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Abstract

Assume K populations with associated respective real-valued parameters θ1, θ2, ..., θK . While
the values of θ1, θ2, ..., θK are unknown, we seek to rank the K populations from smallest to
largest based on estimates of these unknown values. If the statistic θ̂k is an estimator of θk for
k = 1, 2, 3, ...,K based on sample survey data, it is a common practice to rank the K populations
based on the ranking of the observed values, θ̂1, θ̂2, ..., θ̂K , that is,

θ̂(1) ≤ θ̂(2) ≤ · · · ≤ θ̂(k) ≤ · · · ≤ θ̂(K).

For example, the U. S. Census Bureau’s American Community Survey (ACS) produced 85 dif-
ferent (explicit) rankings of the K = 51 states (actually 50 states and Washington, D.C.) based
on observed sample estimates during 2011. One of those rankings ranks the states based on θ̂k,
the estimated mean travel time to work for workers 16 years and over who did not work at home
(minutes) for state k, where k = 1, 2, 3, ..., 51. Because rankings based on the observed values
of the statistics θ̂1, θ̂2, ..., θ̂K can vary depending on the variability among the possible samples
that could be observed, some statement of uncertainty should accompany the presentation of
each reported ranking. Assuming that a nation’s official statistics should be widely understood
and robust, this paper reports concepts and empirical results of some methods for stating un-
certainty in rankings using ACS data. Beginning with pair-wise comparisons, we limit our focus
to some practices, assisted by visualizations, found in the literature from classical central limit
theorem based methods and the bootstrap (nonparametric/parametric). We demonstrate using
discussion, some theory, real data, and visualizations that all presented methods (4 methods
comparing a pair of populations using normal theory and 3 uncertainty measures and their esti-
mates for the estimated ranks using the bootstrap) are simple and easy to implement and that
they can be easily explored and tested, especially by national statistical agencies that release
rankings of K populations based on sample survey data. All that is needed are the K sample
estimates and their associated standard errors.

KEY WORDS: Bootstrap; Nonparametrics; Official statistics; Uncertainty in rankings.

1. INTRODUCTION

Our main objective is to push a conversation and call national statistical agencies’ attention
to the need to express uncertainty in rankings based on data from sample surveys. Specially, we
assume that a statistical agency has released K estimates θ̂1, ..., θ̂K and associated standard errors
SE1, ..., SEK that are based on data from K independent sample surveys in K populations. We
share some simple and easy to use methods for presenting uncertainty in rankings of K populations
or governmental units - an activity that dates back at least to Aristotle (fourth century B.C. in his
Politeiai) who did some rankings of 158 Greek city-states in terms of their forms of government
(Larsen and Marx, 2012). The desire to rank (either explicitly or implicitly) units such as states
based on data from sample surveys is ubiquitous.

Tommy Wright is Chief of the Center for Statistical Research and Methodology (CSRM), U. S. Census Bureau, Washington, D.C., 20233 and
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paper: Derrick Simmons, Jun Shao, Carolina Franco, Josh Tokle, Pat Hunley, and Sarah Wilson.

1



More formally, assume K populations with associated independent continuous random variables
Y1, Y2, ..., YK and respective cumulative distribution functions F1(y), F2(y), ..., FK(y). Let θk be a
real-valued characteristic (parameter) related to Fk(y), for k = 1, 2, ...,K. While the values of
θ1, θ2, ..., θK are unknown, it is desired to rank the K populations from smallest to largest based
on these unknown values, i.e., based on

θ(1) ≤ θ(2) ≤ · · · ≤ θ(k) ≤ · · · ≤ θ(K). (1)

If Yk1, Yk2, ..., Yki, ..., Yknk
is a random sample of size nk from the kth population where the

statistic θ̂k = θ̂k(Yk1, Yk2, ..., Yknk
) is an estimator of θk for k = 1, 2, 3, ...,K, it is common practice

to rank the K populations based on the observed ranking of the values, θ̂1, θ̂2, ..., θ̂K , i.e.,

θ̂(1) ≤ θ̂(2) ≤ · · · ≤ θ̂(k) ≤ · · · ≤ θ̂(K). (2)

For example, the U. S. Census Bureau’s American Community Survey (ACS) produces an ex-
plicit ranking of the K = 51 states (actually 50 states and Washington, D.C.) based on observed
sample estimates during 2011 of θk the mean travel time to work for workers 16 years and over
who did not work at home (minutes) for state k, where k = 1, 2, 3, ..., 51. A listing by topic of all
85 rankings from the 2011 ACS is given in Appendix A. Even when estimates are given in a table
without an explicit ranking, users will, without exception, compare states looking for smallest,
largest, and how states stand relative to each other in terms of their estimates. This occurs all of
the time, and we refer to such tables as providing “implicit” rankings.

Because rankings based on the observed values of the statistics θ̂1, θ̂2, ..., θ̂K can vary depending
on the variability among the possible samples that could be observed, some statement of uncer-
tainty should accompany the presentation of each reported ranking. While the ACS’s sampling
design is basically a national stratified random sample with sampling and estimation following a
finite population design-based framework, for simplicity, we assume the sample from each state is a
random sample, and we will use some ACS data throughout to present some examples of methods
for expressing uncertainty in the rankings.

A nation’s official statistics should be widely understood and robust, among many other proper-
ties. By widely understood, we mean that the concepts and methods that form the basis for these
statistics should be sufficiently simple to be understood by many, especially by those who use the
data for making decisions for a nation’s people and economy. By robust, we mean that the methods
should be valid and applicable in many situations, and that they should be free from very strict
and specific assumptions.

These two desired characteristics drive what we present in this paper, and they are shared
by classical probability design-based sampling methods (e.g., Cochran, 1977; Fuller, 2009; Lohr,
2010) that are commonly used by national statistical agencies around the world. Models can play
a supporting and complementary role, and this is often reflected in model-based sampling (e.g.,
Valliant, Dorfman, and Royall, 2000) and model-assisted (Särndal, Swensson, and Wretman, 2003)
approaches. We also see opportunities in applying methods from classical nonparametrics (e.g., see
Hollander and Wolfe, 1999).

Hollander and Wolfe (1999) note, “... a nonparametric procedure is a statistical procedure that
has certain desirable properties that hold under relatively mild assumptions regarding the under-
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lying population (Y ) from which the data are obtained”. The related term distribution-free refers
to statistical procedures where the relevant probability statements are independent of the actual
population distributions. In many cases, methods are based on the ranks of the observed sample
values instead of the observed sample values themselves. Hollander and Wolfe (1999) present sev-
eral advantages of nonparametric methods:

- few assumptions about the underlying population(s).
- user can often determine things exactly (e.g., exact p-values for tests, exact coverage

probabilities for confidence intervals, ...).
- often easier to apply.
- often easier to understand.
- often only slightly less efficient than their normal theory competitors when the un-

derlying populations are normal.
- can be “mildly or wildly” more efficient than these competitors when the underlying

populations are not normal.
- relatively insensitive to outlying observations.
- applicable in many situations where normal theory procedures cannot be utilized.
- often valid in many complicated situations where the distribution theory needed to

support parametric methods is intractable.

In this paper, we present elementary methods, many nonparametric, using software we have
developed with visualizations, which we believe offer some tools for stating uncertainty when re-
leasing rankings to wide audiences. We include and discuss known pair-wise comparison procedures
based on normal theory/central limit theorem and the Bootstrap (Efron, 1979; Efron and Gong,
1983). Specifically, we present seven (7) simple and useful methods where we assume a collection
of K populations (states) with K independent sample survey estimates and associated estimates
of standard error (Wright, Klein, and Wieczorek, 2013). These K estimates and K estimated
standard errors form the basis for each of these methods in Sections 2 and 3. Knowledge of the
specific complex sampling design and estimation methodology for each population is not required.
In Subsection 3.2, where we consider the nonparametric bootstrap, we also assume that we have
access to the detailed reported microdata from each sample respondent. In Section 2, we present
four (4) methods that focus on visually comparing pairs of states using normal theory presenting
uncertainty in the estimated ranking through the use of confidence intervals and hypothesis tests
for individual parameters for each population (state) in a ranking, and for the pairwise difference
in the parameters for two states: (M1) comparing one reference state with each of the other states;
(M2) comparing one reference state with each of the other states showing confidence intervals
for differences; (M3) comparing one reference state using its confidence interval with each of the
other states using their “comparison intervals”; and (M4) comparing a pair of states by present-
ing overlapping/non-overlapping confidence intervals appropriately for each state in the pair. In
Section 3, we present three (3) uncertainty measures and their estimates for the estimated ranks
using the bootstrap (parametric as well as nonparametric) for: (M5) a collection of K confidence
intervals for the unknown true ranks; (M6) a collection of K estimates of the probabilities that
the estimated rank for a specific state is within c units of the true rank of that state, where c is
a positive real number; and (M7) joint probabilities on estimated ranks for all states. Section 3
concludes with some simulation results. In Section 4, we present some concluding remarks.

Future research will consider more from the classical nonparametrics literature, the vast rank-
ing and selection literature (e.g., Panchapakesan, 2006), as well as additional parametric methods,
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including models. Results presented for states extend to populations in general.

Before proceeding, we give an overview of the American Community Survey which is conducted
by the U. S. Census Bureau. (http://www.census.gov/acs/www/about the survey/american community survey/

gives many more details.) “The American Community Survey (ACS) is an ongoing sample survey
that provides data every year - giving communities the current information they need to plan in-
vestments and services. Information from the sample survey generates data that help determine
how more than $400 billion in federal and state funds are distributed each year. (Currently, over
3,500,000 households are contacted each year by Internet, mail, telephone, and face-to-face in a na-
tionwide stratified probability sample survey to provide data for various geographic levels, including
national and state, as well as lower levels.) To help communities, state governments, and federal
programs, the ACS questionnaire asks about: age, sex, race, family and relationships, income and
benefits, health insurance, education, veteran status, disabilities, where you work and how you get
there, and where you live and how much you pay for some essentials. All this detail is combined
into (statistical estimates) that are used to help decide everything from school lunch programs to
new hospitals.”

1.1. An Overview of the Literature

Many of the papers in this overview are highlighted in Frey (2008). While not intended to be
comprehensive, our literature review seeks to give a sampling of previous related work. We believe
that none directly address our focus to reach wide audiences with uncertainty measurement for
rankings based on probability sample data that are released by national statistical agencies.

1.1.1. Classical Ranking and Selection and Nonparametric Methods

Mosteller(1948) presents a nonparametric test for deciding if one of K populations (identical in
shape) is stochastically larger than the others. Given K equal size random samples from each of
the K populations, one first determines which of the K samples contains the largest observation.
The test statistic T rejects the null hypothesis of identical locations for the K populations if T
is large, where T is the number of observations in the sample (containing the largest observation)
that exceed all of the observations from all other samples.

Paulson(1949) assumes K normal populations with common variance σ2 and equal size random
samples n. If θ̂max is the largest of the K sample means, each of the remaining populations is

classified in a “superior” group if its sample mean is not smaller than θ̂max −
λσ√

n
where λ is a

critical value. Probabilities of two types of error are considered with this procedure.

Paulson(1952a) assumes the same conditions as in Paulson(1949), but lets θ̂1 be the sample
mean of a control population and lets the K − 1 other populations represent experimental treat-

ments. The population associated with θ̂max is the “best” population if θ̂max − θ̂1 > λσ

√
2
n

where
λ is chosen to satisfy certain probability of an error.

Paulson(1952b) extends the problem considered by Mosteller(1948) where each population is
normal. His procedure concludes that the population corresponding to θ̂max is stochastically larger
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than the others if
n(θ̂max − ˆ̂

θ)√√√√ K∑
k=1

n∑
i=1

(yki −
ˆ̂
θ)2

> λα

where λα is a critical value and ˆ̂
θ =

∑
k

θ̂k

K
. Optimality for this procedure is shown.

In what many consider the major seminal paper in the ranking and selection literature, Bech-
hofer(1954) presents, among several procedures, a procedure for ranking K populations where the
ranking is based on the observed sample means. He considers the probability of a correct ordering
when the distance between any two of the ordered true means is at least some positive value ∆.

Specifically, Bechhofer assumes K independent normal random variables Yk associated with K
populations, where k = 1, 2, ...,K. The means θk are unknown, and the variances σ2

k are known
and may be equal or unequal. The precise ranking of the means

θ(1) ≤ θ(2) ≤ · · · ≤ θ(K)

is unknown. On the basis of random samples of sizes n1, n2, ..., nK , the desire is to make inferences
on the true ranking based on the observed sample means θ̂1, θ̂2, ..., θ̂K .

A very general goal of Bechhofer (1954) is to find the s groups of means where we have

“The Ks (largest means), the Ks−1 (second largest means), the Ks−2 (third
largest means), etc, and finally the K1 (smallest means).”

Note that K1,K2, ...,Ks−2,Ks−1,Ks (s ≤ K) are all positive integers and
s∑

g=1

Kg = K. Thus

Bechhofer notes that the probability of a correct ranking associated with the very general goal is
given by

P [max{θ̂(1), ..., θ̂(K1)} < min{θ̂(K1+1), ..., θ̂(K1+K2)},
max{θ̂(K1+1), ..., θ̂(K1+K2)} < min{θ̂(K1+K2+1), ..., θ̂(K1+K2+K3)},

...
max{θ̂(K−Ks−Ks−1+1), ..., θ̂(K−Ks)} < min{θ̂(K−Ks+1), ..., θ̂(K)}].

