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This paper studies taper-based estimates of the spectral density utilizing a fixed bandwidth ratio asymp-
totic framework, andmakes several theoretical contributions: (i) we treatmultiple frequencies jointly, (ii)
we allow for long-range dependence or anti-persistence at differing frequencies, (iii) we allow for tapers
that are only piecewise smooth or discontinuous, including flat-top and truncation tapers, (iv) we study
higher-order accuracy through the limit distribution’s Laplace Transform, (v) we develop a taper-based
estimation theory for the spectral distribution, and show how confidence bands can be constructed. Sim-
ulation results produce quantiles and document the finite-sample size properties of the estimators, and
a few empirical applications demonstrate the utility of the new methods.
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1. Introduction

Suppose that we have a sample Y1, Y2, . . . , YN from a weakly
stationary time series {Yt}, and consider a kernel-based estimator
of the spectral density f (θ) defined viaf (θ) =


h

Λ(h/M) cos(θh)γh (1)

for any fixed θ ∈ [−π, π]. Here Λ is the kernel, or taper, and is
a bounded even function of domain [−1, 1]. The sequenceγh con-
sists of sample autocovariances, where the centering can be taken
as either zero, the sample mean, or OLS estimates of a more com-
plicated regression effect. The bandwidth M is taken to grow at
the same rate as the sample size N , rather than the usual o(N)
growth rate, such that M = bN for some b ∈ (0, 1); we say that
the bandwidth-ratio b is fixed, and use the terminology of fixed-b
asymptotics. The following result is a consequence of Theorem 1 of
Hashimzade and Vogelsang (2008) under assumptions consistent
with a short memory time series:f (θ) L

=⇒ f (θ) · Sθ (b)
asN → ∞. The limiting random variable Sθ (b) is a quadratic func-
tional of BrownianMotion that depends on the bandwidth propor-
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tion b, but not on the shortmemory autocorrelation function of the
data process, and thus can be simulated without any knowledge of
nuisance parameters. The limit also depends on the taper Λ, and
the distribution depends on θ as well, since results differ depend-
ing on whether θ = 0, θ = π , or θ ∈ (0, π). Furthermore, the
distribution at frequency θ = 0 also depends on the type of cen-
tering used to defineγh.

As noted in Hashimzade and Vogelsang (2008) – henceforth
HV – the asymptotic coverage provided by the so-called large-
bandwidth approach is superior when b is greater than zero, and
also has the advantage of guaranteeing a positive random limit
(when the taperΛ is positive definite). The potential application of
a better inferential methodology for the spectral density function
is quite large, as demonstrated by the ubiquity of spectral meth-
ods in the physical sciences aswell as econometrics; seeGrenander
and Rosenblatt (1953), Parzen (1957), Blackman and Tukey (1959),
Bohman (1960), and the discussion in Priestley (1981). Under-
standing the joint distribution of spectral estimates acrossmultiple
frequencies is useful for the identification of hidden periodicities in
the time series. One application is the identification of residual sea-
sonality in seasonally adjusted economic time series via examina-
tion of spectral estimates in the programX-12-ARIMA, as discussed
in Findley et al. (1998). Literally millions of time series are season-
ally adjusted eachmonth by the programX-12-ARIMA at statistical
agencies around the world – with vast ramifications for public pol-
icy – and spectral peak estimation and assessment is featured as a
diagnostic tool in every application. Someother econometric appli-
cations of spectral estimation are discussed at the end of the paper.
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The paper at hand seeks to make several extensions of the fun-
damental results of HV. First, we extend their basic results to a joint
theorem over a finite collection of frequencies. This is important
for assessing the uncertainty in taper-smoothed estimates of the
spectral density, where we may be interested in 30–60 ordinates
at a time. As our results below demonstrate, Sθ1(b1) is asymptot-
ically independent of Sθ2(b2) for θ1 ≠ θ2 and any b1, b2 ∈ (0, 1].
This technical result will allow us to construct simultaneous con-
fidence intervals, allowing one to assess uncertainty in a nonpara-
metric spectral analysis.

