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Abstract
Conventional small area estimation methods combine generalized linear model synthetic
estimates made using covariates with direct survey estimates. Since “borrowing strength”
from covariates to make quality synthetic estimates is a key motivation in small area model-
ing while almost all such information is collected through surveys, we recognize the need for
building models that combine survey data and incorporate uncertainties in both surveys.
In this study, we use the American Community Survey (ACS) to improve the disability
estimates from the Survey of Income and Program Participation (SIPP). In particular, we
discuss the estimation results from a bivariate Fay-Herriot model and a measurement error
model as well as a comparison of estimated mean square errors.

Keywords: American Community Survey (ACS), bivariate Fay-Herriot, measurement er-
ror, mixed linear model, Survey of Income and Program Participation (SIPP)

1. Introduction

Since 1960, the National Center for Health Statistics (NCHS) has been conducting the
National Health Interview Survey (NHIS), collecting information related to health topics.
The first official release on nationwide disability statistics was given in NCHS (1968), where
they pioneered using synthetic estimation to report the percentages of persons with activity
limitation at the state level. Gonzalez (1973) points out that synthetic estimates are
unbiased estimates obtained from a sample survey for a large area, under the assumption
that the small areas to be estimated have the same characteristics as large areas. Even at
the state level, many sample sizes were too small to provide reliable direct estimates in the
1968 release. One simple solution to avoid small area estimation altogether is to merge data
collected over a spatial or temporal domain.

For many federal agencies, such challenges often arise when requests are made for them
to release statistics at a level below which the primary statistical inference was targeted in
the survey design (see for example, Schaible (1992)). Realizing that such issues would re-
main even in many nationwide surveys, the community in small area estimation research has
since flourished with numerous new methods. Since indirect domain estimation techniques
such as synthetic estimators cannot account for area-specific variation, explicit model-based
methods have gained popularity in recent years. Ghosh and Rao (1994) provides a com-
prehensive review on practical examples as well as major breakthroughs, including the
widely-used Fay-Herriot (FH) model by Fay and Herriot (1979). Rao (2003) notes in
his book that the success of any model-based methods depends on the availability of good
auxiliary data as one of the key ideas is to “borrow strength” from relatable and reliably
measured covariates. However, when auxiliary variables are measured with error, one needs
to exercise caution with the weights between the model-predicted synthetic values and direct
estimates.

In this paper, we propose two small area estimation models that both aim at improving
the SIPP disability estimates with ACS data. There have been a few dozen recent national,
federally-sponsored surveys related to this topic (see Livermore et al. (2011)), partially
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due to the enactment of Americans with Disabilities Act (ADA) by U.S. Congress in 1990
that has prompted policymakers besides academic researchers in public health policy to
search for more reliable statistics on disability. The linkability of SIPP to administrative
data such as Internal Revenue Service (IRS) information makes it an appealing alternative
to other similar national surveys to obtain estimates on disability statistics without having
to combine several years of survey data in small areas to achieve desired reliability. We also
study the effectiveness of using the American Community Survey (ACS), another survey
conducted by the U.S. Census Bureau and the largest ongoing household survey of its kind
to improve the model estimates from SIPP.

The remainder of this paper is structured as follows. In Section 2, we review the
concept of empirical best linear unbiased predictor (EBLUP) and discuss two proposed
models. In Section 3, we provide a numerical method for estimating the mean squared
error for model predictions in both models. A simulation study is presented in Section
4. Details of parametrization for modeling disability data and selected small area SIPP
disability estimates using our proposed models are included in Section 5. Some remarks
and discussion on current and future work related to these models can be found in the last
section.

2. Two Models

Let θi denote the population characteristic of interest in small area i whose observed value
is Yi and assume that θi = x′iβ + vi where xi are area-specific covariates of length p. The
Fay and Herriot (1979) model can be expressed as a generalized linear mixed-effects model:

Yi = θi + ei = x′iβ + vi + ei, i = 1, · · · ,m, (1)

where the model errors vi and sampling errors ei are assumed independent. It is further
assumed that vi ∼ N(0, σ2

v) and ei ∼ N(0, Di), with known sampling variance Di.
If the parameters β and σ2

v are both known, the best predictor (BP) of θi is

θ̃i = wiYi + (1− wi)x′iβ, (2)

where wi = σ2
v/(σ

2
v +Di). This follows from minimizing the mean squared error (MSE) of

the prediction in the form of a linear combination of Yi and x′iβ where weights add up to
one, i.e. E(αiYi + (1− αi)x′iβ − θi)2.

In reality, β and σ2
v are unknown and must be estimated from the data. Fay and

Herriot (1979) proposed to estimate β with its maximum likelihood estimator (MLE)
β̃ = (X ′Σ−1X)−1X ′Σ−1Y and to estimate σ2

v ≥ 0 by solving the estimating equation:

m∑
i=1

(Yi − x′iβ̃)2

σ2
v +Di

= m− p, (3)

where X = (x1, · · · ,xm)′, Y = (Y1, · · · , Ym)′ and Σ = diag(Di + σ2
v).

The solution to Equation (3) gives rise to the empirical best linear unbiased predictor
(EBLUP)

θ̂iFH = ŵiYi + (1− ŵi)x′iβ̃, ŵi = σ̂2
v/(σ̂

2
v +Di).

