = 1, . . . , J  successive [(j − 1)/J, j/J) quantile intervals of the 
predicted responses si themselves. However, there is a class of so-called ‘recursive partitioning’ 
methods that directly split the data (Yi, Vi, i = 1, . . . , n) into subgroups according to thresholds 
applied to k’th coordinate values of the predictor vectors Vi. These methods, initiated by [25], 
are explained in [36] and R package rpart implementing them is introduced in [26]. The methods 
allow either continuous or discrete response variables, and in the binary-response setting here 
can be viewed as a cell-based alternative to logistic regression, in which the cells are defined 
from covariates by successive intersection of the data subsets for which single coordinates of 
the covariates lie above or below specified thresholds. The CART or rpart methods are in 
this sense intrinsically hierarchical and differ in flavor from GLM in allowing some cells to be 
defined from multiway intersections of conditions based on different covariate entries, while other 
cells are defined from fewer covariates. Thus, CART or rpart models selectively incorporate 
simultaneous effects from many covariate entries that in a GLM model setting would require 
a high-order multiway interaction, even while allowing only very low-order interactions among 
other covariates. This is an attractive feature: GLM models with some variables figuring in high 
order interactions, but other variables not figuring in interactions at all, are rather hard to build 
and are generally not considered in systematic model selection strategies. (They may arise in 
pruned-back highly overparameterized models with high-order interactions, a selection strategy 
with flaws of its own.) 
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Appendix C. Prediction-Model Metrics 

As in Appendix A, assume that data (Xi, Si, Di) on a sampled population, i = 1, . . . , n, are been 
used to estimate probability models P (S | D = d) and  P (D = d | X) for  d = 0, 1, where Xi is a 
vector of covariate data and Si is a scalar continuous-valued function of Xi, possibly depending 
on unknown (estimated) parameters θ. In this setting, we describe alternative measures of quality 
of S for predicting D, to contrast with the measure AUC defined in appendix A as   

' AUC = p(s|D = 1)  p(s ' |D = 0)  ds ds 
{s>s' } 

The measures described here are simpler: they are the weighted minimum misclassification 
probability for D based on S, and  the  maximum correlation between P (D = 1|S) and a function 
of S. Each of these will be defined as a characteristic of the true joint probability distribution 
of (D, S), which may be initially unknown but may under some assumptions be consistently 
estimated from large-sample (Si, Di) data. 

Our purpose in presenting prediction metrics is to explain how they lead to optimal choices 
for binary predictions η(S) = 0, 1 for  D in terms of S. As mentioned in Appendix A, this can be 
done by selecting the threshold c associated with a single point (FP, TP ) on the ROC curve 
and defining η(S) =  I[S≥c]. There are many ways in which this has been done, including fixing 
the FP rate P (S ≥ c | D = 0), or fixing the TP rate P (S ≥ c | D = 1), or fixing the point of 
tangency to the ROC curve (usually assumed concave or made into an ROC Convex Hull curve, 
cf. [30, 31]) with a specified positive slope τ (which corresponds to minimizing the loss-function 
FP  + τ · (1 − TP )), or finding the point on the curve which is closest to the point (0, 1). All of 
these methods and more are compared in the paper [33]. 

An illustrative ROC curve, with points defined according to some of their specific features, is 
shown in Fig. 1 on page 36 under the hypothetical logistic-normal model (6) considered below. 

If a binary-valued function η(S) is  used to  predict  D, then the misclassification probability is 
defined as P (η(S) �= D) =  E|η(S) − D| 

= P (D = 1|S = s) (1  − η(s)) + P (D = 0|S = s) η(s) p(s) ds 

which is obviously made smallest by the choice η(s) =  I[P (D=1|S)≥1/2]. A weighted version of 
this quality metric, in which the weight w multiplies probabilities for the false-positive misclas
sifications η = 1, D  = 0, while probabilities of false-negative events η = 0, D  = 1 are recorded 
with unit weight: P (η(S) = 0, D  = 1) +  wP (η(S) = 1, D  = 0)   

= P (D = 1|S = s) (1  − η(s)) + w P (D = 0|S = s) η(s) p(s) ds 

In  the weighted  case,  the metric is  made smallest  by  the  choice  η(S) =  I[P (D=1|S)/(1−P (D=1|S))≥w]. 
In the special case where w = E(D)/(1 − E(D)), the optimal classification rule is η(S) =  
I[P (D=1|S)≥E(D)]. 

