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Willcox’s Method of Major Fractions

Pat Hunley

1 Introduction

This note is a simplification and expansion of the proof of the equivalence of
Webster’s method and Willcox’s method of major fractions found in Fair Rep-
resentation: Meeting the Ideal of One Man, One Vote, by Michel Balinski and
H. Peyton Young, p. 103-104. The proof in Fair Representation demonstrates
that Webster’s method minimizes a function, which Willcox’s method of major
fractions also happens to minimize; it doesn’t directly refer to Willcox’s method.
In this paper I have modified the proof to explicitly show that the two methods
are equivalent and to include details, such as unstated lines of reasoning and
algebraic steps, omitted from the Fair Representation proof.

1.1 Background

The method of apportioning seats in the US House of Representatives in line
with the Constitution’s requirements has been a continuous conflict. In the
early 1900s, Walter Willcox concluded that Webster’s method was the best
method for apportioning seats in terms of not favoring either small or large
states. However, Huntington’s method, named for its most vocal proponent,
Edward Huntington, was eventually adopted in 1941.

For the purposes of the proof, we will make assumptions about the ap-
portionment methods that mirror the apportionment requirements for the US
House of Representatives: 50 states, with each state being guaranteed at least
one seat.
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1.2 Terminology

Given that {1, ..., 50} is a set of states, {P1, ..., P50} is a set of populations where

Pi is the population of state i,
50∑
i=1

Pi = P , andH is the number of representatives

we have to apportion to all states, we assign values to {H1, ...,H50} where Hi

is the number of seats granted to state i and
50∑
i=1

Hi = H. We assume that for

all i, Hi ≥ 1, as is required by the US Constitution.

1.3 Webster’s Method

To apportion seats via Webster’s method, we find a divisor DW such that

50∑
i=1

[
Pi
DW

] = H

where [x] is the closest integer to x, and we assign Hi = [
Pi
DW

] seats to state i

(Balinski and Young, 99).

1.4 An Important Inequality

From the definition of [x], we can see that Webster’s method is equivalent to
choosing a divisor DW such that for any state i,

Hi −
1

2
≤ Pi
DW

≤ Hi +
1

2
.

We then use algebraic manipulation to obtain, for each i,

1

Hi − 1
2

≥ DW

Pi
≥ 1

Hi + 1
2

Pi

Hi − 1
2

≥ DW ≥
Pi

Hi + 1
2

.

Hence, for i 6= j, DW ≥
Pj

Hj + 1
2

and DW ≤
Pi

Hi − 1
2

. Equivalently, for all pairs

of states i, j,
Pi

Hi − 1
2

≥ Pj

Hj + 1
2

. (1)

Thus, an apportionment using Webster’s method is equivalent to an apportion-
ment where (1) holds. This inequality will prove critical to the proof in both
directions: showing that Willcox’s method of major fractions leads to Webster’s
method, and vice versa.
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2 Willcox’s Method Implies Webster’s Method

2.1 Willcox’s Method

Willcox’s method of major fractions apportions seats by picking the entire first

column (to account for the restriction that every state has at least one seat)

plus the H − 50 smallest other terms from the following array:

0.5
P1

1.5
P1

2.5
P1
· · ·

0.5
P2

1.5
P2

2.5
P2
· · ·

...

0.5
P50

1.5
P50

2.5
P50
· · ·

State i gets an additional seat each time one of the values in row i is among
the H − 50 smallest terms (Huntington (1928)). Note that Willcox’s method of
major fractions is guaranteed to produce at least one apportionment.

2.2 Proof

Choosing terms in the previous array via Willcox’s method is equivalent to
minimizing

50∑
i=1

Hi∑
j=1

j − 0.5

Pi

subject to the constraints
50∑
i=1

Hi = H and for all i, Hi ≥ 1. Multiplying the top

by 2, we see that this is equivalent to minimizing

50∑
i=1

Hi∑
j=1

2j − 1

Pi
.

We can easily show through mathematical induction that H2
i =

Hi∑
j=1

(2j − 1), so

the above double sum is equivalent to minimizing

50∑
i=1

H2
i

Pi
. (2)
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We know that a minimizing solution {H1, ...,H50} for (2) exists, because Will-
cox’s method is guaranteed to produce an apportionment. This means if we start
from the apportionment {H1, ...,H50}, transferring one representative from any
one state to any other state cannot reduce the value of (2). Equivalently, for all
pairs of states i, j with i 6= j,

(Hi − 1)2

Pi
+

(Hj + 1)2

Pj
≥ H2

i

Pi
+
H2
j

Pj
. (3)

We can take the following algebra steps to prove that (3) is equivalent to (1).

H2
i − 2Hi + 1

Pi
+
H2
j + 2Hj + 1

Pj
≥ H2

i

Pi
+
H2
j

Pj

−2Hi + 1

Pi
+

2Hj + 1

Pj
≥ 0

2Hj + 1

Pj
≥ 2Hi − 1

Pi

Pj
2Hj + 1

≤ Pi
2Hi − 1

Pj

Hj + 1
2

≤ Pi

Hi − 1
2

So (3) is equivalent to (1), and (1) is equivalent to a Webster’s method ap-
portionment. Therefore, Willcox’s method of major fractions implies Webster’s
method.

