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1 BACKGROUND

The National Crime Victimization Survey (NCVS) is
a household-based demographic survey that yields
annual national estimates of property crime and
nonfatal violent crime, both reported and not
reported to the police. Interviews are conducted
year-round by Census Bureau Field Representatives
(FRs) through personal visit or by telephone, using
a Computer-Assisted Personal Interview (CAPI)
instrument. In sampled households, persons of
age 12 and older are given screener interviews to
determine if they have been victimized during the
previous six months. If a crime is reported during
the screener, the interview continues with an
incident report to ascertain details of the event.

In 2012, NCVS field staff experienced two major
interventions that may have affected data quality.

First, a program of refresher training and enhanced
performance monitoring, which had begun in late
2011, was continued and completed in 2012. This
training reoriented FRs to the purpose of the NCVS
and reinforced the importance of following correct
procedures, especially during screener interviews.
After the training, supervisors began to monitor FR
performance using an expanded set of data quality
indicators. This program was phased in by an
experiment. Teams of FRs were randomly assigned
to two cohorts. One cohort received the program
in late 2011, and the other received it in early
2012. More details of the program and the
randomization procedure are given in Section 2. By
the beginning of the second quarter of 2012, over
98% of the experienced NCVS interviewers had

HIGHLIGHTS

NCVS field staff experienced two major
interventions in 2012: completion of a refresher
training and performance monitoring program
which began the previous year, and a field
realignment effort which reduced the number of
Census Bureau Regional Offices from twelve to
six. To assess the impact of these interventions,
we fit Bayesian longitudinal models describing
key quality indicators and survey outcomes over
a five-year period (2008–2012). After accounting
for long-term trends, annual periodic cycles,
characteristics of the interviewers’ monthly
assignments, and random interviewer variation,
we detected some statistically significant effects
of the interventions on the following variables.

• Response rates: Refresher training and
performance monitoring were associated
with a modest but significant decrease in
household response rates in 2011 but not
in 2012.

• Screener times: Refresher training and
performance monitoring produced large
and significant increases in the average
duration of the screener interview in 2011
and 2012.

• Personal crime and household property
crime: Neither the refresher training and
performance monitoring program nor field
realignment were associated with any
significant changes in the collection of
crimes in 2012.

Because no significant effects on the collection
of crimes were detected, there is no evidence to
suggest that victimization rates for 2012 or
comparisons between 2012 and previous years
were impacted.
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completed the training, and the performance
monitoring system was in place for all FRs. For the
remainder of the year, newly hired FRs were
trained as they entered the NCVS workforce and
put on the enhanced monitoring program.

Second, field operations for NCVS and all other
Census Bureau surveys were consolidated from
twelve Regional Offices (ROs) to six. This so-called
field realignment was phased in during 2012. By
the end of the year, six ROs had closed, and field
staff from these closing ROs were reassigned.

In this report, we present new longitudinal analyses
of quality indicators and survey outcomes. The
data come from approximately 1,900 FRs, 420,000
attempted household interviews and 750,000
personal contacts over the five-year period from
2008 to 2012. Our immediate goal is to
characterize the effects of refresher training,
performance monitoring and field realignment, to
inform us of any potential impact of these
interventions on victimization estimates for 2012
and comparisons to previous years. More broadly,
these models provide a new methodological
framework for understanding temporal patterns
and trends in the NCVS and other surveys.

Our analyses focus on two key measures of data
quality (household response rate, average duration
of the NCVS screener interview) and two key survey
outcomes (incident rates for personal crimes and
household property crimes). In Section 2, we
review the major field interventions that took place
in recent years and present graphical summaries of
how key data-quality and outcome variables have
changed over time. In Section 3, we describe a
class of Bayesian generalized linear mixed models
with special features that capture the time-varying
aspects of the interventions and the response
variables. Results for the four outcomes are
presented in Sections 4–7, respectively, followed
by discussion of the implications in Section 8.

2 RECENT MAJOR INTERVENTIONS
AND TRENDS

Sample Size and Interviewer Workload

The NCVS, and other major demographic surveys
conducted by the Census Bureau, uses a complex
two-stage design. The first stage selects Primary
Sample Units (PSUs), which are single counties or
groups of counties, and the second stage selects
housing units and group quarters within the PSUs.

Although the same basic design has been used
since 2006, the size of the survey has changed
over time. Beginning in October 2010, the sample
size was boosted by about 25%, reversing some
reductions that had been made three years earlier.
During this so-called sample reinstatement, the
number of interviewers was also increased.

A plot of the number of housing units selected for
the NCVS each month from 2008 to 2012 is shown
in Figure 1 (a). These figures include units that
were successfully interviewed and those that were
not, but excludes those that were determined to
be out of scope (e.g., because they were vacant or
not valid residential addresses). Prior to the
sample reinstatement in late 2010, the sample size
remained steady at about 7,000 units per month,
and then rose to nearly 9,000 by the second
quarter of 2011. The number of interviewers
working for the NCVS rose over the same period, as
shown in Figure 1 (b). The increases in sample size
and staffing levels nearly offset each other, and the
per-interviewer workload remained fairly steady
over time. The distribution of workload (cases per
interviewer per month) at each month is shown by
the boxplots in Figure 1 (c). The median number of
cases per month (represented by each boxplot’s
center line), and the 25th and 75th percentiles
(represented by the edges of the boxes), show
remarkably little variation over the five-year period.

In this report, we do not attempt to model the
effects of sample reinstatement; those effects, if
present, are subsumed into long-term trends and
noise. Nor do we attempt to model the impact of
the minor changes in interviewer workload over
time. However, the wide variation in workload
within any given month suggests a diversity in FR
experiences which may partly explain some
variables of interest. FRs with the highest
workloads (up to 60 cases per month) tend to be
highly experienced interviewers who work solely
on the NCVS. FRs with smaller workloads (as few as
one case per month) may represent part-time
employees, or they may work primarily on other
Census Bureau surveys and receive NCVS cases
only sporadically. Each of the models that we will
fit include workload as a covariate. Some of our
models will also include it as a denominator for a
rate or as a precision (inverse-variance) weight.
Note that this measure of workload pertains only
to NCVS; it does not account for work done by the
FR for any other Census Bureau surveys. Workload
for other surveys could not be included in our
models because it was not available for the entire
five-year period.

2 | Effects of Field Interventions in the 2012 NCVS



Figure 1
Monthly Sample Size and Interviewer Workload
(a) Number of housing units selected, (b) number of interviewers working, and (c) boxplots of the
distribution of per-interviewer workload (housing units per interviewer) each month
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

Refresher Training and Performance Monitoring

NCVS refresher training, carried out in the Regional
Offices, was a two-day seminar to increase
awareness among FRs of the purpose of the survey
and the necessity of maintaining high standards of
performance. Part of this training was devoted to
the screener interview. The screener interview is
the portion of the survey where the FR queries the
respondent to determine if he or she had been a
victim of crime during the previous six months.
The screener questions are designed to jog the
respondent’s memory, helping them to recall
crimes that they might otherwise have have
overlooked. If the screener is done quickly or
haphazardly, incidents of crime could be missed,
causing published crime rates to be artificially low.
The training sessions also covered several other
topics, including

• procedures for completing the NCVS crime
incident report,

• use of the Census Bureau’s Contact History
Instrument (CHI), a system for capturing
information about the data collection

process, and

• introduction of new data quality field
indicators used to measure FR performance.