If S = P (D = 1|X), then it is easily checked by repeated conditioning that P (D = 1|S) =  S. 
(This is the basic idea in the original Rubin and Rosenbaum propensity score paper [32].) Thus 
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the minimum w-weighted misclassification probability is equal to P (D = 1, S  < w/(1 + w)) + 
P (D = 0, S  ≥ w/(1 + w)) and would be estimated by 

n 
−1 n Di I[S≥w/(1+w)] + w (1 − Di) I[S≤w/(1+w)] 

i=1 

The correlation between a binary-valued predictor η(S) and  D, also called the Matthews 
Correlation Coefficient in the machine-learning literature, is 

 �  1/2 
E η(S) (D − E(D)) E η(S))(1 − E(η(S)) E(D) (1  − E(D)) (4) 

The choice of function η(s) maximizing this correlation, which has not to the author’s 
knowledge been derived explicitly in published literature, can be accomplished in two steps. 
First suppose that η(s) is chosen subject to a fixed value 

r = E(η(S)) = η(s) p(s) ds 

Assume for simplicity that that the conditional probability P (D = 1|S) is a continuous random 
variable, which is not at all a restrictive condition if S itself is continuously distributed. Then it 
is easy to see that, subject to the restriction E(η(S)) = r, the function η(s) maximizing (4) is the 
one maximizing E(η(S) P (D = 1|S)) − r P (D = 1), i.e., the one maximizing E(η(S) P (D = 1|S), 
which is precisely the indicator 

η(s) =  I[P (D=1|S=s)>q(r)] , P ( P (D = 1|S) > q(r) )  ≡ r 

Thus, the correlation maximizer is the indicator that P (D = 1|S) exceeds its 1 − r quantile q(r), 
and the correlation-maximizing threshold r is the one maximizing 

 
E P (D = 1|S) (I[P (D=1|S)>qr ] − r) / r(1 − r)  (5)  

Choice of a binary-classification metric, and of the threshold for binary classifiers η(S) =  
I[S≥c], is an important topic in machine learning literature. See www.cellprofiler.org/CPmanual/ 
ApplyThreshold.html for references to papers on “Maximum Correlation Thresholding”. The 
paper [33] compares a number of threshold-based measures of quality for quantitative predictors 
S in binary classification, while [34] discusses and contrasts error-rate optimization with criteria 
of effectiveness of classifications based on AUC and other aspects of the ROC curve. 

Universal use of a threshold 0.5 for the estimated scores S = P (D = 1|X) is not sensible 
when E(D) =  P (D = 1) is much smaller than 0.5, since with small E(D) it may be very rare 
to find P (D = 1|X) > 0.5. (This point is argued persuasively in [31].) Thus, the unweighted 
misclassification-probability metric is unsuitable in a discussion of classifications for a number of 
different outcomes D with P (D = 1) ranging from small values to values in the range (0.3, 0.7). 

−1 = 
Since the overall proportion n Di ≈ P (D = 1) will generally be known approximately in i=1 
a binary classification problem, and since a strong classification model will show a concentration 
of the histogram for P (D = 1|S) near  E(D), it makes more sense to try to optimize thresholds 
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Table 9: Calculated Thresholds and Correlations for Prediction Scores based on Logistic-Normal 
∗Model (6). r* is the maximizer r of (5), maxcor the correlation (4) at r ∗, and  q(r*) the 

threshold. ed.cor is (4) for r = E(D), and corDS the correlation between D, S. 