It is worth noting that if s = K and K1 = K2 = · · · = Ks = 1, then the very general goal reduces
to the very specific goal of finding

θ(1) ≤ θ(2) ≤ · · · ≤ θ(K),

and the probability of a correct ranking associated with the very specific goal is

P [θ̂(1) ≤ θ̂(2) ≤ · · · ≤ θ̂(K)].

Let E[θ̂(k) − θ̂(k−1)] = θ(k) − θ(k+1) = δk,k+1 for k = 2, ...,K. Assuming that all sample means
θ̂k have the same variance, that is
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σ2
(k)

n(k)
= σ2

θ̂

for k = 1, 2, ...,K, then the probability of a correct ranking associated with the very specific goal
above becomes

P [θ(1) ≤ θ(2) ≤ · · · ≤ θ(K)] =
√

K

π
K−1

2

∫ +∞

−δK,K−1√
2σ

θ̂

∫ +∞

−δK−1,K−2√
2σ

θ̂

· · ·
∫ +∞

−δ2,1√
2σ

θ̂

e−
1
2
z′P−1

2 zdz1dz2 · · · dzK−1

where P2 = [ρkk′ ] is the K − 1 by K − 1 correlation matrix with

ρkk′ =



1 for k = k′

−1
2 for |k − k′| = 1

0 for |k − k′| > 1

for k, k′ = 1, 2, ...,K − 1 and z′ is the row vector (z1, z2, ..., zK−1).

Assume that the experimenter is able to specify desired values of δk,k−1, say δ∗k,k−1, which are
the smallest values of the δk,k−1 which are “worth detecting” a difference of this size between the kth

largest mean and the (k− 1)th mean. If the δ∗k,k−1 values are arbitrarily small, then the probability

of a correct ranking given by the multiple integral can be made close to
1
2
. If the δ∗k,k−1 values are

very large, then the probability of a correct ranking can be made close to 1. It is also clear that
very large values of nk (k = 1, 2, ...,K) will make the probability given by the multiple integral near

1 by σ2
θ̂
. Thus the problem becomes one of finding “the smallest n =

K∑
k=1

nk which will guarantee

a specified probability γ < 1 of a correct ranking whenever δk,k−1 ≥ δ∗k,k−1 for k = 1, 2, ...,K. By
considering equivalent integrals and some simplifying assumptions, tables are given for some small
values of K.

Other special cases of the very general goal include finding the r populations with the largest
(or smallest) means θk; and procedures for ranking the r populations with the largest (or smallest)
means θk.

Gupta (1965) presents a procedure that selects a subset of the K populations such that there is
a high probability that the population with the highest mean is in the subset. The populations in
the subset are determined by those whose sample means exceed θ̂max−d, where d is a critical value.

Gupta and McDonald (1970) present nonparametric procedures for selecting a subset of the K
populations such that there is a high probability that the population with the highest mean is in

the subset. They combine the K samples and produce one overall ranking from 1 to n (=
K∑

k=1

nk).

Then for each of the K populations, a mean rank score is computed, that is Hk is the average of
the ranks for population k in the combined ranking, for k = 1, 2, ...,K. One selection rule consists
of selecting all populations for which Hk is within a certain distance of H ≡ max{H1,H2, ...,HK};
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a second rule consists of selecting all populations for which Hk is at least some stated number c.

McDonald (1973) gives nonparametric procedures similar to Gupta and McDonald (1970) where
a subset of the K populations is identified. The data are assumed in n blocks where each block
is of size K and contains one sample observation from each of the K populations. Inside each
block, the observations are ranked. For population k, Tk is the sum of its ranks across the n blocks
for k = 1, 2, ...,K. One rule puts population k in the subset of populations if Tk > Tmax − d for
Tmax = max{T1, T2, ..., TK} and d is a critical value. Another rule puts population k in the subset
of populations if Tk > c, where c is a critical value.

McDonald (1979) applies some of his earlier results to identify subsets of states in the United
States that have the highest and lowest traffic fatality rates.

Dudewicz (1980) summarizes the literature and notes that when ranking larger groups of pop-
ulations, the chance of a correct decision is likely to be close to 0.

1.1.2. Bayesian Ranking Methods

Assuming the usual Bayesian setup of sample data and priors on the parameters θk, the focus is
on how to go from posteriors on the parameters θk to a ranking of the parameters. The literature
suggests that ranking on posterior means can lead to “very poor results” (Frey, 2008).

Govindarajulu and Harvey (1974) “... consider Bayesian approaches to the problem of ranking
K parameters. They take the joint posterior distribution for the parameters as given, and they
focus on ways of moving from that posterior distribution... They point out that simply choosing
the ranking with the highest posterior probability may not be an ideal approach, even if it were
possible” (Frey, 2008).

Louis (1984) argues that any ranking of populations based on θk should consider the collection
or ensemble {θ1, θ2, ..., θK} and not the θk individually. While not specifically focusing on ranking
populations based on θk or estimates θ̂k, Louis (1984) does focus on estimating the collection of
parameters. More specifically, the paper focuses on estimating the histogram of the θk in a Bayesian
setting.

He assumes θ1, θ2, ..., θK are iid N(µ, τ2) as prior distributions. Assume θ̂1, ..., θ̂K are indepen-
dent, and θ̂k given θk is N(θk, 1) for k = 1, 2, ...,K. It follows that the posterior distribution of θk

given θ̂k is normal with posterior mean

E(θk|θ̂k) = µ + D(θ̂k − µ) = µ + (
τ2

1 + τ2
)(θ̂k − µ) = (

1
1 + τ2

)µ + (
τ2

1 + τ2
)θ̂k

and posterior variance

V (θk|θ̂k) =
τ2

1 + τ2
.

Also the posterior distributions of θ1, θ2, ..., θK are independent.
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Now for θ̄ =

∑
k

θk

K
and ¯̂

θ =

∑
k

θ̂k

K
, note that we have conditionally on θ̂1, θ̂2, ..., θ̂K , the posterior

expected sample mean is

E[θ̄|θ̂1, θ̂2, ..., θ̂K ] = µ +
τ2

1 + τ2
(¯̂θ − µ)

and the posterior expected sample variance is

E


∑
k

(θk − θ̄)2

K − 1
|θ̂1, θ̂2, ..., θ̂K

 = (
τ2

1 + τ2
)[1 + (

τ2

1 + τ2
)S2]

where S2 =

∑
k

(θ̂k −
¯̂
θ)2

K − 1
.

It is worth noting that because the marginal distribution of θ̂k is N(µ, 1+ τ2), then ¯̂
θ

P→ µ, and
S2 P→ 1 + τ2 as K →∞. Hence the conditional expectation of θ̄ converges to

E(θ̄|θ̂1, θ̂2, ..., θ̂K) = µ +
τ2

1 + τ2
(ˆ̄θ − µ) P→ µ,

and the conditional variance converges to

E


∑
k

(θk − θ̄)2

K − 1
|θ̂1, θ̂2, ..., θ̂K

 =
τ2

1 + τ2
[1+(

τ2

1 + τ2
)S2] P→ (

τ2

1 + τ2
)[1+(

τ2

1 + τ2
)(1+τ2)] =

τ2

1 + τ2
[1+τ2] = τ2

Now with the summed squared error loss

SSEL =
K∑

k=1

(θ̂k − θk)2,

the posterior means are the standard Bayes estimates

E(θk|θ̂k) = θ̂B
k = µ + (

τ2

1 + τ2
)(θ̂k − µ).

We see that the mean of the standard Bayes estimates above is

¯̂
θB =

1
K

K∑
k=1

E(θk|θ̂k) =
1
K

K∑
k=1

θ̂B
k

which is equal to the posterior expected sample mean E[θ̄|θ̂1, θ̂2, ..., θ̂K ]. However, the variance of
the standard Bayes estimates E(θk|θ̂k) is

1
K − 1

K∑
k=1

(θ̂B
k −

¯̂
θ

B
)2 = (

τ2

1 + τ2
)2S2
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which is not equal to the posterior expected sample variance E


∑
k

(θk − θ̄)2

K − 1
|θ̂1, θ̂2, ..., θ̂K

.

Thus from

1
K − 1

K∑
k=1

(θ̂B
k −

¯̂
θ

B
)2 = (

τ2

1 + τ2
)2S2

and

E


∑
k

(θk − θ̄)2

K − 1
|θ̂1, θ̂2, ..., θ̂K

 = (
τ2

1 + τ2
)[1 + (

τ2

1 + τ2
)S2],

we see that the standard Bayes estimates shrink too far toward the prior mean because 0 ≤ τ2

1 + τ2
≤

1.
Thus a modified estimator is considered and given by

θ̂L
k = ζ + A(θ̂k − ζ)

where A = D
1
2

[
1 + S2D

S2

] 1
2

, ζ =
(1−D)µ + ¯̂

θ(D −A)
1−A

, and D =
τ2

1 + τ2
.

Thus we see that the mean of the estimates θ̂L
k is

¯̂
θ = µ + (

τ2

1 + τ2
)(¯̂θ − µ)

which is equal to the posterior expected sample mean E[θ̄|θ̂1, θ̂2, ..., θ̂K ]. Also, the variance of the
estimates θ̂L

k is

1
K − 1

K∑
k=1

(θ̂L
k −

¯̂
θ

L
)2 = (

τ2

1 + τ2
)[1 + (

τ2

1 + τ2
)S2]

which is equal to the posterior expected sample variance E


∑
k

(θk − θ̄)2

K − 1
|θ̂1, θ̂2, ..., θ̂K

.

Note that A converges to

A = D
1
2

[
1 + S2D

S2

] 1
2

P→ D
1
2

[
1 + (1 + τ2)D

(1 + τ2)

] 1
2

= D
1
2 [

1 + τ2

1 + τ2
]
1
2 = D

1
2

.
In practice, replacing ζ by µ and A by D

1
2 in the modified estimator θ̂L

k gives a “histogram” of
estimates θ̂L

k that is very good for estimating the “histogram” of the parameters θk.
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Berger and Deely (1988) present a Bayesian approach to ranking K normal means with nonin-
formative priors and base inferences on the joint posterior distribution. They suggest taking the
highest mean as the one with the highest posterior probability of being the largest. They note that
using the ranking of the posterior means can lead to unreasonable results.

Shen and Louis (1998) point out that the goal or feature of interest of an investigation deter-
mines the solution. For example, they note, “(1) if unit-specific parameters are themselves the
feature of interest, their posterior means are the optimal estimates, (2) If the ranks of the unit-
specific parameters are the target feature..., the conditional expected ranks or a discretized version
of them are optimal..., (and) (3) If the feature of interest is the histogram or empirical distribu-
tion function of the unit-specific parameters..., then the conditional expected empirical distribution
function or a discretized version of it is optimal...No single set of estimates can simultaneously
optimize the three inferential goals...” Thus Shen and Louis (1998) set out to produce “triple goal
estimates; (1) those producing a histogram that is a good estimate of the parameter histogram, (2)
(those) with induced ranks that are good estimates of the parameter ranks; and (3) (those) with
good performance in estimating unit-specific parameters”.

Seeking these triple goal estimates, Shen and Louis consider three candidates: (1) posterior
means (PM); (2) the constrained Bayes estimates (CB) of Louis (1984); and (3) what they call
GR estimates which “optimize on estimation of the empirical distribution function (GK) and ranks
(R)”. For the GR estimates, one , according to Frey (2008), “...chooses individual parameter es-
timates that are consistent with the estimates of the ranks and the distribution function for the
parameters”. Shen and Louis provide theoretical results and simulation results that favor the triple
goal estimates GR.

Klein and Wright (2001) present empirical results comparing several ranking procedures in a
Bayesian setting.

Bootstrap Methods

Hall and Miller (2009) note that “...The bootstrap is a popular approach to developing ... a
measure (of authority for a ranking of performance measures θk for k = 1, 2, ...,K institutions, e.g.,
local governments, or health providers, or universities)”.

Model: If rk is the rank of the kth population in an ordering of the K parameters θ(1) ≤ θ(2),≤ · · · ≤
θ(K), then r̂k is the estimated rank of the kth population in an empirical ordering of the K sample
estimates θ̂(1) ≤ θ̂(2) ≤ · · · ≤ θ̂(K) for k = 1, 2, ...,K. The researchers consider two cases; “fixed K”
and “large K”. An example of “large K” is the expression-level data on K genes over individu-
als and K can range from 5,000 to 20,000 genes to be ordered. Our interest is in the “fixed K” case.

Basic Bootstrap Methodology: It is assumed that there is a sample of size n independently from each
of the K populations and that r̂k is as noted above. Using the sample data from the kth population,
a standard bootstrap sample of size n is selected for k = 1, 2, ...,K. Using the new independent
bootstrap samples, we compute θ̂∗1, θ̂

∗
2, ..., θ̂

∗
K and use these to compute the bootstrap estimates

r̂∗1, r̂
∗
2, ..., r̂

∗
K . We repeat the bootstrap process a large number of times (this will be described in

greater detail in Section 3 of this paper), ultimately obtaining a distribution of r̂∗k for k = 1, 2, ...,K.
This n-out-of-n conventional bootstrap approach can produce inconsistency; they observe that the
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distribution of an empirical rank may not converge in the usual sense; the estimation may converge
in distribution, but not in probability. However, “the m-out-of-n bootstrap (where m < n) can
improve performance and produce statistical consistency, but it requires empirical choice of m;
(they) suggest a tuning solution to this problem.” Though they use a nonparametric bootstrap,
they note that the conclusions also apply to parametric bootstrap methods. Theory is provided.
Some results do not require that the samples from the population be independent.