Before the new field indicators were introduced,
FRs were evaluated on the basis of their response
rates. The new indicators included measures of
household and person-within-household response
rates, completeness of the screener questionnaires
and crime incident reports, items that had to be
changed during the editing and coding process,
completeness of the CHI records, duration of the
screener and crime incident interviews, and
interviews for which the first contact took place
outside the monthly data collection period or
between the hours of 10 pm and 7 am.

If refresher training and performance monitoring
had been applied to all FRs simultaneously, the
effects of this intervention would have been
difficult to measure, because those effects would
have been confounded with changes that occurred
for other reasons at the same time. For this
reason, the program was phased in through a
randomized experiment. Teams of FRs were
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randomly assigned to two groups. The first group
(Cohort 1) received the intervention in 2011, and
the second group (Cohort 2) received it in 2012.
Applying the intervention to FR teams rather than
individual FRs reduced the possibility of Cohort 2
being influenced by the treatment given to Cohort
1, which would have contaminated between-group
comparisons. Most of the FRs in Cohort 1 were
trained in August 2011, and most of the FRs in
Cohort 2 were trained in February 2012, but some
who were unable to attend at those times were
trained later. By the end of the first quarter of
2012, 98% of the experienced FRs had been
trained, and most of the training that took place
after that represents new hires who were trained as
they joined the workforce. The number of FRs
trained each month, and the cumulative
percentage of FRs working on the survey who had
been trained by each month, are plotted in Figure
2.

In a companion report by Schafer (2013), we
modeled the effects of refresher training and
performance monitoring on rates of reported crime
in 2011 [1]. For the latter months of 2011 when
Cohort 1 had been trained but Cohort 2 had not,
the training effects were estimated by a
between-cohort comparison, and the
randomization ensured that the comparison was
fair.

Figure 2
Refresher Training by Month
(a) Number of Field Representatives (FRs)
trained each month, and (b) cumulative
percentage of working FRs who had been
trained by each month
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Source: United States Census Bureau,
National Crime Victimization Survey,
2011–2012

As we move into 2012, however, estimating
training effects becomes more challenging,
because by the end of the first quarter nearly all
the FRs had been trained; we no longer have a
large control group of untrained FRs to serve as a
baseline for comparison.

To estimate training effects in 2012, we lean
heavily on the longitudinal nature of these data
and on the variation in training dates across
interviewers. As interviewers change their status
from untrained to trained, any sudden or
unexpected shifts in outcomes that cannot be
accounted for by other evidence — by long-term
trends, by seasonal effects that were seen in
previous years, by changes in other covariates, and
by random month-to-month variation — will be
attributed to training. The scientific basis for
inferring causal effects of training is weaker for
2012 than for 2011; our conclusions are more
correlational than causal. These inferences require
intelligent models that describe how outcome
measures evolve under ordinary circumstances
when no intervention is taking place, so that when
the intervention does takes effect, we have a
yardstick for judging whether the observed change
is unusual.

Field Realignment

Field realignment was a major restructuring of
Census Bureau field operations to reduce the costs
of data collection. During realignment, the
geographical boundaries covered by the Regional
Offices were reconfigured. Six of the physical
Regional Offices were closed, and FRs were
assigned to a new management structure in the six
offices that remained open.

Realignment was phased in throughout the 2012
calendar year. For each of the six non-closing
Regional Offices, the new geographic region
covered by that office was divided into eight areas.
The areas were assigned to seven waves: one area
in each of the Waves 1, …, 6 and two areas in Wave
7. The waves transitioned to the new management
structure at different dates, beginning with Wave 1
on January 1 and concluding with Wave 7 on
November 1. The areas were not assigned to
waves in a randomized fashion. However, efforts
were made to ensure that the areas within the
waves were reasonably well balanced with respect
to size and important demographic characteristics.

As field realignment took effect in each wave,
interviewers for the NCVS transitioned to the new
management structure. The number of FRs

4 | Effects of Field Interventions in the 2012 NCVS



transitioning each month, and the cumulative
percentage of FRs who had transitioned by each
month, are plotted in Figure 3.

To estimate the effects of field realignment, we will
follow a similar strategy as the one we outlined for
refresher training and performance monitoring. As
interviewers switch over to the new management
structure, any sudden shift in outcomes that
cannot be explained by long-term trends, seasonal
effects, changes in other covariates, and random
monthly variation will be attributed to realignment.
The validity of this approach will depend on the
veracity of the model, and its ability to describe
how the outcomes evolve under ordinary
circumstances without the intervention.

Two Quality Measures

To assess the effects of refresher training,
performance monitoring and field realignment, we
will model two variables that are related to data
quality.

The first quality measure is the NCVS household
response rate. This rate is defined as the number
of successful household interviews divided by the
number of sampled households, excluding the
units determined to be out of scope. A plot of the
response rate by month for the period 2008–2012

Figure 3
Field Realignment by Month
(a) Number of Field Representatives (FRs)
transitioning each month, and (b)
cumulative percentage of working FRs who
had transitioned by each month
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Source: United States Census Bureau,
National Crime Victimization Survey,
2011–2012

is shown in Figure 4 (a). The response rates were
slowly increasing from 2008 until the first quarter
of 2010, and slowly decreasing thereafter. This
pattern may be partly explained by the 2010
Decennial Census. The highly visible campaign of
public outreach to encourage response to the
Decennial Census appears to have had the residual
effect of increasing participation in the NCVS; this
increase around Census Day (April 1, 2010) and
subsequent decline has been seen in other Census
Bureau household surveys as well. Careful
inspection of this plot also suggests the possibility
of annual seasonal effects, such as a dip in
response rate at the end of each year during the
Christmas holiday season. Thus, our efforts to
measure the effects of refresher training and field
realignment take place against a backdrop of
response rates that have been steadily declining
for nearly three years.

The other quality measure is the duration of the
screener interview. A plot of the average monthly
screener time is shown in Figure 4 (b). This
variable sharply increased during late 2011 and
early 2012, during the period of refresher training
and enhanced performance monitoring. We believe
this happened for two reasons. First, a part of the
training seminar was specifically devoted to the
screener interview, to teaching FRs the importance
of strictly following the protocol of askng all of the
screener questions, even though many of those
questions seem redundant. Second, the training
seminar introduced new policies by which the
managers were expected to monitor the
performance of their field staff. Until then, FRs had
been graded solely on their response rates.
Screener times had averaged less than 90 seconds,
and many screeners were over in less than one
minute, suggesting that many FRs were not
administering the screener as designed. After
training, with the implementation of enhanced
monitoring, managers were instructed to use
additional quality measures, including screener
times, as performance standards. A new
benchmark was set for screener times to be at least
3.5 minutes (210 seconds). An increase in screener
time was essentially mandated by a change in
management policy. Because the training of FRs
and the policy change occurred at approximately
the same time, it is difficult to separate the effect
of FR training from the effect of the policy change.

Two Survey Outcomes

In the sections ahead, we will also examine the
effects of refresher training and field realignment
on two key survey outcomes.