μ σ r* maxcor q(r*) E(D) ed.cor corDS 
-2.9444 0.5 0.2748 0.0936 0.0663 0.0555 0.0765 0.1182 
-2.9444 1 0.1545 0.2189 0.1271 0.0727 0.209 0.2742 
-2.9444 1.5 0.1331 0.3616 0.2181 0.1006 0.3584 0.4348 
-2.1972 0.5 0.304 0.1254 0.1256 0.1089 0.1129 0.1572 
-2.1972 1 0.2105 0.2693 0.1990 0.1339 0.2633 0.3305 
-2.1972 1.5 0.2 0.4066 0.2819 0.1679 0.4047 0.4805 
-0.8473 0.5 0.4067 0.1793 0.3253 0.3096 0.1768 0.2216 
-0.8473 1 0.3709 0.3365 0.3733 0.331 0.3355 0.4027 
-0.8473 1.5 0.371 0.4588 0.4125 0.3539 0.4585 0.5321 

0 0.5  0.5 0.1919 0.5 0.5 0.1919 0.2363 
0 1 0.5 0.3497 0.5 0.5 0.3497 0.4166 
0 1.5  0.5 0.4683 0.5 0.5 0.4683 0.5414 

for weighted misclassification probabilities with weights w near P (D = 1)/(P (D = 0). When the 
weight w takes exactly this value, the optimal threshold for S = P (D = 1|X) is  P (D = 1).  

It often turns out that the optimal correlation-maximizing threshold is near E(D) when that 
number is small, or in other words, that r = E(D) approximately maximizes (5). However, there 
are also enough cases where they are different to make this criterion of threshold choice worth a 
separate discussion. This can be seen numerically by considering the logistic-normal regression 
model where vector covariates X are such that 

β ' β ' 

P (D = 1|X) =  e X /(1 + e X ) ≡ plogis(β ' X) , β ' X ∼ N (μ, σ2)  (6)  

holds roughly, with approximately normal distribution of β ' X in the population, for some μ, σ. In  
this setting, the quantity (5) can be maximized numerically, and Table 9 displays the comparison 
between E(D) and the correlation-maximizing threshold for an array of different parameters 
(μ, σ). (The correlations exhibited there are as defined in (4.) The computations for this Table 
were done in R using Gaussian quadratures and the functions integrate and optim. Similar 
computations (not shown), done analogously when D instead follows a probit regression model , 

P (D = 1|X) ≈ Φ(β ' X) , β ' X ∼ N (μ, σ2)  (7)  

led to similar results, which are displayed in Table 10. Both of these Tables exhibit a final 
column of correlations cor(S, D) which by definition is larger than the maximum correlation (4) 
achievable with a binary-valued function η(S), usually about 20% larger. 

In Section 4.2 earlier in this report, we relied on the reasoning of this Section to justify the 
∗use of the binary imputation method η(S) =  I[S≥q(r ∗)] where q(r) ≡ FS 

−1(1 − r) and  r is the 
maximizer of (5) defined in terms of the logistic model (6), with Si = P (D = 1|Xi) predicted 
on the whole population from a parametric statistical model, and with μ, σ2 estimated as the 
sample mean and variance of the population-wide set of predictors logit (Si). Another possibility, 
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Table 10: Calculated Thresholds and Correlations for Prediction Scores based on Probit-Normal 
∗Model (7). r* is the maximizer r of (5), maxcor the correlation (4) at r ∗, and  q(r*) the 

threshold. ed.cor is (4) for r = E(D), and corDS the correlation between D, S. 

μ σ r* maxcor q(r*) E(D) ed.cor corDS 
-2.9444 0.5 0.0564 0.0922 0.0157 0.0042 0.0687 0.1203 
-2.9444 1 0.0377 0.3138 0.1218 0.0187 0.3024 0.3860 
-2.9444 1.5 0.0643 0.5156 0.2531 0.0512 0.512 0.5953 
-2.1972 0.5 0.123 0.1585 0.0529 0.0247 0.1345 0.2002 
-2.1972 1 0.0951 0.3881 0.1874 0.0601 0.3796 0.4643 
-2.1972 1.5 0.1297 0.5625 0.3065 0.1115 0.5602 0.6396 
-0.8473 0.5 0.3306 0.2708 0.2650 0.2243 0.2646 0.3304 
-0.8473 1 0.3094 0.4822 0.3633 0.2745 0.4806 0.5598 
-0.8473 1.5 0.3329 0.616 0.4210 0.3192 0.6156 0.6890 

