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Gender

Osbert Pang and Tucker McElroy

Abstract

Forecasts of fertility and mortality rates are two of the components of population projec-
tions. Because the data consists of age-specific rates, the production of an age distribution
curve leads to a high-dimensional problem, where there may be more ages in the data
than there are observed years. This paper focuses on forecasting the total rates of fertil-
ity and mortality for a set of gender and race/ethnic subgroups, as well as the relative
age-specific rates (or age distribution curves) for each. The forecasting of total rates
is relatively straightforward, with comparisons done using time series models with and
without a drift parameter. For age-specific rates, principal components analysis is used
to reduce the dimensionality of the data. The procedure for carrying out the principal
components as well as all time series modeling of the principal component series is dis-
cussed; included is some discussion of how to choose the number of principal components
to retain. Results are produced using fertility and mortality data dating from 1989 to
2009. For total rates, it is determined that a model without drift produces more tenable
forecasts in comparison to the occasionally implausible results from the model with drift.
Some discussion of ways to improve the procedure for the future are provided.

1 Introduction

In order to obtain projections of future population, forecasts of fertility, mortality, and im-

migration are required, as those are the components of population change. These data are

tabulated in the form of age-specific rates. This leads to a high-dimensional problem, be-

cause in producing forecasts of age-specific rates, there may be more ages than years of data.

Principal components analysis proves to be a useful tool in reducing the dimensionality to

a more manageable size. In this paper, we discuss the use of principal components analysis

with respect to forecasting fertility and mortality rates. We treat the resulting principal

components as time series in order to produce models and forecasts, and these forecasts are

ultimately used to obtain forecasts of the corresponding rate data.

The use of principal components to forecast fertility and mortality rates is not a recent

development. Bozik and Bell (1987) used principal components analysis on the covariance

matrix of log-transformed relative fertility rates, where relative rates are just the age-specific

rates of a particular year divided by the corresponding total fertility rate (TFR). Normalizing
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the age-specific rates so that they sum to one lends itself to an interpretation of the relative

fertility rate as an age distribution. In addition, they transformed the total fertility rate by

simply taking the logarithm; this transformation eliminates the possibility of nonsensical neg-

ative TFR forecasts, since exponentiating any number will always result in a positive number.

Ultimately, Bozik and Bell chose to fit a multivariate ARIMA model to the transformed TFR,

together with the first four principal component series.

Similarly to Bozik and Bell (1987), Lee and Carter (1992) used principal components

to help forecast U.S. mortality rates in 5-year age groups. Unlike Bozik and Bell (1987),

however, Lee and Carter (1992) subtracted out age-specific means and used only a single

principal component. They also constrained the number of deaths in their principal compo-

nent approximation to be equal to the actual number of deaths seen in the data. Bell (1997)

pointed out that this single principal component approach would have more approximation

error compared to one that incorporated a greater number of principal components. To ad-

dress this, he suggested that the single component used by Lee and Carter (1992) could be

modified by forecasting all of the other principal components (excluding the first) as random

walk models without drift, thereby keeping the forecasts constant at the last observed values.

As the number of principal components used increases, however, this modification would have

less of an impact.

As an alternative to principal components, curve fitting has also been used in an at-

tempt to solve the issue of dimensionality. Bell (1997) compared curve-fitting approaches

to a principal component approach for forecasting age-specific rates. He concluded that the

curve-fitting approach produces a greater amount of approximation error than the principal

component approach.

In the same vein as Lee and Carter (1992), McElroy and Bell (2004) used a single principal

component approach in examining the age distribution curve for Hispanic employment im-

migrants data. Instead of using a log-transformed rate as was done previously, however, they

proposed a generalized logistic transform, which has the benefit of producing forecasted rates

that sum to one without requiring additional normalization at the end. They also included

a step with a smoothing spline as well as a Bayesian modification to control the long-range

movement of forecasts. With the Bayesian modification, upper and lower bounds can be set

based on expert prior knowledge.

The procedure used here draws a bit from each of the aforementioned works. For age-

specific rates, forecasts are computed for both the natural logarithm transform from Bozik

and Bell (1987) and the generalized logistic transform proposed in McElroy and Bell (2004).
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The principal components approach used in these earlier works is employed here, although we

use univariate ARIMA (1, 1, 0) models instead of the multivariate model from Bozik and Bell

(1987). This principal components approach does incorporate the use of the smoothing spline

on age-specific means and the appropriate number of eigenvectors as was done in McElroy

and Bell (2004). Modeling of the total fertility rate is done using the log of TFR minus one,

which is coherent with work done for a previous set of Census Bureau fertility projections, as

discussed by Thompson et al. (1989). For mortality rates, the sum of the age-specific rates is

modeled using a standard log transform, and more than one principal component is retained.

The forecasting of the remaining principal components proceeds as suggested by Bell (1997);

that is, for all of the principal components that are not modeled using an ARIMA (1, 1, 0),

the forecasts will remain constant at the last observed values. Lastly, there is no Bayesian

attenuation as described in McElroy and Bell (2004), so there are limited means by which

the procedure used here can control long-range movement.

Section 2 begins with discussion of the form of the data for both fertility and mortality.

Then the segmentation of the data into disjoint sets is described, such that the fertility

data is split by race/ethnic group and the mortality data is separated by the combination of

race/ethnicity and gender. Section 3 elucidates how the total rates are handled in comparison

to the age-specific rates. Section 4 describes the results for fertility rates, while Section 5

covers the same ground in regard to mortality rates. Section 6 considers the use of an age-

adjusted approach to the mortality rates discussed in Section 5. Section 7 then summarizes

the outcomes of the previous sections, as well as illuminating some possible areas that may

warrant additional examination. All plots associated with Sections 4 through 6 can be found

in Appendix A.

2 Data and Processing

The initial data set for fertility rates included variables for year, age, race/ethnic group,

births, population of women, and age-specific fertility rate. The data set for mortality rates

did not include similar variables for deaths or population, but did have a gender identifier. So,

there were a total of five categories for age-specific fertility rates based solely on race/ethnicity

(non-Hispanic whites, non-Hispanic blacks, American Indian & Alaska Natives, Asian &

Pacific Islanders, and Hispanics), and ten for age-specific mortality rates using those same

races/ethnicities for each gender.

The goal was to produce forecasts of two different pieces of information: the total rates,

which were just the sum of the age-specific rates, and the relative age-specific rates, which
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were the age-specific rates divided by their sum (thus guaranteeing that the relative rates

sum to 1). For both items, the forecasts needed to be positive, so the use of a transformation

like the natural logarithm or generalized logistic function was warranted. For the total rates,

the transformations were not difficult to select. The sum of the age-specific mortality rates

(denoted as the total mortality rate, even though such a quantity has a fairly nebulous

interpretation) was subjected to a standard natural logarithm transformation. For the sum

of age-specific fertility rates, or total fertility rate, the desire was to ensure forecasts greater

than 1. This was achieved by the transformation log(TFR− 1).

While it was fairly straightforward to transform the sum of the age-specific rates, the rel-

ative rates proved to be more complicated. Both transforms considered involved logarithms,

and logarithms do not accept zeroes. For the mortality rate, this was a minor concern because

there were only isolated cases where the rate was zero. Hence, for mortality rate, any zeroes

were simply replaced by a very small value, which was arbitrarily chosen as 10−8. While the

chosen number may have been smaller than necessary, the results suggested that the models

were mostly unaffected by this particular selection.

