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Moderate-Sample Behavior of Adaptively Pooled

Stratified Regression Estimators

by Eric V. Slud, Census Bureau, CSRM, & Math. Dept., UMCP

Abstract. This report concerns the use of a preliminary test of equality of
regression slopes in two-sample simple linear regression datasets for the purpose
of deciding whether to pool the two datasets and perform a single analysis. This
work was performed as a supplement to the paper of Shao, Slud et al. (2014),
The latter paper cites this one as a Census Bureau preprint of 2012, and applies
its results in the context of model-assisted design-based survey eastimation. For
a broader overview of estimation following preliminary testing, see the book of
Saleh (2006).

Disclaimer. This paper describes research and analysis of the authors, and
is released to inform interested partiesand encourage discussion. Results and
conclusions are the author’s and have not been endorsed by the Census Bureau.

1 Problem Setting

We consider two-sample data of the form {(Xi,Wi)}mi=1 and {(Zj , Vj)}nj=1

where each sample is iid with

E(W |X) = f(X), E(V |Z) = g(Z), Var(W |X) = σ2
1 , Var(V |Z) = σ2

2

and both σ2
1 , σ

2
2 are constants. The restriction to constant conditional vari-

ances is the only serious assumption here, and can equivalently be termed an
assumption of additive independent prediction errors (respectively with respect
to X and to Z), with homoscedastic within-sample errors. In addition, we
assume that these samples represent two portions (‘strata’) of a combined the-
oretical population with the (X,W ) stratum a known proportion λ ∈ (0, 1) of
the whole, and that as the sample sizes m, n become large,

m/(m+ n) → π ∈ (0, 1)

where π is also known and may be different from λ. Finally, we assume that
µX ≡ E(X) and µZ ≡ E(Z) are known.

Regarding Wi, Vj as stratumwise observations on a response variable and
each of Xi, Zj as the corresponding stratumwise observations on a scalar
predictor variable, our objective can now be stated as estimation of the unknown
mean µY ≡ λE(W ) + (1− λ)E(V ).
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Two regression-type unbiased estimators of µY are given by

T = λ (W̄ + b̂(µX − X̄)) + (1− λ) (V̄ + β̂(µZ − Z̄)) (1)

where

b̂ =

∑m
i=1 (Xi − X̄)Wi∑m
i=1 (Xi − X̄)2

, β̂ =

∑n
j=1 (Zj − Z̄)Vj∑n
j=1 (Zi − Z̄)2

and

S = λ (W̄ + γ̂(µX − X̄)) + (1− λ) (V̄ + γ̂(µZ − Z̄)) (2)

where

γ̂ =

∑m
i=1 (Xi − mX̄+nZ̄

m+n )Wi +
∑n
j=1 (Zj − mX̄+nZ̄

m+n )Vj∑m
i=1 (Xi − mX̄+nZ̄

m+n )2 +
∑n
j=1 (Zj − mX̄+nZ̄

m+n )2

Here we use the standard notations X̄ = m−1
∑m
i=1Xi and Z̄ = n−1

∑m
j=1 Zj ,

and S2
X , S

2
Z for the corresponding sample variances. In terms of these nota-

tions, the denominator of γ̂ is readily checked to be equal to

D ≡ D(X,Z) = (m− 1)S2
X + (n− 1)S2

Z +
mn

m+ n
(X̄ − Z̄)2

2 Large-sample behavior

We begin by considering the large-sample behavior of these statistics. First,
define population slope parameters b0, β0 by

b0 = E((X1 − µX)W1)/E(X1 − µX)2 = E((X1 − µX) f(X1))/σ2
X

β0 = E((Z1 − µZ)V1)/E(Z1 − µZ)2 = E((Z1 − µZ) g(Z1))/σ2
Z

(3)

The corresponding population intercept parameters are

a0 = µW − b0µX , α0 = µV − β0µZ (4)

Then it is easy to see that, up to terms converging to 0 in probability, for
large samples of sizes m,n satisfying m/(m+ n)→ π ∈ (0, 1), the estimators b̂

and β̂ are respectively consistent for b0, β0, and
√
m+ n (T − µY )

≈ λ√
π

√
m(W̄ −E(W )− b0(X̄ − µX)) +

1− λ√
1− π

√
n(V̄ −E(V )− β0(Z̄ − µZ))