0 0.5  0.5 0.2952 0.5 0.5 0.2952 0.3580 
0 1 0.5 0.5 0.5 0.5 0.5 0.5774 
0 1.5  0.5 0.6257 0.5 0.5 0.6257 0.6977 

when datasets are large, is to maximize the correlation (5) using quantile estimators based on 
the (complete-case) population of model-based predictors Si = P (Di = 1|Xi), instead of using a 
logit-normal or probit-normal model to define the quantiles. 

The reasoning given here to support a flexible threshold for predictors Si suggests also for 
CART models that the node-based piecewise-constant value of P (D = 1|X) ought not to be 
mapped to 0, 1 via the universal threshold 1/2 as is typically done in rpart software, but perhaps 
ought to be thresholded either at E(D) or at a value chosen adaptively by maximizing (5). 

C.1. Illustrative ROC and Thresholds under Logistic-Normal Model 

We compare and illustrate several different methods of choosing thresholds c for a binary clas
sification rule η(S) =�I[S≥c] when the model (6) connecting S and D holds. In that case, 
ED = P (D = 1)  =  plogis(μ + σz) φ(z) dz, and in terms of the standard normal density 
φ(z) and logit(t) ≡ log(t/(1 − t)), the ROC curve consists of points (FP(t), TP(t)) defined by 

1FP(t) P (S ≥ t | D = 0)  1/{y ED} logit(y) − μ dy
= = φ( ) (8) TP(t)) P (S ≥ t | D = 1)  1/{(1 − y) (1  − ED)} σ σt 

In that case, the slope of the ROC curve at the point (FP(t), TP(t)) is 

d TP(t) � d FP(t) 1 − ED t 
= · (9) 

dt dt ED 1 − t 

which is an increasing function of t, and therefore a decreasing function of FP(t), and the ROC 
curve is strictly concave. The threshold corresponding to the slope (1 − ED)/ED is 0.5, and 
the threshold ED corresponds to ROC slope 1. Finally, it is easy to see from (9) under this 
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mu= −2.2,  sigma= 0.5, ED= 0.33
 FP(r=ED)= 0.33, AUC= 0.741 
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Figure 1: Illustrative ROC curve labeled with points at thresholds 0.5, q(r*) (called the ‘Maxcor 
threshold’), E(D) and the closest point to (0,1), for the logistic-normal case in the eighth line of 
Table 9. NB: The ED threshold and point closest to (0,1) fall nearly on top of one another. 

model that at the point on the ROC curve uniquely minimizing the distance to (0, 1), t satisfies 

FP(t)/(1 − TP(t)) = {(1 − ED)/ED} · t/(1 − t) (10) 

Figure 1 illustrates the ROC curve labeled by the points with thresholds 0.5, ED, and  q(r ∗), and 
the point closest to (0, 1) for the logistic-normal model with the choice (μ, σ) = (−0.847, 1.0). 

Other logistic-normal examples, not pictured, were computed with different choices of μ, σ. 
They show varying AUC values, such as those in Table 9, and a variety of relative positions of 

∗the ROC points associated with thresholds, r and E(D). In all cases the point associated with 
threshold E(D) was near, but not identical, to the ROC point closest to (0, 1). This is apparently 
a feature of the logistic-normal family of examples, not of ROC curves in general, since the ROC 
curves based on examples of the probit-normal models (7) do not share it. 
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Appendix D. Specifications of Best Fitted Models 

The following model-statement calls in R exhibit the variables and interactions used in the best-
fitting logistic regression models for all of the outcome variables studied in this report, which are 
listed in order in Tables 3 and 4. 