It is worth noting that Equation (1) assumes exact measurement on auxiliary information
xi. This is unlikely to hold in many applications. We now propose two models that focus on
improving the empirical best predictor by accounting for the variability in the measurement
of X.

2.1 Bivariate Fay-Herriot (BiFH) Model

An intuitive remedy to this problem is a bivariate Fay-Herriot (BiFH) model. We consider
the case where auxiliary information is available in the form of survey data that is measured
with uncertainty. Rather than treating it as a covariate X, we may bring it to the other
side of the formula as observed values for a related variable.



Let Y i = (Y1i, Y2i)
′ be a pair of survey estimates for area i = 1, · · · ,m. At the area

level, the first layer of the model assumes Y i = θi + ei, where ei ∼ N((0, 0)′,Σei). The
covariance matrix Σei is assumed to be known and its diagonal values represent sampling
variances in corresponding surveys. In principle, Y1i and Y2i do not have to be estimates of
the same population quantity, but they should be survey estimates of population quantities
that are correlated to each other.

The mixed-effects model is specified by θξi = x′ξiβξ + vξi, ξ = 1, 2 in two levels:

θi =
[
θ1i

θ2i

]
=


p∑
l=1

x1ilβ1l

q∑
l=1

x2ilβ2l

+ vi,

and

vi ∼ N
([ 0

0

]
,Σv =

[ σ11 σ12

σ21 σ22

])
.

We assume that the error terms in the level-1 models are independent of those in the level-2
model just as in the univariate FH model.

If we further assume that the two surveys are independent (and therefore, Σei
=

diag(D1i, D2i)), we can write the joint distribution as:
Y1i

Y2i

θ1i

θ2i

 ∼ N


x′1iβ1

x′2iβ2

x′1iβ1

x′2iβ2

 , [ Σ11 Σ12

Σ21 Σ22

]
=


D1i + σ11 σ12 σ11 σ12

σ12 D2i + σ22 σ12 σ22

σ11 σ12 σ11 σ12

σ12 σ22 σ12 σ22


 .

If one is only interested in θ1i for each small area, the BLUP is obtained by taking the
conditional mean (see Appendix A for derivation):

θ̃1i = E(θ1i|Y i) = Y1i −
D1i[(D2i + σ22)(Y1i − x′1iβ1)− σ12(Y2i − x′2iβ2)]

(D1i + σ11)(D2i + σ22)− σ2
12

.

2.2 Best Predictor in a Measurement Error Model

An alternative to the BiFH model where measurement error on auxiliary information is
taken into consideration was studied by Ybarra and Lohr (2008). While the magnitude of
variability of measurement error is assumed known, the corresponding term is not modeled
as a joint population variable on the left-hand side of the equation, but remains as a
covariate on the right. The resulting predictor pulls more weight toward the direct survey
estimates where large measurement errors are found. Although this can be considered as a
generalization of the FH model, it tends to produce predictions with less precision. It has
been shown when the measurement error (ME) model in Ybarra and Lohr (2008) is applied
to administrative data where very little sampling errors are observed, its EBLUPs may have
larger empirical mean squared errors than those from the FH model. This is not surprising
as one additional source of variation has been incorporated in the model. However, one
may argue that the resulting estimates are more honest predictions of the uncertainty.

Separately, Jiang et al. (2011) proposed a new approach, called observed best predic-
tion (OBP) that emphasizes minimizing the total mean squared prediction error (MSPE).
Knowing that the best predictor assumes the form in Equation (2), the authors conjec-
tured that model estimates are more influential in areas where sampling variances are large.
Rather than using the standard EBLUP, their approach compensates by assigning larger
weights to those areas where Di’s are large in estimating the regression coefficients. The
corresponding β̂ is no longer the best linear unbiased estimator (BLUE), but the minimizer

of E(|θ̃ − θ|2) =
m∑
i=1

E(θ̃i(β, σ
2
v)− θi)2, where θ = (θi)1≤i≤m is the vector of all small area

means and θ̃ = (θ̃i)1≤i≤m its best predictor as in Equation (2). The resulting estimator is

different from θ̂iFH .



The measurement error model does not emphasize the minimization of MSPE like the
OBP approach does. Since OBP ignores variability in measuring auxiliary information, we
now extend their work by combining the characteristics from both methods.

In addition to the usual univariate FH model assumptions, we further assume that a
single covariate xi may be observed with error:

Xi = xi + fi, fi ∼ N(0, Ci),

where x1, , · · · , xm are unknown true covariate values which are measured as X1, · · · , Xm

in a survey. All error terms ei, vi and fi are assumed to be mutually independent.
Given observed data (Yi, Xi)i=1,··· ,m and assuming that (Di, Ci)i=1,··· ,m are known or

reliably estimated from survey data, we may write the joint density as

f(Y ,θ,X|x, β0, β1, σ
2
v) ∝

m∏
i=1

1√
σ2
v

exp
{
− (Yi − θi)2

2Di
− (θi − β0 − β1xi)

2

2σ2
v

− (xi −Xi)
2

2Ci

}
.