Second, we study cyclical long-range dependence, where each
frequency of the spectral density may correspond to a long mem-
ory pole or a negative memory zero; see Boutahar (2008) for re-
lated asymptotic results for the case of a single frequency. Cyclical
long memory is useful for capturing highly persistent seasonal or
cyclical phenomena that evolve too rapidly to be considered non-
stationary; see Holan and McElroy (2012) for examples and ap-
plications of the concept to the problem of seasonal adjustment.
The presence of cyclical long memory implies that the rate of con-
vergence of the spectral estimates depends on the corresponding
memory parameter, and the limit distributions become quadratic
functionals of Fractional Brownian Motion — this is an extension
of the frequency zero results of McElroy and Politis (2012). The
rate of growth of the spectral estimates is non-standard in this
case, so that the resulting confidence intervals are muchwider (for
longmemory) or shorter (for negativememory) than in the regular
short memory scenario.

Third, we extend the limit theorems to piecewise smooth ta-
pers, such as flat-top tapers (see Politis and Romano (1995) and
Politis (2001)), and also to tapers with jump discontinuities, such
as the truncation taper. With the exception of the Bartlett taper,
HV and other fixed-b literature consider only smooth tapers (such
as Parzen or Tukey–Hanning). For example, Phillips et al. (2006)
derives asymptotic results for spectral estimates (handling multi-
variate time series) computed from smooth tapers, examining one
frequency at a time. However, some popular tapers (such as Daniell
and Quadratic-Spectral) have kinks (i.e., where a continuous func-
tion is not differentiable) at the boundary of their domain, which
has an impact on the limit distribution—this was established in
McElroy and Politis (2012) for the frequency zero case. Flat-top ta-
pers have proven useful for variance estimation of short memory
processes, so it seems important to develop the spectral theory for
such tapers.

Fourth, we provide a discussion of higher-order accuracy of
the limit theory arising from the fixed-bandwidth ratio methodol-
ogy. In the recent literature onHeteroskedasticity–Autocorrelation
Consistent (HAC) testing – see Kiefer et al. (2000) and Kiefer and
Vogelsang (2002) – this has meant an expansion of the fixed-
bandwidth ratio limit distributions as b tends to zero, such that
the first term in the expansion is the conventional limit distribu-
tion of the vanishing-bandwidth ratio theory (i.e., in the HAC case
a standard normal). We are not aware that a higher-order accuracy
limit theory has been published for fixed bandwidth ratio spec-
tral density estimates, though Velasco and Robinson (2001) study
the vanishing bandwidth ratio case. Actually, the HAC literature
shows that S0(b) tends to a point mass at unity as b tends to zero;
correspondingly, the higher-order accuracy results in this paper
demonstrate that the cumulative distribution function of Sθ (b) can
likewise be expanded as b → 0, with a leading term equal to an
indicator function, followed by other expressions involving cumu-
lants. To achieve this, we introduce a novelmethod of inverting the
Laplace Transform of Gaussian quadratic forms.

It may be of some interest to provide a confidence band for
the entire spectral density. This is not possible if long-range de-
pendence is present, because each frequency would potentially be
growing at different rates. Also, because the spectral density limit
distributions across frequencies are independent in a fixed band-
width ratio approach, the global behavior is better summarized
through the spectral distribution function (Woodroofe and Van
Ness (1967) consider the spectral density bands under a vanishing
bandwidth fraction asymptotic approach). Although previous liter-
ature explores the estimation of the spectral distribution function
(again, see Grenander and Rosenblatt (1953) and Parzen (1957), as
well as Dahlhaus (1985)), here we provide a fixed-bandwidth ratio
treatment. We discuss the estimation of the limit distribution, and
how this can be utilized to construct spectral confidence bands.

The limit distributions Sθ (b) do not differ tremendously from
the frequency zero case, but there are a few alterations from the
previous distribution theory (aside from the impact of kinks in
the taper) given in McElroy and Politis (2012). For all frequen-
cies except 0 and π , the estimates converge to the sum of two in-
dependent copies of the limit in the HAC case (frequency zero);
in the case of a short memory process, this result can also be
found in HV, but our results also cover long memory and nega-
tivememory processes.Moreover,we focus our treatment on spec-
tral estimates that are centered by the sample mean (so we do
not consider more complicated mean regression functions), which
only affects the asymptotic distribution at frequency zero. With-
out the centering, the limit random variable at frequency zero is a
quadratic functional of Fraction BrownianMotion (FBM), instead of
Fractional Brownian Bridge (FBB)—see the discussion in HV and
McElroy and Politis (2012). For the numerical studies,we have sim-
ulated the limit distributions for the internal frequencies (i.e., the
interval (0, π)) and the boundary frequencies (i.e., 0 and π ) us-
ing FBM (because the FBB case is already addressed inMcElroy and
Politis (2012)), and tabulated the results by taper, bandwidth frac-
tion b, and memory parameter in the expanded version of this pa-
per McElroy and Politis (2014), available at http://escholarship.
org/uc/item/6164c110.