Hall and Miller (2010) study the phenomenon that certain “highly ranked” populations with
light-tailed distributions such as normal or exponential tend to keep their ranks “...even when the
data on which the rankings are based are extensively revised, and even when a large number of
new (populations) are added to the investigation...”

2. VISUALLY COMPARING PAIRS OF STATES USING NORMAL THEORY

2.1. Comparing One Reference State with Each of the Other States

For population k, let θ̂k be as defined in Section 1, and let the estimated standard error be
denoted by SE(θ̂k) = SEk for k = 1, 2, ...,K. In this paper, we treat the SEk estimates as though
they were known constants. Let k∗ be a specific reference population among the K populations
with estimate θ̂k∗ and standard error SEk∗ .

Assuming θ̂k∗ and θ̂k are independent and each normally distributed for k 6= k∗, it is known
that a 100(1− α)% confidence interval for θk − θk∗ is given by(

(θ̂k − θ̂k∗)− zα
2

√
(SEk)2 + (SEk∗)2 , (θ̂k − θ̂k∗) + zα

2

√
(SEk)2 + (SEk∗)2

)
(3)

where zα
2

= Φ−1(1− α
2 ), and Φ is the cumulative standard normal distribution. To test

H0 : θk = θk∗ vs HA : θk 6= θk∗ (4)

at significance level α, it is enough to compare the interval in (3) with zero (0). If the interval in
(3) does not contain 0, we reject H0 in favor of HA; otherwise, we do not reject H0.

Figure 1 gives an estimated ranking of the K = 51 states (including Washington, D.C.) based on
point estimates θ̂k for the kth state’s mean travel time to work of workers 16 years and over who
did not work at home with associated SEk for k = 1, 2, ...., 51 using 2011 American Community
Survey data. For example, the 2011 ACS estimate θ̂k of mean travel time to work of workers 16
years and over who did not work at home for California (CA) is 27.14 minutes with standard error
SEk = .07 minutes. Among the 51 states and based on the estimates, California has estimated
rank r̂k = 44. We will formally define r̂k in the section on bootstrapping and ranking (Section 3).

For the reference state k∗ ≡ Colorado (CO), and using a Bonferroni correction for each of the
50 tests comparing θ̂k∗ with each θ̂k for k 6= k∗, we see that the shaded (both heavy and light
shading) states in the column (Figure 1) are statistically significantly different from CO, while the
non-shaded states in the column are not statistically significantly different from CO. The level of

significance for each test is
α

50
= .002 (note

.002
2

= .001 and z.001 = 3.1), and the family-wide (or

overall) level of significance for the collection of 50 tests in the column is α = .10.

11



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

r̂k

SD
ND
NE

WY
MT
AK
IA
KS
ID

OK
AR
NM
UT
WI
VT
OR
KY
MN
MO
OH
RI

NC
ME
IN
SC
MS
AL
NV
MI
TN
CO
LA
AZ
TX
CT
DE
WA
WV

HI
FL
PA
NH
GA
CA
VA
MA

IL
DC
NJ
NY
MD

State (k)

16.86
16.91
18.06
18.10
18.18
18.39
18.77
18.90
19.66
21.13
21.31
21.43
21.61
21.92
21.94
22.54
22.86
22.99
23.07
23.12
23.36
23.37
23.41
23.45
23.61
23.86
23.94
24.10
24.11
24.23
24.51
24.54
24.76
24.82
24.98
25.30
25.51
25.58
25.69
25.76
25.92
26.90
27.11
27.14
27.74
27.99
28.17
30.10
30.53
31.50
32.21

θ̂k

.28

.36

.19

.50

.32

.33

.13

.16

.24

.15

.23

.27

.20

.11

.31

.16

.15

.10

.13

.09

.29

.12

.25

.11

.16

.24

.14

.27

.10

.14

.19

.15

.15

.07

.19

.37

.14

.31

.27

.11

.09

.30

.17

.07

.13

.13

.11

.32

.12

.09

.15

SEk

Reference state: CO

Figure 1: Shaded States Do (Unshaded States Do Not) Differ from the Reference State Colorado for Mean
Travel Time to Work of Workers 16 Years and Over Who Did Not Work at Home (Minutes). Significance
Level for Each Pair Being Compared Is .002. For the Column with Some Shading, the Family-wide (or
Overall) Significance Level for All Pairs Simultaneously Being Compared Is .10. For the USA, θ̂ = 25.51 and
SE = .02. (Data Source: 2011 American Community Survey)
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Figure 2 (inspired by a display in Almond, Lewis, Tukey, and Yan, 2000) gives the overall visual-
ization for all states where each column presents the 50 tests for the reference state noted at the
very bottom of the column. For the United States, θ̂ = 25.51 and SE = 0.02.

2.2. Comparing One Reference State with Each of the Other States Showing
Confidence Intervals for Differences

Using the same setup as in Subsection 2.1, Figure 3 gives 50 confidence intervals of the difference
θk − θk∗ for reference state k∗ ≡ Colorado and k 6= k∗. We use a Bonferroni correction for the
tests as noted in Subsection 2.1. The level of significance for each test is .002, and the family-wide
(or overall) level of significance for the collection of 50 tests is α = .10. The bold intervals show
the states that are statistically significantly different from CO, while the non-bold intervals show
the states that are not statistically significantly different from CO. Figures 1 and 3 both compare
Colorado (CO) with each of the other 50 states.

Assuming that θ̂k is normally distributed, a 100(1− α)% confidence interval for θk is given by(
θ̂k − zα

2
SEk , θ̂k + zα

2
SEk

)
. (5)

It is common practice to present one plot showing the fifty-one 90% confidence intervals similar to
what is given in Figure 4 where each 90% confidence interval is computed as in (5). Incorrectly,
some infer that overlapping confidence intervals for θk and θk′ imply no statistically significant
differences for θk and θk′ at level α, while nonoverlapping intervals for θk and θk′ imply statisti-
cally significant differences in θk and θk′ for k 6= k′ at level α. In comparing populations k and
k′, the approach of considering a 90% confidence interval for the difference θk − θk′ is appropriate
for α = .10; merely comparing the 90% confidence interval of θk with the 90% confidence interval
for θk′ is not for α = .10 (Schenker and Gentleman, 2001). In particular, the methods are not
equivalent. For example, Schenker and Gentleman (2001) show that if a 90% confidence interval
for θk does not overlap a 90% confidence interval for θk′ and we use this to reject the hypothesis
H0 : θk = θk′ , then this implies that we would reject the same hypothesis using the usual test (i.e.,
reject H0 when the 90% confidence interval for θk− θk′ does not contain 0). This is okay. However,
if the 90% confidence interval for θk − θk′ does not contain 0, it is not always true that the 90%
confidence interval for θk does not overlap a 90% confidence interval for θk′ . In Subsection 2.4, we
consider the overlap/nonoverlap of one confidence interval with another confidence interval. Before
that and in Subsection 2.3, we consider the overlap/nonoverlap of one confidence interval with a
“comparison interval”.

2.3. Comparing One Reference State Using Its Confidence Interval with Each
of the Other States Using Their “Comparison Intervals”

Given a reference state k∗ with a 100(1 − α)% confidence interval for θk∗ as given in (5), it is
possible to construct an interval (θ̂k−wk, θ̂k +wk) for state k 6= k∗ such that when the two intervals
overlap, θk and θk∗ are not statistically significantly different at level α, whereas if the two intervals
do not overlap, then θk and θk∗ are statistically significantly different. In this section, we discuss
construction of the interval (θ̂k−wk, θ̂k+wk), as presented in Almond, Lewis, Tukey, and Yan (2000).

For population k, let θ̂k be as defined in Section 1, and let the standard error be denoted
by SE(θ̂k) = SEk for k = 1, 2, ...,K. Let k∗ be a specific reference population among the K
populations with estimate θ̂k∗ and standard error SEk∗ . Assuming θ̂k∗ is normally distributed, a
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Figure 2: In Each Column, Shaded States Do (Unshaded States Do Not) Differ from Reference State
for Mean Travel Time to Work of Workers 16 Years and Over Who Did Not Work at Home (Minutes).
Significance Level for Each Pair Being Compared Is .002. For Each Column with Some Shading, the Family-
wide (or Overall) Significance Level for All Pairs Simultaneously Being Compared Is .10. For the USA,
θ̂ = 25.51 and SE = .02. (Data Source: 2011 American Community Survey)
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100(1− α)% confidence interval for θk∗ is given by (see also (5))(
θ̂k∗ − zα

2
SEk∗ , θ̂k∗ + zα

2
SEk∗

)
. (6)

Now consider another population, say k, where θ̂k < θ̂k∗ . (What follows also holds in an analogous
way if θ̂k∗ < θ̂k.) We want to find the width wk such that the interval (θ̂k − wk, θ̂k + wk) overlaps
the interval in (6) if and only if θk and θk∗ are not significantly different at level α. In other words,
referring to Figure 5, we want

(dk(low), dk(high)) =
(
(θ̂k∗ − zα

2
SEk∗)− (θ̂k + wk) , (θ̂k∗ + zα

2
SEk∗)− (θ̂k − wk)

)
=

(
(θ̂k∗ − θ̂k)− (zα

2
SEk∗ + wk) , (θ̂k∗ − θ̂k) + (zα

2
SEk∗ + wk)

) (7)

to be a 100(1− α)% confidence interval for the difference θk∗ − θk. But a 100(1− α)% confidence
interval for θk∗ − θk is given by (see also (3))

(
(θ̂k∗ − θ̂k)− zα

2

√
(SEk∗)2 + (SEk)2 , (θ̂k∗ − θ̂k) + zα

2

√
(SEk∗)2 + (SEk)2

)
. (8)

Equating results in (7) and (8) gives

zα
2
SEk∗ + wk = zα

2

√
(SEk∗)2 + (SEk)2 (9)

or equivalently

wk = zα
2

√
(SEk∗)2 + (SEk)2 − zα

2
SEk∗ . (10)

If the situation is as shown in Figure 5 where (θ̂k−wk, θ̂k +wk) and (6) do not overlap, both dk(low)

and dk(high) are positive; the confidence interval in (7) does not contain zero; and hence θk and θk∗

are significantly different at level α. In the cases where (θ̂k − wk, θ̂k + wk) and (6) do overlap, the
signs of dk(low) and dk(high) will differ; the confidence interval in (7) will contain zero; and hence θk

and θk∗ are not significantly different at level α.

Relative to θ̂k∗ , we refer to the interval (θ̂k−wk, θ̂k +wk) as a “θk∗ comparison interval for θk.”
The comparison interval for θk is not a confidence interval, while the interval for θk∗ is a confidence
interval.

Thus considering only the specific reference population k∗ and the other population k, that is K = 2
populations, we could have one of the possibilities shown in the graphical display of Figure 6 (where
θ̂k < θ̂k∗) . In each case, the length of each bar around θ̂k is 2wk.

In Figure 6 (a), populations k∗ and k are significantly different at level α. In Figures (b) or (c),
populations k∗ and k are not significantly different at level α.

Figure 7 shows a typical visualization where K = 51, and the reference population (workers who
live in Colorado) has rank 31 based on the sample estimates. Figure 7 makes use of a Bonferroni
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correction for 50 separate tests of hypotheses where Colorado state’s mean travel time is compared
with each of the other K − 1 = 50 states’s mean travel time. The level of significance for each test
is

α

50
= .002, and the family-wide (or overall) level of significance for the collection of 50 tests is

α = .10.

From the overall testing in Figure 7 at overall level α = .10, we see that Colorado’s mean
travel time to work of workers 16 years and over who did not work at home is significantly dif-
ferent from all of the states except Mississippi(MS), Alabama (AL), Nevada (NV), Michigan(MI),
Tennessee (TN), Louisiana(LA), Arizona(AZ), Texas(TX), Connecticut(CT), Delaware(DE), and
West Virginia(WV). The same comparison results for Colorado are also shown in Figures 1, 2,
and 3. The interval around Colorado (the reference state) that corresponds to the shaded strip
is an approximate 99.8% confidence interval for Colorado’s mean travel time to work of workers
16 years and over who did not work at home during the year 2011. The intervals around each of
the other states, say k, represents the comparison interval (θ̂k − wk, θ̂k + wk) where wk is given
in (10). It is important to note that the interval (θ̂k−wk, θ̂k +wk) is not a confidence interval for θk.