On the other hand, the fertility rate had more occurrences of zero births (and thus more

zeroes for age-specific fertility rates). An examination of the ages which experienced zero

births for any race/ethnic group revealed that they were all concentrated in the lower and

upper age ranges. That is, the only ages for which there were no births in one of the years fell

into the ranges 10 through 13 and 47 through 54. We chose to omit the low end, but felt the

high end should be retained. As a result, in order to eliminate the zeroes in the upper end, we

performed a linear regression with no intercept for the number of births for ages 46 through

54 against the years remaining to age 55 and then replaced the number of births for ages 47

through 54 by the corresponding fitted values from the regression. For any race/ethnic group,

if t denotes the year, and i denotes the age, let yit represent the number of births in year t

for women of age i; then the linear model takes the form yit = αt(55− i) + error, where the

subscript t in αt reflects how it varies depending on year (and race/ethnic group, although

that is implicit in the formulation as described). Using the linear model, the estimate for αt

becomes

α̂t =

∑54
i=46 yit(55− i)∑54
i=46(55− i)2

.

This gives an interpolated value of births in year t of ŷit = α̂t(55−i), where i ∈ {47, 48, . . . , 53, 54}.
Even though the number of births for women of age 46 is used in estimating the linear model,

its value is left unchanged. In part, this helps maintain a level of smoothness in moving from

births at age 46 to births at age 47, but its inclusion also allows us to handle the situation
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where, in a given year t, the number of births for women between the ages of 47 and 54 were

all zero for some race/ethnic group (this would have been an issue with American Indian

& Alaska Native). This choice ensures that the fitted values of the regression are always

non-zero. These interpolated births are then used as the numerator with the original value

of population as the denominator to obtain modified age-specific fertility rates at the upper

range. The values for age-specific fertility rate between ages 14 and 46 are left intact by this

procedure.

The procedure as described above is flawed in that it does not maintain total births; the

use of fitted estimates that are always positive in an age range that has the possibility of

zeroes forces this model-based value for total births to be larger than the actual observed

value. However, since the denominator for the age-specific fertility rates is left unchanged, we

felt that the increase in number of births would not amount to a substantive increase in the

corresponding age-specific fertility rates. The total fertility rates incorporating the estimated

births in the upper region experience an increase of no more than 0.002 in any instance,

although we only use these inflated total fertility rates in converting the age-specific fertility

rates from this procedure into relative rates.

3 Procedure for Total and Age-specific Rates

Section 2 includes a brief discussion about what transformation to use for the sum of the

age-specific rates. For fertility, we argue that log(TFR−1) is a good choice, in that it ensures

forecasts that are strictly greater than 1. For mortality, we argue that log(TMR) serves the

purpose well enough without the need to subtract a lower limit beforehand. The transformed

series are then fit to an ARIMA (1, 1, 0) time series model that includes parameters for both

drift and the autoregressive coefficient. Forecasts can be produced using a variation of this

model that excludes the drift parameter.

In contrast to the fairly straightforward approach to modeling total rates, the procedure

for age-specific rates is more complicated. The transformations used for relative age-specific

rates have been detailed in Section 2, and as such, need not be repeated here. Regardless of

the transformation that is used for the relative rates, the method by which the forecasts are

produced proceeds the same. Only the reversing of the transformation at the end requires

different handling for the various transformations. The first step is to compute the age-specific

mean curve (the average taken over time). Bell (1997) previously commented that subtracting

out the age-specific means improves a low-dimensional principal component approximation,

although it becomes less useful as the number of principal components used increases. Given
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our preference for smooth forecasts of age distribution curves, combined with the fact that

the age-specific means are added onto the forecasts produced using the mean-corrected data,

we choose to run the age-specific means through a smoothing spline to help ensure that

our ultimate forecasts are indeed smooth. Thus, this smoothed age-specific mean curve will

be subtracted from the transformed data, and we perform a principal components analysis

(PCA) on this mean-corrected data.

The goal behind PCA is dimension reduction: if there are K ages in the transformed data,

one wishes to find J principal components that provide the best J-dimensional approximation

of the (transformed) data, where ideally J < K. In general form, if Xt is a K × 1 vector

representing the transformed rates observed at time t, then Xt could be alternately expressed

as

Xt = Λβt + ϵt.

In the above expression, Λ would be a K × J matrix produced using PCA; the columns of Λ

would be the eigenvectors corresponding to the J largest eigenvalues of the sum of squares

and cross products matrix of the data. This expression looks remarkably similar to the matrix

representation for ordinary least squares regression, in which case βt would just be a J × 1

vector of coefficients obtained by regressing Xt against Λ, but the βt might also be viewed

as loadings for the principal components. Also, ϵt has the usual regression interpretation of

being the collection of errors.

It is possible to leave J = K, in which case the J principal components form an or-

thonormal basis that recreates the mean-corrected data with no error. However, one can

typically obtain an approximation that accounts for at least 95% of the variation in the

(mean-corrected) data with a far smaller number of principal components. In this specific

application, where each race/ethnic group is handled separately, for a given year t with

mean-corrected data γt − γ, the approximation would be

γ̂t = γ + Λβ̂t,

and hence

β̂t = (Λ′Λ)−1Λ′(γt − γ).

Our procedure (see below) uses all K principal components, although the first J (chosen

to explain 95% of the variation) of them have a different forecasting model from the rest.

Thus, the Λ matrix is K ×K; let β̂ = (β̂1, β̂2, . . . , β̂n) be a K × n matrix where the columns

are the β̂ts mentioned earlier, and where n represents the number of years in the data (in

this application, both mortality and fertility have n = 21). Each row of β̂ then corresponds
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to a separate principal component series, so the first row of β̂ is the estimated time series

associated with the first principal component, the second row is the estimated time series

associated with the second principal component, and so on.

Using fewer principal components is generally desired, but the cost in doing so is a greater

amount of approximation error. Bell (1997) proposed emulating the “bias adjustment” pro-

cedure of Thompson et al. (1989) as a means for reducing the approximation error. Thus, we

retain all K principal components, but only the first J principal components will be modeled

using time series methods; we forecast the remaining K − J principal components using a

simple random walk model, which amounts to using the last observed value for all forecasts.

Hence, for each of the first J rows of β̂, a univariate ARIMA (1, 1, 0) model is estimated and

forecasted over a horizon of h years, and the full forecast matrix β̂(h) is of dimension K × h,

where column l represents the forecast for the K principal component series at time n + l.

Maintaining this notation, for a given year n+ l, the forecast of γn+l ends up being

γ̂n+l = γ + Λβ̂n+l,

where γ is the smoothed mean curve of the transformed data, and Λ and β̂n+l are as defined

previously.

It is preferable to obtain smooth forecasts for our age distribution curves. However, using

Λ as is in forecasting γ̂ may not yield smoothness. This leads us to construct Λ̃, which is a

K×K matrix resulting from using a smoothing spline on each of the columns of Λ. We use the

same smoothing parameter for each of the columns of Λ, although this smoothing parameter

is not necessarily the same as the one used for the age-specific mean curve. Ultimately, we

replace the Λ in constructing γ̂ with Λ̃, and this helps produce smooth forecasts.