Previous work (McElroy and Politis, 2011) shows the impact of
memory on critical values, and that the effect is more pronounced
with small b. We repeat some of this material for the spectral case,
discussing the critical values as a function of b for various memory
parameters. When memory is absent from all frequencies of inter-
est, we can construct confidence intervals using the short mem-
ory critical values, but otherwise some estimate of the memory
parameter must be supplied to the quantile function. In our ap-
plications we propose a simplistic nonparametric estimate of the
memory parameter, as a function of frequency, and utilize a plug-in
approach to inference. Our simulation studies illustrate how size is
contingent on taper, bandwidth, and sample size, presuming that
the memory parameter is known. These points and the general
methodology are demonstrated on one construction and one retail
series.

The paper is organized as follows. In Section 2 we provide a
discussion of cyclical long memory, which sets the general frame-
work for most of the paper. Then Section 3 provides the asymp-
totic theory for fixed-bandwidth fraction estimation of the spectral
density and the spectral distribution function. In Section 4 a treat-
ment of higher-order accuracy, with an application of the method
of Laplace inversion is provided. Section 5 contains a description
of our methods of simulation for critical values, as well as the per-
formance on finite samples from simulation. The full methodol-
ogy is demonstrated on two economic time series in Section 6, and
Section 7 concludes. Proofs, as well as extended discussions of nu-
merical and empirical results, are available in the fuller version of
the paper available online (McElroy and Politis, 2014).

2. Cyclical long memory and data assumptions

From now on, let {Yt} be a constant mean stationary time
series with finite variance, such that {γh} is the autocovariance

http://escholarship.org/uc/item/6164c110
http://escholarship.org/uc/item/6164c110
http://escholarship.org/uc/item/6164c110
http://escholarship.org/uc/item/6164c110
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function (acf). We define cyclical long memory in analogy with
conventional long memory, such that the definition agrees with
the implicit definition in seasonal fractionally integrated processes
(Gray et al., 1989) and Gegenbauer processes (Woodward et al.,
1998). When the acf is absolutely summable, the spectral density
f (θ) =


h γh cos(θh) is well-defined, but here we consider the

case where the spectral density has long memory poles. On the
other hand, if the spectral density has a zero, this corresponds to
cyclical negative memory (McElroy and Politis, 2011). We say that
the time series has cyclical memory at frequency θ ∈ [0, π] if
|h|≤n

γh cos(θh) = Lθ (n) nβθ , (2)

where Lθ is a slowly-varying function at infinity (let L denote the
set of such functions), with a limit of Cθ ∈ [0,∞]. Also thememory
parameter is βθ , a number in (−1, 1). The case that β0 = −1 was
explored in McElroy and Politis (2011), and it produces somewhat
non-standard asymptotic results for the sample mean; we ignore
this case in this paper.

Definition 1. Aweakly stationary time serieswith spectral density
f has cyclical memory at frequency θ ∈ [0, π] if (2) holds. This
property is denoted by CM(β , θ ).

Note that CM(0, θ ) denotes short memory at frequency θ , i.e., 0 <
f (θ) < ∞. More generally, the definition of cyclical memory
indicates that f (θ) equals 0, ∞, or Cθ depending on whether βθ is
negative, positive, or equal to zero, and these cases correspond to
negative cyclical memory, long cyclical memory, and short cyclical
memory respectively (for short cyclical memory, we also impose
that Cθ is a nonzero finite constant).

This is a time domain formulation of the basic concept. The fol-
lowing proposition relates it to a frequency domain formulation,
which some readers may find more intuitive. When a zero or pole
occurs at a nonzero frequency, it must be present at the negative of
that frequency aswell, because the spectral density is an even func-
tion on [−π, π]. When the zero or pole occurs at frequency zero,
the spectral density might be written as f (λ) = |λ|α g(λ) L(|λ|−1)
for α ∈ (−1, 1), g a positive, even, and bounded function, and
L ∈ L. But if the zero/pole occurs at a nonzero frequency θ , we
can generally write the spectral density as

f (λ) = |λ− θ |α|λ+ θ |α g(λ) L(|λ− θ |−1) L(|λ+ θ |−1). (3)

This form only treats one zero/pole frequency θ , but the following
result can be easily generalized to spectra with multiple distinct
zeros and/or poles.