FS ~ City + factor(RACE) + HSP + SPOU + OWN + SEX + factor(BLD) + factor(DIV) + 
City:factor(RACE) + City:HSP + City:SPOU + City:OWN + City:factor(BLD) + 
factor(RACE):HSP + factor(RACE):SPOU + factor(RACE):OWN + factor(RACE): 
factor(BLD) + HSP:SPOU + HSP:OWN + HSP:factor(BLD) + SPOU:OWN + 
SPOU:factor(BLD) + OWN:factor(BLD) 

OWN ~ City + factor(RACE) + HSP + SPOU + factor(BLD) + City:HSP + + City:SPOU + 
City:factor(RACE) + City:factor(BLD) + factor(RACE):HSP + factor(RACE):SPOU + 
factor(RACE):factor(BLD) + HSP:SPOU + HSP:factor(BLD) + SPOU:factor(BLD) 

I(BLD>2)~ factor(CCS) + factor(REG) + OWN + SPOU + factor(CCS):OWN + factor(CCS): 
factor(REG) + factor(CCS):SPOU + factor(REG):OWN + factor(REG):SPOU + OWN:SPOU 

I(PIns>960) ~ factor(CCS) + factor(RACE) + HSP + factor(BLD) + SPOU + factor(REG) 
+ factor(DIV) + factor(CCS):factor(RACE) + factor(CCS):HSP + factor(CCS):SPOU 
+ factor(CCS):factor(DIV) + factor(CCS):factor(BLD) + factor(RACE):HSP + 
HSP:SPOU + factor(RACE):factor(REG) + HSP:factor(REG) + HSP:factor(BLD) + 
SPOU:factor(REG) + SPOU:factor(BLD) + factor(DIV):factor(BLD) 

For I(PIns>1310), which is the PINSb model outcome, variables are the same as 
for PINSa, which was I(PIns>960). 

I(Mrgx==1) ~ factor(CCS) + factor(RACE) + HSP +SPOU + factor(DIV) + factor(BLD) + 
factor(CCS):factor(RACE) + factor(CCS):HSP + factor(CCS):SPOU + factor(CCS): 
factor(REG) + HSP:SPOU + HSP:factor(REG) + HSP:factor(BLD) + factor(CCS): 
factor(BLD) + factor(RACE):factor(DIV) + factor(RACE):factor(BLD) + 
SPOU:factor(REG) + SPOU:factor(BLD) + factor(REG):factor(BLD) 

I(YBL <= 3) ~ factor(DIV) + (factor(CCS) + factor(RACE) + SPOU + factor(REG) + 
BLD)^2 - factor(RACE):SPOU 

I(YBL%in%3:5) ~ factor(DIV) + factor(CCS) + factor(RACE) + SPOU + factor(REG) + 
factor(BLD) + factor(CCS):SPOU + SPOU:factor(REG) + SPOU:factor(BLD) + 
factor(REG):factor(BLD) + factor(CCS):factor(RACE) + factor(CCS):factor(REG) + 
factor(CCS):factor(BLD) + factor(RACE):factor(REG) + factor(RACE):factor(BLD) 

I(MARHY<1970) ~ factor(CCS) + BLACK + WHITE + factor(REGION) + factor(BLD) + 
factor(AGE.OLD) + factor(CCS):factor(REGION) + factor(CCS):factor(BLD) + 
BLACK:WHITE + BLACK:SEX + WHITE:SEX + BLACK:factor(BLD) + WHITE:factor(BLD) + 
factor(BLD):SEX + factor(REGION):factor(BLD) 
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For I(MARHY<1990), which is the MARHYb model outcome, variables 
are the same as for MARHYa, which was I(MARHY<1970). 