Under normality, we would treat the unobserved xi as random variables, namely, xi|Xi ∼
N(Xi, Ci). Assuming a uniform prior on xi, we can integrate it out in the likelihood func-
tion and quickly verify that E[θi|Xi, β0, β1, σ

2
v ] = β0 + β1Xi and V ar[θi|Xi, β0, β1, σ

2
v ] =

β2
1Ci + σ2

v . This allows us to rewrite the model as:{
Yi|θi ∼ N(θi, Di),
θi|Xi, β0, β1, σ

2
v ∼ N(β0 + β1Xi, σ

2
v + β2

1Ci).

As in the Fay-Herriot model, assuming the parameter values for β0, β1 and σ2
v are known,

we can derive the best predictor of θi:

θ̃i,BP = Yi −
Di

Di + (σ2
v + β2

1Ci)
(Yi − β0 − β1Xi). (4)

Let θ̃BP = (θ̃1,BP , · · · , θ̃m,BP )′ and write

Γ = diag

(
D1

D1 + σ2
v + β2

1C1
, · · · , Dm

Dm + σ2
v + β2

1Cm

)
.

We now apply the OBP approach to estimate the parameters β0, β1 and σ2
v by minimizing

E[(θ̃BP − θ)′(θ̃BP − θ)]. This is equivalent to estimating (β̂; σ̂2
v) = arg minQ, where

Q(β;σ2
v) =

m∑
i=1

(Yi − β0 − β1Xi)
2D2

i

(Di + σ2
v + β2

1Ci)
2
− 2

m∑
i=1

D2
i

Di + σ2
v + β2

1Ci
. (5)

Details of the derivation of the objective function Q(β;σ2
v) are given in Appendix C. The

alternative model predictor is obtained by placing the resulting parameters into Equation
(4), or θ̂iOM = θ̃i,BP (β̂; σ̂2

v).

3. Mean Squared Error Estimation

There are several options when it comes to estimating the mean squared error for small
area model predictions. The most widely used analytic approach was first introduced in
Prasad and Rao (1990). Their approach for the FH model is based on a Taylor series
expansion of the true mean squared error. This was later extended in Lahiri and Rao
(1995) and Datta and Lahiri (2000). Datta et al. (2005) derived an unbiased estimator for
MSE of order o(1/m). Just as the positive solution to Equation (3) does not always exist,
the Prasad-Rao moment estimator is not guaranteed to be positive. A few computational
approaches have been introduced around the same time such as the Jackknife method in
Jiang et al. (2002) and Ybarra and Lohr (2008). Jiang et al. (2011) proposed their own
analytic MSE estimator with numerical thresholds for the OBP.

We adopt a double bootstrap algorithm for approximating MSE in small area estimation,
first introduced in Hall and Maiti (2006) and later extended in Pfeffermann and Correa
(2012).The algorithm to estimate the MSE for the BiFH model is given below while the

double bootstrap algorithms for other univariate models should follow from simplification:



1. Given (Y 1, · · · ,Y m), estimate β̂ and Σ̂v and compute the EBLUP θ̂i.

2. Use β̂ and Σ̂v to generate for b1 = 1, · · · , B1:

Y
(b1)
i = θ

(b1)
i + e

(b1)
i , e

(b1)
i ∼ N(0,Σei),

where
θ

(b1)
i = Xiβ̂ + v

(b1)
i , v

(b1)
i ∼ N(0, Σ̂v).

Estimate β̂
(b1)

and Σ̂
(b1)

v . Compute

θ̂
EBLUP,b1
i = Y

(b1)
i −Σei

(Σ̂
(b1)

v + Σei
)−1(Y

(b1)
i −Xiβ̃(Σ̂

(b1)

v )).

3. Corresponding to each set of bootstrap data {(Y (b1)
i ,Xi,Σei

)mi=1; b1 = 1, · · · , B1}
and each pair (β̂

(b1)
, Σ̂

(b1)

v ), generate for b2 = 1, · · · , B2:

θ
b2(b1)
i = Xiβ̂

(b1)
+ v

b2(b1)
i , v

b2(b1)
i ∼ N(0, Σ̂

(b1)

v ),

and
Y
b2(b1)
i = θ

b2(b1)
i + e

b2(b1)
i , e

b2(b1)
i ∼ N(0,Σei

).

Estimate β̂
b2(b1)

and Σ̂
b2(b1)

v as well as compute

θ̂
EBLUP,b2(b1)

i = Y
b2(b1)
i −Σei(Σ̂

b2(b1)

v + Σei)
−1(Y

b2(b1)
i −Xiβ̃(Σ̂

b2(b1)

v )).

4. Compute

s1i =
1

B1

B1∑
b1=1

{θ̂
EBLUP,b1
i − θ(b1)

i }{θ̂
EBLUP,b1
i − θ(b1)

i }′,

and

s2i =
1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

{θ̂
EBLUP,b2(b1)

i − θb2(b1)
i }{θ̂

EBLUP,b2(b1)

i − θb2(b1)
i }′.

Return
M̃SE(θ̂i) = 2s1i − s2i.

In Hall and Maiti (2006), they explored different estimators of M̃SE(θ̂i) = g(s1i, s2i)
in terms of different choices of g for the FH model. We show that g(s1i, s2i) = 2s1i − s2i is
in general an unbiased estimator for MSE with order o(m−1) in Appendix D.