Proposition 1. Suppose {Yt} is a stationary time series with spectral
density with a zero/pole of order α at frequency θ . If θ = 0 and
f (λ) = |λ|α g(λ) L(|λ|−1), then the process is CM(−α, 0) and CM(0,
ω) for all ω ≠ 0 (i.e., it has short memory at all nonzero frequencies).
If θ > 0 and the spectrum is given by (3), then the process is CM(−α,
θ ) and CM(0, ω) for ω ≠ θ .

So the processes discussed in Proposition 1 have zeros/poles of
diverse orders at differing frequencies, and this in turn is connected
to rates of convergence of the partial sums of autocovariances
weighted by cosines. Consider the following class of spectral
densities, where there are J zeros/poles at nonzero frequencies
θj (not including the conjugate zeros/poles −θj) of order αj, and
accompanying slowly varying functions Lj. A process with such a
spectral density belongs to the class

J
j=1 CM(−αj, θj), noting that

CM(−α, θ) = CM(−α,−θ).
In order to formulate the asymptotic results of this paper,

we must make some additional assumptions about the observed
stochastic process. We will consider the same set of assumptions
discussed in McElroy and Politis (2011), namely that the data pro-
cess is either linear, or can be written as a function of a Gaussian
process, or satisfies certain higher order cumulant conditions. The
kth order cumulant of {Yt} is defined by

ck(u1, u2, . . . , uk−1) = cum

Yt+u1 , Yt+u2 , . . . , Yt+uk−1 , Yt


for any t and integers u1, . . . , uk−1, where k ≥ 1 (cf. Taniguchi and
Kakizawa (2000)). Letting u denote the k − 1 vector of indices, we
will write ck(u) for short. Also let ∥·∥ denote the sup-normof a vec-
tor, so that


∥u∥<n ck(u) is a short-hand for summing the cumulant

over all indices such that |uj| < n for each j. We also require the
concept of Hermite rank (Taqqu, 1975): if g ∈ L2(R, e−x2/2), then
it can be expanded in terms of the Hermite polynomials Hk, with
coefficients ⟨g,Hk⟩ (the bracket denotes the inner product of the
Hilbert Space) for k ≥ 0. The Hermite rank is the index of the first
nonzero coefficient.

In addition to supposing that the process is CM(βθj , θj) for a
collection of frequencies θj ∈ [0, π], j = 1, . . . , J , we also consider
the following assumptions:

• Process P1. {Yt} is a linear process: Yt =


j ψjϵt−j with {ψj}

square summable and {ϵt} iidwith finite variance.
• Process P2. Yt = g(Xt) for each t , where g is a function in

L2(R, e−x2/2) of Hermite rank τ , and {Xt} is a Gaussian process
with autocovariance function rk. If βθj > 0, also assume that
(1 − βθj)τ < 1 for each j.

• Process P3. {Yt} is a strictly stationary process whose kth order
cumulants exist and are summable over its k indices, for all k ≥

1.Moreover, whenβθj < 0we also assume that


∥u∥<n ck(u) =

O(nβθj ) for each j.

See the discussion in McElroy and Politis (2011) for why a
moment-plus-mixing condition is not viable. Each of the assump-
tions P1, P2, or P3 is sufficient to establish a limit theorem for the
Discrete Fourier Transforms of the data, as shown below. These
process assumptions are typically unverifiable from the observed
data, and should be viewed as working assumptions.

3. Asymptotic theory for spectrum estimation

The theory developed here is similar to that of HV, but is ex-
tended to processes with cyclical memory, similarly to how McEl-
roy and Politis (2012) extended the HAC theory to long-range
dependent processes. First we establish a joint convergence the-
orem for normalized Discrete Fourier Transforms (DFTs), which is
a result of independent interest. Second, we apply this result to the
analysis of taper-smoothed estimates of the spectral density. Third,
we address the estimation of the spectral distribution function in
the case of a bounded positive spectral density.