3 Webster’s Method Implies Willcox’s Method

The Fair Representation proof does not simply reverse the steps of the proof in
Section 2. If the authors saw a problem with reversing the proof, they didn’t
include it in the text. No such problem is apparent, but for the sake of being
conservative, this section will use the proof method found in the text.

3.1 What We Will Prove

Let {H1, ...,H50} be a Webster’s method apportionment. We will show that
{H1, ...,H50} minimizes (2), which, as we have demonstrated, is equivalent to
showing that {H1, ...,H50} is an apportionment via Willcox’s method of major
fractions.
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3.2 New Notation

Let {x1, ..., x50} be any apportionment such that
50∑
i=1

xi = H and for all i, xi ≥ 1.

We can partition the fifty states into three sets by comparing the number of seats
each state is apportioned in {x1, ..., x50} versus {H1, ...,H50}:

S+ = {i|xi > Hi}

S− = {i|xi < Hi}

S0 = {i|xi = Hi} .

So a state is assigned to one of these sets depending on whether {x1, ..., x50}
apportions the state more, fewer, or the same number of seats as compared to
Webster’s method. If state i is in S+, then there exists an integer δi ≥ 1 such
that

xi = Hi + δi .

Similarly, if state j is in S−, then there exists an integer µj ≥ 1 such that

xj = Hj − µj .

Both {x1, ..., x50} and {H1, ...,H50} must apportion H representatives. There-
fore, if we wanted to change our apportionment from {x1, ..., x50} to {H1, ...,H50},
the number of seats that states in S+ gain must equal the number of seats that
states in S− lose. This means that there exists an integer α ≥ 0 such that

α =
∑
S+

δi =
∑
S−

µj .

This new notation will prove critical to the proof.

3.3 An Important Inequality

Because {H1, ...,H50} is a Webster’s method apportionment, it fulfills (1). That
is, for all pairs of states i and j,

Pi

Hi − 1
2

≥ Pj

Hj + 1
2

.

We can take the following algebra steps:

Pi
2Hi − 1

≥ Pj
2Hj + 1

2Hj + 1

Pj
≥ 2Hi − 1

Pi
. (4)
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Assume that state j is in S+, and assume that state i is in S−. That means
that there exists a δj ≥ 1 associated with state j and a µi ≥ 1 associated with
state i. Because δi ≥ 1 and µj ≥ 1, we can substitute these terms into (4) to
get the following important inequality:

2Hj + δj
Pj

≥ 2Hi − µi
Pi

. (5)

This inequality will prove critical to the proof.

3.4 Proof

As noted earlier, we want to show that a Webster’s method apportionment
{H1, ...,H50} will minimize (2). This is equivalent to showing that for any

apportionment {x1, ..., x50} satisfying
50∑
i=1

xi = H and for all i, xi ≥ 1,

50∑
i=1

x2i
Pi
≥

50∑
i=1

H2
i

Pi
.

This is equivalent to showing that

50∑
i=1

x2i −H2
i

Pi
≥ 0 . (6)

We can rewrite this sum to exclude xi terms by taking advantage of our partition
of states into S+, S− and S0. If state i is in S+, then xi = Hi + δi and

x2i −H2
i = (Hi + δi)

2 −H2
i = H2

i + 2δiHi + δ2i −H2
i = (2Hi + δi)δi .

If state j is in S−, then xj = Hj − µj and

x2j −H2
j = (Hj − µj)2 −H2

j = H2
j − 2µjHj + µ2

j −H2
j = −(2Hj − µj)µj .

If state k is in S0, then xk = Hk and

x2k −H2
k = H2

k −H2
k = 0 .

From this, we can see that showing that (6) holds is equivalent to showing the
following: ∑

i∈S+

(2Hi + δi)δi
Pi

−
∑
j∈S−

(2Hj − µj)µj
Pj

+
∑
k∈S0

0 ≥ 0 .

This is equivalent to∑
i∈S+

(2Hi + δi)δi
Pi

≥
∑
j∈S−

(2Hj − µj)µj
Pj
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which is equivalent to

∑
i∈S+

δi∑
x=1

2Hi + δi
Pi

≥
∑
j∈S−

µj∑
y=1

2Hj − µj
Pj

. (7)

Thus, if (7) holds, then a Webster’s method apportionment leads to an appor-
tionment via Willcox’s method of major fractions. We can combine two facts
to prove that (7) must hold:

1. The number of terms on each side of (7) are equal. There are
∑
S+

δi terms

on the left side and
∑
S−
µj terms on the right hand side. We have already shown

that
∑
S+

δi =
∑
S−
µj = α. Thus, there are α terms on each side of (7).

2. Each term on the left hand side of (7) is greater than or equal to each
term on the right hand side of (7). This is true because the terms on the left
and right of (7) are identical to the terms in (5), which we have already proved
must hold for a Webster’s method apportionment.

From these two facts, we conclude that (7) holds. This means that Web-
ster’s method solves the minimization problem equivalent to Willcox’s method
of major fractions. Therefore, Webster’s method implies Willcox’s method of
major fractions.

4 Conclusion

We demonstrated in Section 2 that Willcox’s method of major fractions implies
Webster’s method, and we demonstrated in Section 3 that Webster’s method
implies Willcox’s method of major fractions. Thus, we have demonstrated the
equivalence of the two methods.
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