While visually different, Figures 3 and 7 provide the same information regarding comparing
Colorado (θk∗) to the other states. In Figure 7, the usual 99.8% confidence interval for the refer-
ence state Colorado (θk∗) is shown explicitly; the (Bonferroni-corrected) “comparison intervals” are
not usual confidence intervals; and each state comparison interval (θk) with the 99.8% confidence
interval for the reference state Colorado provides the usual test of H0 : θk = θk∗ by use of the 99.8%
confidence interval θk − θk∗ . On the other hand, all of the intervals in Figure 3 are really the usual
99.8% confidence intervals for θk− θk∗ , but we do not see the 99.8% confidence interval for θk∗ , i.e.,
for the reference state Colorado.
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Figure 4: 90% Confidence Interval for θk for Each State for Mean Travel Time to Work of Workers 16 Years
and Over Who Did Not Work at Home (Minutes). (Data Source: 2011 American Community Survey)

18



θ̂k − wk θ̂k θ̂k + wk θ̂k∗ − zα/2SEk∗ θ̂k∗ θ̂k∗ + zα/2SEk∗ Y

( (| |) )

dk(low)

dk(high)

Figure 5: Illustration of Motivation for Method of Almond, Lewis, Tukey, and Yan(2000).
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Figure 6: For K = 2, Three Possibilities for Method of Almond, Lewis, Tukey, and Yan (2000).
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Figure 7: Comparisons with Reference State Colorado Using Overlapping Intervals for Mean Travel Time
to Work of Workers 16 Years and Over Who Did Not Work at Home (Minutes). Significance Level for Each
State Being Compared with Colorado is .002. (Data Source: 2011 American Community Survey)
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2.4. Comparing A Pair of States by Presenting Overlapping/Non-overlapping
Confidence Intervals Appropriately for Each State in the Pair

Goldstein and Spiegelhalter (1996) and discussants of their paper provide extensive details high-
lighting the great difficulty in assessing the uncertainty in ranking tables (or “league tables”). In
particular, they focus on some statistical issues where institutions are ranked based on quantitative
performance indicators. Acknowledging three broad categories of performance indicators (input,
process, and output), they focus on output indicators for ranking education and health institu-
tions, e.g., school examinations results or hospital operative mortality. Arguing that the context of
outcome indicators should take account of institutional circumstances, models play a major role in
their presentation. Much attention is devoted to ensuring that data are adjusted so that institu-
tions are “comparative.” Whatever approach is taken, they argue strongly for the use of intervals
in conveying uncertainty explicitly in estimates or estimated ranks. Two procedures for deriving
intervals are given: (i) one that makes use of usual confidence intervals around estimated means
of each institution and (ii) another that was proposed by Goldstein and Healy (1995) which we
describe in what follows.

Consider the pair of populations k and k′ with parameters θk and θk′ . If a 100(1− α)% confi-
dence interval for θk does not overlap an independent 100(1 − α)% confidence interval for θk′ , we
could declare that θk and θk′ are statistically significantly different, but the level of significance is
not α. However, the level of significance can be determined. If the desire is that the level of signif-
icance be α, we can adjust the confidence coefficient to a value, say 100(1−αA)%, such that if the
100(1− αA)% confidence interval for θk does not overlap an independent 100(1− αA)% confidence
interval for θk′ , then we can declare θk and θk′ as statistically significantly different at significance
level α. Goldstein and Healy (1995) show how to do this when comparing one pair of estimates as
well as what one might do to find a common αA in the case of comparing several pairs of estimates.
We give details of and illustrate their method.

We continue to assume that we have K independently normally distributed estimators θ̂k with
standard error SEk for k = 1, 2, 3, ....,K.

Comparing One Pair of Populations k and k′

When comparing one pair of populations k and k′, we want to determine an adjusted value
αA for a desired significance level α such that when the 100(1 − αA)% confidence interval for θk

does not overlap the 100(1 − αA)% confidence interval for θk′ we can correctly declare θk and θk′

statistically significantly different at significance level α.

Let the 100(1 − αA)% confidence interval for θk be
(
θ̂k − zαA

2
SEk , θ̂k + zαA

2
SEk

)
and the

100(1− αA)% confidence interval for θk′ be
(
θ̂k′ − zαA

2
SEk′ , θ̂k′ + zαA

2
SEk′

)
. In each case, zαA

2

is the value associated with the standard normal such that P (Z ≥ zαA
2

) = αA
2 . If |θ̂k − θ̂k′ | >

zαA
2

(SEk + SEk′), then we have two cases: (i) θ̂k − θ̂k′ > zαA
2

(SEk + SEk′) or (ii) −(θ̂k − θ̂k′) >

zαA
2

(SEk + SEk′).
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(i) In the first case, θ̂k− θ̂k′ > zαA
2

(SEk +SEk′) is equivalent to θ̂k−zαA
2

SEk > θ̂k′ +zαA
2

SEk′ .
Hence the confidence interval for θk is completely above the confidence interval for θk′ , and
thus they do not overlap.

(ii) In the second case, −(θ̂k − θ̂k′) > zαA
2

(SEk + SEk′) is equivalent to θ̂k′ − zαA
2

SEk′ >

θ̂k + zαA
2

SEk. Hence the confidence interval for θk′ is completely above the confidence
interval for θk, and thus they do not overlap.

Thus

|θ̂k − θ̂k′ | > zαA
2

(SEk + SEk′) (11)

if and only if the 100(1− αA)% confidence intervals for θk and θk′ do not overlap.

Next, let (SEkk′)2 ≡ V ar(θ̂k − θ̂k′) = (SEk)2 + (SEk′)2. Then the probability of the event in
(11) under the hypothesis θk = θk′ , which is the probability of a Type I error, is

γkk′ = P
(
|θ̂k − θ̂k′ | > zαA

2
(SEk + SEk′)

)
= 2P

(
θ̂k − θ̂k′ > zαA

2
(SEk + SEk′)

)

= 2P

(
(θ̂k − θ̂k′)− 0

SEkk′
> zαA

2

(SEk + SEk′)
SEkk′

)

= 2P

(
Z > zαA

2

(SEk + SEk′)
SEkk′

)

= 2
(

1− Φ(zαA
2

(SEk + SEk′)
SEkk′

)
)

(12)
where Φ is the cumulative standard normal distribution. Thus (12) relates γkk′ and zαA

2
(hence α

and zαA
2

) for given values of SEk and SEk′ . So if we want the probability of a Type I error γkk′

to be equal to a specific value, say α, then we are able to determine αA such that when the two
100(1 − αA)% confidence intervals for θk and θk′ do not overlap we can correctly say that θk and
θk′ are statistically significantly different at significance level α.

It is important to note for any given values of SEk and SEk′ , that by the triangle inequality,√
(SEk)2 + (SEk′)2 ≤ SEk + SEk′ and hence

1 ≤ SEk + SEk′√
(SEk)2 + (SEk′)2

=
SEk + SEk′

SEkk′
. (13)

We also note that
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0 ≤ (SEk − SEk′)2

0 ≤ (SEk)2 − 2(SEk)(SEk′) + (SEk′)2

(SEk)2 + 2(SEk)(SEk′) + (SEk′)2 ≤ 2(SEk)2 + 2(SEk′)2

(SEk + SEk′)2 ≤ 2
(
(SEk)2 + (SEk′)2

)
SEk + SEk′√

(SEk)2 + (SEk′)2
≤

√
2

SEk + SEk′

SEkk′
≤

√
2.

(14)

Hence by (13) and (14), we have

1 ≤ SEk + SEk′

SEkk′
≤
√

2.

Thus given αA, the probability of a Type I error γkk′ = 2
(

1− Φ(zαA
2

(SEk + SEk′)
SEkk′

)
)

is bounded

above by 2
(
1− Φ(zαA

2
)
)

and bounded below by 2
(
1− Φ(zαA

2

√
2)
)
.

In practice, we set γkk′ equal to a chosen α, and determine the appropriate αA given SEk and SEk′

using

zαA
2

SEk + SEk′

SEkk′
= zα

2
. (15)

Using estimates from Figure 1 of the 2011 mean travel time to work of workers 16 years and
over who did not work at home for Arizona (AZ), Colorado (CO), and Wyoming (WY), given for
easy reference in the table below, we illustrate the method of Goldstein and Healy (1995).

State(k) θ̂k SEk

AZ(1) 24.76 .15
CO(2) 24.51 .19
WY(3) 18.10 .50

Example: Comparing the Pair of States AZ and CO

Let α = .10. We want to determine the confidence coefficient 100(1 − αA)% such that if the
100(1 − αA)% confidence interval for Arizona’s θ1 does not overlap the 100(1 − αA)% confidence
interval for Colorado’s θ2, then we can correctly declare θ1 and θ2 are statistically significantly
different at significance level α.
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Note that zαA
2

(SE1 + SE2)
SE12

= zαA
2

1.40. So for α = .10, z.05 = 1.645. Hence by (15) and solving

1.645 = zαA
2

1.40, we see that zαA
2

= 1.17, and hence αA = .242. Thus the 100(1 − .242)% = 76%
confidence interval for θ1 is (24.76− (1.17)(.15) , 24.76 + (1.17)(.15)) = (24.62, 24.98). Similarly, a
76% confidence interval for θ2 is (24.28 , 24.72). Note that they overlap. See Figure 8(a).

Note also for α = .10, that a 90% confidence interval for θ1 − θ2 is

(
(24.76− 24.51)− 1.645

√
(.15)2 + (.19)2 , (24.76− 24.51) + 1.645

√
(.15)2 + (.19)2

)
= (−.1 , .70) .

Because this interval does include 0, we would not be able to say that the populations are statis-
tically significantly different at α = .10. This is consistent with the conclusion from the previous
paragraph where the 76% confidence intervals for θ1 and θ2 overlap.

Example: Comparing the Pair of States WY and CO

Again, let α = .10. We want to determine the confidence coefficient 100(1− αA)% such that if
the 100(1 − αA)% confidence interval for Wyoming’s θ3 does not overlap the 100(1 − αA)% confi-
dence interval for Colorado’s θ2, then we can correctly declare θ3 and θ2 are statistically significantly
different at significance level α.

Note that zαA
2

(SE3 + SE2)
SE32

= zαA
2

1.29. So for α = .10, z.05 = 1.645. Hence by (15) and solving

1.645 = zαA
2

1.29, we see that zαA
2

= 1.28, and hence αA = .2006. Thus the 100(1− .2006)% = 80%
confidence interval for θ3 is (18.10− (1.28)(.50) , 18.10 + (1.28)(.50)) = (17.46 , 18.74). Similarly,
an 80% confidence interval for θ2 is (24.26 , 24.74). Note that they do not overlap. See Figure 8(b).

Note also for α = .10, that a 90% confidence interval for θ3 − θ2 is

(
(18.10− 24.51)− 1.645

√
(.19)2 + (.50)2 , (18.10− 24.51) + 1.645

√
(.19)2 + (.50)2

)
= (−7.28 , −5.52) .

Because this interval does not include 0, we would be able to say that the populations are sta-
tistically significantly different at α = .10. This is consistent with the conclusion from the previous
paragraph where the 80% confidence intervals for θ2 and θ3 do not overlap.

Example: Comparing the Pair of States AZ and WY

For the pair of states Arizona (θ1) and Wyoming (θ3), we analogously determine for α = .10
that we have 81% confidence intervals for θ1 and θ3 respectively as (24.56, 24.96) and (17.44,
18.76) which do not overlap. Thus we would infer that θ1 and θ3 are different at α = .10. See Fig-
ure 8(c). Note also that a 90% confidence interval for θ1−θ3 is (6.57, 6.75) which does not contain 0.

Comparing All Pairs of Populations k and k′

Goldstein and Healy (1995) note, “Where there are more than two (populations), we propose
that (αA) should be selected so that the average value of γkk′ over all (k, k′) is a predetermined value,
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(a) 76% confidence intervals
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Figure 8: 100(1−αA)% Confidence Intervals for Three Separate Pairs: Declare states k and k′ statistically
significantly different at significance level α = .10 if 100(1 − αA)% confidence intervals in each pair do not
overlap. (Data Source: 2011 American Community Survey)

say α, typically 0.05 or 0.01. For a given data set, this can be determined by a straightforward search

procedure. A starting point for zαA
2

is the average of zαA
2

SEk + SEk′

SEkk′
taken over all the pairs (k, k′).

The confidence interval for the kth (population) is then given by
(
θ̂k − zαA

2
SEk , θ̂k + zαA

2
SEk

)
.”

We will illustrate this advice by finding a zαA
2

simultaneously for the three pairs (AZ, CO),
(WY, CO), and (AZ, WY) so that the average significance level across all three pairs is α = .10.
Note that for the various pairs we have the following values.

Pairs
SEk + SEk′

SEkk′

(AZ,CO) 1.40
(WY,CO) 1.29
(AZ,WY) 1.25

Now the average value of 1.40, 1.29, and 1.25 is 1.313. Hence, we want zαA
2

such that zαA
2

(1.313) =
1.645 or equivalently zαA

2
= 1.253. For zαA

2
= 1.25, 100(1 − αA)% = 100(1 − 2(.1052))% ≈ 79%.

Thus the 79% confidence intervals are given below.

State(k) 79% Confidence Intervals for θk

AZ 24.76 ± 1.25(.15) = (24.57, 24.95)
CO 24.51 ± 1.25(.19) = (24.27, 24.75)
WY 18.10 ± 1.25(.50) = (17.48, 18.73)

These 79% confidence intervals are shown in Figure 9.

For zαA
2

= 1.253, the level of significance for testing each pair is by (12) γkk′ = 2P

(
Z > zαA

2

SEk + SEk′

SEkk′

)

Testing Pair γkk′

(AZ, CO) .0802
(WY, CO) .1052
(AZ, WY) .1164
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For example, for the pair (AZ, CO),

γkk′ = 2P (Z > 1.253(1.40)) = 2P (Z > 1.754) = 2(.0401) = .0802.