NoHS ~ factor(CCS) + factor(BLD) + factor(REGION) +BLACK + HIS + WHITE + OWN 
+ I(AGE<18) + I(AGE==18) + I(AGE>70) + factor(CCS):factor(BLD) + 
factor(CCS):HIS + factor(CCS):I(AGE<18) + factor(CCS):I(AGE==18) + 
factor(CCS):I(AGE>70) + factor(BLD):BLACK + factor(BLD):WHITE + factor(BLD):HIS 
+ factor(BLD):OWN + factor(BLD):I(AGE<18) + factor(BLD):I(AGE==18) + 
factor(BLD):I(AGE>70) + factor(REGION):BLACK + factor(REGION):WHITE + 
factor(REGION):HIS + factor(REGION):OWN + factor(REGION):I(AGE<18) + 
factor(REGION):I(AGE == 18) + factor(REGION):I(AGE>70) + BLACK:HIS + BLACK:OWN 
+ WHITE:HIS + BLACK:I(AGE<18) + BLACK:I(AGE==18) + BLACK:I(AGE>70) + WHITE:OWN 
+ WHITE:I(AGE<18) + WHITE:I(AGE==18) + HIS:OWN + WHITE:I(AGE>70) + HIS:I(AGE<18) 
+ HIS:I(AGE==18) + HIS:I(AGE>70) + OWN:I(AGE<18) + OWN:I(AGE==18) + OWN:I(AGE>70) 

PostGR ~ factor(REGION) + BLACK + WHITE + HIS + factor(BLD) + OWN + I(AGE>40) + 
I(AGE>70) + SPOU + factor(REGION):BLACK + factor(REGION):WHITE + 
factor(REGION):HIS + BLACK:HIS + factor(REGION):OWN + factor(REGION):I(AGE>40) + 
BLACK:factor(BLD) + BLACK:OWN + BLACK:I(AGE>40) + WHITE:HIS + WHITE:OWN + 
HIS:OWN + WHITE:I(AGE>40) + WHITE:I(AGE>70) + OWN:SEX + OWN:REL + HIS:factor(BLD) 
+ HIS:I(AGE>40) + HIS:I(AGE>70) + factor(BLD):OWN + factor(BLD):I(AGE>40) + 
factor(BLD):I(AGE>70) + OWN:I(AGE>40) + OWN:I(AGE>70) + I(AGE>40):SPOU + 
WHITE:SPOU + factor(BLD):SEX + factor(BLD):REL 

BLACK ~ factor(CCS) + factor(REGION) + HIS + OWN + AGECAT10 + SEX + I(BLD==2) + 
SPOU + NoHS + Coll + PostGR + HIS:OWN + HIS:SEX + HIS:AGECAT10 + HIS:I(BLD==2) 
+ HIS:SPOU + HIS:NoHS + HIS:Coll + HIS:PostGR + OWN:AGECAT10 + OWN:SEX + 
OWN:I(BLD==2) + OWN:SPOU + OWN:NoHS + OWN:Coll + OWN:PostGR + AGECAT10:SEX + 
AGECAT10:I(BLD==2) + AGECAT10:SPOU + AGECAT10:NoHS + AGECAT10:PostGR + 
SEX:I(BLD==2) + SEX:SPOU + SEX:NoHS + SEX:Coll + SEX:PostGR + I(BLD==2):SPOU + 
I(BLD==2):NoHS + I(BLD==2):Coll + I(BLD==2):PostGR + SPOU:NoHS + SPOU:Coll 
+ SPOU:PostGR + NoHS:Coll + NoHS:PostGR + Coll:PostGR 

HICOV ~ SEX + HIS + factor(REL) + factor(CCS) + OWN + AIAN + SPOU + factor(BLD) + 
I(AGE<16) + I(AGE>64) + SEX:SPOU + HIS:OWN + HIS:factor(REL) + HIS:AIAN + 
HIS:SPOU + factor(REL):OWN + OWN:SPOU + AIAN:SPOU + factor(REL):factor(BLD) 

LANX ~ SEX + HIS + factor(REL) + factor(CCS) + OWN + AIAN + SPOU + SEX:SPOU + 
HIS:factor(REL) + HIS:OWN + HIS:AIAN + HIS:SPOU + factor(REL):OWN + OWN:SPOU 
+ AIAN:SPOU 