2.1 Null hypothesis of equal slopes

Under the further restriction of the same-regression null hypothesis H00 : b0 =
β0, a0 = α0, which equalizes both slopes and intercepts for the two-sample
regression lines, one similarly checks that γ0 = b0 and

√
m+ n (S − µY ) ≈

≈ λ√
π

√
m(W̄ −E(W )− b0(X̄ − µX)) +

1− λ√
1− π

√
n(V̄ −E(V )− b0(Z̄ − µZ))

2



from which it follows immediately that

√
m+ n (T − µY ) −

√
m+ n (S − µY )

P→ 0 (5)

The conclusion (5) which holds under H00 persists also under contigu-
ous alternatives (van der Vaart 2000, Ch. 6), e.g., assuming suitable regular-
ity conditions on the two-sample joint densities, under alternatives in which
β0 − b0 = O(1/

√
m+ n). This result has been proved in a superpopulation

survey-sampling framework by Shao et al. (2011).

2.2 Fixed alternatives: distinct slopes

More generally, when b0 and β0 are unequal, the asymptotic form of S has a
different centering: the population parameter γ0 is given as

λ b0E(X1 − µX)2 + (1− λ)β0E(Z1 − µZ)2 + λ(1− λ)(µX − µZ)(a0 + b0µX − α0 − β0µZ)

λE(X1 − µX)2 + (1− λ)E(Z1 − µZ)2 + λ(1− λ)(µX − µZ)2

and

√
m+ n (S − µY ) ≈ λ

√
m√
π

(W̄ − µW ) +
(1− λ)

√
n√

1− π
(V̄ − µV )

− γ0

√
m+ n(λ(X̄ − µX) + (1− λ)(Z̄ − µZ))

Typically, under alternatives to H00, in particular when b0 6= β0, a hy-
pothesis test of equality of slopes based on b̂ − β̂ will reject with probability
approaching 1 for large sample size. Now regardless of the validity of regres-
sion model assumptions, the estimators S, T are both asymptotically

√
m+ n

unbiased estimators for µY . One might intuitively expect the estimator S to
be better in the sense of smaller variance, under the assumption H00, and T to
be better under alternatives. It is the purpose of this Note to examine whether
that intuition is correct.

3 Moderate Samples: Conditional Variance
and Unconditional MSE

Using the large-sample equivalent forms for S and T developed in the previous
Section, there are no large-sample settings in which the top-order variance or
Mean-Squared Error (MSE) for T as an estimator of µY will be worse than
that of S. However, numerical experience shows that in small or moderate
sized samples, a unified regression analysis can confer a benefit in providing an
estimator less sensitive to outliers, and we explore this formally by studying
MSE’s for T versus S, taking lower-order terms into account.
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We assume the additive constant-variance error structure of the two-sample
problem in Section 1, condition on {Xi}i, {Zj}j , and treat T and S as linear
estimators respectively in the variables Wi and Vj . To economize on lengthy
expressions, we define the notation

∆ = λ (µX − X̄) + (1− λ) (µZ − Z̄)

and recall the notation D = D(X,Z) defined above. Then

T = λ

m∑
i=1

( 1

m
+

(µX − X̄)(Xi − X̄)

(m− 1)S2
X

)
Wi + (1−λ)

n∑
j=1

( 1

n
+

(µZ − Z̄)(Zj − Z̄)

(n− 1)S2
Z

)
Vj

(6)
and

S =

m∑
i=1

( λ
m

+
∆

D
(Xi −

mX̄ + nZ̄

m+ n
)
)
Wi (7)

+

n∑
j=1

(1− λ
n

+
∆

D
(Zj −

mX̄ + nZ̄

m+ n
)
)
Vj

Then we obtain, by direct calculation,

Var(T |X,Z) =
λ2 σ2

1

m
+

(1− λ)2 σ2
2

n
+
λ2σ2

1(µX − X̄)2

(m− 1)S2
X

+
(1− λ)2σ2

2(µZ − Z̄)2

(n− 1)S2
Z

(8)
and

Var(S|X,Z) =
σ2

1

m

(
λ +

mn(X̄ − Z̄)∆

(m+ n)D

)2

+
σ2

2

n

(
1− λ+

mn(Z̄ − X̄)∆

(m+ n)D

)2

+
(

(m− 1)S2
X σ

2
1 + (n− 1)S2

Z σ
2
2

)
(∆/D)2 (9)

Using the same representations of T, S as linear estimators, we obtain exact
formulas for conditional bias:

E(T |X,Z) − µY =
λ

m

m∑
i=1

(f(Xi)− Ef(X1)) +
1− λ
n

m∑
j=1

(g(Zj)− Eg(Z1))

(10)

+
λ(µX − X̄)

(m− 1)S2
X

m∑
i=1

(Xi − X̄)f(Xi) +
(1− λ)(µZ − Z̄)

(n− 1)S2
Z

n∑
j=1

(Zj − Z̄)g(Zj)

E(S|X,Z) − µY =
λ

m

m∑
i=1

(f(Xi)−Ef(X1)) +
1− λ
n

m∑
j=1

(g(Xi)−Eg(X1)) +

(11)

∆

D

[ m∑
i=1

(Xi −
mX̄ + nZ̄

m+ n
)f(Xi) +

n∑
j=1

(Zj −
mX̄ + nZ̄

m+ n
)g(Zj)

]
We now continue with calculations based on these formulas in the most

interesting cases of homoscedastic linear models within substrata.
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3.1 Linear Regression

The main restriction allowing us to simplify and to compute and compare Mean
Squared Errors of estimation is the restriction to stratumwise linear models.
That is, we assume

W = a+ bX + ε1, f(X) = a+ bX, V = α+ βZ + ε2, g(Z) = α+ βZ

In this case, substitution into formula (10) immediately shows E(T |Z, X) = 0,
and formula (8) is already in as simple a form as possible.

In addition, we assume for simplicity that the two strata are separated by
a cut-point c, with X < c < Z and with the linear regressions joining
continuously at the known cut-point c. Then, if we define δ ≡ β − b,

a+ bc = α+ βc ⇒ a− α = (β − b)c = δc

Formula (11) becomes

E(S|X, Z)−µY = λb(X̄−µX)+(1−λ)β(Z̄−µZ) +
∆

D

{
(a−α)

mn

m+ n
(X̄−Z̄)+

+ b(m− 1)S2
X + β(n− 1)S2

Z + (bX̄ − βZ̄)
mn

m+ n
(X̄ − Z̄)

}
= λb(X̄ − µX) + (1− λ)β(Z̄ − µZ) +

+
∆

D

{
bD + δ ((n− 1)S2

Z − Z̄
mn

m+ n
(X̄ − Z̄)) + δc

mn

m+ n
(X̄ − Z̄)

}
= (1− λ)δ(Z̄ − µZ) +

∆ δ

D
((n− 1)S2

Z + (c− Z̄)(X̄ − Z̄)
mn

m+ n
)

One consequence of these formulas is that the conditional variances are free
of the quantity δ, while the conditional bias E(S|X,Z) − µY is directly
proportional to δ. (In particular, the conditional bias E(S|X,Z) = 0 under
the null hypothesis δ = 0.) Similarly, the conditional variances are linear in
σ2

1 and σ2
2 , while the conditional biases do not involve these variances at all.

Since it turns out that the quantities

MSE(S) = E(V ar(S|X,Z)) + E(
[
E(S|X,Z)− µY

]2
)

and MSE(T ) = E(V ar(T |X,Z)) are generally related by MSE(S)
∣∣∣
δ=0

<

MSE(T ), we can display the relationships for positive δ by telling

(i) the relative improvement 1 −MSE(S)/MSE(T ) of S over T at
δ = 0 , and

(ii) the value δ2/(σ2
1 + σ2

2) at which MSE(S) = MSE(T ).

Since these quantities involve expectations which are difficult to find analytically,
we provide accurate estimates through simulations of R = 1000 replications.
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Table 1: Estimates based on simulations with R = 1000 replications, for various
distributions of Xi and values m, n, and γ = σ2

1/(σ
2
1 + σ2

2), of relative MSE
(delMSE = 1-MSE(S)|δ=0/MSE(T)) and of the value δ∗ = (β − b)/

√
σ2

1 + σ2
2

for δ at which MSE(S)=MSE(T). In all cases, q = λ = 0.8.