There is an apparent inconsistency in using the unsmoothed Λ to construct β̂t, but the

smoothed Λ̃ to produce γ̂. It would seem logical to use one of Λ and Λ̃ throughout the process,

but not both. However, we found that using only Λ in the process of constructing γ̂ resulted

in forecasted age distribution curves that became increasingly jagged as we moved into the

future. To remedy this defect, we instead substituted Λ̃ in for Λ. A few issues appeared in

doing this; first, the value of the smoothing parameter had a profound impact on the scale of

the values for individual rows. In particular, as more smoothing was performed, the values

grew progressively larger in magnitude. Another problem with the sole use of Λ̃ was that we

saw frequent appearances of secondary humps and spikes in the forecasted age distribution

curves, so that we might have a forecast 50 years ahead that had 3 distinct peaks. Overall,

the results appeared smoothest when we used Λ to construct β̂ts and Λ̃ to construct γ̂.
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Letting γ̂(h) = (γ̂n+1, γ̂n+2, . . . , γ̂n+h) represent the forecast matrix, column l of this

matrix is the forecast of the transformed relative rates for time n + l. Thus, reversing the

original transformation and then re-normalizing each column would yield a forecasted age

distribution curve for time n + l. For the natural logarithm transformation, reversing the

transformation simply entails exponentiating the γ̂(h) and then dividing the forecasts in each

year (each column) by the corresponding sum. For the generalized logistic transform, the

process is described in McElroy and Bell (2004), but it shall be repeated here. For every

age other than a reference age κ, the forecast of γ̂n+l is exponentiated and then each of the

entries is divided by 1 plus their overall sum to obtain the relative age-specific rate r̂i,n+l (for

age i):

r̂i,n+l =
eγ̂i,n+l

1 +
∑

k ̸=κ e
γ̂k,n+l

, i ̸= κ.

For the reference age κ at time n+ l, the forecast is just 1 minus the sum of the other r̂i,n+l,

or alternatively, one could calculate it using

r̂κ,n+l =
1

1 +
∑

k ̸=κ e
γ̂k,n+l

,

where k in both equations given is allowed to range over the ages in the data. Note that for the

generalized logistic transform, the transformed data actually only hasK−1 ages, as compared

to the K when using the natural logarithm. However, no additional re-normalizing is required

because the forecasted relative rates under the generalized logistic transform automatically

sum to 1.

To summarize, forecasting total rates is a straightforward procedure in which the only

significant decision is whether to include a drift parameter in the designated time series

model. A different story exists for forecasting relative age-specific rates (and thus, the age

distribution curves). The procedure for producing forecasts of the age distribution curves

can be laid out as follows:

1. Convert age-specific rates to relative rates after first eliminating all occurrences of zeroes

in the rates.

2. Take a suitable transformation of the relative rates; denote the vector of transformed

relative rates for year t as γt.

3. Calculate the age-specific mean curve for the transformed relative rates and then use a

smoothing spline to obtain a smoothed version labeled γ.
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4. Subtract out the smoothed age-specific means from the transformed rates (γt − γ) and

determine the resulting sum of squares and cross-products matrix S =
∑

t(γt− γ)(γt −
γ)′.

5. Determine the eigenvalues and eigenvectors of S. Let Λ be the K × K matrix of

eigenvectors and keep all columns.

6. Calculate the K × 1 vector βt using β̂t = (Λ′Λ)−1Λ′γt, and collect the columns into the

matrix β̂ = (β̂1, β̂2, . . . , β̂n), so that each row of β̂ corresponds to a time series for a

principal component.

7. Choose J , which can be less than K. Fit a univariate ARIMA (1, 1, 0) with drift to

each of the first J rows of β̂ and for a pre-specified value of h, use the estimated model

to forecast all steps up to and including h. For the remaining K−J rows of β̂, produce

the forecasts by keeping the series constant at the observed value for time n. Label the

matrix formed by collecting these forecasts of the β̂ matrix as β̂(h).

8. Use another smoothing spline on each of the columns of Λ and call the smoothed matrix

Λ̃. Then the matrix γ̂(h) containing all h-step ahead forecasts of the transformed relative

rates is γ̂(h) = γ 1′h + Λ̃β̂(h), where 1h is a h× 1 column vector containing all 1s.

9. Reverse the original transformation of γ̂(h) and re-normalize, if necessary, to obtain

the matrix of relative rates r̂(h), whose columns represent each of the h-step ahead

forecasted age distribution curves.

The procedure is fairly straightforward to encode, and our implementation in R runs quickly.

4 Results for Fertility Rates

4.1 Total Fertility Rate

We modeled log(TFR - 1) for each of the 5 race/ethnic groups using an ARIMA (1, 1, 0)

model. We initially included a drift parameter in these models to help account for expected

declines in total fertility rate over time. Subsequently, we produced alternate models that did

not include a drift parameter. While the models without drift were somewhat unrealistic in

their tendency to produce forecasts that leveled off very quickly, we considered this preferable

to the substantial declines in total fertility rates that were predicted by the models with a

drift parameter.
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Figures 1 through 5 show the results for the 5 race/ethnic groups. In each plot, the solid

black line represents the observed total fertility rates between the years 1989 and 2009, while

the dashed red line indicates forecasts using the (1, 1, 0) with drift and the solid blue line

shows forecasts using the (1, 1, 0) without drift; the forecasts are plotted for the years 2010

through 2069, so there are 60 years of forecasts provided. For non-Hispanic whites, as seen

in Figure 1, the history of total fertility rate seems to fluctuate pretty wildly, but the scale

on the vertical axis reveals that the range of movement has only been between about 1.77

and 1.91 during the 21 years of data, and going 60 years out results in a difference of less

than 0.05 in the total fertility rate produced by the 2 competing forecasts. It would appear

that the drift parameter for the model estimated for non-Hispanic white women does not

yield substantial variation between the 2 different models. Also, the model without a drift

parameter seems to hit a stable level within the first 2 or 3 years of forecasts, so the drift-less

model levels off rapidly.

For non-Hispanic blacks (Figure 2), a different picture is obtained. The total fertility rate

here is negatively trending, with a peak of about 2.5 occurring around 1990 and going down

to approximately 2.0 by 2009. The range of movement is larger than it was for non-Hispanic

whites, and the forecast for the model with drift reflects this. There is a noticeable curvature

to the forecasts from the model with drift that was not apparent in the corresponding curve

for non-Hispanic whites, and the difference over the 60 years of forecasts results in a difference

exceeding 0.7 between the 2 different model specifications. The magnitude of the difference

between the competing forecasts is not the only noticeable feature; looking closely at the

curve for the model with drift, the implication is that in 60 years, the total fertility rate for

non-Hispanic black women would be below 1.3, which would be roughly half of what their

observed peak in 1990 was. It seems implausible that the total fertility rate for non-Hispanic

blacks would fall so drastically over the forecast horizon. One last point to make is that the

model without drift once again produces forecasts that level out within the first few years of

the forecast horizon, which seems unlikely, but at least the plateau occurs at what seems to

be a reasonable value for total fertility rate.