I(JWD < 620) ~ SEX + AGE + HIS + REL + WHITE + BLACK + NoHS + PostGR + Coll + 
factor(BLD) + OWN + AIAN + SPOU + SEX:AGE + SEX:HIS + SEX:REL + SEX:WHITE + 
SEX:NoHS + SEX:PostGR + SEX:Coll + SEX:factor(BLD) + SEX:OWN + SEX:AIAN + 
SEX:SPOU + AGE:HIS + AGE:REL + AGE:WHITE + AGE:BLACK + AGE:NoHS + AGE:PostGR + 
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AGE:Coll + AGE:factor(BLD) + AGE:OWN + AGE:AIAN + HIS:REL + HIS:WHITE + 
HIS:BLACK + HIS:NoHS + HIS:Coll + HIS:SPOU + HIS:factor(BLD) + REL:WHITE + 
REL:BLACK + REL:NoHS + REL:Coll + REL:factor(BLD) + REL:OWN + REL:AIAN + 
REL:SPOU + WHITE:NoHS + WHITE:PostGR + WHITE:Coll + BLACK:NoHS + BLACK:PostGR 
+ BLACK:Coll + NoHS:OWN + BLACK:factor(BLD) + NoHS:factor(BLD) + PostGR:SPOU + 
Coll:OWN + Coll:factor(BLD) + factor(BLD):OWN + OWN:SPOU + factor(BLD):AIAN + 
factor(BLD):SPOU + AIAN:SPOU 

I(ESR == 6) ~ AGE + I(AGE^2) + NoHS + PostGR + Coll + SEX + HIS + REL + WHITE + 
BLACK + factor(BLD) + OWN + AIAN + SPOU + SEX:OWN + SEX:AIAN + SEX:SPOU + 
SEX:HIS + SEX:REL + SEX:WHITE + SEX:BLACK + SEX:factor(BLD) + HIS:WHITE + 
HIS:REL + HIS:BLACK + HIS:factor(BLD) + HIS:OWN + HIS:SPOU + REL:WHITE + 
REL:BLACK + REL:factor(BLD) + REL:OWN + REL:SPOU + WHITE:BLACK + WHITE: 
factor(BLD) + WHITE:OWN + WHITE:AIAN + WHITE:SPOU + BLACK:factor(BLD) + 
BLACK:AIAN + BLACK:SPOU + factor(BLD):OWN + OWN:AIAN + factor(BLD):AIAN + 
factor(BLD):SPOU + AIAN:SPOU 

Table 11: Numbers of imputation cells for ACS outcomes, and the variables used to define them. 

Outcome #cells 
FS 7 
OWN 7 
MULTI 13 
PINS 11 
MRGX 9 
YBL 9 
MARHY 10 
NoHS 7 
PostGR 12 
BLACK 10 
HICOV 9 
LANX 10 
JWD 10 
NILF 11 

Variables used to define cells 
OWN, RACE, SPOU, BLD, City 
BLD, SPOU, City, HSP 
OWN, CCS, SPOU, REG 
BLD,  SPOU, REG, CCS,  RACE  
OWN, BLD, CCS, SPOU 
BLD, REG, SPOU, CCS 
AGE, SEX, BLD 
AGE, WHITE, OWN 
OWN, WHITE, AGE 
AGE (no splits in CART!) 
quantiles of GLM (see App.D) 
quantiles of GLM (see App.D) 
SEX, Coll, AGE, BLD, REL 
quantiles of GLM (see App.D) 
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Appendix E. Cells Used for Model-Based Imputation 

For each outcome, the universe (given in Table 2) is decomposed into a set of 7–13 cells to be 
used in imputation with or without cross-classification by mode of response. The number of cells 
and variables used defining the decomposition are given in Table 11. Those cell decompositions 
with variables listed were defined from CART model hierarchies, and the others were defined 
from quantile-intervals of logistic regression model predictors, either because CART model cells 
were numerous or because no CART splits could be found (when outcome rate was close to 0 
or 1). The variables entering the logistic regressions used to create quantile intervals from model 
predicted values can be read off from the model specification in Appendix D above. R code 
defining mode-pooled imputation cells for the HU-level outcome variables is as follows: 

NodFS = ifelse(OWN==1, 1, ifelse(RACE!=2, 2, ifelse(SPOU==1, 3, 
ifelse(BLD==3, 4, ifelse(City==0, ifelse(BLD==2, 5, 6), 7) ) ))) 