Dist. of ξ m n γ delMSE δ∗
N (4, 1) 100 50 .5 .010 .066

50 30 .024 .147
40 20 .027 .170

100 50 .3 .013 .061
50 30 .023 .114
50 30 .032 .154

Expon(1) 100 50 .5 .013 .034
50 30 .027 .071
40 20 .035 .093

Gamma(2, 1) 100 50 .5 .011 .027
50 30 .022 .053
40 20 .032 .074

Weib(1.5, 1) 100 50 .5 .011 .072
50 30 .021 .140
40 20 .029 .186

Lognorm(0, 1) 100 50 .5 .016 .012
50 30 .029 .022
40 20 .043 .030

The results are tabulated below. In Table 1, the random variables X, Z are
taken to be distributed with the conditional distribution of a random variable ξ
respectively given ξ < c and given ξ > c, where the distribution of ξ and the
quantile q = P (ξ ≤ c) are specified. Note that the ratios MSE(S)/MSE(T) are
invariant under location shifts in ξ or under scaling that multiplies ξ and
each of σ2

1 , σ
2
2 by the same constant k.

Note that almost all reasonable parameter combinations result inMSE(S) <
MSE(T ) under the null hypothesis δ = 0, as the result proved in the next
subsection indicates. Examples where MSE(S) ≥ MSE(T ) are easily calcu-
lated to arise when λ is very small but λ2σ2

1/σ
2
2 is large, or when 1 − λ is

small and (1 − λ)2σ2
2/σ

2
1 is large, but neither of these cases is very likely to

occur in practice.

All of the numerical calculations described here were done in R (R Core
Development Team, 2009).
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3.2 Further Restricted Cases

It is worth remarking on the special outcomes of the previous conditional bias
and variance formulas in a few special cases further restricting the linear regres-
sion setup of the previous subsection. First if µX = X̄ and µZ = Z̄, then ∆ =
0 and E(S|X,Z) = µY for all values of δ, and Var(S|X,Z) = Var(T |X,Z).
The same result holds if ∆ = δ = 0. In thes settings, the MSE’s of S and
T are identically equal. However, these cases rely on special data values. A
more important case, where V ar(S|X,Z) ≤ V ar(T |X,Z) for all data values
under an important general set of parameter values, is provided in the following
result.

Proposition 1 Assume as above that {(Wi, Xi)}mi=1 are iid with E(Wi |Xi) =
a + bXi, Var(Wi |Xi) = σ2

1, and similarly that {(Vj , Zj)}nj=1 are iid with

E(Vj |Zj) = α+ βZj , Var(Vj |Zj) = σ2
2. Further, assume that for some fixed

c, a + bc = α + βc, and define δ = β − b. With S, T defined as above, in
terms of λ ∈ (0, 1), assume further that

δ = 0 , σ2
1 = σ2

2 = σ2 and λ = m/(m+ n) (12)

Then for all X, Z, MSE(S) < MSE(T ).

Proof. Under the assumptions (12), we check immediately from (9) that

Var(T |X,Z) =
σ2

m+ n
+ σ2

{
λ2 (µX − X̄)2

(m− 1)S2
X

+ (1− λ)2 (µZ − Z̄)2

(n− 1)S2
Z

}
and

Var(S |X,Z) =
σ2

m+ n
+ σ2 ∆2

D

Moreover, by the Cauchy-Schwarz inequality,

∆2 ≤
{λ2 (µX − X̄)2

(m− 1)S2
X

+
(1− λ)2 (µZ − Z̄)2

(n− 1)S2
Z

}
((m− 1)S2

X + (n− 1)S2
Z)

The combination of the last three displayed expressions yields

Var(S |X,Z) − σ2/(m+ n)

Var(T |X,Z) − σ2/(m+ n)
≤ 1 − mn(X̄ − Z̄)2

(m+ n)D

Since the conditional Variances are the same as conditional MSE’s at δ = 0, the
Proposition has been proved, and the inequality holds with probability 1 when
Xi and Zj are continuously distributed. 2
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4 Tentative Conclusions

Our provisional conclusion is that, at least in the case of substrata within which
there are two similar linear regression models which join continuously at the
cut-point, the MSE comparison between the one- and two- stratum estimators
S and T is broadly similar: S is superior for alternatives δ = β−b very close to
0. But as soon as δ exceeds a proportion δ∗ of (σ2

1 +σ2
2)1/2 ranging from 3% to

20%, depending on the distribution of ξ, then T becomes superior. This break-
even proportion δ∗ does depend strongly on the distribution, and is much larger
for highly skewed distributions (exponential, weibull, gamma) and if anything
is smaller for less-skewed long-tailed distributions (log-normal). Note that this
discussion takes no account of the special features of the survey-sampling origins
of the problem studied here, especially the feature of biased sampling through
unequal-probability weights, and those aspects of MSE comparisons will be
studied by simulation elsewhere.
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