For American Indian/Alaska natives (abbreviated AIAN), the behavior of both history

and forecasts in general is similar to that for non-Hispanic blacks, but the range of movement

is more limited. The peak of total fertility rate for AIAN is around 2.4 in 1989, but at its

lowest, it is still above 2.1. It is also apparent that the forecasts from the drift model for

AIAN exhibit less curvature than the ones from the corresponding model for non-Hispanic

blacks. This is a consequence of the drift parameter from the AIAN model being closer to 0
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than the drift parameter of the ARIMA model for the non-Hispanic blacks. The difference

between the model with drift and the model without over the 60 years of forecasts for AIAN

seems to be no greater than 0.6 by the year 2069, as the forecast for the model with drift

approaches 1.6 whereas the drift-less variant has a forecast around 2.2 for the total fertility

rate. The model with drift continues to produce long-range forecasts that are not credible.

For Asian/Pacific islanders (abbreviated API) and Hispanics, the story is the same: they

too have negatively-trending histories of total fertility rate, and they have a fairly pronounced

curve in the long-range forecasts produced by the ARIMA (1, 1, 0) model with drift. While

one might guess based on historical trends that the forecasts of total fertility rate among

API would be consistently lower than the forecasts of total fertility rate among Hispanics,

the forecasts for the model with drift for both API and Hispanics drop to around 1.3 by the

end of the 60-year forecast horizon. This is rather surprising considering the peak for total

fertility rate among API in our data is approximately 1 less than the peak value for total

fertility rate among Hispanics. The more pronounced curvature for the forecasts of the model

with drift are explained by the drift and autoregressive parameters for Hispanics being much

larger in magnitude than those for API. One distinct feature of the plot for Hispanics is that

the model without drift takes more time to level out compared to the rest of the race/ethnic

groups, and it experiences a much steeper drop at the beginning of the forecast horizon for

the model without drift.

Based on the visual evidence of Figures 1 through 5, if the same model must be chosen

for all of the 5 race/ethnic groups, it would be hard to favor the model with drift over the

one without drift. A drawback of the models without drift is that it takes very little time

for the forecasts of total fertility rate produced under these models to stabilize. For long-

range forecasts, it may prove beneficial that the models without drift give very stable results,

however. On the other hand, while the models with drift allow for more movement over the

course of the forecast horizon, there is no mechanism to control the amount of change in the

total fertility rate, so the long-range forecasts of 3 of the race/ethnic groups all end up around

1.3, with 2 of those 3 being race/ethnic groups that have traditionally seen higher fertility

rates. In addition, historical evidence would indicate the improbability of forecasts of total

fertility rate for the non-white races/ethnicities falling below the level of whites, and yet the

drift models indicate that the long-range forecasts of total fertility rate for whites would be

the highest at the end of the 60-year forecast horizon. As a result, we found it difficult to

accept the results of the drift models and thus chose to use the models without drift in the

rest of this work involving fertility rates.
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4.2 Relative Age-specific Fertility Rates

The general procedure for modeling relative age-specific fertility rates has been detailed in

Section 3. There, the number of years of the data was generically referred to as n and the

number of ages has been labeled as K. The data provided, as described above, contains the

fertility rates for the years 1989 through 2009, thus giving n = 21. Similarly, although the

original data covered fertility for females between the ages of 10 and 54, we decided to omit

the ages 10 through 13. For practical reasons, we felt that the number of births that were

likely to occur in that age range were not likely to form a substantial portion of fertility in

the U.S. at any point in the near or distant future. As a result, there are a total of 41 ages to

work with, so the K for the natural logarithm transform is K = 41, but for the generalized

logistic transform, we only work with 40 ages.

The goal here is to produce an age distribution curve, so that one might answer: what

percentage of the total fertility rate for a given race/ethnic group is accounted for by women

of a particular age? So, the processing described earlier divides all age-specific fertility rate

(or ASFR for short) values by their associated TFR, which yields series of relative age-specific

fertility rates. These relative rates can be viewed as probabilities, and hence the curve of

relative rates against age for a given year can be treated as a distribution curve of fertility

rate. To ensure positivity in the forecasts of the relative rates, two transformations were

considered: the first was the natural logarithm, which is only defined for positive values, and

the second was the generalized logistic transform, which is a variation of the natural logarithm

transform (it modifies the natural log transform by subtracting off the natural log of the rate

for a reference age). One additional choice when using the generalized logistic transform

came from the choice for reference age. The work here used the relative rates for the last age

(54), even though those specific rates have been produced via the linear interpolation method

described above. Originally, different ages were considered, as the initial belief was that an

age with more stability in its ASFR would lead to better results. The idea was eventually

abandoned when it became clear that forecasts for a reference age in the middle did not mesh

with the forecasts for the neighboring ages.

For the principal components approach, there was some uncertainty about whether to use

the same number of principal components for every race/ethnic group regardless of transfor-

mation or whether to use the bare minimum required to account for 95% of the total variation.

Ultimately, for consistency, the number of principal components selected was equal to the

maximum number of principal components required by any race/ethnic group (regardless of

transformation) to achieve that 95% threshold. This number turned out to be J = 8. Each of
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these 8 principal components is modeled univariately using an ARIMA (1, 1, 0) model with a

drift parameter included. One could exclude the drift parameter, but the resulting forecasts

for age distribution curves would result in very little deviation from the actual curve for the

last year of the data. One could also choose to perform a multivariate time series model for

the 8 principal components, but modeling 8 components simultaneously could prove awk-

ward, and handling them univariately seems to work well enough. The remaining principal

components that are not forecast using the ARIMA (1, 1, 0) model simply have forecasts

that remain constant at the last observed value from 2009. This is another precautionary

step to adjust for potential bias in the forecasts, when combined with the initial subtracting

out of (smoothed) age-specific means for the transformed data.

Figures 6 through 10 show some results for the individual race/ethnic groups. The top plot

in each figure displays the results using a natural logarithm transform, while the bottom plot

shows the same results using a generalized logistic transform with age 54 fertility rates serving

as the baseline comparison. The solid black line gives the observed age distribution curve

from 2009, while the dashed red, green, blue, and gray lines give the projected age distribution

curves for the years 2010, 2020, 2040, and 2060, respectively. These 4 years correspond to

a 1-year forecast, an 11-year forecast, a 31-year forecast, and a 51-year forecast, and they

may be viewed as forecasts for the very short term (2010), short-to-mid range (2010), mid-

range (2030), and long-range (2060). Looking at the 5 plots for general behavior, it appears

that there are only minor differences between the forecasts done using the natural logarithm

compared to the ones done using the generalized logistic transform. For the most part, the

differences that are visible seem to stem from the natural log shifting mass to the right at a

slightly faster pace, but ultimately, either transform would be acceptable.

On the whole, the plots share many characteristics, although there are certainly features

that appear to be specific to certain race/ethnic groups. One takeaway from the plots is

that the 2010 forecast tends to mirror the actual 2009 curve. This is a positive sign, as

fertility behavior seems unlikely to swing wildly from one year to the next, and it would be

troublesome if the first forecast was vastly different from the last observation. The plots do

appear to veer off fairly quickly from the 2009 curve, however; the forecast for 2020 shows a

fairly noticeable gap between what was the forecast a decade earlier, and the shifts for 2040

and 2060 are even more pronounced. There is a common thread that all of the forecasts

appear to be shifting toward a peak around age 34 or 35, which seems to be too large a

change. The general uncertainty inherent in a really long-range forecast helps to explain

this, but the result is still unsatisfying. One idea that could counter this problem with the
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long-range forecasts is to stop after some number of forecasts and then extend that last

accepted forecast to all remaining years of the forecast horizon. This possible solution would

introduce some subjectivity with the choice for stopping time, however, and that may be just

as unsettling as leaving the results as they are.