3.1. Theory for DFTs

Let {Yt} be a mean µ stationary time series with acf {γh}, as de-
scribed in Section 2. We suppose that a sample of size N is avail-
able:Y1, Y2, . . . , YN , and the sample autocovariances are computed
via

γh =
1
N

N−h
t=1

(Yt − Y ) (Yt+h − Y )

for h = 0, 1, 2, . . . , and Y = n−1n
t=1 Yt . Results can bemodified

easily if we do not demean and assume µ = 0 (as discussed in HV
as well), but our main exposition assumes centering of estimates
by the sample mean for simplicity of presentation. The DFT of the
sample is

N
t=1(Yt − Y )e−iθ t , which has real and imaginary parts

given by cosine and sine summations, respectively. These trigono-
metric partial sums are the key aspect in the asymptotic analysis
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of the spectral density estimates of this paper. We introduce the
weighted-sum notation as follows:

SN(g) =

N
t=1

Ytgt

for a sequence {gt}. Then the DFT equals SN(c(θ)) + iSN(s(θ)) for
c(θ) = cos(θ ·) and s(θ) = sin(θ ·). The rate of growth of SN(c(θ))
and SN(s(θ))will dependupon θ , because if there is a zero or pole at
frequency θ the growth rate is affected by long-range dependence.
Ultimately,wewish to prove joint functional limit theorems for the
processes r → {S[rN](c(θ)), S[rN](s(θ))}, jointly over a finite collec-
tion of frequencies θ . Here the square bracket refers to the greatest
integer function.

The key quantities that determine the growth rates of the real
and imaginary parts of the DFT are the respective variances:

V+

N (θ) = VarSN(c(θ)) V−

N (θ) = VarSN(s(θ)).

When θ ≠ 0, π , we let VN(θ) = (V+

N (θ) + V−

N (θ))/2, but for
θ = 0, π we set VN(θ) = V+

N (θ) instead. Then with WN(θ) =
|h|≤N γh cos(θh), we have the following identity:

VN(θ) =
1 + 1{θj=0,π}

2

N−1
k=0

Wk(θ). (4)

This follows by recognizing that

VN(θ) =
1 + 1{θj=0,π}

2

N
j,k=1

cos(θ(j − k))γj−k, (5)

and that the latter expression in (5) can be re-expressed, us-
ing summation by parts, into (4). Noting that the definition of
WN(θ) together with the CM(βθ ,θ ) assumption yields an asymp-
totic growth rate of Lθ (N)Nβθ , we can apply (4) and Proposition
1 of McElroy and Politis (2011) to the autocovariance sequence
{γh cos(θh)} for any θ to obtain

VN(θ) ∼
Lθ (N)Nβθ+1

2(βθ + 1)
. (6)

In the case of short memory, where βθ = 0 and Lθ tends to a
nonzero constant Cθ , (6) becomes VN(θ) ∼ N C(θ) and C(θ) equals
one half the spectral density. In all cases of cyclical memory, the
square root of VN(θ) will be the appropriate normalizing rate for
the DFT sums, as shown below.

Let us consider a finite collection of J distinct frequencies Θ =

{θj}
J
j=1 in [0, π], where the data process is CM(βθj , θj) for each j.

Define vector-valued stochastic processes as follows:

S[rN](c(θ)) = {S[rN](c(θj))}
J
j=1 S[rN](s(θ)) = {S[rN](s(θj))}

J
j=1,

where r ∈ [0, 1]. Joint functional limit theorems for S[·N](c(θ))
and S[·N](s(θ))normalized each byV 1/2

N (θ) form the key foundation
for the asymptotic theory for the tapered-estimates of the spectral
density, defined in the next subsection. The limit stochastic
processes are B+,θ (·) = {B+,θj(·)}

J
j=1 and B−,θ (·) = {B−,θj(·)}

J
j=1,

all of which are independent of each other, and all of which
are Fractional Brownian Motions (FBMs) of parameter βθj , except
B−,θ (·) at θ = 0, π , which is the zero process.

As discussed in McElroy and Politis (2011), it is more conve-
nient for us to formulate the results in the space C[0, 1] of con-
tinuous functions, rather than the Skorohod space. Therefore we
will consider a linearly-interpolated version ξ[·N](g) of S[·N](g), de-
fined via ξ[rN](g) = S[rN](g) + (rN − [rN])Y[rN]+1. This affects the
mean-centering slightly, though the asymptotic impact is negli-
gible. Define the functions cN(θ) =

N
t=1 cos(θ t) and sN(θ) =
N
t=1 sin(θ t), which mean center SN(c(θ)) and SN(s(θ)) respec-

tively. Themean-centering functions for ξ[rN](c(θj)) and ξ[rN](s(θj))
are given byµr(c(θj)) = µ c[rN](θj)+ µ (rN − [rN]) cos(θj([·N] + 1))µr(s(θj)) = µ s[rN](θj)+ µ (rN − [rN]) sin(θj([·N] + 1)),

respectively.