Effects of Field Interventions in the 2012 NCVS | 5



Figure 4
Two Key Measures of Data Quality by Month
(a) Percent household response rate each month, and (b) average duration of the screener interview
each month
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

Figure 5
Two Key Survey Outcomes by Month
(a) Incidents of personal crime per 1,000 persons interviewed each month, and (b) incidents of
household property crime per 1,000 households interviewed each month
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The first survey outcome is the rate of personal
crime incidents. This rate is defined as the total
number of crimes committed against persons
(including personal theft and violent crime)
collected by NCVS interviewers during a specified
period of time, divided by the number of persons
interviewed during that period of time. A plot of
these monthly rates of personal crime is shown in

Figure 5 (a). These rates are smaller than the
victimization rates published annually by BJS. The
published rates refer to a calendar year, whereas
the rates shown in Figure 5 (a) refer to the
six-month window prior to the date of the
interview. Published victimization rates are
weighted to take into account sample selection
procedures, nonresponse, differing windows of
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time, and the fact that some crimes have multiple
victims. Nevertheless, the two measures are
closely related, and changes in the rates shown in
Figure 5 (a) will strongly affect the published rates.
The rates shown in Figure 5 (a) are generally rising
from 2010 to 2012, with fluctuations due to
possible seasonal effects and noise.

Our second survey outcome is the rate of
household property crime incidents. This variable,
plotted in Figure 5 (b), is the number of household
property crimes collected by interviewers divided
by the number of households interviewed. This
rate also appears to rise from 2010 to 2012, with
possible seasonal effects and noise.

Our previous analyses showed that refresher
training and enhanced monitoring increased the
apparent rates of personal crime and household
property crime during the latter months of 2011,
but only among those crimes that had not been
reported to police [1]. In the sections ahead, we
will again distinguish crimes by whether or not
they were reported to police. For certain categories
of crime, unreported crimes tend to be less serious
and harder for respondents to recall. Crimes
reported to police may be more salient in
respondents’ memories and more likely to be
reported to FRs during the screener interviews,
whereas unreported crimes may be less salient and
more susceptible to interviewer effects and
changes in the field conditions. Relationships
between salience and difficulty of recall have been
demonstrated by Miller and Groves (1985) [2] and
by Czaja et al. (1994) [3].

3 MODELING STRATEGY

Basic Form of the Models

The variables plotted in Figures 4 and 5 are
summary measures for each month. But the
interventions of interest, refresher
training/performance monitoring and field
realignment, took effect in different months for
different FRs. This variation in timing across FRs is
a key part of our strategy for estimating
intervention effects. In a sense, this variation in
timing across FRs provides the replication that we
need to separate the effects of the intervention
from long-term trends and seasonal shifts that
may be happening at the same time. To tease out
the effects of interventions from other temporal
phenomena, we must disaggregate the data by
interviewers. The basic unit of analysis for each of
our models is the interviewer-month.

Measurements for interviewer-months are severely
unbalanced. From 2008 to 2012, the number of
interviewers working for the NCVS in any given
month was approximately 650–800. Over the
entire period, however, about 1,900 different
interviewers worked on the survey. Some highly
experienced FRs were present for all five years, but
many worked on the survey only sporadically, and
some were present for only a single month.
Methods that require a complete or nearly
complete series for each interviewer will not be
appropriate for these data. Fortunately, the models
that we fit are not adversely affected by the lack of
balance. Each interviewer contributes observations
for however many months he or she worked for the
NCVS from 2008 to 2012, and where appropriate,
each month’s contribution is weighted by the
interviewer’s NCVS caseload during that month.

Each of our models will take the following general
form. Let Yij denote an aggregated outcome (e.g.,
response rate) for interviewer i during month tj .
We assume that

Yij ∼ F (µij ; ϕ,wij), (1)

where F is a user-specified parametric family with
mean µij = E (Yij), optional dispersion parameter ϕ,
and optional inverse-variance weight wij . The mean
is decomposed as

g(µij) = ωij + f1( tj ) + f2( tj ) + αi + xTij β, (2)

where

• g is a user-specified link function,

• ωij is an optional offset term needed for rate
models,

• f1 is a smooth function describing a long-term
trend,

• f2 is a periodic function describing an annual
cycle,

• αi is a random effect for interviewer i ,
assumed to be distributed as N(0,σ2

α),

• xij is a vector of covariates, and

• β is a vector of coefficients to be estimated.

The effects of field interventions are contained in
β, and their interpretation will depend on how the
variables in xij are coded. The reliability of those
estimates will depend on how accurately we
describe the long-term and annual trends in f1 and
f2. For our purposes, it is best to avoid simple
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parametric forms (e.g., linear or quadratic
functions of time) which are probably unrealistic,
and work with function classes that are more
general. Before listing the covariates in xij , we
describe our strategy for characterizing f1 and f2.

Approximating a Long-Term Trend Using a
Natural Cubic Spline

Splines are classes of functions that are flexible
enough to approximate a trend of almost any
shape. To introduce the idea, suppose that we
have a data series y1, ... , yn that represents a
response variable recorded at times t1, ... , tn.
Suppose that

yi = f (ti ) + ϵi ,

where the ϵi ’s are independent errors with mean
zero and constant variance. Our goal is to estimate
f , a function that is believed to be continuous and
smooth but whose shape is not otherwise known.
To create a spline, we first partition the real line
into K + 1 intervals,

(−∞, ξ1) , [ξ1, ξ2), ... , [ξK ,∞).

where the cutpoints ξ1 < ξ2 < · · · < ξK are called
knots. A spline of degree r consists of an rth
degree polynomial over each interval,

f (t) =


β00 + β01 t + ... + β0r t

r if t ∈ (−∞, ξ1),
β10 + β11 t + ... + β1r t

r if t ∈ [ξ1, ξ2),
...

βK0 + βK1 t + ... + βKr t
r if t ∈ [ξK ,∞).

To make the function continuous and smooth, we
will apply constraints to the β’s to force f and its
first r − 1 derivatives to be continuous at the knots.
Various methods for constructing splines are
available. One simple method relies on the
truncated power basis. In this method, a spline of
degree r with knots at ξ1, ... , ξK is written as

f (t) = β0 + β1 t + · · · + βr t
r

+ u1 (t − ξ1)
r
+ + · · · + uK (t − ξK )

r
+,

where

(t − ξj)
r
+ =

{
(t − ξj)

r if t ≥ ξj ,
0 otherwise.

To estimate f , we compute the r + K + 1 basis
functions

1, t, ... , tr , (t − ξ1)
r
+, ... , (t − ξK )

r
+

for t1, ... , tn and treat them as regressors, fitting an
ordinary least-squares (OLS) regression of y1, ... , yn
on these variables to estimate the β’s and u’s. If a
linear regression is not appropriate (e.g., if the yi
represents a proportion or rate) then we can easily

switch to a generalized linear model (e.g., logistic
or loglinear regression).

To illustrate, Figure 6 shows an artificial dataset of
n = 26 observations whose measurement times are
equally spaced. The line plotted in Figure 6 (a) is a
cubic spline with K = 5 equally spaced knots fit by
OLS. Cubic splines are a popular choice, because
they are very smooth; the knots in the fitted curve
are invisible to the eye. One disadvantage shown
by this example is that at the ends of the series,
the fitted function becomes erratic; beyond the
boundary knots (where t < ξi and t > ξk ), the
estimate of f (t) is strongly pulled toward the first
and last observations (y1 and yn), causing the curve
to veer off in implausible directions.