4. Simulation Study

We examine simulated results using the factorial design from Ybarra and Lohr (2008) to
compare the empirical mean squared errors (EMSE) of several estimators. In this example,
true values of an auxiliary variable xi are generated from a N(5, 9) distribution and Di from
a gamma distribution with shape parameter 5 and scale parameter 2. For each iteration,
vi, ei and fi are independently generated normal variates with mean 0 and respective
variance σ2

v ∈ {2, 4}, Di as stated and Ci ∈ {0, c} for c = 2, 3 or 4. Then we compute
θi = 1 + 3xi + vi, Yi = θi + ei and Xi = xi + fi for m ∈ {20, 50, 100}.

The results from the simulation with m = 50, σ2
v = 4 when k% of the covariates xi’s

is randomly chosen to be observed with N(0, 3) errors and the remaining xi’s are observed
without error, for k ∈ {20, 50, 100} are shown in Table 1. The estimators that are compared
side by side include:

(a) the direct estimator Yi;

(b) the univariate FH estimator using the true covariates xi, or θ̂iFt
;



(c) the regular univariate FH estimator θ̂iF using the observed values Xi (ignoring mea-
surement error);

(d) the OBP estimator θ̂iO as in Jiang et al. (2011);

(e) the ME estimator θ̂iM as in Ybarra and Lohr (2008);

(f) the OBPME estimator θ̂iOM ;

(g) the BiFH estimator θ̂iBI .

N = 1000 repetitions, m = 50 small areas
β0 = 1, β1 = 3, σ2v = 4

k Ci Yi θ̂iFt θ̂iF θ̂iO θ̂iM θ̂iOM θ̂iBI

20 0 9.97 3.17 3.65 3.70 3.52 3.41 3.58
3 9.66 3.11 9.78 10.14 7.15 7.14 7.04

50 0 10.16 3.22 4.67 4.66 3.79 3.72 3.97
3 10.07 3.22 8.04 8.26 7.46 7.43 7.38

100 3 10.01 3.21 7.44 7.57 7.53 7.50 7.38

Table 1: Simulation study on empirical mean squared errors. Within each itera-
tions, k% of the m = 50 areas have Ci = 3 and the remaining areas have Ci = 0.
Parameters are always estimated together, but the empirical mean squared errors
are averaged separately for the areas with Ci = 3 and those with Ci = 0.

Based on the simulation setup, the estimator θ̂iFt in the table above can be treated as
the optimal estimator. The direct survey estimates Yi can be seen as the worst predictor
partaking no modeling effort as the EMSE is about the size of the sampling variance on
average. In this comparison of the quality of estimators, we strive to obtain an EMSE that
would come closest to the EMSE of θ̂iFt

, or, simply the smallest overall EMSE. When only
a portion of the covariates is measured with error, we separate the estimated values from
each model and compute the individual EMSEs within both groups.

The smallest EMSE values are consistently found in the case of OBPME and BiFH
estimators. The OBPME estimator almost always outperforms both the ME estimator and
the OBP by itself. This is important to us as we may attribute part of the pairwise difference
as improvement upon the parent model by better handling of the data. For instance, the
reduction in EMSE from θ̂iO may be partially caused by the fact that sampling error Ci is
now incorporated in the estimator θ̂iOM . It is also observed that when either none or 100%
of the covariates is measured with error, univariate FH model performs quite well. There
are even a few cases where θ̂iF delivers the smallest EMSE when all of Ci is 0. This is not
surprising as the simulated data are built using a univariate modeling error structure and
there is some small difference in numerically computing the parameters for the BiFH model
versus the univariate model. In practice, only certain administrative records are treated
as measured with no sampling error. Therefore, the case where all Ci’s are 0 offers little
insight on how to effectively incorporate different survey estimates.

In general, if the measurement error variances are all the same, then ignoring the mea-
surement error term and applying a regular univariate FH model would work quite well
since the model error term is still homoscedastic (of the size σ2

v + β2
1C). It is when there is

variable measurement error variances that the ME, OBPME and BiFH estimator can better
incorporate that information. Overall, these simulation results show a robust performance
of both BiFH and OBPME estimators in terms of reducing area-specific EMSE as compared
to other univariate empirical BPs.



5. Results

5.1 Disability Estimates: Data and Task

We now proceed to apply the best performing estimators to build pilot models for disability
data. Our main data source comes from the disability estimates collected through the Sur-
vey of Income and Program Participation (SIPP) by the U.S. Census Bureau. The SIPP
2008 panel wave 6 topical module asked individuals aged 15 or older questions regarding
adult well-being, child support agreements, support for non-household members, functional
limitations and disability for adults and children as well as employer-provided health ben-
efits. A detailed 62-item list of questions1 pertaining to verbal, visual, physical, emotional
and mental issues any person in a respondent’s household may have can be found in the
functional limitations and disability section.

It is worth mentioning that wave 6 of the SIPP 2008 data was collected between May
and August of 2010. This is because the SIPP survey design uses a 4-month recall period,
with approximately the same number of interviews being conducted in each wave of the
4-month period. The 2008 SIPP Panel started in September of 2008 centering around a
“core” of labor force, program participation, and income questions while questions labeled
“topical modules” are assigned to particular interviewing waves of the survey.