Theorem 1. Let {Yt} be covariance stationary with mean µ and
acf {γh}, such that the process is CM(βθj , θj) for a collection of
frequencies θj ∈ [0, π], j = 1, . . . , J . Letting κ = max1≤j≤J 2 ∧

[2/(1 + βθj)], suppose that E[|Yt |
κ+δ

] < ∞ for some δ > 0,

and also assume that E[|Sn(c(θj)) − cn(θj)|κ+δ] = O(V (κ+δ)/2n (θj))

and E[|Sn(s(θj)) − sn(θj)|κ+δ] = O(V (κ+δ)/2n (θj)) hold. Suppose
condition P1, P2, or P3 holds, and that in the case of a P2 process with
at least one βθj > 0, the Hermite rank is unity. Then the following
weak convergence holds in the space C([0, 1],R2J):
V−1/2
N (θj)


ξ[·N](c(θj))−µ·(c(θj))


,

V−1/2
N (θj)


ξ[·N](s(θj))−µ·(s(θj))

J
j=1

L
=⇒ {B+,θj , B−,θj}

J
j=1. (7)

Remark 1. By 1.342.2 of Gradshteyn and Ryzhik (1994), cN(θ)
equals N if θ is an integer multiple of 2π , and otherwise equals

1
2


sin((N + 1/2)θ)

sin(θ/2)
− 1


.

Also by 1.342.1 of Gradshteyn and Ryzhik, sN(θ) equals 0 if θ is an
integer multiple of π , and otherwise equals

sin[(N + 1)θ/2] sin[Nθ/2] csc[θ/2].

Hence the centering for the sine partial sum is asymptotically
irrelevant, as is the centering for the cosine partial sum unless
θ = 0.

Theorem 1 provides the assumed conditions (4), (5), (6), and
(7) of HV, and also provides a generalization of the short memory
situation. We next discuss its application to spectral density
estimation.

3.2. Asymptotic theory for spectral density estimation

Now in order to apply (7) to spectral estimation, it is necessary
to extend the FBMsdiscussed above to Fractional Brownian Bridges
(FBBs) as in HV, defined as follows:

B±,θ (r) = B±,θ (r)− 1{θ=0}

 r

0
x′(t) dt

 1

0
x(t)x′(t) dt

−1

×

 1

0
x(t) dB±,θ (t).

Here x is a deterministic vector process with each component
xj ∈ C[0, 1], and corresponds to regression effects in the data
process; see Phillips (1998) for a more detailed exposition. That is,
when the mean of the process {Yt} is non-constant, and perhaps
is parametrized by regression functions such that the demeaned
{Yt} is mean zero and stationary, then our partial sums and DFT
statistics should be constructed from variables Yt centered by
estimates of these mean effects. In this paper, we focus on the
simple case that x(t) ≡ 1, corresponding to centering by the
sample mean (the ordinary least squares estimate of a constant
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mean); see the Appendix of McElroy and Politis (2014) for a partial
elaboration of the more general case. Note that this centering has
no impact except at frequency zero, which follows from Remark 1
above, which shows that only the real part of the DFT (i.e., the
cosine partial sum) at frequency zero needs to be mean-centered.
In the case that the truemean is zero and this assumption is utilized
in our statistics, then x(t) ≡ 0 andB±,θ = B±,θ , the FBM. But
when we center by the sample mean, it follows thatB±,0(r) =

B±,0(r)− rB±,0(1), a FBB.
We now suppose that an estimate of the spectrum is computed

via (1) using autocovariance estimates centered by the sample
mean (or without centering in the special case that the mean is
known to be zero), as described above. The taper (or kernel) Λ
comes fromawide family that encompasses flat-top tapers (Politis,
2001), the Bartlett taper, as well as other tapers considered in
Kiefer and Vogelsang (2005) and HV:

{Λ is even with support on [−1, 1] such thatΛ(x) is constant for
|x| ≤ c, for some c ∈ [0, 1);
also, Λ is twice continuously differentiable on (c, 1)}. (8)

A derivative ofΛ from the left (with respect to x) is denoted by Λ̇−,
whereas from the right is Λ̇+; the second derivative is Λ̈. Note that
we allow forΛ to have a jump discontinuity at c; for example, our
results apply to the truncation taper given by the indicator on the
interval [−c, c]. Ourmain result, which is stated next, follows from
Theorem 1 and an analysis of the spectral estimator, expanding on
the analysis of HV.