To stabilize a cubic spline near the edges of the
space, it is customary to impose additional
constraints to require the function to be linear
beyond the boundary knots,

f ′′(t) = 0 for t ≤ ξ1 and t ≥ ξK .

A cublic spline with this constraint is called a
natural cubic spline. Natural cubic splines can be
constructed in various ways. For our purposes, we
will use second divided differences of truncated
power functions (White et al., 1998; Welham,
2008) [4] [5]. Given a set of knots ξ1, ... , ξk , the
natural cubic spline is written as

f (t) = β0 + β1 t +
K−1∑
k=2

uk P
∗
k (t),

where

P∗
k (t) =

1
6

{
h−1
k (t − ξk+1)

3
+ − (h−1

k + h−1
k−1 ) (t − ξk)

3
+

+ h−1
k−1 (t − ξk−1)

3
+

}
,

and hk = (ξk+1 − ξk). To reduce collinearity, we
replace P∗

k (t) with

Pk(t) = P∗
k (t) − âk − b̂k t,

where âk and b̂k are the intercept and slope from
the ordinary least-squares regression of P∗

k (t) on t
over the sample points,[

âk

b̂k

]
=

[
n

∑n
i=1 ti∑n

i=1 ti
∑n

i=1 t
2
i

]−1 [ ∑n
i=1 P

∗
k (ti )∑n

i=1 ti P
∗
k (ti )

]
.

The basis becomes

f (t) = β0 + β1 t +

K−1∑
k=2

uk Pk(t). (3)

This representation has the attractive property that

uk = f ′′(ξk)
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Figure 6
Examples of Fitted Spline Functions
Hypothetical data series of n = 26 equally-spaced observations, with estimated mean functions
approximated by four different methods: (a) cubic spline with K = 5 knots, fit by ordinary least squares;
(b) natural cubic spline with K = 5 knots, fit by ordinary least squares; (c) natural cubic spline with K = 9
knots, fit by ordinary least squares; and (d) penalized natural cubic spline with K = 9 knots, fit as a linear
mixed model

(a) Cubic spline, 5 knots (OLS) (b) Natural cubic spline, 5 knots (OLS)

(c) Natural cubic spline, 9 knots (OLS) (d) Penalized natural cubic spline, 9 knots

ξ1 ξ2 ξ3 ξ4 ξ5 ξ1 ξ2 ξ3 ξ4 ξ5

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9

for each interior knot k = 2, ... ,K − 1. The second
derivatives vanish at the boundary knots,

f ′′(ξ1) = f ′′(ξK ) = 0,

in keeping with the definition of the natural cubic
spline. A natural cubic spline with K = 5 knots fit
to the artificial dataset by OLS is shown in Figure 6
(b). The extra constraints of linearity beyond the
boundary knots have solved the problem of
instability at the edges.

Roughness Penalties and Mixed Models

The smoothness of a spline is heavily influenced
by the number and placement of knots. As the
number of knots increases, the curve becomes
more flexible, exhibiting short-term peaks and
valleys. A natural cubic spline with K = 9 equally
spaced knots fit by OLS is shown in Figure 6 (c).
Comparing Figures 6 (b) and 6 (c), the latter shows

more fluctuation. The spline with K = 9 knots
appears to be overfitted; the short-term
fluctuations are probably just noise. However, it is
possible that the spline with K = 5 knots is
underfitted, glossing over some features that may
be authentic.

For scientific reasons, we want to avoid subjective
choices about the number and placement of knots
that will heavily influence the results. Rather, we
prefer a method that adapts automatically,
choosing a degree of smoothness appropriate for
the given dataset. This problem has been well
studied, with many articles and books published
over several decades. One well known approach is
the smoothing spline (Wahba, 1990; Green and
Silverman, 1994) [6] [7]. The smoothing spline is
defined as the minimizer of the function

(y − f)TV−1(y − f) + λ

∫
[f ′′(t)]

2
dt (4)
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over the space of twice-differentiable functions f ,
where y = (y1, ... , yn)

T , f = ( f (t1), ... , f (tn) )
T , V is the

covariance matrix of Y1, ... ,Yn, and λ is a
user-specified smoothing parameter. The solution
to this minimization problem is a natural cubic
spline with knots located at the design points (i.e.,
at all the distinct values of ti ).

Smoothing splines have attractive theoretical
properties, but computing them becomes time
consuming as the number of design points
increases. An economical alternative is to specify a
grid of knots, spaced equally over the range of
t1, ... , tn or at their quantiles, and fit a spline with a
roughness penalty. Variations on this approach are
known as P-splines (Eilers and Marx, 1996) [8] and
penalized splines (Ruppert, Wand and Carroll,
2003) [9].

Consider a natural cubic spline model

yi = β0 + β1 ti +
K−1∑
k=2

uk Pk(ti ) + ϵi ,

where ϵi ∼ N(0,σ2
ϵ ), and where the Pk ’s are the

basis functions shown in (3). Suppose we apply a
large number of knots ξ1, ... , ξK spaced at regular
intervals. The number of knots is not crucial,
provided that it is large enough that the ordinary
regression estimate will be overfitted. Estimating
the β’s and u’s by OLS will produce a fitted curve
that exhibits too much fluctuation. However, if we
treat the u’s as random variables drawn from a
common distribution,

u2, ... , uK−1 ∼ N(0,σ2
u), (5)

then we can estimate the additional variance
component σ2

u from the data. The model becomes

y = Xβ + Pu + ϵ, (6)

where

X =


1 t1
1 t2
...

...
1 tn

 , P =


P2(t1) ... PK−1(t1)
P2(t2) ... PK−1(t2)

...
. . .

...
P2(tn) ... PK−1(tn)

 ,

β = (β0,β1)
T , u = (u2, u3, ... , uk−1)

T , and
ϵ = (ϵ1, ϵ2, ... , ϵn)

T , and where

u ∼ N(0,σ2
u I),

ϵ ∼ N(0,σ2
ϵV).

This is an example of a linear mixed model, also
known as a linear mixed-effects model. It differs
from common examples of linear mixed models in

that the observational units j = 1, ... , n are crossed
with the random coefficients rather than nested
within them. Nevertheless, this model can be fit
with software packages that accommodate crossed
random effects (e.g., PROC MIXED in SAS).
Estimates of the random coefficients in u will be
shrunk toward zero, producing a curve that is
smoother than the OLS version. In fact, under
these basis functions, the uj ’s represent the
second derivatives of f at the interior knots, and
the distributional assumption on u imposes a
roughness penalty that is a discrete approximation
to the second term in the smoothing spline (4).
The fitted curve from this penalized natural cubic
spline is a data-determined compromise between
the overfitted OLS spline and a simple linear
regression of y1, ... , yn on t1, ... , tn.

To illustrate, we fit a penalized natural cubic spline
with K = 9 knots to the artificial dataset shown in
Figure 6, using the linear mixed-model formulation
(6). The resulting curve is plotted in Figure 6 (d).
The extra distributional assumption (5) imposed
on the u’s has effectively removed the short-term
peaks and valleys found in the OLS curve of Figure
6 (c).