Our alternative data is from the American Community Survey (ACS), which is an
ongoing survey sent to roughly 3.5 million housing unit addresses each year by the Census
Bureau. ACS has become one of the most reliable sources for household information for
current U.S. population ever since the phasing out of long forms in the decennial census
in 2000. Due to its immense sample size and the fact that interviews are conducted in
every county, it has become a valuable source of household data.The ACS 2010 contains 6
questions2 related to the disability status for any person aged 5 or older in a respondent’s
household. Though the ACS is not meant to be a specialized health or disability survey,
the majority of those questions regarding disability could be identified as similar in nature
to the ones in SIPP’s topical module. However, there is notable difference in the wording of
survey questions. For instance, Question 17b of the personal information sheet on ACS 2010
asks whether or not the person is “blind or has serious difficulty seeing even when wearing
glasses”. This, in turn, can be associated with Question ADQ4 of the Functional Limitations
and Disability section of SIPP 2008 wave 6 which asks if the person “has difficulty seeing the
words and letters in ordinary newspaper print even when wearing glasses or contact lenses
if s/he usually wear(s) them” and subsequently offers respondents three choices – “Yes”,
“No”, and “Person is blind”. SIPP also follows up with question chains such as its ADQ5
asking whether the person is “able to see the words and letters in ordinary newspaper print
at all”. On the other hand, the relatively small sample size in SIPP results in more direct
estimates of zero that are unlikely to reflect the truth.

We choose to aggregate the SIPP disability questions into four categories: vision, hear-
ing, mental and physical aspects of functional limitations. This allows us to identify with
related ACS questions and couple the data sets in the bivariate model. “Total disability”
is thus defined as having a “Yes” in any of the four main categories.

We choose to search among administrative records for covariates. In particular, the
percentages of social security income (SSI) and disability income (DI) recipients are used.
No sampling error is assumed for these administrative records.

5.2 Parametrization for BiFH Model

Let Y ACS = Y A = (y11, · · · , y1m)′, Y SIPP = Y S = (y21, · · · , y2m)′ and Y = (Y ′A,Y
′
S)′

be the estimated disability rates from two surveys. Exploratory analysis shows that at the
“state” level (all 50 U.S. states and the District of Columbia), the correlation coefficients
are

1http://www.census.gov/content/dam/Census/programs-surveys/sipp/questionnaires/

2008/SIPP 2008 Panel Wave 06 - Topical Module Questionnaire.pdf
2http://www.census.gov/acs/www/Downloads/questionnaires/2010/Quest10.pdf

http://www.census.gov/content/dam/Census/programs-surveys/sipp/questionnaires/2008/SIPP 2008 Panel Wave 06 - Topical Module Questionnaire.pdf
http://www.census.gov/content/dam/Census/programs-surveys/sipp/questionnaires/2008/SIPP 2008 Panel Wave 06 - Topical Module Questionnaire.pdf
http://www.census.gov/acs/www/Downloads/questionnaires/2010/Quest10.pdf


Y S pct SSI pct DI

Y A 0.5906 0.6348 0.8950
Y S 0.1847 0.4317

pct SSI 0.6806

Table 2: Correlation coefficients between Y A,Y S and covariates

Let xξi = (xξi1, · · · , xξip)′ denote the set of observed p covariates for small area i and
ξ ∈ {A,S}. Since we use the same covariates for SIPP and ACS data, XA = XS are both
m× p matrices of covariates, and the final design matrix can be structured as

X =

(
XA 0

0 XS

)
.

Finally, let β = (β′A,β
′
S)′ be the vector of regression coefficients of length 2p. We can

now simply express the regression model as

Y =
[
Y A

Y S

]
=
[
XA 0

0 XS

][
βA
βS

]
+ e+ v

from which we can quickly derive the BLUE for regression coefficients as

β̂ = (X ′Σ−1X)−1X ′Σ−1Y . (6)

Here, Σ = Σ(σAA, σSS , σAS) is a 2m×2m block diagonal covariance matrix parametrized
by

Σ =

[
ΣA σASI
σASI ΣS

]
, (7)

where Σξ = diag(Dξ1 + σξξ, · · · , Dξm + σξξ).

We define projection matrices P ξ = Xξ(X
′
ξΣ̂
−1

ξ Xξ)
−1X ′ξΣ̂

−1

ξ . Let ê = Y − Ŷ =

(ê′A, ê
′
S)′ where êξ = Y ξ − P ξY ξ. In order to guarantee the existence of a solution and a

successful updates of the covariance term, we propose to estimate σAA and σSS separately
prior to σAS . Justification for this method can be found in Appendix B. If σAAσSS 6= 0, we
estimate σAS by

σ̂AS =
{Σ̂
−1/2

A êA}′{Σ̂
−1/2

S êS}

tr[Σ̂
−1/2

A Σ̂
−1/2

S (I − PA)(I − P S)′]
. (8)

However, the value from the above formula must be checked to ensure the validity of a
corresponding correlation coefficient.

In practice, we may initialize σAA = σSS = σAS = 0. The following algorithm is
implemented within each iteration until convergence:

1. Set up Σ̂
(i)

ξ and Σ̂
(i)

as in Equation (7).