Also note that the average of the levels of significance is (.0802 + .1052 + .1164)/3 = .1006 ≈ α.
Furthermore, the 100(1−γkk′)% confidence intervals for the differences are given in the table below.

Pair γkk′ z γ
kk′
2

100(1− α)% 100(1− α)% Confidence Interval for θk − θk′

(AZ, CO) .0802 1.754 92% (24.76− 24.51)± 1.754
√

(.15)2 + (.19)2 = (−.17, .67)

(WY, CO) .1052 1.616 89% (18.10− 24.51)± 1.616
√

(.50)2 + (.19)2 = (−7.27,−5.55)

(AZ, WY) .1164 1.566 88% (24.76− 18.10)± 1.566
√

(.15)2 + (.50)2 = (5.85, 7.47)

79% confidence intervals

θ̂3 θ̂2 θ̂1 Y

| | |
WY

CO

AZ

State

-

-

-

Figure 9: 100(1−αA)% = 79% Confidence Intervals for Three States: For any pair, declare states k and k′

statistically significantly different at “average significance level” α = .10 if the 79% confidence intervals for
the pair k and k′ do not overlap. (Data Source: 2011 American Community Survey)

In the discussion leading to the display in Figure 9, we considered the comparisons for three
pairs of states. In a similar way, Figure 10 presents the comparisons for all pairs of states. For
example, the 77.49% confidence intervals for Iowa and Kansas overlap; hence we would would not
be able to say that Iowa and Kansas differ for an average significance level of α = .10. On the other
hand, the 77.49% confidence intervals for Iowa and Idaho do not overlap. Thus we would say that
Iowa and Idaho differ for an average significance level of α = .10.
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Figure 10: 100(1 − αA)% = 77.49% Confidence Intervals for Each State: For any pair, declare states k
and k′ statistically significantly different at “average significance level” α = .10 if 100(1− αA)% confidence
intervals for the pair k and k′ do not overlap. (Data Source: 2011 American Community Survey)
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3. BOOTSTRAP AND RANKING

3.1. Some Uncertainty Measures for Estimated Ranks

In the previous section, we presented uncertainty in the estimated ranking through confidence
intervals and hypothesis tests for individual θk’s, and for the pairwise differences θk− θk′ . Alterna-
tively, one may consider the individual ranks as the parameters of interest, and inferences can be
drawn on them directly. The unknown true ranks are denoted by r1, r2, ..., rK , and they are defined
such that the population with the smallest θk has rank 1, the population with the second smallest
θk has rank 2, and so on. Formally, we define the rank for the kth smallest population as

rk =
K∑

k′=1

I(θk′ ≤ θk) = 1 +
∑

k′:k′ 6=k

I(θk′ ≤ θk), for k = 1, 2, ...,K. (16)

The estimated ranking, computed based on the estimates θ̂1, θ̂2, ..., θ̂K , is denoted by r̂1, r̂2, ..., r̂K ,
where

r̂k = 1 +
∑

k′:k′ 6=k

I(θ̂k′ ≤ θ̂k), for k = 1, 2, ...,K. (17)

Naturally, uncertainty in the estimators θ̂1, θ̂2, ..., θ̂K is propagated to the estimated ranks. There-
fore, an easily understandable measure of uncertainty should accompany a released ranking. Some
uncertainty measures that may be useful for this purpose are as follows.

(a) A collection of K confidence intervals for the unknown ranks r1, r2, ..., rK as suggested
by Barker, Smith, Gerzoff, Luman, McCauley, and Strine (2005) and Goldstein and
Spiegelhalter (1996).

(b) A collection of K estimates of the probabilities P (|r̂k − rk| ≤ c) for some chosen value
of c, as suggested by Klein and Wright (2011).

(c) An estimate of the joint probability P (|r̂1 − r1| ≤ c, |r̂2 − r2| ≤ c, ..., |r̂K − rK | ≤ c) as
mentioned by Klein and Wright (2011).

In evaluating the usefulness of measures (a) - (c), two important questions emerge: how are the
quantities computed (by the statistical agency) and how are they interpreted (by the data user)?
These questions are addressed in the following two subsections.

3.2. Bootstrap Estimation

The bootstrap (Efron, 1979) provides a straightforward way to compute/estimate the uncer-
tainty measures (a) - (c) of Subsection 3.1. The bootstrap has been used previously in ranking
problems, for instance, by Barker, Smith, Gerzoff, Luman, McCauley, and Strine (2005); Goldstein
and Speigelhalter (1996); Hall and Miller (2009, 2010); and Klein and Wright (2011). As discussed
in Shao and Tu (1995), the bootstrap is a computer intensive statistical method that has broad
applications. We consider both the nonparametric bootstrap and the parametric bootstrap.

Nonparametric Bootstrap. In the nonparametric bootstrap, we estimate each of the K popula-
tion cumulative distribution functions F1(y), F2(y), ..., FK(y) by the empirical distribution functions

28



defined as

F̂k(y) =
1
nk

nk∑
i=1

I(Yki ≤ y), for k = 1, 2, ...,K. (18)

Note that the empirical distribution function places equal probability on each of the observed data
points Yk1, Yk2, ..., Yknk

. An estimate of a quantity such as P (|r̂k − rk| ≤ c) is then obtained by
computing this probability for the case that F1(y), F2(y), ..., FK(y) are replaced by their estimates
F̂1(y), F̂2(y), ..., F̂K(y). Even when F1(y), F2(y), ..., FK(y) are replaced by the estimates, measures
such as (a) - (c) in Subsection 3.1 may still be difficult to calculate analytically, and therefore a
Monte Carlo estimator is used. Thus to obtain nonparametric bootstrap estimates, we use the
following algorithm.

Step 1. Draw Y ∗
k1, Y

∗
k2, ..., Y

∗
knk

as a simple random sample with replacement from
Yk1, Yk2, ...., Yknk

. Do this independently for each k = 1, 2, ...,K.

Step 2.
(a) Compute the bootstrap analog of θ̂k which is defined as θ̂∗k =

θ̂k(Y ∗
k1, Y

∗
k2, ..., Y

∗
knk

) for k = 1, 2, ...,K.

(b) Compute the bootstrap analog of r̂k which is defined as r̂∗k = 1 +∑
k′:k′ 6=k

I(θ̂∗k′ ≤ θ̂∗k) for k = 1, 2, ...,K.

Step 3. Repeat Steps 1 and 2 a total of B times where B is sufficiently large (say B = 10000) to
get (r̂∗1,1, r̂

∗
2,1, ..., r̂

∗
K,1), (r̂

∗
1,2, r̂

∗
2,2, ..., r̂

∗
K,2), ..., (r̂

∗
1,B, r̂∗2,B, ..., r̂∗K,B), a collection of boot-

strap replications of the ranks.

Given the collection of bootstrap replications of ranks obtained using the algorithm above, a
bootstrap estimate of P{|r̂k − rk| ≤ c} is obtained as

P̂boot{|r̂k − rk| ≤ c} =
1
B

B∑
b=1

I{|r̂∗k,b − r̂k| ≤ c}, (19)

and a bootstrap estimate of P (|r̂1 − r1| ≤ c, |r̂2 − r2| ≤ c, ..., |r̂K − rK | ≤ c) is obtained as

P̂boot (|r̂1 − r1| ≤ c, ..., |r̂K − rK | ≤ c) =
1
B

B∑
b=1

I{|r̂∗1,b − r̂1| ≤ c, ..., |r̂∗K,b − r̂K | ≤ c}. (20)

An approximate 100(1− α)% bootstrap confidence interval for rk can be obtained as

[r̂
∗(α

2
)

k , r̂
∗(1−α

2
)

k ] (21)

where r̂
∗(α

2
)

k and r̂
∗(1−α

2
)

k denote, respectively, the empirical α
2 and 1− α

2 quantiles of the bootstrap
replications r̂∗k,1, r̂

∗
k,2, ..., r̂

∗
k,B. The confidence interval (21) is called the bootstrap percentile interval

(Efron, 1981).
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Parametric Bootstrap. Sometimes we know that the sampling distribution of each of θ̂1, θ̂2, ..., θ̂K

is well approximated by a normal distribution, and SE1, SE2, ..., SEK , the estimated standard er-
rors (treated as known constants) of θ̂1, ..., θ̂K , are provided. In such a situation, it is natural to
use a parametric bootstrap procedure in which we generate bootstrap replications of θ̂1, θ̂2, ..., θ̂K

directly from normal distributions. Specifically, the parametric bootstrap algorithm proceeds as
follows.

Step 1. Draw θ̂∗k from N(θ̂k, (SEk)2), independently for k = 1, 2, ...,K.

Step 2. Compute the bootstrap analog of r̂k which is defined as r̂∗k = 1 +
∑

k′:k′ 6=k

I(θ̂∗k′ ≤ θ̂∗k)

for k = 1, 2, ...,K.

Step 3. Repeat Steps 1 and 2 a total of B times where B is sufficiently large (say B = 10000) to
get (r̂∗1,1, r̂

∗
2,1, ..., r̂

∗
K,1), (r̂

∗
1,2, r̂

∗
2,2, ..., r̂

∗
K,2), ..., (r̂

∗
1,B, r̂∗2,B, ..., r̂∗K,B), a collection of boot-

strap replications of the ranks.

Once we have obtained the bootstrap replications of the ranks using this procedure, estimates
of the various uncertainty measures are obtained using the estimators (19) - (21). Notice that the
parametric bootstrap algorithm generates θ̂∗1, θ̂

∗
2, ..., θ̂

∗
K directly, as opposed to the nonparametric

bootstrap which first takes a random sample from the underlying data Yk1, Yk2, ..., Yknk
. Thus the

parametric bootstrap in this case has three potential advantages over the nonparametric bootstrap:
(i) it requires less computation and hence will run more quickly, (ii) less code to debug, and (iii)
it can be applied in situations where θ̂1, θ̂2, ..., θ̂K and SE1, SE2, ..., SEK are available or otherwise
known but the underlying data are not. Of course, the sampling distribution of each θ̂k must be
approximately normal for this procedure to be valid.

Remark 1: In the spirit of (19) - (21), we can also use the results from the previous subsection to
compute various “nonparametric or parametric bootstrap estimates of probabilities,” such as:

P(estimated rank of state k is r0) = P(r̂k = r0) where r0 = 1, 2, ..., 51;

P(estimated rank of state k among 5 highest ranks) = P(r̂k ∈ {47, 48, 49, 50, 51});

P(estimated rank of state k among 10 lowest ranks) = P(r̂k ∈ {1, 2, ..., 10});

P(estimated rank of state k is between ranks r0 and r00 inclusively) = P(r0 ≤ r̂k ≤ r00);

P(estimated ranks of states k and k′ among 4 highest) = P(r̂k ∈ {48, ..., 51}, r̂k′ ∈ {48, ..., 51}); and

P(estimated rank of state k is higher than estimated rank of state k′) = P(r̂k > r̂k′).

Remark 2: An alternative form of the parametric bootstrap (actually the more commonly used form
in some applications) can be obtained if we assume a parametric model Fk(y|ϕ) for Fk(y), k =
1, 2, ...,K, where ϕ is an unknown parameter vector and Fk(y|ϕk) is known when the value of ϕ is
known. We draw samples of sizes n1, ..., nK from the estimated populations F1(y|ϕ̂1), ..., FK(y|ϕ̂K),
respectively, where ϕ̂k is an appropriate estimate of ϕk. To be clear, this alternative form of the
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bootstrap requires a model assumption of the data, and not an assumption about the estimates θ̂k

where the central limit theorem is more likely to apply.

3.3. Application to American Community Survey Travel Time to Work Data
In this subsection, we apply the parametric bootstrap procedure of Subsection 3.2 to the es-

timated ranking of the K = 51 states, based on point estimates of mean travel time to work of
workers 16 years and over who did not work at home for each state. As discussed previously,
these estimates are based on 2011 ACS data. Using the parametric bootstrap, we estimate the
uncertainty measures (a) - (c) from Subsection 3.1; the results are reported in Tables 1 and 2 for
B = 100000. Below we describe how one can interpret the information contained in these tables.

Consider the probabilities of the form P{|r̂k − rk| ≤ c}. Table 1 contains parametric bootstrap
estimates of these probabilities for each state k = 1, ...,K, and for c = 0, 1, 2, 3. To interpret these
quantities, notice that the event |r̂k−rk| ≤ c is of course, equivalent to the event r̂k−c ≤ rk ≤ r̂k+c,
and hence P{|r̂k − rk| ≤ c} = P{r̂k − c ≤ rk ≤ r̂k + c}. Therefore, noting that 1 ≤ rk ≤ K, one
can think of

[max{r̂k − c, 1},min{r̂k + c,K}] (22)

as a confidence interval for the unknown rank rk, where the bootstrap estimated probabilities in
Table 1 give estimates of the confidence coefficient of the interval for c = 0, 1, 2, 3. (More tech-
nically, because rk can only take values {1, 2, ...,K}, ignoring any complications due to ties, we
should write (22) as the set [max{r̂k − c, 1},min{r̂k + c,K}] ∩ {1, 2, ...,K}, but for ease of pre-
sentation, we usually do not do so.) As an illustration, suppose we want a 0.90 level confidence
interval for Nebraska’s rank (whose estimate is r̂k = 3). From Table 1, we find that the estimates
of P{|r̂k − rk| ≤ c} are 0.31, 0.71, 0.94, and 1.00 for c =0, 1, 2, and 3, respectively. Thus we would
take [3−2, 3+2] = [1, 5] as an approximate level 0.90 (approximate confidence coefficient is actually
0.94) confidence interval for Nebraska’s rank. Let us also look at South Dakota, whose estimated
rank is r̂k = 1. In this case, the estimates of P{|r̂k − rk| ≤ c} are 0.54, 0.99, 1.00, and 1.00 for c =
0, 1, 2, and 3, respectively. Thus [1, 2] is an approximate level 0.99 confidence interval for the rank
of South Dakota while the singleton set {1} only has an estimated confidence coefficient of 0.54.
Therefore, even though South Dakota has an estimated rank of 1, it seems to be more reasonable
to conclude that its rank could be either 1 or 2.