While all of the race/ethnic groups generally have plots that shift the mass and the peak

to older ages, there are characteristics that are peculiar for certain races/ethnicities. The non-

Hispanic white women have a larger occurrence of childbirths among older women, and the

forecasts end up accentuating this feature by producing a curve over the mid-to-late 40s and

early 50s that encompasses greater mass. Non-Hispanic blacks, American Indian & Alaska

natives, and Hispanics all start off with peaks in their age distribution curves in the late teens

or early 20s, so the general shift towards a peak in the mid 30s for these races/ethnicities has

a strong ripple effect on the rest of the curve. For black females, the mass of the curve does

shift to the right, but it also becomes less concentrated, and the peak does not concentrate

in the long-run. On the other hand, the curves for Hispanic females also shift mass to the

right, but there is a definite pronounced peak in that same long-run window. For the Asian

& Pacific islanders, the age distribution curve begins with a peak around 30, and a more

tightly packed mass than the other races/ethnicities. This feature becomes magnified over

time, as the peak exceeds 0.1 in the mid 30s, compared to a peak in the 0.06 to 0.07 range

for the other race/ethnic groups. This increased density around the peak may end up being

hard to believe, however, and does lend some support to the proposal of truncating forecasts

after some arbitrary time horizon.

5 Results for Mortality Rates

5.1 Total Mortality Rate

The total fertility rate is a fairly simple quantity to interpret: for a given race/ethnic group

and year, the TFR represents the average number of children that would be born to a woman

in the course of her life if she matches the ASFR for the specified year. The total mortality

rate does not have a corresponding direct interpretation, although its role in projecting age-

specific mortality rates is identical to that of TFR in projecting age-specific fertility rates. For

total mortality rate, the natural logarithm transform is sufficient for the modeling done in this

application. Staying consistent, the model of choice is again the ARIMA (1, 1, 0). Keeping

in line with what was considered for TFR, forecasts were produced for all combinations of

gender and race/ethnicity using a full model including drift and autoregressive parameters
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as well as restricted models that omitted the drift parameter.

The results for the total mortality rate forecasts are presented in Figures 11 through

15. In each figure, the top plot gives the results for males, while the bottom shows the

corresponding results for females. Looking at the history portion of the plots (the solid black

lines stretching covering the range 1989 through 2009), given that males generally have shorter

life expectancies than females, one would expect that the sum of age-specific mortality rates is

greater for males than for females, and the plots do indeed support this belief. In addition, the

sum of the mortality rates has generally been decreasing over the observed time period, with

the major exception being American Indian & Alaska native females, whose TMR exhibits a

positive trend; this seems to indicate an increase in the frequency of deaths, but it is unclear

what the broader implications of this phenomenon are. A separate odd feature that is shared

by multiple subgroups of gender and race/ethnicity is a sizable decrease in the sum going

from the year 1999 to 2000. While the non-Hispanic whites and the Asian & Pacific islander

females do not experience this, it is particularly pronounced in the case of males of the 4

non-white groups. While this may just be a consequence of the change in the 2000 Census for

the question about race and ethnicity, it contributes to the difficulty in finding a reasonable

interpretation for what the total mortality rate is.

For forecasts the dashed red line provides the outcomes associated with the ARIMA

(1, 1, 0) that includes a drift parameter, and the solid blue line does the same for the

model without a drift parameter. As was the case for TFR, from looking at the plots,

the less objectionable long-range forecasts for TMR seem to have been produced using the

models that excluded a drift parameter. One flaw with the model that includes a drift

parameter appears to be its upward long-range forecasts for the sum of age-specific mortality

rates among American Indian & Alaska native females and Hispanic females; it is somewhat

counterintuitive that the forecasts would be increasing over time, especially considering how

life expectancy has progressively increased over time. Another issue with the use of the full

model is how much more rapidly the forecasts change for the race/ethnic groups that see

more volatile movements in their history. For the non-Hispanic whites and Asian & Pacific

islanders, the past movements of the sum of age-specific mortality rates covers a range of

no greater than 0.8 units, but for the other races/ethnicities, the range must be close to

double that number. This leads to some odd results: non-Hispanic black and Hispanic males

have forecasts that drop well below the one for non-Hispanic white males, and males of some

race/ethnic groups have lower forecasts for their sum than their female counterparts. Again,

the major drawback to using a model that excludes a drift parameter is the somewhat rapid
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convergence to a flat long-range behavior. There may be some early oscillation around the

stable state for forecasts from these models, but there is essentially no movement after the

first 5 years or so of forecasts. Ultimately, it is difficult to recommend selecting a model

whose results are not trusted, so the models without drift, while boring, are preferred.

5.2 Relative Age-specific Mortality Rates

Modeling of age-specific mortality rates proceeds in much the same way as modeling of age-

specific fertility rate does. As before, the goal is to produce forecasts of age distribution

curves for mortality. If a zero rate is encountered, the situation was remedied by substituting

a very small value for the mortality rate. In this application, the value was arbitrarily chosen

as 10−8. One other difference is that in addition to using the last age (100+) as a reference

age, the first age (0) was also tried. This amounts to mortality rates compared against infant

mortality rather than centenarian mortality. Because the observed age distribution curves

experienced different movement depending on whether the age was above or below 20, it

seemed that the behavior of mortality below age 20 may not have been adequately handled

by a reference age at the upper extreme, so it was thought that using age 0 as an additional

reference would help counteract this. Ultimately, it turned out that the gains resulting from

the alternate baseline are minimal at best.

One distinction from the fertility rate section comes from the different value of the smooth-

ing parameter on the spline smoother for the age-adjusted means in this particular applica-

tion. In fertility rates, the smoothing parameter for R’s smooth.spline function was defaulted

to 0.5, and that number worked well enough that we did not see the need to adjust it. For

mortality rates, a few options were considered, from very small values near 0, which would

equate to almost no smoothing, to large values near 1, which signify heavy smoothing. Very

large values for the smoothing parameters resulted in forecast curves that washed out fea-

tures of the observed curves that should be retained, but minuscule values resulted in very

jagged forecast curves, and given the preference for smoothness, this was not desirable either.

The plots shown here will be correspond to analysis performed using a smoothing parameter

of 0.25; this could be viewed as a low-to-medium amount of smoothing, and it represented

a (subjective) compromise between handling the early features of the mortality rate curve

correctly and achieving smoothness in the resulting forecast curve.

Similar to the earlier section on age-specific fertility rate, the principal components ap-

proach will be used again here. The age range going from 0 to 100+ means there are 101

ages to handle, so dimension reduction was required in this case. The previous threshold

16



rule of using as many principal components as will account for 95% of the total variation in

the worst subgroup was employed here as well; in this case, the results will be displayed for

each subgroup of gender and race/ethnicity using the analysis performed using 16 principal

components. For some of these subgroups, this many principal components was required to

achieve the 95% threshold rule, and for the ones that required less, there is no real drawback

to using more principal components than the bare minimum. Once again, each of the 16

principal components will be modeled univariately using an ARIMA (1, 1, 0) with drift. A

multivariate approach may actually make sense here, but it might be that any benefit to such

an approach would be offset by the increased complexity in the calculations required to fit

the models.

