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Abstract

This report clarifies an issue involved in performing seasonal adjustment with growth rates.
Specifically, we consider the effect of including or excluding trading day regressors in the seasonal
adjustment routine. This work provides insight to X-12-ARIMA (or its successor X-13ARIMA-
SEATS) users who wish to calculate a 12-month concatenated growth rate or any other derived
function at some point before, during, or after seasonal adjustment. This may be a delicate issue
since the operation of calculating an annual (or concatenated annual) growth rate can remove
seasonality, but does not remove trading day effects.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Using a 12-month concatenated (compounded) growth rate in tandem with seasonal adjustment is

a practice at some central banks. For example, some published stock series at the Bank of England

are produced from a compilation of internally defined adjustments, X-13ARIMA-SEATS (X-13A-S)

seasonal adjustment, and 12 month concatenated growth rates.

This report originates from an inquiry to the U.S. Census Bureau from an employee at the Bank

of England. The Bank of England uses a version of X-13A-S to perform seasonal adjustment. This

report will assume some familiarity with the X-13A-S program; for more information, see [1]. In the

inquiry, it was observed that using X-13A-S to seasonally adjust a level series led to discrepancies in

the resulting 12-month concatenated growth rates. Specifically, these discrepancies appeared when

comparing the growth rates of the non-seasonally adjusted (NSA) data or the seasonally adjusted

(but not trading-day adjusted) data with those from the seasonally and trading-day adjusted data.

Sample data with which these three growth rates could be calculated was provided. Figure 1 plots

these different methods of obtaining growth rates. The methodology for constructing each of the

lines in this graphic will be further discussed in Section 2.1. The goal of this report is to account

for the discrepancies visible between the series plotted in red and the relatively similar series in

black and blue.
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Growth Rates for NSA, (S−TD)A, and (S+TD)A Data
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Figure 1: Plot of 12-month concatenated growth rates g12mt given by equation (3) for NSA and
each seasonal adjustment method outlined in section 2.1, i.e., (S-TD)A and (S+TD)A.

The rest of the report proceeds as follows. In section 2, we describe the data set provided, outline

the procedure used by the Bank of England during seasonal adjustment, and introduce notation

to rigorously define the questions asked. In section 3, the solution is presented and verified in the

spectral domain. Section 4 will contain concluding remarks.

2 Preliminaries

The data provided are non-seasonally adjusted (NSA) level and flow data for some monthly (stock)

series. For confidentiality reasons, no other information about the data was provided. This data

differs from classic level/flow data in that the first differences of the level series do not exactly equal

the monthly flow. This discrepancy is reconciled via a recursively defined break index {bt} applied

to both levels and seasonally adjusted flows. The outline of its use and definition are given in Figure

2. The technicalities of this break index, and its exact use, are further discussed in Appendix A.

The calculations and results in this report do not hinge on the understanding of bt.

Let Y1, Y2, . . . , YT represent the level data. The reported flow values (not the first difference of

the level series) for month t, will be notated flowt. The monthly levels and flows for the provided

data are plotted in Figure 3.

Two other important derived quantities from the data are now discussed. First, let the fractional

growth rate be generally defined as

ft =
flowt

Yt−1
. (1)

For the case of seasonally adjusted data, we can combine (1) and (†) from Figure 2, thus allowing
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NSA level
Yt = levelt

Ratio series
bt−1 =

(
flowt+Yt−1

Yt

)
× bt

Break-adjusted series
(Yt/bt)

RegARIMA

Linearized time series

X-11

Seasonally adjusted
level, Zt

Seasonally adjusted flow(
Zt × bt−1

bt

)
− Zt−1 (†)

Figure 2: Bank of England’s seasonal adjustment procedure, matching those found at
http://www.bankofengland.co.uk/, but with notation adjusted for consistency; gray boxes only
apply for levels series whose first differences do not equal flows (as in our situation).

us to express the fractional growth rate obtained from seasonally adjusted data as

fSA
t =

(
Zt × bt−1

bt

)
− Zt−1

Zt−1
. (2)

Either way, the percentage change from month t − 1 to month t is given by 100 × ft. As an

example, NSA fractional growth rates are plotted in Figure 4. We see that the fractional growth

rates tend to be fairly small, ranging from a low of -0.5% to a high around 1.5%. Second, a 12-month

concatenated growth rate is obtained from the 12 most recent fractional growth rates via

g12mt = 100 [(1 + ft)(1 + ft−1) · · · (1 + ft−11)− 1] . (3)

A more enlightening form of (3) may be

1 +
g12mt

100
= (1 + ft)(1 + ft−1) · · · (1 + ft−11). (4)

This representation can be viewed as an 12-month rate of return or, in the case of non-negative ft,

as a compound interest analogue. Moreover, due to their small values, we may assume the products

ftft−j are approximately zero for all t and j; thus, we have 1 +
g12mt
100 ≈ 1 + ft + ft−1 + · · ·+ ft−11.