2. Compute β̂
(i+1)

as in Equation (6).

3. Find unique solutions σ
(i+1)
AA , σ

(i+1)
SS as in Equation (9) in Appendix B.

4. Compute and check the validity of σ
(i+1)
AS . This step involves checking the Cauchy-

Schwarz inequality:

• If σ
(i+1)
AA σ

(i+1)
SS = 0, set σ

(i+1)
AS = 0.

• If [σ
(i+1)
AS ]2 > σ

(i+1)
AA σ

(i+1)
SS , set σ

(i+1)
AS = sign(σ

(i+1)
AS )

√
σ

(i+1)
AA σ

(i+1)
SS ,

where sign(x) = 1(x>0) − 1(x<0).



5.3 Estimating Disability in SIPP

Following the results from the simulation study, we consider the two proposed models along
with the univariate FH model to estimate the disability rates from the data. Unlike the
simulated example where true values of the unknown parameters are known, we rely on
the implicit assumption that direct survey estimates are unbiased regardless of the corre-
sponding sample sizes. This, in turn, translates to having faith in the execution of sampling
design and the expectation of only reasonable deviation of model estimates away from the
survey estimates. A glance of estimated rates of previously defined “total” diability for all
50 states and the District of Columbia is shown in Figure 1, sorted by their SIPP sample
sizes on the left margin. All three model estimates are displayed on a naive 90% confidence
interval constructed using the corresponding direct estimate and survey variance for that
area.

Estimated % of Total Disabilities, sorted by SIPP sample size
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Figure 1: Comparison of FH, OM, and BiFH model estimates of state-level total
disabilities on naive 90% confidence intervals centered at direct estimates (marked
with “x”)

As sample size increases, all three model estimates tend to converge to the direct esti-
mates. Overall, the FH and the BiFH models produce very similar estimates. With respect
to the naive confidence intervals, South Dakota is the only state whose FH and BiFH esti-
mates do not lie within the naive 90% confidence interval. The difference plot of the model
estimates in excess of direct survey estimates are shown in Figure 2 in Appendix E.

The estimated parameter values are listed in Table 3. Note that the regression param-
eters for the BiFH model are not directly comparable to those in univariate models where



ACS survey estimates are used as a predictor. The correlation coefficient of the residuals
terms in the BiFH model is estimated to be ρ̂AS = 0.6059.

Model σ̂2v (or σ̂SS) β̂0 β̂ssi β̂di β̂ACS

FH 0.0009 0.0071 -0.0116 -0.0116 1.7889
OBPME 0.0030 -0.0243 -0.0286 -0.0459 2.9913
BiFH 0.0013 0.1408 -0.0089 0.0358

Table 3: Estimated values of model parameters Ψ = (σ2v ;β0, βssi, βdi, βACS) for FH

and OBPME model and ΨBi = (σSS ;β
(S)
0 , β

(S)
ssi , β

(S)
di ) for BiFH model

Based on the model estimates, the univariate FH model tends to give the smallest
estimated MSE, ignoring measurement error in the ACS. This is not surprising as the theo-
retical approaches of estimating the MSE of the FH model such as Datta et al. (2005) may
also underestimate the term. The OBPME model draws its estimates closer to the direct
survey values in areas with large sampling uncertainty and produces overall the smallest
absolute residuals from survey estimates. BiFH model produces larger estimated MSE when
compared head-to-head with FH model in areas where both models give estimates that are
farther away from direct estimates. This trade-off may favor the BiFH model with respect
to coverage when confidence interval of desired level is computed.

6. Discussion

In this article, we are motivated to extend the basic FH model in small area estimation prob-
lems to better accommodate covariates measured with error. Rather than simply including
the extra information as plain covariates while ignoring the sampling variability entirely,
we present two model-assisted approaches that are built to deliver the best predictors as
a linear combination of model and direct survey estimates. Our simulated examples have
shown that both proposed estimators perform better than several existing models in terms
of reducing empirical mean squared errors under a univariate setting while BiFH model
outperforms unvariate models when bivariate modeling error is assumed.

In general, the OBPME estimator benefits from both the advantage of OBP estimator,
that is, the robustness and reduced mean squared error when model is misspecified and the
feature of modeling covariates with known sampling error of the ME model. Due to the
fact that both parent estimators are well studied, making further improvement as well as
changing means of estimation (for example, to hierarchical Bayes) may be less challenging.
On the other hand, multivariate FH models such as BiFH are more general and usually
deliver optimal estimates in terms of minimal associated empirical mean squared errors in
simulations. However, the updating scheme of model parameters, especially those in the
modeling error matrix Σv is not limited to the version provided in this paper and it may
pose computational challenges as the dimension increases.