Because the mortality rates below age 40 (with the exception of infant mortality) are so

small relative to the mortality rates post 40, it would be very difficult, if not impossible,

to notice any movement in mortality rates below 40 if the whole age range was displayed

on a regular scale. Hence, the plots all use a natural log scale for the relative mortality

rates, which allows for better resolution in the lower ages. Thus, better insight is available

into the behavior of the forecasts relative to the last observed curve from 2009. There is a

flaw to using a logarithmic scale, though: the vertical difference on a logarithmic scale does

not correspond to vertical distance on the regular scale. This helps explain some potential

graphical oddities.

Only the plots for forecasts done using the natural logarithm will be displayed here because

what differences do exist between the forecasts produced using the natural logarithm versus

the logistic transforms are largely confined to the highest ages. For the rest of the age range,

there is just some (expected) oscillation around 0. In addition, the natural logarithm and the

logistic with baseline 0 track closely, as their maximum difference is only around magnitude

0.003; on the other hand, the logistic with baseline 100 tends to explode at 100, so the

magnitude of its difference against one of the other transforms ends up topping out around

0.13, which is too high.

Figures 16 through 20 display the natural logarithms of the forecasted age distribution

curves for age-specific mortality rates among the various race/ethnic groups, separated by

gender. The plots again share some common characteristics, such as their shape. All start

off high due to infant mortality, then drop to a minimum around age 10, swing back up to

around age 20, and then increase steadily up to age 100. Another feature is the close tracking

of the 1-year ahead forecast for 2010 with the actual 2009 curve. There is some concern that

forecasts for the drop described between the ages 0 and 20 may be too large, although that
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may be a consequence of using logarithms on very small numbers. Also, we see a similar

magnifying effect that a long-term forecast produces on minor features of the curve. This is

especially noticeable with black and Hispanic males, and white males to a lesser extent, as

their curves reveal the presence of an increasingly pronounced dip in the curve going from

around age 20 to age 40.

As was previously pointed out, there are some peculiarities apparent in the curves as

well. For some groups, like black males, American Indian / Alaska native males, and Hispanic

males, at the highest ages, there is a decrease in the age-specific mortality rates. Also, in some

of the plots, the long-range forecast of the age distribution curve seems to be consistently

less than the observed age distribution curve except at a few points, and yet the curves, once

exponentiated, will all sum to 1. This is the aforementioned flaw of the logarithmic scale,

in that the visual difference does not equal the numerical difference on a non-logarithmic

scale. That is, a difference of 1 on a logarithmic scale when the values are around -10 is

almost minimal on a non-logarithmic scale when compared to a difference of 1 when the

values are around -4 (i.e., on a logarithmic scale, there is the same movement when going

from −9 to −10 as there is going from −3 to −4, but eliminating the logarithmic scale gives

e−9 − e−10 ≈ 8× 10−5, whereas e−3 − e−4 ≈ 0.03).

6 An Alternative Approach for Mortality Rates

6.1 Age-adjusted Mortality Rate

The total mortality rate produced by summing up the age-specific mortality rates yields some

implausible results. On the one hand, we believe that age-specific mortality rates should be

trending downward in the long-run, but some of our drift models feature an upward trend.

One drawback to a straight sum of the age-specific mortality rates is that it may be unduly

influenced by the older ages, which tend to have the highest mortality rates. At the same

time, that age range represents a relatively small proportion of the population, and as such,

our total mortality rates may not be accurately depicting overall movements in mortality.

We consider here the possibility of using an age-adjusted mortality rate in lieu of the total

mortality rate. The age-adjusted mortality rate takes the definition

(age-adjusted mortality rate)t =

K∑
k=0

wkqkt,

where qkt is the mortality rate at age k in year t, wk is the proportion of the population aged

k in some reference population, and K should be the upper limit of the mortality table (i.e.,
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the age K for which qKt = 1). For our purposes, we use K as the upper limit of the age range

that we have been provided. Because the wk will be small at the upper limits of the age

range, the age-adjusted mortality rate (hereafter abbreviated as AAMR) will place far less

weight on the older ages than the total mortality rates from the previous section. Forecasting

the AAMR will be done in exactly the same fashion as forecasting the TMR from before.

In order to produce the weights wk, we examined a few options. The first possibility is

to use the age distribution of the full U.S. population from the 2010 Census (data available

on American Factfinder). This option would use the same weights for all of the gender by

race/ethnic groups. Other weighting schemes would find the population proportions for the

U.S. population stratified by gender and/or race/ethnic group. Separating solely by gender

would create a distinct set of weights for all males and another for all females. Using weights

based solely on race/ethnic group would yield 5 sets of weights and ignore gender differences.

A stratification using both factors would end up creating 10 different sets of weights, one for

each combination of gender and race/ethnic group.

Figure 21 displays the weights that would be used under two of the proposed schemes.

The top plot shows the population proportions associated with the full U.S. population in

2010. We see that there is a steep decline in the age weights that starts in the early 60s.

The curves in the bottom plot give the population proportions associated with each of the

5 major race/ethnic groups from the 2010 U.S. population. One feature to note from this

lower plot is how similar the curve for non-Hispanic white proportions is to the one for the

overall population from the top plot. This is attributable to the comparatively larger size

of the non-Hispanic white group relative to the other 4 race/ethnic groups. We also observe

that the non-Hispanic white curve has a much larger proportion of people over age 50. The

non-Hispanic black and American Indian Alaska native populations are very close in overall

shape, with the AIAN population having a slightly greater proportion below age 20. Lastly,

the Hispanic population has a very large proportion of young people, but sees a very dramatic

fall in the population proportion above age 40. This may indicate that Hispanic immigrants

tend to be relatively young and are also more likely to return to their country of origin as

they grow older.

We did not include a plot that separated by gender. There is not much to distinguish

a curve of male population proportions and a curve of female population proportions. The

shapes are quite similar, although there is a greater proportion for males below age 50 and

a greater proportion for females above age 50. That is, there are a greater number of young

males than young females, but conversely, there are a greater number of old females than old
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males. This observed gender disparity holds for all of the race/ethnic groups, so we felt that

using weights stratifying on both gender and race/ethnicity was not necessary.

We proceed to plot the age-adjusted mortality rate for each gender by race/ethnic group

combination using weights derived from both the full U.S. population and the respective

race/ethnic group. Figures 22 through 26 display the forecasts produced using ARIMA (1,

1, 0) models with drift parameters included for these two weighting schemes. For whites, we

see that the use of the full population weights yields lower age-adjusted mortality rates and

forecasts than the use of just the white population. The reverse statement holds for the other

race/ethnic groups: using the full population weights pushes the age-adjusted mortality rates

and forecasts higher. However, the forecast of age-adjusted mortality rate for AIAN females

(see lower plot of Figure 24) is still showing a positive trend.

6.2 Age-specific Mortality Rates

In order to meld the age-adjusted mortality rate with the rest of the procedure described

previously, we will transform from qkt to rkt = wkqkt/
∑K

k=0wkqkt, which yields the individual

age relative contributions to the AAMR, and these contributions will sum to 1. Taking the

logarithm of the resulting rkt allows us to use the procedure previously described in Section

3 for relative age-specific rates to obtain forecasts of r̂kt. To transform the resulting forecasts

r̂kt back to age-specific mortality rate forecasts q̂kt, we would need to multiply the forecasts

of AAMR, ̂AAMRt, by the forecasts r̂kt and then divide by the weights wk; that is, we would

get the forecasts as

q̂kt =
r̂kt ̂AAMRt

wk
.