Next consider the quantities r̂
∗(.05)
k and r̂

∗(.95)
k , also displayed in the last two columns of Table

1 for each state k = 1, ...,K. Based on the bootstrap percentile method for obtaining a confidence
interval, these quantities can be interpreted as the left and right endpoints, respectively, of an
approximate level 0.90 confidence interval for the unknown rank rk. Thus, based on this method,
we find that a 0.90 level confidence interval for the rank of Nebraska is [3, 6], which is of course,
different from the interval of [1, 5] reported in the preceding paragraph as an approximate 0.94
level confidence interval for Nebraska’s rank. It is worth noting that Nebraska’s point estimated
rank r̂k = 3 is much closer to those states with point estimated ranks r̂k′ = 4, 5, or 6 than those
states with point estimated ranks r̂k′ = 1 or 2. So the symmetric r̂k ± 2 confidence interval is quite
different from the equal tail bootstrap percentile interval. For South Dakota, the 0.90 bootstrap
percentile confidence interval is [1, 2], which in this case is the same as the approximate 0.99 level
confidence interval for South Dakota’s rank that was reported in the previous paragraph.

Finally, let us examine the estimates of the joint probability P (|r̂1−r1| ≤ c, |r̂2−r2| ≤ c, ..., |r̂K−
rK | ≤ c) presented in Table 2 for c = 0, 1, 2, ..., 8. One can interpret these estimated probabilities
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as approximate confidence coefficients for a joint confidence set on the entire ranking (r1, r2, ..., rK)
whose form is the rectangular region:

[max{r̂1 − c, 1},min{r̂1 + c,K}]× · · · × [max{r̂K − c, 1},min{r̂K + c,K}]. (23)

For example, we see from Table 2 that with c = 5 the estimated confidence coefficient of the
above region (23) is approximately 0.93. Therefore we can claim that we are an estimated 90%
confident that simultaneously the rank of each state is contained within the interval formed by
adding and subtracting 5 from each estimated rank. This method provides a straightforward way
to make an overall inference on the ranking, without the need for any further adjustment for mul-
tiple comparisons.

In summary, the uncertainty measures presented in Tables 1 and 2 have fairly straightforward
interpretations in terms of marginal or joint confidence statements. Furthermore, the estimates can
be readily computed using the parametric bootstrap. A nonparametric bootstrap procedure could
also be used for estimation, and all interpretations would remain the same. Thus, the quantities
presented in the Tables 1 and 2 are promising measures for statistical agencies to use for conveying
the uncertainty in an estimated ranking. Notice that we have two reasonable methods for obtaining
an approximate confidence interval on an individual rank rk, namely, (i) take the interval as (22)
and use the bootstrap to estimate the confidence coefficient, and (ii) the bootstrap percentile
confidence interval given by (21). The question of which of these intervals is preferable requires
further investigation and we will not pursue it here.
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Table 1: Parametric Bootstrap Estimates of Some Uncertainty Measures for Estimated Ranks

Estimated P̂boot{|r̂k − rk| ≤ c} 90% Confidence Interval

Rank(r̂k) State(k) θ̂k SEk c = 0 c = 1 c = 2 c = 3 r̂
∗(.05)
k

r̂
∗(.95)
k

51 Maryland 32.21 0.15 1.00 1.00 1.00 1.00 51 51
50 New York 31.50 0.09 1.00 1.00 1.00 1.00 50 50
49 New Jersey 30.53 0.12 0.89 1.00 1.00 1.00 48 49
48 District of Columbia 30.10 0.32 0.89 1.00 1.00 1.00 48 49
47 Illinois 28.17 0.11 0.85 1.00 1.00 1.00 46 47
46 Massachusetts 27.99 0.13 0.77 1.00 1.00 1.00 45 47
45 Virginia 27.74 0.13 0.90 1.00 1.00 1.00 45 46
44 California 27.14 0.07 0.45 0.89 1.00 1.00 42 44
43 Georgia 27.11 0.17 0.41 1.00 1.00 1.00 42 44
42 New Hampshire 26.90 0.30 0.68 0.83 0.99 1.00 42 44
41 Pennsylvania 25.92 0.09 0.58 0.89 0.98 1.00 39 41
40 Florida 25.76 0.11 0.34 0.79 0.95 1.00 38 41
39 Hawaii 25.69 0.27 0.21 0.57 0.91 0.99 36 41
38 West Virginia 25.58 0.31 0.20 0.57 0.84 0.99 36 41
37 Washington 25.51 0.14 0.38 0.85 0.97 1.00 36 39
36 Delaware 25.30 0.37 0.35 0.64 0.79 0.89 33 40
35 Connecticut 24.98 0.19 0.50 0.84 0.96 0.99 33 36
34 Texas 24.82 0.07 0.48 0.93 1.00 1.00 33 35
33 Arizona 24.76 0.15 0.36 0.78 0.97 1.00 31 35
32 Louisiana 24.54 0.15 0.39 0.86 0.97 1.00 30 33
31 Colorado 24.51 0.19 0.37 0.78 0.92 0.98 29 34
30 Tennessee 24.23 0.14 0.41 0.79 0.94 0.99 27 31
29 Michigan 24.11 0.10 0.35 0.82 0.97 1.00 27 30
28 Nevada 24.10 0.27 0.18 0.51 0.81 0.93 25 31
27 Alabama 23.94 0.14 0.38 0.83 0.97 1.00 25 29
26 Mississippi 23.86 0.24 0.30 0.64 0.82 0.92 23 30
25 South Carolina 23.61 0.16 0.38 0.75 0.91 0.97 22 26
24 Indiana 23.45 0.11 0.27 0.68 0.90 0.99 21 25
23 Maine 23.41 0.25 0.16 0.48 0.77 0.89 19 26
22 North Carolina 23.37 0.12 0.31 0.77 0.94 0.99 20 24
21 Rhode Island 23.36 0.29 0.16 0.39 0.58 0.76 18 26
20 Ohio 23.12 0.09 0.39 0.84 0.98 1.00 18 22
19 Missouri 23.07 0.13 0.29 0.75 0.95 0.99 17 21
18 Minnesota 22.99 0.10 0.42 0.84 0.96 0.99 17 20
17 Kentucky 22.86 0.15 0.60 0.86 0.94 0.98 16 20
16 Oregon 22.54 0.16 0.88 0.99 1.00 1.00 16 17
15 Vermont 21.94 0.31 0.47 0.77 0.92 0.97 12 15
14 Wisconsin 21.92 0.11 0.49 0.99 1.00 1.00 13 15
13 Utah 21.61 0.20 0.46 0.87 0.99 1.00 11 14
12 New Mexico 21.43 0.27 0.34 0.78 0.98 1.00 10 14
11 Arkansas 21.31 0.23 0.38 0.87 0.98 1.00 10 13
10 Oklahoma 21.13 0.15 0.63 0.92 0.99 1.00 10 12
9 Idaho 19.66 0.24 0.99 1.00 1.00 1.00 9 9
8 Kansas 18.90 0.16 0.65 0.92 0.99 1.00 6 8
7 Iowa 18.77 0.13 0.56 0.97 1.00 1.00 6 8
6 Alaska 18.39 0.33 0.36 0.71 0.92 1.00 3 8
5 Montana 18.18 0.32 0.29 0.74 0.98 1.00 3 6
4 Wyoming 18.10 0.50 0.18 0.72 0.90 0.95 3 8
3 Nebraska 18.06 0.19 0.31 0.71 0.94 1.00 3 6
2 North Dakota 16.91 0.36 0.52 1.00 1.00 1.00 1 2
1 South Dakota 16.86 0.28 0.54 0.99 1.00 1.00 1 2

Table 2: Parametric Bootstrap Estimates of P (|r̂1 − r1| ≤ c, |r̂2 − r2| ≤ c, ..., |r̂K − rK | ≤ c)

c 0 1 2 3 4 5 6 7 8
Estimated Probability 0.00 0.00 0.06 0.41 0.76 0.93 0.98 0.99 1.00
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3.4. Bootstrap-An Empirical Investigation Using PUMS Data

Continuing to use 2011 American Community Survey data, we further illustrate the discussion
of the bootstrap with an empirical investigation of three bootstrap variations, two of which are
nonparametric and one which is parametric. Before considering these three bootstrap variations, in
Figure 11 we share a brief look at the unweighted state distributions of reported travel times from
sample respondents using 2011 ACS sample data available in a publically available microdata file
referred to as the Public Use Microdata Sample (PUMS). The distributions are unweighted, and
r̂′k is determined by the ordered values of θ̂′k as calculated using ACS PUMS data. In an attempt
to emphasize that the results in Section 3.4 are based on PUMS data, we use a prime (′) on r̂′k and
θ̂′k to distinguish them from all other results in this paper. As a consequence, the numerical results
in this subsection differ slightly from those of all other sections of this paper. For ease of reading,
some notation in this subsection may appear to be the same as in the other subsections, but the
notation should be thought of as in the PUMS data context.

Nonparametric

(i) Ignoring Sampling Weights: For each state k = 1, 2, ..., 51, we take B simple random
samples with replacement of size nk from state k’s PUMS and calculate from the bth sample the
unweighted mean

θ̂
∗(u)
kb =

1
nk

nk∑
i=1

Y ∗
kib . (24)

This approach completely ignores the original sampling design and the accompanying sampling
weights, with any adjustments.

(ii) Using Sampling Weights: Again, for each state k = 1, 2, ...., 51, we take B simple random
samples with replacement of size nk from state k’s PUMS. For the ith individual in the bth sample
from state k, we record not only the individual travel times Y ∗

kib, but we also record the associated
sampling weights w∗

kib. Then for the bth sample, we calculate the weighted mean

θ̂
∗(w)
kb =

nk∑
i=1

w∗
kibY

∗
kib

nk∑
i=1

w∗
kib

. (25)

This approach does not ignore the original sampling design and the accompanying sampling weights,
and it is closer to the advice in the literature, see e.g., Shao and Tu(1995).

Parametric

Sampling Weights Incorporated in Estimates: For each state k = 1, 2, ..., 51, we take B draws
from a normal distribution whose mean and standard deviation are determined by the PUMS based
data mean θ̂′k and SE′

k, and we note the result of the bth draw from N(θ̂′k, SE′
k) by

θ̂
∗(p)
kb . (26)
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Of the three approaches that we consider in this section, the parametric one retains the least in-
formation about the underlying data, but it also is the least computationally intensive.

Now, we can compare the three approaches in several ways:

• For a given state k, we present the distributions of θ̂
∗(u)
kb , θ̂

∗(w)
kb , and θ̂

∗(p)
kb across the

replications b = 1, 2, ..., B. Specifically, we seek to answer the question: Are either
θ̂
∗(p)
kb or θ̂

∗(u)
kb distributions good approximations to the “more appropriate” bootstrap

distribution of θ̂
∗(w)
kb ?

• Alternately and according to each of the three approaches, for each bootstrap replication
b = 1, 2, ..., B, rank the 51 states. We use the distribution of B sets of 51 ranks for
each approach to make inferences about the true ranks, and determine whether these
inferences differ much across the three approaches. For example, are the bootstrap 90%
confidence intervals (percentile method) as in (21) for the state ranks similar across the
three methods? Again, are the results of the less-computationally-intensive parametric
bootstrap or unweighted nonparametric bootstrap similar to the “more appropriate”
weighted nonparametric bootstrap?

If the parametric bootstrap’s results are not practically different from the weighted nonpara-
metric results, it is the preferred method because it requires less computation, less code to debug,
and no need to access or store the microdata.

Remark: We believe that differences among the three methods should not be judged by statisti-
cal significance because the only relevant error is the Monte Carlo error due to using a finite B,
which can be made arbitarily small with large enough B. Instead, we must decide how much of a
difference among the approaches is practically significant. For example, we may decide that if all
states’s bootstrap 90% confidence intervals for ranks differ by only one or two ranks from method
to method, this difference is not practically significant.

In Figure 12, we compare the results of the three bootstrap distributions using mean travel
time to work data during 2011 from the ACS PUMS for the state of Colorado. For Colorado, the
parametric bootstrap distribution of θ̂

∗(p)
kb is clearly a better fit to the bootstrap distribution of

θ̂
∗(w)
kb than the distribution of θ̂

∗(u)
kb using unweighted PUMS data. The same holds for all states as

shown in Figure 13, which shows the three bootstrap distributions for each of the 51 states.