In the following way, we embed penalized natural
cubic splines into our models for NCVS data.
Returning to the model shown in Equation (2), we
represent the long-term trend as

f1(t) = β0 + β1 t +
K−1∑
k=2

uk Pk(t), (7)

with knots ξ1, ... , ξK placed at the beginning of each
quarter-year. The first two regressors (the constant
and t) are placed into the covariate vector xij , so
that β0 and β1 are subsumed into β. The basis
functions P2(t), ... ,PK−1(t) are added to the model
(2) as regressors with random coefficients
distributed as u2, ... , uK−1 ∼ N(0,σ2

u). The resulting
model becomes a generalized linear mixed model
with observational units that are crossed with the
random coefficients u2, ... , uK−1.

Approximating a periodic trend by a periodic
cubic spline

In addition to the long-term trend f1, we need a
method for specifying the function f2 in our model
(2) that is both flexible and periodic, with a period
fixed at one year. That is, if t is expressed in
years, we need f2(t) to be continuous and smooth,
with the property

f2(t) = f2(t + 1) = f2(t + 2) = · · ·

for any value of t.
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Various methods for incorporating periodic trends
into longitudinal models have been proposed. One
popular technique is to apply a Fourier basis
consisting of sine-cosine pairs. Using a Fourier
basis, a periodic function with period T can be
expressed as

f2(t) =

M∑
m=1

{
δ2m−1 sin

(
2πmt

T

)
+ δ2m cos

(
2πmt

T

)}
,

where δ1, ... , δ2M are coefficients to be estimated.
With monthly measurements, we have 12− 1 = 11
degrees of freedom available to estimate an annual
cycle, so the largest number of sine-cosine pairs
we can use is M = 5. While experimenting with
Fourier bases, we found that the resulting fitted
function f2 exhibited implausible short-term
oscillations within the year. To dampen these
short-term oscillations, we switched to a method
based on periodic cubic splines (Zhang, Lin and
Sowers, 2000) [10].

To construct a periodic spline with period T , we
begin with the ordinary cubic spline

f2(t) = β0 + β1 t + β2 t
2 + β3 t

3 +
K∑

k=1

δj (t − ξj)
3
+ (8)

for coefficients β0, ... ,β3, δ1, ... , δK , with knots
located between 0 and T . To make the spline
periodic over t ∈ [0,∞), two changes are needed.
First, we replace each occurrence of t on the
right-hand side of (8) with the seasonal operator

s(t) = mod(t,T ).

Second, we enforce continuity upon f and its first
two derivatives by imposing the constraints
f2(0) = f2(T ), f ′2(0) = f ′2(T ), and f ′′2 (0) = f ′′(T ). With
some algebra, the constrained version of (8)
becomes

f2(t) = β0 +
K∑

k=1

δk P
∗
k ( s(t) ),

where

P∗
k (s) = aks + bks

2 + cks
3 + (s − ξk)

3
+,

and

ak = − T (T − ξk)

2
+

3(T − tk)
2

2
− (T − ξk)

3

T
,

bk =
3(T − ξk)

2
− 3(T − ξk)

2

2T
,

ck = − T − ξk
T

,

which corrects a typographical error by Zhang, Lin
and Sowers (2000) [10]. Finally, we impose an
additional requirement that∫

f2(t) dt ≈ 0

by setting β0 = 0 and centering each basis function
at its average value, averaging over the design
points of t. Let t1, t2, ... , tn denote the distinct
values of t appearing in the dataset, and let

Pk(s) = P∗
k (s) − P̄k ,

where

P̄k =
1

n

n∑
i=1

P∗
k ( s(ti ) ).

The function becomes

f2(t) =

K∑
k=1

ξk Pk( s(t) ).

We found that by placing K = 6 knots over the
calendar year at two-month intervals, we have been
able capture the major features of each periodic
trend, but without the implausible within-year
oscillations that were an artifact of the Fourier
basis. These six periodic basis functions are placed
in the covariate vector xij of our model (2), and the
corresponding coefficients are subsumed into β.

Intervention Effects

Having described the long-term and periodic
trends, we now turn our attention to the effects of
the interventions. After experimenting with
different ways to code the interventions, we settled
on a very simple method. To account for refresher
training and performance monitoring, we created a
pair of dummy indicators,

After.Training.2011ij = 1 if tj is in 2011 and
interviewer i had been
trained, 0 otherwise,

After.Training.2012ij = 1 if tj is in 2012 and
interviewer i had been
trained, 0 otherwise,

and included them as covariates in the vector xij .
The corresponding elements of β become simple
contrasts (trained minus untrained) for 2011 and
2012.

Similarly, we defined a dummy indicator for field
realignment,

After.Realignmentij = 1 if interviewer i
experienced realignment
by month tj , 0 otherwise,
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so that the corresponding element of β is a simple
contrast (realigned versus not).

Information for estimating these coefficients
comes mainly from data in late 2011 and 2012
when the interventions are being phased in. Data
from earlier years may strengthen these estimates
by providing information about long-term and
periodic trends and the effects of other covariates.

Additional Covariates

In addition to the long-term and periodic trends,
our models include additional covariates to adjust
for differences in the interviewers’ monthly
assignments. One key covariate, which we
described in Section 2, is the interviewer’s
caseload,

WLHHij = number of NCVS HH’s assigned to
interviewer i during month tj .

In each of our models, this variable is included as a
covariate in xij . Depending on the model, it may
also appear as a precision weight wij or as an offset
term ωij .

The other covariate in our models comes from the
Census Bureau’s Planning Database. The Planning
Database, which was created using data from the
2010 Census and the American Community Survey,
provides information at fine levels of geography
(census block groups) that are known to be helpful
for planning and designing surveys. One such
variable is a national classification of block-groups
into three clusters that represent different levels of
difficulty for conducting census and survey
operations. Cluster 1 represents areas where
enumeration is easy and response rates tend to be
high. Rural and suburban locations tend to fall into
Cluster 1. Clusters 2 and 3 represent more heavily
urbanized areas where data collection tends to be
more difficult. By linking to the Planning Database,
we were able to identify the cluster membership
for about 88% of the housing units in NCVS. For
the remaining 12%, the cluster could not be
determined because key geographic information
was missing. Exploratory analyses showed that
among those 12%, the NCVS response rates were
unusually low, so we decided to combine them
with Clusters 2 and 3. We then aggregated this
variable to produce a summary statistic for the
interviewer-month,

Cluster.1ij = proportion of interviewer i ’s
cases during month tj
that are known to belong to
Planning Database Cluster 1.

We conjectured that this covariate would have a
significant positive correlation with response rates
and a significant negative correlation to crime
rates.

Fitting the Models

The models we have described are generalized
linear mixed models with an unusual pattern of
crossed and nested random effects. Although
some existing software packages (PROC NLMIXED
in SAS, the GLAMM package in Stata) are capable of
fitting models like these, we could not find any
available package that had all the capabilities we
needed. With observations for approximately
42,000 interviewer-months, it is difficult to fit
these models in a reasonable amount of time.

To compute parameter estimates, we implemented
a specialized Bayesian Markov chain Monte Carlo
(MCMC) procedure programmed in Fortran 95 and
called from R. For each model, the MCMC chain
was run for 25,000 cycles following a burn-in
period of 1,000 cycles. Parameters were
subsampled and saved with a thinning interval of 5
cycles, yielding a sample of 5,000 draws from the
posterior distribution.