We display the results for log age-specific mortality rates from using the individual

race/ethnic group weights in Figures 27 through 31. While we could have used the full pop-

ulation weights instead, the use of the proportions specific to each race/ethnic group would

seem to produce a more accurate depiction of mortality trends. We chose not to convert

the age-specific rate to its relative counterpart, as we were primarily interested in examining

the shape of the log curve, and rescaling only stretches the general shape. For whites (see

Figure 27), it appears that adjusting for age produces some kinks in the age-specific mortality

forecasts. In particular, there is an obvious one that occurs right near the upper edge of the

age range. The forecasts would thus suggest that the mortality rate is actually highest not

at the 100+ age, but just below it, which is implausible. Similarly, we see that many of the

features that were present in the log curves of the relative mortality rates that were produced
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using the total mortality rates persist here. We conclude that an age-adjusted scheme does

not eliminate the issues we encountered in using a straight sum for a mortality index.

7 Discussion and Summary

Before providing a summary of what was done in this application, a few other thoughts

about changes that could be incorporated into future methodology will be briefly discussed.

Some interesting features were observed in the course of producing the age-specific fertility

and mortality rate forecasts. Regarding age-specific fertility rates, the mode of the age

distribution curves drifted toward the mid 30s as the forecast horizon increased out to 60

steps ahead. This phenomenon occurred for all five race/ethnic groups, and it suggests

that the age of peak fertility increases by at least 5 years over the course of 60 years. The

rightward drift is not limited to just the mode, however; over the forecast horizon, regardless

of transformation used, the mass of the age distribution curve also moves toward the higher

ages. While such shifts are plausible, the magnitude appears to be somewhat exaggerated,

so a good modification may restrain the extent of the rightward drift in the future.

Another concern manifests when considering the age distribution curves for mortality.

Because the mortality rates in the ages below 40 are so small relative to those past age 40,

a log transformation proves useful for revealing details. When plotting the log-transformed

age distribution curves for mortality, one observes that the curve over the first 20 years

behaves similarly for any combination of gender and race/ethnic origin. Specifically, there is

a high infant mortality, which leads into a fall until about the age of 10. The (smoothed) log-

transformed curve over this interval has somewhat of a “U” shape in this interval. Forecasting

this movement accurately presents a challenge, however; over the course of a 60-step forecast

horizon, the curve becomes steeper going down and coming back up, and the bottom around

age 10 steadily decreases. It would be preferable to see less severe change in the forecasts

over time in this area of the curve. On the other hand, the relative mortality rates in this

region are very small as previously noted, so the movements would be difficult to see on a

normal scale.

Because the vast majority of all deaths occur after age 40, it was thought that one could

ignore ages below 40 for forecasting mortality rates. This would restrict the forecasts to a

range that matters more, and censoring the data in this fashion would have mirrored the work

of Lundström and Qvist (2004), who were forecasting Swedish mortality in order to estimate

life expectancy. They chose to disregard mortality below the age of 40 in their work, as they

found that over 98% of birth cohorts (for a Swedish life table) survived to age 40. This idea

21



was given a trial in the hope that it would smooth out some of the long-range oscillations in

the ages above 40 (in particular the swing under the last observed curve), but the features in

that interval that were originally observed in the forecasted age distribution curves produced

using the full range of ages persisted even when the first 40 ages were censored. Thus, this

idea was discarded, as it did not produce a measurable improvement.

Due to a preference for a simple model, an ARIMA (1, 1, 0) model was selected for fore-

casting the principal component series that go into producing the forecasts of age-specific

rates. The same model was also used for forecasting the total fertility and mortality rates. A

higher-order model may prove superior if a larger amount of data is available, as the move-

ment of the forecasts under the (1, 1, 0) may be too heavily influenced by the last observed

difference. This influence could prove particularly problematic when the last observed differ-

ence coincides with a potential shock effect; the data used for this iteration extended through

2009, meaning the last observed difference would have lined up with the recent U.S. recession.

Although mortality rates appear to be largely immune to economic stimuli, the total fertility

rate did drop noticeably between 2008 and 2009, and this leads to overly aggressive downward

forecasts for total fertility rate for the more volatile race/ethnic groups (non-Hispanic whites

were not affected as much).

Error estimation is an additional issue that has not been discussed in the main body of

this report. We briefly sketch a scheme based on the bootstrap procedure of Efron (1979) as

a method for quantifying the amount of error in some of our estimates. Recall that our form

of the principal component approximation of γt gives

γt = γ + Λ̃β̂t + ϵ̂t,

where the first two terms on the right-hand side of this equation are treated as γ̂t. Thus,

resampling the residuals obtained by subtracting γ̂t from γt would allow us to obtain bootstrap

sets γ∗t , which we could feed into our procedure in order to check the variability of βt. This

in turn would lead to error estimates on both the h-step ahead forecasts of γ̂(h), and after

reversing the original transformation, the h-step ahead forecasts of r̂(h). Some of these could

ultimately take the form of a pointwise interval.

There are a couple of caveats attached to the outline of the bootstrap procedure above.

The first stems from our initial decision to retain all of the principal components, but only

forecast the first J of them. Using the full K×K matrix Λ̃ would yield a γ̂t that is identical to

γt, so we would not have any residuals to resample. Thus, in order for this bootstrap scheme

to work, we need to use a lower-dimensional approximation, which would ideally arise from J
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being strictly less than K. Given that that is not necessarily going to be the case, we choose

some value M that is strictly less than K (the simplest choice being M = 1) and obtain ϵ̂t as

the residuals formed when approximating γt with just M principal components. Resampling

these residuals then allows for the construction of new bootstrap set γ∗t . The second point

stems from the possibility that a bootstrapped set γ∗t , when reverse transformed, yields a

bootstrap sample of relative rates r∗t that does not sum to 1 at every time point. Relative

to the first issue, this only needs a fairly straightforward correction: once we construct a

bootstrapped set γ∗t as outlined above, we reverse the transformation, rescale so that the

sum at each time point does sum to 1, and then transform again.

In summary, a description of the original decomposition of the full fertility and mortality

data into disjoint subgroups according to race/ethnicity or the combination of gender and

race/ethnicity has been provided by our work. The method used to forecast the sum of the

age-specific rates included a logarithmic transformation in order to ensure positivity in the

forecasts. For total fertility rate, an additional modification was included with the subtraction

of 1 prior to taking the logarithm, as this change guaranteed that the forecasts would be

greater than 1. A minor point about the interpretation of the sum of age-specific mortality

rates (alternatively referred to as total mortality rate) was raised. For age-specific rates,

the transforms that were used included the natural logarithm, but the generalized logistic

transform as well, which had the extra benefit of producing forecasts that were already age

distribution curves without any further normalization.

The more complicated principal components approach to producing age distribution

curves for fertility and mortality rates was explained, with some discussion of the choice of

smoothing parameter for the stages that called for a smoothing spline. The default smooth-

ing parameter was 0.5, and that worked well enough for fertility rates. For mortality rates,

however, 0.5 seemed to be too large, so smaller values were tried, with 0.25 being the even-

tual choice. The number of principal components to use was selected to satisfy a worst-case

95% scenario, in which the resulting dimension would ensure that at least 95% of the total

variation would be accounted for by every subgroup.