Since all model-assisted approaches in SAE depend heavily on having quality covariates,
we believe the use of ACS data indeed “lends strength” to our models so that disability
estimates at the state level seem valid and consistent with the survey estimates. This is a
good start but more work needs to be done for incorporating the ACS data at a lower level
before making any meaningful comparison of proposed models with FH estimates, or even
direct survey estimates. For example, SIPP has less than 2 in 5 counties on average that
records some type of disability and therefore one of our goals in building the county-level
model for disability is to make estimates for counties that are either not sampled or have
zero survey estimates. On the other hand, while ACS have many fewer counties among
over 3100 that record no disability, one may wish to consider proper transformation and/or
a different modeling approach, for instance, such as zero-inflated beta binomial model.
Furthermore, although the parametric double boostrap method for computing estimated
MSE in Section 3 is second-ordered unbiased in the form of 2s1i − s2i, it is not guaranteed
to be positive. In practice, one may use other forms suggested in Hall and Maiti (2006).We



intend to conduct more extensive research that addresses some of these concerns before new
estimates are made official.

A. Conditional Distribution of θ1i|Y i

We have

Y i|θi =
[ Y1i

Y2i

]∣∣∣[ θ1i

θ2i

]
∼ N

([ θ1i

θ2i

]
,Σei

)
,

and assuming that[ θ1i

θ2i

]
∼ N

(
X ′iβ =

[
x′1iβ1

x′2iβ2

]
,Σv =

[
σ11 σ12

σ12 σ22

])
,

one can show that

f(θi|Y i) ∝ exp

{
−1

2
(Y i − θi)′Σ−1

ei
(Y i − θi)−

1

2
(θi −X ′iβ)′Σ−1

v (θi −X ′iβ)

}
.

The BLUP for θi is

θ̃i = Y i − (Σ−1
ei

+ Σ−1
v )−1Σ−1

v (Y i −X ′iβ).

In the case where Σei
= diag(D1i, D2i), we may further simplify

(Σ−1
ei

+ Σ−1
v )−1Σ−1

v = Σei
(Σei

+ Σv)−1

=
[
D1i 0
0 D2i

][
D1i + σ11 σ12

σ12 D2i + σ22

]−1

=
1

(D1i + σ11)(D2i + σ22)− σ2
12

[ D1i(D2i + σ22) −D1iσ12

−D2iσ12 D2i(D1i + σ11)

]
.

Hence, if the BLUP of the first element is sought, we will have

θ̃1i = Y1i −
D1i[(D2i + σ22)(Y1i − x′1iβ1)− σ12(Y2i − x′2iβ2)]

(D1i + σ11)(D2i + σ22)− σ2
12

.

B. An Updating Scheme for Covariance σ12

We start with deriving an estimate for σξξ, ξ ∈ {1, 2}, one at a time. We have

E[ê′ξΣ
−1
ξ êξ] = tr[Σ−1

ξ V ar(êξ)]

= tr[Σ−1
ξ (I − P ξ)Σξ(I − P ξ)

′]

= tr[(I −Σ−1
ξ Xξ(X

′
ξΣ
−1
ξ Xξ)

−1X ′ξ)(I − P ξ)
′]

= tr[(I − P ξ)
′(I − P ξ)

′]

= tr[I − P ′ξ − P
′
ξ + P ′ξP

′
ξ]

= tr[I − P ξ − P ξ + P ξ]

= m− tr(P ξ) = m− rank(X ′ξXξ). (9)

We can estimate σ11 and σ22 by solving for the solutions in Equation (9) just like the
case of the univariate FH model, or set them to 0 if a positive value cannot be found. If
either of σ11 or σ22 is zero, we set σ12 to 0. Otherwise, we set off to estimating σ12 between
ê1 and ê2. Note that

Cov(Y 1,Y 2) = Cov(e1 + v1, e2 + v2) = Cov(v1,v2) = σ12I.

Then

Cov(ê1, ê2) = Cov((I − P 1)Y 1, (I − P 2)P 2)

= (I − P 1)Cov(Y 1,Y 2)(I − P 2)′

= σ12(I − P 1)(I − P 2)′



Denote Σ
−1/2
ξ = diag((Dξ1 + σξξ)

−1/2, · · · , (Dξm + σξξ)
−1/2). Therefore,

E[(Σ
−1/2
1 ê1)′(Σ

−1/2
2 ê2)] = E

{
tr[ê′1Σ

−1/2
1 Σ

−1/2
2 ê2]

}
= E

{
tr(Σ

−1/2
1 Σ

−1/2
2 )ê1ê

′
2

}
= tr[(Σ

−1/2
1 Σ

−1/2
2 )Cov(ê2, ê1)]

= tr[(Σ
−1/2
1 Σ

−1/2
2 )σ12(I − P 2)(I − P 1)′].

Finally, we can estimate σ12 by

σ̂12 =
(Σ̂
−1/2

1 ê1)′(Σ̂
−1/2

2 ê2)

tr[(Σ̂
−1/2

1 Σ̂
−1/2

2 )(I − P 2)(I − P 1)′]
=

(Σ̂
−1/2

1 ê1)′(Σ̂
−1/2

2 ê2)

M̂1 − M̂2 − M̂3 + M̂4

,

where

M̂1 =

m∑
i=1

(D1i + σ̂11)−1/2(D2i + σ̂22)−1/2,

M̂2 =

m∑
i=1

(D1i + σ̂11)−1/2(D2i + σ̂22)−1/2P 1ii,

M̂3 =

m∑
i=1

(D1i + σ̂11)−1/2(D2i + σ̂22)−1/2P 2ii,

M̂4 =

m∑
i=1

(D1i + σ̂11)−1/2(D2i + σ̂22)−1/2Rii,

where
R = P 2P

′
1 = X2(X ′2Σ̂

−1

2 X2)−1X ′2Σ̂
−1

2 Σ̂
−1

1 X1(X ′1Σ̂
−1

1 X1)−1X ′1.

C. Derivation of the Objective Function for OBPME Estimator

We show below the steps for deriving the function Q(β;σ2
v) in Equation (5).