In Table 3, we see, for the most part, that each state’s 90% confidence intervals (percentile
method) of rank are practically the same across the three approaches, but there are differences.
More specifically, the confidence intervals based on θ̂

∗(w)
k (weighted PUMS data) and θ̂

∗(p)
k (para-

metric using PUMS based weighted estimates) are quite similar, and they tend to differ from those
confidence intervals based on θ̂

∗(u)
k (unweighted PUMS data), see for example, the three 90% boot-

strap percentile confidence intervals in Table 3 for the states AK, VT, WI, and ME. We believe
that Table 3 provides evidence against the use of unweighted PUMS data and an argument for the
use of the parametric approach.
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Travel time (min)

1 South Dakota 15 17.29 129
2 Wyoming 10 17.47 156
3 North Dakota 10 17.87 163
4 Nebraska 15 18.11 132
5 Alaska 10 18.20 145
6 Montana 15 18.26 145
7 Iowa 15 18.60 133
8 Kansas 15 19.02 132
9 Idaho 15 19.66 131

10 Oklahoma 15 21.28 139
11 New Mexico 15 21.35 119
12 Utah 15 21.41 138
13 Arkansas 15 21.59 131
14 Wisconsin 20 22.04 148
15 Vermont 20 22.07 153
16 Oregon 17 22.63 125
17 Kentucky 20 22.86 129
18 Minnesota 20 23.12 151
19 Ohio 20 23.19 128
20 Missouri 20 23.23 147
21 Indiana 20 23.40 123
22 North Carolina 20 23.41 143
23 Rhode Island 20 23.52 140
24 South Carolina 20 23.55 129
25 Maine 20 23.72 157
26 Mississippi 20 23.84 162
27 Nevada 20 24.16 154
28 Alabama 20 24.16 126
29 Michigan 20 24.19 150
30 Tennessee 20 24.36 122
31 Louisiana 20 24.37 163
32 Arizona 20 24.69 120
33 Colorado 20 24.70 163
34 Texas 20 24.78 146
35 Connecticut 20 24.80 144
36 West Virginia 20 25.20 148
37 Delaware 20 25.41 144
38 Washington 20 25.46 144
39 Hawaii 20 25.55 107
40 Florida 20 25.81 125
41 Pennsylvania 20 26.04 152
42 New Hampshire 20 27.11 152
43 California 20 27.17 142
44 Georgia 20 27.23 148
45 Virginia 20 27.85 150
46 Massachusetts 20 28.00 144
47 Illinois 20 28.08 143
48 New Jersey 25 30.63 145
49 District of Columbia 30 30.65 136
50 New York 25 31.61 142
51 Maryland 29 32.33 146

r̂′
k Statek Mediank θ̂′

k Maxk

Figure 11: Unweighted PUMS Data Distributions for All 51 States for Mean Travel Time to Work of Workers
16 Years and Over Who Did Not Work at Home (Minutes). Every State Had At least One Individual with
a Travel to Work Time of One Minute in the PUMS. (Data Source: 2011 American Community Survey
PUMS)
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Figure 12: Three Bootstrap Distributions for Colorado for Mean Travel Time to Work of Workers 16 Years
and Over Who Did Not Work at Home (Minutes). (Data Source: 2011 American Community Survey PUMS)
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Mean travel time (min)

1 South Dakota 17.29 .43
2 Wyoming 17.47 .46
3 North Dakota 17.87 .70
4 Nebraska 18.11 .30
5 Alaska 18.20 .44
6 Montana 18.26 .41
7 Iowa 18.60 .19
8 Kansas 19.02 .23
9 Idaho 19.66 .29

10 Oklahoma 21.28 .22
11 New Mexico 21.35 .29
12 Utah 21.41 .22
13 Arkansas 21.59 .31
14 Wisconsin 22.04 .19
15 Vermont 22.07 .46
16 Oregon 22.63 .20
17 Kentucky 22.86 .21
18 Minnesota 23.12 .17
19 Ohio 23.19 .11
20 Missouri 23.23 .18
21 Indiana 23.40 .13
22 North Carolina 23.41 .15
23 Rhode Island 23.52 .38
24 South Carolina 23.55 .16
25 Maine 23.72 .43
26 Mississippi 23.84 .28
27 Nevada 24.16 .29
28 Alabama 24.16 .18
29 Michigan 24.19 .14
30 Tennessee 24.36 .17
31 Louisiana 24.37 .19
32 Arizona 24.69 .16
33 Colorado 24.70 .23
34 Texas 24.78 .08
35 Connecticut 24.80 .21
36 West Virginia 25.20 .40
37 Delaware 25.41 .49
38 Washington 25.46 .16
39 Hawaii 25.55 .37
40 Florida 25.81 .11
41 Pennsylvania 26.04 .14
42 New Hampshire 27.11 .46
43 California 27.17 .08
44 Georgia 27.23 .16
45 Virginia 27.85 .15
46 Massachusetts 28.00 .15
47 Illinois 28.08 .14
48 New Jersey 30.63 .18
49 District of Columbia 30.65 .43
50 New York 31.61 .12
51 Maryland 32.33 .18

r̂′
k State (k) θ̂′

k SE′
k

Unweighted Weighted Parametric

Figure 13: Three Bootstrap Distributions for All 51 States for Mean Travel Time to Work of Workers 16
Years and Over Who Did Not Work at Home (Minutes). (Data Source: 2011 American Community Survey
PUMS)
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Table 3: Three Different State 90% Bootstrap Confidence Intervals for Ranks Using ACS PUMS

r̂′k Statek θ̂′
k SE′

k Unweighted Weighted Parametric
51 MD 32.33 .18 [51, 51] [51, 51] [51, 51]
50 NY 31.61 .12 [50, 50] [50, 50] [50, 50]
49 DC 30.65 .43 [48, 49] [48, 49] [48, 49]
48 NJ 30.63 .18 [48, 49] [48, 49] [48, 49]
47 IL 28.08 .14 [44, 46] [45, 47] [45, 47]
46 MA 28.00 .15 [47, 47] [45, 47] [45, 47]
45 VA 27.85 .15 [44, 46] [45, 47] [44, 47]
44 GA 27.23 .16 [42, 42] [42, 44] [42, 44]
43 CA 27.17 .08 [43, 44] [42, 44] [42, 44]
42 NH 27.11 .46 [43, 46] [42, 44] [42, 45]
41 PA 26.04 .14 [40, 41] [40, 41] [39, 41]
40 FL 25.81 .11 [37, 40] [38, 41] [38, 41]
39 HI 25.55 .37 [35, 40] [36, 41] [36, 41]
38 WA 25.46 .16 [37, 40] [36, 39] [36, 39]
37 DE 25.41 .49 [30, 39] [33, 41] [32, 41]
36 WV 25.20 .40 [31, 38] [32, 39] [32, 40]
35 CT 24.80 .21 [35, 39] [31, 36] [31, 36]
34 TX 24.78 .08 [29, 32] [32, 36] [32, 36]
33 CO 24.70 .23 [25, 31] [30, 36] [30, 36]
32 AZ 24.69 .16 [25, 29] [30, 36] [31, 36]
31 LA 24.37 .19 [28, 34] [27, 33] [27, 33]
30 TN 24.36 .17 [29, 34] [27, 32] [27, 32]
29 MI 24.19 .14 [31, 35] [26, 31] [26, 31]
28 AL 24.16 .18 [20, 26] [25, 31] [25, 31]
27 NV 24.16 .29 [21, 29] [25, 32] [25, 32]
26 MS 23.84 .28 [21, 30] [22, 30] [22, 29]
25 ME 23.72 .43 [29, 37] [19, 30] [18, 30]
24 SC 23.55 .16 [20, 26] [20, 26] [21, 26]
23 RI 23.52 .38 [15, 27] [18, 27] [17, 28]
22 NC 23.41 .15 [15, 19] [19, 25] [19, 25]
21 IN 23.40 .13 [16, 22] [19, 25] [19, 24]
20 MO 23.23 .18 [20, 26] [17, 23] [17, 23]
19 OH 23.19 .11 [15, 20] [18, 22] [18, 22]
18 MN 23.12 .17 [17, 23] [17, 22] [17, 22]
17 KY 22.86 .21 [15, 20] [16, 19] [16, 20]
16 OR 22.63 .20 [14, 15] [15, 17] [15, 17]
15 VT 22.07 .46 [20, 34] [11, 16] [11, 17]
14 WI 22.04 .19 [15, 20] [13, 15] [13, 15]
13 AR 21.59 .31 [11, 13] [10, 14] [10, 15]
12 UT 21.41 .22 [10, 10] [10, 13] [10, 13]
11 NM 21.35 .29 [11, 13] [10, 14] [10, 14]
10 OK 21.28 .22 [11, 13] [10, 13] [10, 13]
9 ID 19.66 .29 [8, 9] [8, 9] [8, 9]
8 KS 19.02 .23 [5, 7] [7, 8] [7, 8]
7 IA 18.60 .19 [7, 9] [5, 7] [5, 8]
6 MT 18.26 .41 [6, 9] [3, 7] [2, 7]
5 AK 18.20 .44 [1, 1] [2, 8] [2, 7]
4 NE 18.11 .30 [3, 5] [2, 6] [2, 6]
3 ND 17.87 .70 [2, 4] [1, 8] [1, 8]
2 WY 17.47 .46 [2, 6] [1, 5] [1, 5]
1 SD 17.29 .43 [2, 5] [1, 4] [1, 4]
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3.5. Simulation Study for Evaluating Parametric Bootstrap for Estimating Uncer-
tainty in Ranking

We continue to make use of the same ACS data as used in Tables 1 and 2. For our simulation
study to evaluate the parametric bootstrap, fix values for the unknown parameters θ1, ..., θK , and
of the known parameters SE1, ..., SEK . These known values are given in columns 3 and 4 of Table
4. Compute the ranks as rk = 1 +

∑
k′ 6=k

I(θk′ ≤ θk), for k = 1, ...,K. The ranks rk represent the

truth, and they are given in column 1 of Table 4.

Now to evaluate the parametric bootstrap method for ranking described in Subsection 3.2,

1. Draw θ̂1, ..., θ̂K independently such that θ̂k ∼ N(θk, (SEk)2), for k = 1, ...,K.

2. Compute the estimated ranks r̂k = 1 +
∑

k′:k′ 6=k

I(θ̂k′ ≤ θ̂k), for k = 1, ...,K.

3. Compute a set of bootstrap replications of the ranks as follows.

(a) Draw θ̂∗k ∼ N(θ̂k, (SEk)2), independently for k = 1, ...,K.

(b) Compute r̂∗k = 1 +
∑
k′ 6=k

I(θ̂∗k′ ≤ θ̂∗k), for k = 1, ...,K.

(c) Repeat Steps (a) and (b) a total of B times to get (r̂∗1,1, ..., r̂
∗
K,1), ..., (r̂

∗
1,B, ..., r̂∗K,B).

4. Define the 100(1−α)% bootstrap percentile confidence interval for rk as [r̂
∗(α

2 )
k , r̂

∗(1−α
2 )

k ] where

r̂
∗(α

2 )
k and r̂

∗(1−α
2 )

k denote the empirical α
2 and 1 − α

2 quantiles of the bootstrap replications
r̂∗k,1, ..., r̂

∗
k,B.

5. Compute Ck = I

[
r̂
∗(α

2 )
k ≤ rk ≤ r̂

∗(1−α
2 )

k

]
, for k = 1, ...,K.

6. Repeat steps 1 - 5 a total of M times to get (C1,1, ..., CK,1), ..., (C1,M , ..., CK,M ). The simula-
tion based estimate of coverage probability of the bootstrap percentile confidence interval for

rk is Ck =
1
M

M∑
i=1

Ck,i, for k = 1, ...,K. These values are given in the last column of Table 4.

From the last column of Table 4, we see that our estimates of coverage probability of the
bootstrap percentile confidence interval for rk (i.e., C̄k) is at least 90% for k = 1, 2, ..., 51. Thus
based on simulated estimates of coverage probability, the bootstrap percentile confidence interval
for rk is extremely good, for k = 1, 2, ..., 51.
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Table 4: Simulated Coverage Probabilities of the 90% Boostrap Percentile Interval with B = 1000
and M = 10000

rk State θk SEk C̄k

51 Maryland 32.21 0.15 100.00
50 New York 31.50 0.09 100.00
49 New Jersey 30.53 0.12 99.81
48 District of Columbia 30.10 0.32 99.81
47 Illinois 28.17 0.11 99.70
46 Massachusetts 27.99 0.13 99.74
45 Virginia 27.74 0.13 99.92
44 California 27.14 0.07 92.28
43 Georgia 27.11 0.17 98.33
42 New Hampshire 26.90 0.30 97.98
41 Pennsylvania 25.92 0.09 95.15
40 Florida 25.76 0.11 92.39
39 Hawaii 25.69 0.27 95.10
38 West Virginia 25.58 0.31 95.24
37 Washington 25.51 0.14 97.36
36 Delaware 25.30 0.37 95.49
35 Connecticut 24.98 0.19 98.25
34 Texas 24.82 0.07 99.48
33 Arizona 24.76 0.15 97.18
32 Louisiana 24.54 0.15 97.43
31 Colorado 24.51 0.19 95.96
30 Tennessee 24.23 0.14 95.98
29 Michigan 24.11 0.10 96.51
28 Nevada 24.10 0.27 94.18
27 Alabama 23.94 0.14 98.24
26 Mississippi 23.86 0.24 95.44
25 South Carolina 23.61 0.16 96.66
24 Indiana 23.45 0.11 94.41
23 Maine 23.41 0.25 94.41
22 North Carolina 23.37 0.12 97.06
21 Rhode Island 23.36 0.29 90.80
20 Ohio 23.12 0.09 98.61
19 Missouri 23.07 0.13 96.67
18 Minnesota 22.99 0.10 96.71
17 Kentucky 22.86 0.15 97.49
16 Oregon 22.54 0.16 99.85
15 Vermont 21.94 0.31 94.33
14 Wisconsin 21.92 0.11 99.43
13 Utah 21.61 0.20 98.18
12 New Mexico 21.43 0.27 97.20
11 Arkansas 21.31 0.23 96.91
10 Oklahoma 21.13 0.15 96.80
9 Idaho 19.66 0.24 100.00
8 Kansas 18.90 0.16 97.16
7 Iowa 18.77 0.13 99.36
6 Alaska 18.39 0.33 94.22
5 Montana 18.18 0.32 95.95
4 Wyoming 18.10 0.50 95.30
3 Nebraska 18.06 0.19 84.15
2 North Dakota 16.91 0.36 96.74
1 South Dakota 16.86 0.28 95.72
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3.6. Additional Examples of Parametric Bootstrap Estimates of Probabilities

To illustrate the great wealth of estimates of measures possible with rankings, the following
estimated probabilities were computed using a parametric bootstrap with B = 100, 000.