The second expression is the seasonal period sum operator U(B) = (1 + B + · · · + B11), applied

to ft, which will strongly dampen and possibly eliminate seasonal movement. Hence, g12mt is not
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Figure 3: Monthly level and flow data for a sample series.

expected to be very seasonal, just as seasonally differenced series are not expected to display much

seasonal behavior. This will hold whenever the data source for g12mt has small ft We will present

this line of reasoning more rigorously with a simple analogue in section 3.1.

2.1 Growth Rate Variants

We can now more carefully define procedures for producing the series displayed in Figure 1. First,

let Z be used to denote seasonally adjusted levels data (e.g., the .d11 values returned by X-13A-S).

If we allow “(S-TD)A” to refer to the case where a series is seasonally adjusted, but not trading-day

adjusted, then we can denote the seasonally adjusted level series as Z(S−TD)A (to reflect the fact

that trading-day movements may still reside within the seasonal adjustment). Similarly, let us refer

to the case where a series is both seasonally and trading-day adjusted as “(S+TD)A,” with the

corresponding seasonally adjusted level series being Z(S+TD)A. The three different series depicted

in Figure 1 are calculated as follows:

1. NSA (black line) is produced by using NSA level and flow data to calculate fractional growth

rates fNSA
t via (1). These NSA fractional growth rates are then used to calculate the growth

rate g12m,NSA
t using (3).

2. (S-TD)A (blue line) is just the seasonal adjustment (without a trading-day adjustment). The

resulting seasonally adjusted series (the .d11 file output) are {Z(S−TD)A
t }. The SA flow data is

then calculated via (†) from Figure 2 using the Z(S−TD)A values. The corresponding fractional

growth rates, and consequently the 12-month concatenated growth rate, are obtained via (1)

and (3) using the seasonally adjusted levels and flows, and are labeled as f
(S−TD)A
t and

g
12m,(S−TD)A
t , respectively.
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NSA fractional growth rate
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Figure 4: The NSA fractional growth rates

3. (S+TD)A (red line) differs from (S-TD)A only in the inclusion of a trading-day adjust-

ment when performing the initial X-13A-S seasonal adjustment, thus yielding {Z(S+TD)A
t },

f
(S+TD)A
t , and g

12m,(S+TD)A
t as the seasonally adjusted levels and corresponding fractional

and 12-month concatenated growth rates.

3 Answers to Inquiry

From the proximity of the black and blue lines in Figure 1, we might surmise that most seasonal

movement is removed when taking a 12-month concatenated growth rate. Periodic movement that

does not recur over a time span of 12 months, as would be the case for a trading day movement (with

28 year = 336 month periodicity), would still remain. Hence, a seasonal adjustment that accounts

for a statistically significant trading day movement would result in a deviation from the NSA values

when (3) is applied. In the same vein, if a trading day effect did exist in the original series, then

a seasonal adjustment that failed to account for it would still display significant movement at the

typical TD frequencies (for monthly series, 0.348 and/or 0.432 cycles per month). This could be

the source of concern that prompted the initial inquiry.

3.1 A 12-month Change Analogue

Suppose the original series Yt (logged if necessary) has trend Tt, seasonal St, trading day TDt, and

irregular It components that appear additively. In the case that TDt does not appear prominently

or at all, its estimated regression coefficients will be small or zero. For purposes of illustration,
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we suppose that St is deterministic, so it is completely annihilated by seasonal adjustment filters

(1−B12)St = 0. This is not realistic, and our discussion could be adapted to the case where U(B)St

is stationary (with mean zero) instead of identically zero, but the fundamental analysis does not

change. So, we may write

Yt = Tt + St + TDt + It, (5)

which represents the NSA series; let us denote the NSA 12-month change as ∂Yt:

∂Yt = (1−B12)Yt = (1−B12)Tt + (1−B12)It + (1−B12)TDt.

We might view this hypothetical ∂Yt as an analogue for the 12-month concatenated rate g12m,NSA
t

of the non-seasonally adjusted data. Let us also consider two perfect seasonal adjustments; the

first explicitly models and removes the TD, while the second ignores the possible presence of TD.

Denoting these seasonal adjustments by Z
(S+TD)A
t and Z

(S−TD)A
t respectively, we have

Z
(S+TD)A
t = Tt + It

Z
(S−TD)A
t = Tt + It + TDt.