For an overview of the algorithm and the prior
distributions applied to the parameters, see the
Technical Appendix by Schafer (2013) [1].

4 RESULTS FOR HOUSEHOLD RESPONSE
RATES

In our first model, the outcome variable is

Yij = household response rate for
interviewer i during month tj .

We assumed a binomial distribution,

Yij ∼ n−1
ij Bin( nij , µij),

where nij = WLHHij is the number of households
assigned to interviewer i during month tj . The link
function is logistic, and the mean function is

log
(

µij

1− µij

)
= f1(tj) + f2(tj) + αi + xTij β,

where f1 is a long-term trend, f2 is an annual
periodic cycle, αi is a random effect for interviewer
i , xij is a vector of covariates, and β is a vector of
coefficients.

The estimate of the long-term trend is plotted in
Figure 7 (a), along with pointwise 95% error
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Figure 7
Long-Term Trend for Household Response Rate
(a) Estimated long-term trend for household response rate on the log-odds scale (solid line) with
pointwise 95% error bounds (dashed lines), and (b) estimated first derivative of the long-term trend
(solid line) with pointwise 95% error bounds (dashed lines)
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

bounds. At each value of t, the estimate value of
f1(t) is a simulated posterior median, and the error
bounds are the 2.5th and 97.5th posterior
percentiles, based on sample of 5,000 draws from
the joint posterior distribution of the unknown
coefficients in (7). This trend, which is displayed
on the logistic or log-odds scale, tracks the overall
pattern seen in Figure 4 (a); the response rate rose
from 2008 through the first quarter of 2010 and
has been declining ever since. Notice that the first
derivative of the spline function (7) is

f ′1(t) = β1 +

K−1∑
k=2

uk P
′
k(t), (9)

where P ′
k(t) is the first derivative of the natural

cublic spline basis function Pk(t) defined in Section
3. Under this model, estimating the instantaneous
change is no more difficult than estimating the
trend itself, because both the natural cubic spline
and its derivative are linear combinations of the
same coefficients. The estimated first derivative is
plotted in Figure 7 (b), along with 95% pointwise
error bounds. From early 2010 onward, the
estimate of f ′1(t) has been consistently negative,
and the error bounds lie below zero, indicating
that throughout this period the downward trend in
response rate was statistically significant.

A plot of the estimated annual periodic cycle f2(t)
is shown in Figure 8, along with 95% error bounds.
Because the average value of this function over the

year is constrained to be zero, error bounds that
do not cover zero indicate times where the
response rate lies above or below its annual
average. The major features of this periodic cycle
are a significant increase in response rate during
March and April and a significant decrease during
the holiday season at the end of the year.

Figure 8
Annual Periodic Cycle for
Household Response Rate
Estimated annual periodic cycle for
household response rate on the log-odds
scale (solid line) with pointwise 95% error
bounds (dashed lines)
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Table 1: Coefficients, standard errors, and
Bayesian p-values from model for
household response rate

Coef SE p

WLHH .0011 .0009 .224

Cluster.1 .0682 .0240 .004

After.Training.2011 −.0847 .0335 .014

After.Training.2012 −.0677 .0390 .078

After.Realignment .0760 .0459 .096

Source: United State Census Bureau,
National Crime Victimization Survey, 2008–2012

Estimates for the key coefficients in β are shown in
Table 1, along with standard errors and simulated
p-values. In this table and all subsequent tables,
the estimated coeffients and standard errors are
simulated posterior means and standard
deviations, averaged across 5,000 random draws
from the Bayesian posterior distribution. The
p-values are simulated Bayesian p-values, defined
as one minus the probability content of the
narrowest equal-tailed posterior interval that
covers the parameter’s null value of zero. These
may be interpreted in roughly the same manner as
significance values from frequentist two-tailed
hypothesis tests, with a value of .05 or less
indicating an effect that is statistically significant.

In Table 1, the coefficient for WLHH (.0011) is not
significantly different from zero (p = .224),
indicating that there is little evidence of a
relationship between response rates and
interviewers’ monthly workloads.

The coefficient for Cluster.1 (.0682) is positive and
statistically significant (p = .004). As expected, a
higher proportion of households located in
Planning Database Cluster 1 is associated with a
higher response rate.

Examining the coefficient for After.Training.2011
(−.0847), we see that the estimated effect of
refresher training and performance monitoring in
2011 is negative and statistically significant
(p = .014). The corresponding effect for 2012
((−.0677)) is not significant (p = .078). These
coefficients pertain to the log-odds. To understand
the implications on the probability scale, suppose
we start with a response rate of 90%. A change in
the log-odds of −0.0847 would reduce the rate by
0.8 percentage points to 89.2%, and a change in
the log-odds of −0.0677 reduces the rate by 0.6
percentage points to 89.4%. Thus, refresher
training and performance monitoring are
associated with a modest but significant decrease

in household response rates in 2011, and a
smaller, non-significant decrease in 2012.

One possible explanation for why refresher
training and performance monitoring would reduce
response rates is the change in perfomance
standards that were discussed in Section 2. Prior
to training, FRs were evaluated solely on their
response rates. As the interviewers were trained,
managers were instructed to begin monitoring
their performance by additional quality measures
that included screener times. If FRs had previously
been trying to convert difficult cases (households
for which response was unlikely) by conducting the
screeners too quickly, then we would expect
response rates under the new performance
measures to go down. The fact that they have
gone down only slightly is relatively good news. It
seems plausible that the new measures had the
intended consequence of emphasizing survey
quality over just response rates, possibly reducing
falsified and quick interviews.

The estimated coefficient for After.Realignment
(.0760) is positive. Field realignment was
implemented during 2012, a period when
response rates were declining. If this effect were
real, it would indicate that realignment slowed that
decline, and the response rate after realignment
was slightly higher (by approximately 0.7
percentage points) than it would have been
without realignment. However, this effect is not
statistically significant (p = .096), so the evidence
for an effect of realignment is inconclusive.

5 RESULTS FOR SCREENER TIMES

For our second model, the response variable is

Yij = average screener time for
interviewer i during month tj .

We assumed a normal distribution,

Yij ∼ N(µij , σ
2/nij ),

where nij is the number of persons interviewed by
interviewer i during month tj . The link function is
the identity. Preliminary analyses revealed that
there were no discernible annual periodic effects in
screener times, so we simplified this model by
removing the periodic component. The model is

µij = f1(tj) + αi + xTij β,

where f1 is a long-term trend, αi is a random effect
for interviewer i , xij is a vector of covariates, and β
is a vector of coefficients.
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Figure 9
Long-Term Trend for Average Screener Time
(a) Estimated long-term trend for average duration of the screener interview in seconds (solid line) with
pointwise 95% error bounds (dashed lines), and (b) estimated first derivative of the long-term trend
(solid line) with pointwise 95% error bounds (dashed lines)
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

The estimated long-term trend f1(t) is shown in
Figure 9. This plot shows a large increase in
screener times of about 60–70 seconds in late
2011 and early 2012, the period when refresher
training and performance monitoring was being
phased in. This effect is dramatic, but it is smaller
than the increase in screener times of
approximately two minutes that we saw in Figure 4
(b). To understand the reason for the discrepancy,
note that this model also includes as predictors the
dummy-indicator variables After.Training.2011
and After.Training.2012. The coefficients for those
predictors, which will be shown momentarily,
estimate the jump in screener times for an FR
immediately after the FR was trained. In addition
to that immediate increase, the long-term trend
suggests that all FRs experienced a general pattern
of increase in late 2011 and early 2012 regardless
of when they were trained. This might be
explained by the new performance monitoring
measures which were introduced across the
workforce, including a new benchmark of 3.5
minutes (210 seconds) for screener interviews.
Because training and enhanced monitoring were
enacted at roughly the same time, it is difficult to
separate the effects of these two initiatives. The
longitudinal model appears to have picked up this
combined effect partly in the coefficients for
After.Training.2011 and After.Training.2012, and
partly in the estimated long-term trend.