P̂ (estimated rank of Colorado is 31)

= P̂ (r̂31 = 31)

=
1
B

B∑
b=1

I(r̂∗31,b = 31)

= 0.367

P̂ (estimated rank of District of Columbia is among the 5 highest ranks)

= P̂ (r̂48 ∈ {47, 48, 49, 50, 51})

=
1
B

B∑
b=1

I(r̂∗48,b ∈ {47, 48, 49, 50, 51})

= 1.000

P̂ (estimated rank of Kansas is among the 10 lowest ranks)

= P̂ (r̂8 ∈ {1, 2, ..., 10})

=
1
B

B∑
b=1

I(r̂∗8,b ∈ {1, 2, ..., 10})

= 1.000

P̂ (estimated rank of Arkansas is among the 10 lowest ranks)

= P̂ (r̂11 ∈ {1, 2, ..., 10})

=
1
B

B∑
b=1

I(r̂∗11,b ∈ {1, 2, ..., 10})

= 0.222

P̂ (estimated rank of Colorado is between 29 and 32)

= P̂ (29 ≤ r̂31 ≤ 32)

=
1
B

B∑
b=1

I(29 ≤ r̂∗31,b ≤ 32)

= 0.820

P̂ (estimated ranks of District of Columbia and New Jersey are among the 4 highest)

= P̂ (r̂48 ∈ {48, ..., 51}, r̂49 ∈ {48, ..., 51})

=
1
B

B∑
b=1

I(r̂∗48,b ∈ {48, ..., 51}, r̂∗49,b ∈ {48, ..., 51})

= 1.000
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P̂ (estimated rank of Delaware is higher than estimated rank of Connecticut)

= P̂ (r̂36 > r̂35)

=
1
B

B∑
b=1

I(r̂∗36,b > r̂∗35,b)

= 0.777

4. CONCLUDING COMMENTS

The methods presented in Section 2 and the uncertainty measures in Section 3 are simple and
easy to use. They are robust and can be widely understood. For implementation, they mainly
require K sample estimates θ̂k and their associated standard errors SEk, for k = 1, 2, ...,K. The-
ory exists to support their use. Further research will reveal more theoretical properties of these
methods and evaluate them empirically. They will also be compared with each other as well as
with other methods. Perhaps most importantly, we believe that this paper and others will advance
the need for national statistical agencies to express uncertainly in released rankings based on data
from sample surveys.

Disclaimer: This paper is released to inform interested parties of ongoing research and to encourage
discussion. The views expressed are those of the authors and not necessarily those of the U. S.
Bureau of the Census.
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APPENDIX A
Listing of 85 Ranking Tables Based on the 2011 American Community Survey

R0201 Percent of the Total Population Who Are White Alone
R0202 Percent of the Total Population Who Are Black or African American Alone
R0203 Percent of the Total Population Who Are American indian and Alaska Native Alone
R0204 Percent of the Total Population Who Are Asian Alone
R0205 Percent of the Total Population Who Are Native Hawaiian and Other Pacific Islander Alone
R0206 Percent of the Total Population Who Are Some Other Race Alone
R0207 Percent of the Total Population Who Are Two or More Races
R0208 Percent of the Total Population Who Are Two or More Races Excluding Some Other Race
R0209 Percent of the Total Population Who Are White Alone, Not Hispanic or Latino
R0501 Percent of People Who Are Foreign Born
R0502 Percent of People Born in Europe
R0503 Percent of People Born in Asia
R0504 Percent of People Born in Latin America
R0505 Percent of People Born in Mexico
R0601 Percent of the Native Population Born in Their State of Residence (including Puerto Rico)
R0701 Percent of People 1 Year and Over Who Lived in a Different House in Either the U.S. or Puerto

Rico 1 Year Ago
R0702 Percent of People 1 Year and Over Who Lived in a Different House within the Same State (including

Puerto Rico) 1 Year Ago
R0703 Percent of People 1 Year and Over Who Lived in a Different State (including Puerto Rico) 1 Year

Ago
R0801 Mean Travel Time to Work of Workers 16 Years and Over Who Did Not Work at Home (Minutes)
R0802 Percent of Workers 16 Years and Over Who Traveled to Work by Car, Truck, or Van-Drove Alone
R0803 Percent of Workers 16 Years and Over Who Traveled to Work by Car, Truck, or Van-Carpooled
R0804 Percent of Workers 16 Years and Over Who Traveled to Work by Public Transportation (Excluding

Taxicab)
R0805 Percent of Workers 16 Years and Over Who Worked Outside County of Residence
R1001 Percent of Grandparents Responsible for Their Grandchildren
R1101 Percent of Households That Are Married-Couple Families
R1102 Percent of Households That Are Married-Couple Families With Own Children Under 18 Years
R1103 Percent of Households With One or More People Under 18 Years
R1104 Percent of Households With One or More People 65 Years and Over
R1105 Average Household Size
R1106 Percent of Households That Are Multigenerational
R1201 Percent of Men 15 Years and Over Who Were Never Married
R1202 Percent of Women 15 Years and Over Who Were Never Married
R1203 Ratio of Unmarried Men 15 to 44 Years per 100 Unmarried Women 15 to 44 Years
R1204 Median Age at First Marriage for Men
R1205 Median Age at First Marriage for Women
R1251 Marriage Rate per 1,000 Women 15 Years and Over
R1252 Marriage Rate per 1,000 Men 15 Years and Over
R1253 Divorce Rate per 1,000 Women 15 Years and Over
R1254 Divorce Rate per 1,000 Men 15 Years and Over
R1303 Women 15 to 50 Years Old Who Had a Birth in the Past 12 Months (per 1,000 Women)
R1304 Total Fertility Rate of Women 15 to 50 Years Old Who Had a Birth in the Past 12 Months
R1501 Percent of People 25 Years and Over Who Have Completed High School (includes Equivalency)
R1502 Percent of People 25 Years and Over Who Have Completed a Bachelor’s Degree
R1503 Percent of People 25 Years and Over who Have Completed an Advanced Degree
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APPENDIX A (continued)
Listing of 85 Ranking Tables Based on the 2011 American Community Survey

R1601 Percent of People 5 Years and Over Who Speak a Language Other Than English at Home
R1602 Percent of People 5 Years and Over Who Speak Spanish at Home
R1603 Percent of People 5 Years and Over Who Speak English Less Than “Very Well”
R1701 Percent of People Below Poverty Level in the Past 12 Months (For Whom Poverty Status Is Deter-

mined)
R1702 Percent of Related Children Under 18 Years Below Poverty Level in the Past 12 Months
R1703 Percent of People 65 Years and Over Below Poverty Level in the Past 12 Months
R1704 Percent of Children Under 18 Years Below Poverty Level in the Past 12 Months (For Whom Poverty

Status Is Determined)
R1810 Percent of People with a Disability
R1811 Employment to Population Ratio for People with a Disability
R2407 Percent of Civilian Employed Population 16 Years and Over in Computer, Engineering, and Science

Occupations
R2408 Percent of Civilian Employed Population 16 Years and Over in HealthCare Practitioners and Tech-

nical Occupations
R1801 Median Household Income (in 2006 Inflation-Adjusted Dollars)
R1902 Median Family Income (in 2006 Inflation-Adjusted Dollars)
R1903 Percent of Households with Retirement Income
R1904 Percent of Households with Cash Public Assistance Income
R2001 Median Earnings for Male Full-Time, Year-Round workers (in 2006 Inflation-Adjusted Dollars)
R2002 Median Earnings for Female Full-Time, Year-Round Workers (in 2006 Inflation-Adjusted Dollars)
R2101 Percent of the Civilian Population 18 Years and Over Who Are Veterans
R2301 Percent of People 16 to 64 Years Who Are in the Labor Force (including Armed Forces)
R2302 Percent of Children Under 6 Years Old with All Parents in the Labor Force
R2303 Employment/Population Ratio for the Population 16 to 64 Years Old
R2304 Percent of Married-Couple Families with Both Husband and Wife in the Labor Force
R2401 Percent of Civilian Employed Population 16 Years and Over in Management, Business, and Financial

Occupations
R2403 Percent of Civilian Employed Population 16 Years and Over in Service Occupations
R2404 Percent of Civilian Employed Population 16 Years and Over in the Manufacturing Industry
R2405 Percent of Civilian Employed Population 16 Years and Over in the Information Industry
R2406 Percent of Civilian Employed Population 16 Years and Over Who Were Private Wage and Salary

Workers
R2501 Percent of Housing Units That Are Mobile Homes
R2502 Percent of Housing Units That Were Built in 2005 or Later
R2503 Percent of Housing Units That Were Built in 1939 or Earlier
R2504 Percent of Occupied Housing Units That Were Moved Into in 2005 or Later
R2505 Percent of Occupied Housing Units with Gas as Principal Heating Fuel
R2506 Percent of Occupied Housing Units with Electricity as Principal Heating Fuel
R2507 Percent of Occupied Housing Units with Fuel Oil, Kerosene, Etc. as Principal Heating Fuel
R2509 Percent of Occupied Housing Units with 1.01 or More Occupants per Room
R2510 Median Housing Value of Owner-Occupied Housing Units (Dollars)
R2511 Median Monthly Housing Costs for Owner-Occupied Housing Units with a Mortgage (Dollars)
R2512 Percent of Occupied Housing Units That Are Owner-Occupied
R2513 Percent of Mortgaged Owners Spending 30 Percent or More of Household Income on Selected

Monthly Owner Costs
R2514 Median Monthly Housing Costs for Renter-Occupied Housing Units (Dollars)
R2515 Percent of Renter-Occupied Units Spending 30 Percent or More of Household Income on Rent and

Utilities
R2701 Percent Without Health Insurance Coverage
R2702 Percent of Children Without Health Insurance Coverage

48



APPENDIX B

Multiple Comparisons and Bonferroni Correction

In each case of Figure 1, there is only one test, and the significance level of each test is α. In Figure
1, where the focus is on the reference population of Colorado with estimated rank 31, there are ac-
tually fifty different tests, population of state with rank k vs reference population of Colorado with
estimated rank 31 for k 6= 31. If we want the overall level of the collection of fifty tests to be α, some
adjustment is needed for the level of significance for each of the fifty separate tests. The Bonfer-
roni correction provides some guidance, and we give a few details in the remainder of this appendix.

Assume a family-wide or collection of M tests (independent or dependent) of hypotheses:

Test 1 H0(1) vs HA(1)

Test 2 H0(2) vs HA(2)
...

...
Test M H0(M) vs HA(M)

Let α be given where 0 < α < 1. Assume the probabilities of type one error for the tests separately
are

α

M
so that

P (reject H0(1) | H0(1) true) ≤ α
M

P (reject H0(2) | H0(2) true) ≤ α
M

...
P (reject H0(M) | H0(M) true) ≤ α

M

Thus the level of statistical significance for the mth test is
α

M
for m = 1, 2, 3, ...,M . Hence the

overall level of statistical significance for the collection of M tests simultaneously is α because by
Boole’s Law, we have

P (reject at least one of the M tests given it is true)

= P ([reject H0(1)|H0(1) true] or [reject H0(2)|H0(2) true] or · · · or [reject H0(M)|H0(M) true])

≤ P (reject H0(1)|H0(1) true) + P (reject H0(2)|H0(2) true) + · · ·+ P (reject H0(M)|H0(M) true)

≤ α
M + α

M + · · ·+ α
M

= α.

Thus when testing all of the M hypotheses simultaneously at significance level α, one can test each
one of the hypotheses at significance level

α

M
.
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This method of multiple comparisons is referred to as the Bonferroni correction (Bonferroni, 1935,
1936; Dunn, 1961). When testing a collection of hypotheses simultaneously, we reject the entire
collection of null hypotheses if the null hypothesis for at least one of them is rejected. When we
increase the number of hypotheses being tested simultaneously, we are more likely to have a type
one error if each hypothesis is tested at the same level α. By decreasing the level of each separate
test to

α

M
, we are maintaining the overall level of significance at α, and it is in this sense that we

think of the Bonferroni correction.
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