Note that if TD is not actually present, then no discrepancy will exist between Z
(S−TD)A
t and

Z
(S+TD)A
t . This is an idealized scenario, however, as any seasonal adjustment would actually

distort the trend and irregular components somewhat. Nevertheless, let us continue with this line

of reasoning for didactic purposes. The corresponding 12-month changes are then

∂Z
(S+TD)A
t = (1−B12)Tt + (1−B12)It

∂Z
(S−TD)A
t = (1−B12)Tt + (1−B12)It + (1−B12)TDt,

which we could view as theoretical counterparts to g
12m,(S+TD)A
t and g

12m,(S−TD)A
t , respectively.

The series as displayed in Figure 1 would conceivably appear quite similar to ∂Yt, ∂Z
(S−TD)A
t , and

∂Z
(S+TD)A
t . In our idealized framework, there is no difference between the NSA 12-month change

∂Yt and the SA-TD 12-month change ∂Z
(S−TD)A
t . The discrepancy between these series and the

12-month change ∂Z
(S+TD)A
t is (1−B12)TDt, or ∂TDt for short.

All that remains is to verify that ∂TDt matches the discrepancies between g12m,NSA
t and

g
12m,(S+TD)A
t seen in data provided to us. Verifying this would effectively answer the inquiry.

We perform a seasonal adjustment in X-13A-S, with trading day regressors included, on the NSA

level series data. Since a log transformation is preferred, the resulting adjustment is multiplicative,

Yt = TtStTDtIt, (6)

instead of the additive representation given in (5). However, a multiplicative representation is

additive when viewed on a logarithmic scale, so this is a minor issue. The estimated trading
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Figure 5: The 12 month difference of log of trading day effects (black) over-plotted with the
discrepancies in 12 month growth rates between NSA and SA-No-TD (red). The sample correlation
coefficient between the two series is 0.9829.

day effects {T̂Dt} (the .d18 file from the X-13-A-S seasonal adjustment) are extracted from the

X-13-A-S seasonal adjustment.

To mimic the 12-month growth rates, we use the seasonal difference operator (1 − B12) and

apply it to the log of the estimated trading day values:

(1−B12) log(T̂Dt) = log(T̂Dt)− log(T̂Dt−12). (7)

We then compare this series to the discrepancy formed by taking the difference between the 12-

month concatenated growth rates for NSA and (S+TD)A. These two series are plotted in Figure 5,

and it is clear these two series track each other nearly perfectly. Indeed, the correlation between the

two series is 0.9829, which indicates that the main reason we observe a difference in the concatenated

growth rates is the influence of the trading day effects in the NSA and SA-No-TD variants.

3.2 An examination of spectral densities

Section 3.1 used a seasonal difference operator to show that the discrepancies in the concatenated

growth rates were largely a function of the trading-day effect that was not accounted for. We might

consider examining spectral densities as a means of reaching the same conclusion. To start, (3) (or

the equivalent expression (4)) gives the 12-month concatenated growth rate at a particular time as

a function of the 12 most recent fractional growth rates, expressed as a percent. Taking logarithms,
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Figure 6: Estimated spectral densities of flow series: non-seasonally adjusted (top), seasonally but
not trading-day adjusted (middle), and seasonally and trading-day adjusted (bottom).

this can be rewritten as

log

(
1 +

g12mt

100

)
=

11∑
i=0

log(1 + ft−i) ≈
11∑
i=0

ft−i, (8)

where the right-hand-side approximation relies on the fractional growth rates being small. As we

have seen in Figure 4, this assumption is tenable for this particular set of data. If this is not the

case, we can ignore the approximation and consider just the equality portion of (8).

We begin by examining the spectral densities of the various flow series. In the NSA case, these

flows are measured, but in both of the SA cases, their flows are derived from seasonally adjusted

level data. Figure 6 shows the spectral densities for the NSA flow series (top), the (S-TD)A flow

series (middle), and the (S+TD)A flow series (bottom). We place red dashed lines at the trading

day frequencies (0.348 and 0.432 cycles per month), while green dotted lines are located at common

seasonal frequencies. In the top and middle densities, we see that there is a peak around the 0.348
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Figure 7: Estimated spectral densities of fractional growth rate series: non-seasonally adjusted

fNSA
t (top), seasonally but not trading-day adjusted f

(S−TD)A
t (middle), and seasonally and

trading-day adjusted f
(S+TD)A
t (bottom).

trading day frequency, which is not present in the bottom density. This should be expected: the

trading day effect is accounted for in the seasonal adjustment associated with the bottom density,

but not for the one corresponding to the middle density.

The fractional growth rates defined in (1) are a function of flow and level data, so we might

suspect that these same tendencies would appear in the spectral densities of the fractional growth

rates for the three cases. Looking at Figure 7, our suspicions are indeed confirmed, as we again

observe a peak in the spectral density at the 0.348 trading day frequency for the fractional growth

rates produced using NSA (top) or (S-TD)A (middle) flows and levels, which is absent in the

spectral density for (S+TD)A (bottom).