The first derivative of the long-term trend with 95%

error bounds is shown in Figure 9 (b). This plot
reveals brief periods of significant increase in early
2009, mid-2010 and early 2011; a period of major
increase in late 2011 and early 2012; and a period
of significant decline in late 2012. The declining
screener times at the end of the series may be a
cause for concern, depending on what happens in
2013.

Table 2 shows coefficients, standard errors and
p-values from the screener-times model. The
coefficient for WLHH is negative and statistically
significant (p = .000). Interviewers with higher
monthly workloads tend to spend less time on
screener interviews than those with lower monthly
workloads. The size of this effect, however, is very
small. The coefficient of −.1838 suggests that,
holding all other predictors constant, an increase
in workload of one household per month would
reduce the average screener time by only about
one-fifth of a second, a change that has no
practical significance.

In contrast, the estimated effects for
After.Training.2011 and After.Training.2012
(69.28 and 74.05) are both statistically significant
and large. As mentioned earlier, these estimate
the change in average screener time that occurred
immediately after training. They suggest that, if all
other explanatory variables were equal, the
estimated difference in average screener times for
trained and untrained interviewers would be about
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Table 2: Coefficients, standard errors, and
Bayesian p-values from model for
average screener time

Coef SE p

WLHH −.1838 .0390 .000

Cluster.1 −.9582 1.137 .392

After.Training.2011 69.28 1.798 .000

After.Training.2012 74.05 2.384 .000

After.Realignment 3.538 2.849 .214

Source: United State Census Bureau,
National Crime Victimization Survey, 2008–2012

70 seconds. Over the same period of time when
training was taking place, however, the long-term
trend showed an average increase of roughly
60-70 seconds. Taken together, these effects
account for an increase in average screener times
by about two minutes that were seen in late 2011
and early 2012 as refresher training and enhanced
monitoring were being phased in.

6 RESULTS FOR PERSONAL CRIME

Our next model describes the number of incidents
of personal crime recorded during the interview
process. The response variable is

Yij = personal crimes discovered by
interviewer i during month tj .

This variable is assumed to have a negative
binomial distribution,

Yij ∼ NegBin(α = κ−1, β = κ−1µij ),

where κ > 0 is an unknown dispersion parameter.
We applied a negative binomial model because
preliminary analyses showed that the responses
were overdispersed relative to a Poisson
distribution.

It is reasonable to believe that the number of
personal crimes reported by an interviewer is
approximately proportional to the number of
persons interviewed. That is, we may suppose

µij ∝ nij ,

where nij is the number of persons interviewed by
interviewer i during month tj . Applying this
assumption, and using a logarithmic link, the
model for the mean becomes

logµij = ωij + f1(tj) + f2(tj) + αi + xTij β,

where ωij = log nij , f1(t) and f2(t) are long-term and
periodic trends, αi is a random effect for
interviewer i , and xij is a vector of covariates. The
ωij on the right-hand side of the equation is called
an offset term; it is a predictor whose coefficient is
assumed to be fixed at one. Alternatively, we can
place the offset to the left-hand side, so that this
can be viewed as a loglinear model for the
personal crime incident rate,

log
(
µij

nij

)
= f1(tj) + f2(tj) + αi + xTij β. (10)

Plots of the estimated long-term trend ft(t), and
the estimated first derivative of the estimated
long-term trend f ′1(t), are shown in Figure 10. The
estimate of f1(t) shows a mild decrease from 2008
to 2010 and a mild increase from 2010 to 2012.
Except for a period in 2009 where the error
bounds on f ′1(t) briefly dip below zero, the
evidence for change is not conclusive. However,
the overall pattern is consistent with the official
victimization estimates reported annually by BJS.
Except for small numbers of personal thefts
(pocket picking, completed or attempted purse
snatching), most of the crime incidents included in
this model were classified as violent crimes.
Truman, Langton and Planty (2013) reported that
rates of violent crime victimization rose over the
last two years (from 2010 to 2011, and from 2011
to 2012) after a period of steady decline prior to
2010 [11]. The curve shown in Figure 10 (a) has
the same shape: declining from 2008 to 2010,
rising from 2010 to 2012.

A plot of the estimated annual periodic cycle f2(t) is
shown in Figure 11. The only feature of this cycle
that is statistically significant is a slight dip around
the month of July; during the rest of the calendar
year, the rate of personal crime incidents is not
significantly different from the annual average.

Estimated coefficients, standard errors and
p-values from this model are shown in Table 3.
The coefficient for WLHH is small (−.0014) and not
significantly different from zero (p = .495)). As we
conjectured, the coefficient for Cluster.1 (−.2295)
is negative and significant (p = .000). Interviewers
whose assignments include a higher proportion of
housing units in Cluster 1 tend to report fewer
incidents of personal crime. The coefficient for
After.Realignment is small (−.0527) and
insignificant (p = .614), so there is no evidence
that the field realignment program of 2012
affected the collection of personal crimes.
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Figure 10
Long-Term Trend for Incidents of Personal Crime
(a) Estimated long-term trend for rate of personal crime incidents on the log scale (solid line) with
pointwise 95% error bounds (dashed lines), and (b) estimated first derivative of the long-term trend
(solid line) with pointwise 95% error bounds (dashed lines)
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

The coefficient for After.Training.2011 is positive
(.1459). Although it is not significantly different
from zero (p = .111), it presents mild evidence that
refresher training and performance monitoring
increased the rate of personal crime incidents
reported in 2011. The coefficient for
After.Training.2012, however, is very small (.0138)

Figure 11
Annual Periodic Cycle for
Incidents of Personal Crime
Estimated annual periodic cycle for rate of
personal crime incidents on the log scale
(solid line) with pointwise 95% error bounds
(dashed lines)
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2011–2012

and insignificant (p = .897), so we have essentially
no evidence that this program impacted the
collection of personal crimes in 2012.