OWNgp = ifelse(BLD==3, 1, ifelse(SPOU==1, 2, 
ifelse(City==1, ifelse(RACE!=1, 3, ifelse(HSP==1, 4, 5)), 

ifelse(HSP==0, 6, 7) ))) 

MultNod = ifelse(OWN==1, 1, (CCS-1)*4 + SPOU*2 + pmin(REG,2)+1) 

PInsNod = ifelse(BLD==1, 2, ifelse(SPOU<0.5, 6, ifelse(REG!=3, 
ifelse(CCS==3, 28, ifelse(REG!=1, 58, 

ifelse(CCS==2, 118, ifelse(BLD==2, 238, 239) ) ) ), 
ifelse(CCS==3, 30, ifelse(BLD==3, 62, ifelse(RACE!=1,126,127) )) ))) 

MrgxNod = ifelse(OWN<.5, 1, 2 + 4*(BLD>1) + 2*(CCS<3) + SPOU) 

YBLnod = ifelse(BLD==1, 1, ifelse(REG>2, 2, (REG==1)*4 + SPOU*2 + (CCS==1) + 3)) 

E.1. Outcome Proportions by Node Group 

Table 12 contains Counts and Outcome=1 rates for 15 of the 17 outcome variables studied. The 
only ones omitted are MULTI and PostGR, because they had more than 11 node groups and a 
similar pattern of separation between the Outcome=1 rates in the separate node groups. Note 
that the separations in rates are systematically largest in those instances (HICOV, LANX, NILF) 
where the node groups are created from quantiles of logistic regression predictors. 
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Table 12: Summary of Counts (in thousands) and Outcome=1 rates in App. E Node groups 

Node 1 2  3 4 5 6 7 8  9 10  11  
FS Rate .063 .231 .280 .428 .463 .558 .527 

Count 1,422 478 14.9 52.6 10.6 1.8 14.4 

OWN	 Rate .156 .901 .621 .646 .787 .794 .651 
Count 389 948 53.5 14.3 106 462 28.9 

PINSa Rate .087 .274 .291 .421 .360 .266 .403 .448 .523 .470 .517 
PINSb Rate .024 .125 .117 .204 .161 .149 .206 .241 .312 .250 .351 
PINS Count 63.9 389 120 48.3 246 3.8 91.7 23.0 136 13.1 4.1 

MRGX	 Rate .281 .423 .256 .395 .417 .561 .584 .710 
Count 22.7 22.1 27.1 22.8 119 209 377 617 

YBLa Rate * .239 .443 .540 .352 .474 .507 .658 .412 
YBLb Rate .291 .392 .416 .397 .364 .401 .398 .332 .385 
YBL Count 111 883 153 61.1 231 43.5 101 70.6 145 

MYRa Rate .009 .263 .386 .470 .530 .599 .618 .615 .721 .828 
MYRb Rate .362 .817 .818 .857 .866 .879 .867 .867 .913 .938 
MARHY Count 1,930 119 95.0 32.6 25.1 48.0 39.2 81.4 138 286 

NoHS	 Rate .964 .450 .101 .191 .349 .502 .340 
Count 124 52.5 3,270 441 45.0 16.3 11.9 

BLACK	 Rate .023 .041 .048 .049 .051 .058 .083 .123 .165 .295 
Count 687 684 253 179 144 912 525 464 404 483 

HICOV	 Rate .558 .660 .749 .785 .816 .844 .897 .937 .949 
Count 87.8 149 161 387 299 667 687 676 1,233 

LANX	 Rate .077 .121 .175 .176 .171 .108 .189 .185 .213 .726 
Count 3,213 367 38.2 70.2 32.1 5.5 11.7 54.3 131 535 

JWDa	 Rate .146 .158 .188 .286 .297 .265 .368 .381 .354 .449 
Count 909 327 87.7 77.7 69.7 23.5 360 11.9 3.4 28.8 

NILF	 Rate .033 .090 .128 .168 .196 .227 .288 .425 .667 .848 .968 
Count 377 375 187 379 188 377 376 564 378 375 189 
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