Lastly, if we examine Figure 8, we see that there is evidence of a trading day effect in the

logarithm of the 12-month concatenated growth rate, but no strong indication of a discernible
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Figure 8: Estimated spectral densities of differenced log 12-month concatenated growth rates: non-

seasonally adjusted g12m,NSA
t (top), seasonally but not trading-day adjusted g

12m,(S−TD)A
t (middle),

and seasonally and trading-day adjusted g
12m,(S+TD)A
t (bottom).

seasonal pattern at the typical frequencies (since the right-hand-side approximation of (8) is the

seasonal sum operator referenced earlier, the lack of a seasonal pattern should be expected). Given

that the logarithmic function of g12mt shown in (8) is one-to-one, the spectral density of 12-month

concatenated growth rates should possess similar features. Hence, it is apparent that the trading-

day effect seen in Figure 8 exists in the 12-month concatenated growth rate calculated using the

(S-TD)A levels and flows, but it will not be obvious in the 12 month concatenated growth rate

calculating using the (S+TD)A levels and flows. Given that the month-to-month change in the log
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transform of the concatenated growth rate can be approximated as

log

(
1 +

g12mt

100

)
− log

(
1 +

g12mt−1

100

)
=

11∑
i=0

log(1 + ft−i)−
11∑
i=0

log(1 + ft−1−i)

= log(1 + ft)− log(1 + ft−12) ≈ ft − ft−12.

This means that this month-to-month change on a logarithmic scale is approximately the same as

the year-to-year change in ft for the corresponding calendar month. Hence, this operation eliminates

any seasonal pattern that perfectly repeats over a 12-month period, but does not annihilate trading-

day effects that exist in the data.

4 Conclusion

The various plots of the spectral densities reveal that the presence of a trading-day effect in the

non-seasonally adjusted level and flow data carries over to the NSA fractional growth rates and

consequently, the NSA 12-month concatenated growth rate. This might be broadly applicable to

any series that is derived from NSA level and flow data. Incorporating trading day regressors

into the seasonal adjustment removes the trading day effect from the SA-level data in this case,

and since SA-flow data is a function of SA-level data, this has the effect of removing the trading

day effect present in the NSA flow data. Thus, the trading day effect that exists in the NSA

fractional growth rates induces a trading day effect in the NSA 12-month concatenated growth

rate. These trading day effects, however, disappear for the fractional and concatenated growth

rates produced using output from the seasonal adjustment that includes trading day regressors.

These results corroborate the conclusion of the seasonal difference approach. In other words, any

observable discrepancy between the concatenated growth rates produced using NSA data and those

produced using SA with TD output is largely attributable to the fact that the trading day effects

in the original data carry over to derived functions of that original data (and do not transfer when

accounted for).

A Appendix

Instead of the classic level and flow relationship, a general formula for our data of the change in

levels from month to month is given as

Closing balance = opening balance + transactions + other changes in value (OCVA). (9)

The closing balance is the aforementioned level data at time t, while the opening balance is the

corresponding level from time t − 1. The measured flow discussed throughout the report is the
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transactions term in (9). To better understand the OCVA term, the Bank of England provides the

following explanation:

Transactions means the net change in balances over a reporting period that is attributable

to the economic or financial behavior of households, businesses or other entities in the

sectoral definition – e.g., putting more money into a savings account, or repaying a

business loan. Other changes in the value of assets (OCVA) means the effects of changes

in definitions, statistical re-classifications, write-offs, revaluation effects and such like.

The OCVA values from each month are generally not observed. As an aid in estimating the

OCVA, the break index bt, in month t, is defined recursively, starting with bT = 1, using

bt−1 =
Yt−1 + flowt

Yt
bt.

Transactions (“flows” or “changes”) and growth rates data produced by the Bank of

England generally reflect the application of adjustments in order to remove the impact

of “other changes in value of assets (OCVA),” also known as “breaks.” (See: Changes,

flows, growth rates). Amounts outstanding (“levels”) data, on the other hand, are usu-

ally not adjusted for breaks in this way.

This expression can be rearranged to obtain the ratio of break index values

bt−1

bt
=

Yt−1 + flowt

Yt
. (10)

Thus, using (9) and (10), we get

OCVAt = Yt − (Yt−1 + flowt) = Yt −
bt−1

bt
= Yt

(
1− bt−1

bt

)
, (11)

but since the values of the break index are typically close to one, a reasonable approximation for

OCVA would be

OCVAt ≈ Yt

(
1− 1

bt

)
. (12)
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