The difference between an ARIMA (1, 1, 0) model with a drift parameter versus one with-

out a drift parameter was discussed. For the total rates, it seemed that the models without

drift yielded more sensible forecasts, whereas for age-specific rates, the drift parameter was

included. Exclusion of a drift parameter in fitting time series models to the principal compo-

nents found for the transformed relative age-specific rates would have resulted in forecasted

curves that do a little oscillating around the last observed curve. Inclusion of drift, however,
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resulted in curve features that became magnified over the course of the forecast horizon, so

any small bumps end up turning into big ones. One remedy for this issue is to determine a

truncation point beyond which all forecasts are held constant at the forecast of that time.

This stopping rule would have a high degree of subjectivity, however.
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Figure 1: History of TFR for non-Hispanic white women from 1989 - 2009 with ARIMA (1, 1, 0) forecasts
for 2010 - 2069.
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Figure 2: History of TFR for non-Hispanic black women from 1989 - 2009 with ARIMA (1, 1, 0) forecasts
for 2010 - 2069.
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Figure 3: History of TFR for American Indian & Alaska Native women from 1989 - 2009 with ARIMA (1,
1, 0) forecasts for 2010 - 2069.
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Figure 4: History of TFR for Asian & Pacific Islander women from 1989 - 2009 with ARIMA (1, 1, 0)
forecasts for 2010 - 2069.
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Figure 5: History of TFR for Hispanic women from 1989 - 2009 with ARIMA (1, 1, 0) forecasts for 2010 -
2069.
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Figure 6: Actual 2009 age distribution curve for non-Hispanic white females along with projected age distri-
bution curves for 2010, 2020, 2040, and 2060. Top shows projected curves using a natural logarithm transform
on relative asfr, while bottom shows same projections using generalized logistic transform.
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Figure 7: Actual 2009 age distribution curve for non-Hispanic black females along with projected age distri-
bution curves for 2010, 2020, 2040, and 2060. Top shows projected curves using natural logarithm transform
on relative asfr, while bottom shows same projections using generalized logistic transform.
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Figure 8: Actual 2009 age distribution curve for American Indian & Alaska native females along with
projected age distribution curves for 2010, 2020, 2040, and 2060. Top shows projected curves using natural
logarithm transform on relative asfr, while bottom shows same projections using generalized logistic transform.
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Figure 9: Actual 2009 age distribution curve for Asian & Pacific Islander females along with projected
age distribution curves for 2010, 2020, 2040, and 2060. Top shows projected curves using natural logarithm
transform on relative asfr, while bottom shows same projections using generalized logistic transform.
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Figure 10: Actual 2009 age distribution curve for Hispanic females along with projected age distribution
curves for 2010, 2020, 2040, and 2060. Top shows projected curves using natural logarithm transform on
relative asfr, while bottom shows same projections using generalized logistic transform.
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Figure 11: History of total mortality rate for non-Hispanic white males (top) and females (bottom) from
1989 - 2009 with ARIMA (1, 1, 0) forecasts for 2010 - 2069.
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Figure 12: History of total mortality rate for non-Hispanic black males (top) and females (bottom) from
1989 - 2009 with ARIMA (1, 1, 0) forecasts for 2010 - 2069.
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Figure 13: History of total mortality rate for American Indian & Alaska native males (top) and females
(bottom) from 1989 - 2009 with ARIMA (1, 1, 0) forecasts for 2010 - 2069.
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Figure 14: History of total mortality rate for Asian & Pacific islander males (top) and females (bottom)
from 1989 - 2009 with ARIMA (1, 1, 0) forecasts for 2010 - 2069.
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Figure 15: History of total mortality rate for Hispanic males (top) and females (bottom) from 1989 - 2009
with ARIMA (1, 1, 0) forecasts for 2010 - 2069.

39



0 20 40 60 80 100

−
12

−
10

−
8

−
6

−
4

−
2

Age

LN
(R

el
at

iv
e 

M
or

ta
lit

y 
N

H
W

 M
)

2009 actual
2010 projected
2020 projected
2040 projected
2060 projected

Log of relative mortality rates for white males

0 20 40 60 80 100

−
12

−
10

−
8

−
6

−
4

−
2

Age

LN
(R

el
at

iv
e 

M
or

ta
lit

y 
N

H
W

 F
)

2009 actual
2010 projected
2020 projected
2040 projected
2060 projected

Log of relative mortality rates for white females

Figure 16: Log of actual 2009 distribution curve of age-specific mortality rate for non-Hispanic whites along
with projections for years 2010, 2020, 2040, and 2060. Top shows male rates, while bottom shows female rates.
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Figure 17: Log of actual 2009 distribution curve of age-specific mortality rate for non-Hispanic blacks along
with projections for years 2010, 2020, 2040, and 2060. Top shows male rates, while bottom shows female rates.
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Log of relative mortality rates for AIAN males
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Figure 18: Log of actual 2009 distribution curve of age-specific mortality rate for American Indian & Alaska
native along with projections for years 2010, 2020, 2040, and 2060. Top shows male rates, while bottom shows
female rates.
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Figure 19: Log of actual 2009 distribution curve of age-specific mortality rate for Asian & Pacific islanders
along with projections for years 2010, 2020, 2040, and 2060. Top shows male rates, while bottom shows female
rates.
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Log of relative mortality rates for Hispanic males
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Figure 20: Log of actual 2009 distribution curve of age-specific mortality rate for Hispanics along with
projections for years 2010, 2020, 2040, and 2060. Top shows male rates, while bottom shows female rates.
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Figure 21: Age distribution of 2010 U.S. population. Overall population is depicted on top, while the bottom
displays for individual race/ethnic groups.
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Figure 22: Age-adjusted mortality rate for non-Hispanic whites (top - male; bottom - female) using weights
based on U.S. population (black) and white population only (red).
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Figure 23: Age-adjusted mortality rate for non-Hispanic blacks (top - male; bottom - female) using weights
based on U.S. population (black) and black population only (red).
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Figure 24: Age-adjusted mortality rate for American Indian & Alaska natives (top - male; bottom - female)
using weights based on U.S. population (black) and AIAN population only (red).
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Figure 25: Age-adjusted mortality rate for Asian & Pacific islanders (top - male; bottom - female) using
weights based on U.S. population (black) and API population only (red).
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Figure 26: Age-adjusted mortality rate for Hispanics (top - male; bottom - female) using weights based on
U.S. population (black) and Hispanic population only (red).
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Figure 27: Log of age-specific mortality rate produced using white population proportions for whites along
with forecasts. Top shows males, while bottom shows females.
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Figure 28: Log of age-specific mortality rate produced using black population proportions for blacks along
with forecasts. Top shows males, while bottom shows females.
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Figure 29: Log of age-specific mortality rate produced using AIAN population proportions for American
Indians & Alaska natives along with forecasts. Top shows males, while bottom shows females.
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Figure 30: Log of age-specific mortality rate produced using API population proportions for Asians & Pacific
islanders along with forecasts. Top shows males, while bottom shows females.
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Figure 31: Log of age-specific mortality rate produced using Hispanic population proportions for Hispanics
along with forecasts. Top shows males, while bottom shows females.
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