In prior analyses for 2011, we concluded that
refresher training and performance monitoring did
increase the collection of personal crimes that
year, but the effect was limited to crimes that were
not reported to police [1]. A crime that was
reported to police might be more salient in the
respondent’s memory and more easily discovered
by an FR during a screener interview, whereas an
unreported crime might be discovered only if the
interview is done carefully. One of the major goals
of refresher training and performance monitoring
was to encourage FRs to conduct the screener

Table 3: Coefficients, standard errors, and
Bayesian p-values from model for
incidents of personal crime

Coef SE p

WLHH −.0014 .0021 .495

Cluster.1 −.2295 .0558 .000

After.Training.2011 .1459 .0929 .111

After.Training.2012 .0138 .0980 .897

After.Realignment −.0527 .1039 .614

Source: United State Census Bureau,
National Crime Victimization Survey, 2008–2012
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Table 4: Coefficients, standard errors and Bayesian p-values from model for incidents of personal crime,
classified by by whether the crime was reported to police

All personal crimes Reported to police Not reported to police

Coef SE p Coef SE p Coef SE p

WLHH −.0014 .0021 .495 −.0007 .0024 .782 −.0029 .0028 .306

Cluster.1 −.2295 .0558 .000 −.1987 .0663 .003 −.2568 .0757 .001

After.Training.2011 .1459 .0929 .111 .0224 .1178 .832 .2948 .1271 .018

After.Training.2012 .0138 .0980 .897 −.0707 .1201 .581 .0976 .1309 .456

After.Realignment −.0527 .1309 .614 −.0975 .1242 .423 .0292 .1374 .829

Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

more carefully. Therefore, if this program had an
impact on the collection of crimes, it is reasonable
to think that the effect would be stronger for
crimes that were less salient.

To see if our present analyses support a similar
conclusion, we applied the current model (10) just
to personal crimes that were reported to police,
and again to personal crimes that were not
reported to police. Coefficients, standard errors
and p-values from these separate models are
shown in Table 4. For crimes reported to police,
the coefficient for After.Training.2011 is small
(.0224) and insignificant (p = .832), but for crimes
not reported to police, the coefficient is large
(.2948) and significant (p = .018). Thus, the
results for 2011 shown here are highly consistent
with what we found in our previous analyses [1].

However, these effects of training and monitoring
appear to have been short-lived. The coefficients
for After.Training.2012 shown in Table 4 are small
and insignificant. The elevation in personal crimes
due to training and monitoring seen in late 2011
was apparently not sustained into 2012.

7 RESULTS FOR PROPERTY CRIME

Our final model describes incidents of household
property crime. The response variable is

Yij = household property crimes discovered by
interviewer i during month tj .

As in our previous model, we assume

Yij ∼ NegBin(α = κ−1, β = κ−1µij ),

where κ is a dispersion parameter. The offset is

ωij = log nij ,

where nij is the number of household interviews
conducted by interviewer i during month tj . In all

other respects, this model has the same form as
the previous one (10). The estimated long-term
trend and its first derivative are plotted in Figure
12. A mild but statistically significant decline took
place in 2008 and 2009, but from 2010 onward
the trend is essentially flat. According to official
national estimates published by BJS, however, the
rate of property crime victimization rose between
2010 and 2011 and between 2011 and 2012, and
both increases were statistically significant [11]
[12]. We can think of several possible explanations
for this apparent discrepancy. First, the national
estimates were weighted to adjust for the sample
design, nonresponse and other complications,
whereas the model that generated the trends in
Figure 12 was applied to raw, unweighted survey
responses. Second, the national estimates
represent marginal rates, whereas the trends
shown in Figure 12 condition upon some
time-varying covariates. Third, the estimated
curves in Figure 12 contain a fair amount of noise;
in particular, the error bounds on the first
derivative are wide enough that we cannot rule out
the possibility that the rate may have increased
from 2010 to 2012. Although the shape of the
trends in Figure 12 do not closely mimic the trend
in national estimates, the discrepancy is not large
enough to be worrisome.

The estimated annual periodic cycle for household
property crime is shown in Figure 13. Rates are
significantly higher than the annual average during
the holiday season of late November through
January, and significantly lower than the annual
average during May, June and July.

Table 5 shows estimated coefficients, standard
errors and p-values from the property-crime
model. As in the personal-crime model, the
coefficient for WLHH is close to zero (.0022) and
insignificant (p = .086), whereas the effect of
Cluster.1 is negative (−.1907) and highly
significant (p = .000). As we conjectured, a higher
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Figure 12
Long-Term Trend for Incidents of Household Property Crime
(a) Estimated long-term trend for rate of household property crime incidents on the log scale (solid
line) with pointwise 95% error bounds (dashed lines), and (b) estimated first derivative of the long-term
trend (solid line) with pointwise 95% error bounds (dashed lines)
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Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

proportion of households in Cluster 1 is associated
with lower rates of property crime. The coefficient
for After.Realignment is very small (−.0089) and
insignificant (p = .834), so there is no evidence
that the collection of property crimes was
impacted by the field realignment. Refresher

Figure 13
Annual Periodic Cycle for
Incidents of Property Crime
Estimated annual periodic cycle for rate of
household property crime incidents on the
log scale (solid line) with pointwise 95% er-
ror bounds (dashed lines)
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Source: United States Census Bureau,
National Crime Victimization Survey,
2011–2012

training and performance monitoring led to a
significant increase in the collection of property
crimes in 2011 (p = .012) but not 2012 (p = .232).

In previous analyses from 2011, we found that the
effects of refresher training and performance
monitoring on property crimes were moderated by
whether the crimes were reported to police [1]. To
see if this pattern appears in the current analysis,
we re-fit the property-crimes model seperately to
crimes reported to police and crimes not reported
to police. Results from these models, which are
summarized in Table 6, show a similar pattern to
what we found with personal crime. In 2011,
refresher training and performance monitoring

Table 5: Coefficients, standard errors, and
Bayesian p-values from model for
incidents of property crime

Coef SE p

WLHH .0022 .0013 .086

Cluster.1 −.1907 .0332 .000

After.Training.2011 .1196 .0473 .012

After.Training.2012 .0624 .0525 .232

After.Realignment −.0089 .0574 .834

Source: United State Census Bureau,
National Crime Victimization Survey, 2008–2012
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Table 6: Coefficients, standard errors and Bayesian p-values from model for incidents of property crime,
classified by by whether the crime was reported to police

All property crimes Reported to police Not reported to police

Coef SE p Coef SE p Coef SE p

WLHH .0022 .0013 .086 .0009 .0017 .614 .0025 .0017 .119

Cluster.1 −.1907 .0332 .000 −.1125 .0447 .008 −.2464 .0404 .000

After.Training.2011 .1196 .0473 .012 .0845 .0708 .231 .1466 .0605 .017

After.Training.2012 .0624 .0525 .232 .0835 .0823 .284 .0474 .0620 .448

After.Realignment −.0089 .0574 .834 −.0062 .0868 .898 .0060 .0692 .946

Source: United States Census Bureau, National Crime Victimization Survey, 2008–2012

increased the collection of unreported property
crimes but had no discernible effect on reported
crimes. In 2012, the effects of training and
monitoring were small and insignificant.

8 IMPLICATIONS

Although our previous analyses showed some
effects of refresher training and enhanced
monitoring on collection of crimes by interviewers
who had experienced that intervention in late 2011
[1], the present analyses show that those effects
did not continue into 2012. Using longitudinal
models that account for long-term trends, periodic
cycles, other covariates, and interviewer variability,
we could not detect any significant intervention
effects at all on personal or household property
crime in in 2012.

The estimated victimization rates from the 2011
survey were not affected by the training and
monitoring intervention, because the published
estimates were based only on pre-intervention
interviews. Because no significant effects on crime
have been detected in 2012, there is no evidence
to suggest that comparisons between 2012 and
previous years whave been impacted by the recent
field interventions.
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