E[(θ̃BP − θ)′(θ̃BP − θ)]
= E[{(Y − θ)− Γ(Y −Xβ)}′{(Y − θ)− Γ(Y −Xβ)}]
= E[(Y −Xβ)′Γ2(Y −Xβ) + (Y − θ)′(Y − θ)− 2(Y − θ)′Γ(Y −Xθ)]

= E[(Y −Xβ)′Γ2(Y −Xβ)] + tr(D)− 2E[e′Γ(Y −Xβ)]

= E[(Y −Xβ)′Γ2(Y −Xβ)] + tr(D)− 2E[e′ΓY ]

= E[(Y −Xβ)′Γ2(Y −Xβ)] + tr(D)− 2E[e′Γ(θ + e)]

= E[(Y −Xβ)′Γ2(Y −Xβ)] + tr(D)− 2E[e′Γe]

= E[(Y −Xβ)′Γ2(Y −Xβ)] + tr(D)− 2tr(ΓD)

= E

[
m∑
i=1

(Yi−β0−β1Xi)
2D2

i

(Di+σ2
v+β2

1Ci)2

]
+

m∑
i=1

Di − 2
m∑
i=1

D2
i

Di+σ2
v+β2

1Ci
.

D. A Second-order Unbiased Estimator for MSE

Following the proof in Hall and Maiti (2006) that shows 2s1i− s2i is an unbiased estimator

for MSE(θ̂iFH), we sketch an outline to show that this estimator is second-order unbiased,

i.e. of order o(m−1) for any estimator θ̂i in this paper. Given data Y = (Y1, · · · , Ym)′ and
parameter Ψ as in Table 3, write the naive MSE estimator as

Mi(Ψ) = MSE(θ̂i) = EΨ[θ̂i − θi]2 = ki(Ψ) + ti(Ψ) + o(m−1),

where ki(Ψ) = EΨ(θ̃iBP
− θi)

2 = O(1) is the dominating term. For instance, ki(Ψ) =

ki(σ
2
v) = Diwi =

Diσ
2
v

σ2
v+Di

for the FH model; and ti(Ψ) = O(m−1) collects other terms in the

expansion.



We estimate θi by θ̂i and Ψ by Ψ̂. Using Ψ̂ and the model, generate θ(b1) and Y (b1),

b1 = 1, · · · , B1. Then using Y (b1), we estimate θ
(b1)
i by θ̂

(b1)
i and Ψ(b1) by Ψ̂(b1). Let

Mi(Ψ̂) = EΨ̂[θ̂
(b1)
i − θ(b1)

i ]2 = ki(Ψ̂) + ti(Ψ̂) + o(m−1).

Note that EΨ[ki(Ψ̂)] = ki(Ψ) + bi(Ψ) + o(m−1) since Hall and Maiti (2006) has shown that
the bias of estimating ki(Ψ̂) is expected to be of the same order of ti.

Define

s1i =
1

B1

B1∑
b1=1

(θ̂
(b1)
i − θ(b1)

i )2.

This gives us

EΨ̂[s1i] = EΨ̂(θ̂
(b1)
i − θ(b1)

i )2 = Mi(Ψ̂) = ki(Ψ̂) + ti(Ψ̂) + o(m−1).

Now, generate θb2(b1) and Y b2(b1) using the model and Ψ̂(b1), b2 = 1, · · · , B2 and get

estimates θ̂
b2(b1)
i and Ψ̂b2(b1).

Define

s2i =
1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

(θ̂
b2(b1)
i − θb2(b1)

i )2.

EΨ̂[s2i] = EΨ̂

[
1

B1

B1∑
b1=1

EΨ̂(b1)(θ̂
b2(b1)
i − θb2(b1)

i )2

]

= EΨ̂

[
1

B1

B1∑
b1=1

Mi(Ψ̂
(b1))

]
= EΨ̂[Mi(Ψ̂

(b1))]

= EΨ̂[ki(Ψ̂
(b1)) + ti(Ψ̂

(b1))] + o(m−1)

= {ki(Ψ̂) + bi(Ψ̂)}+ ti(Ψ̂) + o(m−1).

Hence,

EΨ[2s1i] = 2{ki(Ψ) + bi(Ψ)}+ 2ti(Ψ) + o(m−1).

EΨ[s2i] = {[ki(Ψ) + bi(Ψ)] + bi(Ψ)}+ ti(Ψ) + o(m−1).

Therefore,
EΨ[2s1i − s2i] = MSE(θ̂i) + o(m−1). (10)

g(s1i, s2i) = 2s1i − s2i is a second-order unbiased estimator for MSE(θ̂i).

E. Difference Plot of Model Estimates, Less Direct Estimates

The plot listed shows the difference between all respective model estimates and direct esti-
mates.
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