Theorem 2. Let {Yt} be covariance stationary with mean µ and
acf {γh}, such that the process is CM(βθj , θj) for a collection of
frequencies θj ∈ [0, π], j = 1, . . . , J . Letting κ = max1≤j≤J 2 ∧

[2/(1 + βθj)], suppose that E[|Yt |
κ+δ

] < ∞ for some δ > 0,

and also assume that E[|Sn(c(θj)) − cn(θj)|κ+δ] = O(V (κ+δ)/2n (θj))

and E[|Sn(s(θj)) − sn(θj)|κ+δ] = O(V (κ+δ)/2n (θj)) hold. Suppose
condition P1, P2, or P3 holds, and that in the case of a P2 process with
at least one βθj > 0, the Hermite rank is unity. Also suppose that
either the sample autocovariances are centered by the sample mean,
or they are not centered and that µ = 0. For tapers defined via (8), as
N → ∞ we have

Nf (θj)
VN(θj)

L
=⇒ −

1
b2

 
cb<|r−s|<b

Λ̈


r − s
b


×
B+,θj(r)B+,θj(s)+B−,θj(r)B−,θj(s)


drds

+
2
b
Λ̇−(1)

 1−b

0

B+,θj(r)B+,θj(r + b)

+ B−,θj(r)B−,θj(r + b)

dr

−
2
b
Λ̇+(c)

 1−bc

0

B+,θj(r)B+,θj(r + bc)

+B−,θj(r)B−,θj(r + bc)

dr

+
2
b

 1−bc

1−b
Λ̇


1 − r
b

 B+,θj(r)B+,θj(1)

+B−,θj(r)B−,θj(1)

dr

+Λ(0)
B2

+,θj
(1)+B2

−,θj
(1)

,

jointly in θj for j = 1, 2, . . . , J . In the case that there is a jump
discontinuity in Λ at c, we must replace the third summand in the
limit distribution by

2

Λ+(c)−Λ−(c)


×
B+,θj(1 − bc)B+,θj(1)+B−,θj(1 − bc)B−,θj(1)


.

Allowing for jump discontinuities in the taper extends the re-
sults of HV; in particular, utilizing the taper Λ = 1[−1,1] and
b = 1 corresponds to the periodogram, and the limit result isB2

+,θj
(1) +B2

−,θj
(1), or a χ2 on two degrees of freedom (i.e., the

classical result). More generally, the result applies for flat-top ta-
pers (e.g., the trapezoidal), taperswith kinks (e.g., the Bartlett), and
smooth tapers (e.g., the Parzen). The theorem describes the limit
behavior of the spectral density estimate in the case that cycli-
cal memory is present, considering a finite collection of frequen-
cies. If these frequencies happen to correspond to short memory
dynamics, then the spectral density is finite and nonzero. Letting
τθ =

1+1{θ=0,π}

2 , from (4) we have

VN(θ) ∼ N τθ f (θ), (9)

so that the convergence of Theorem 2 in the case of short memory
may be summarized asf (θ) L

=⇒ τθ f (θ) Sθ (b),
where we denote the limit random variable on the right hand side
of the convergence in Theorem 2 via Sθ (b). A numerical description
of this distribution is given in HV. A technical description can be
given through the moment generating function, or Laplace Trans-
form (LT) of Sθ (b), as in McElroy and Politis (2009); this is devel-
oped in Section 4 below. Tables of quantiles can be given over a
grid of b values, depending on the three frequency cases (i.e., θ = 0,
θ = π , or θ ∈ (0, π)) and the taper; seeMcElroy and Politis (2014)
for details (http://escholarship.org/uc/item/6164c110).

In the case of cyclical long memory or negative memory the
true spectrum f (θ) is either equal to ∞ or zero, and inference is
problematic. For the purpose of constructing a confidence interval,
we propose the quantity fN(θ) = VN(θ)/(Nτθ ) as the ‘‘parameter’’
of interest, although clearly this is amoving target; only in the case
of shortmemory canwe conceptually replace fN(θ) by f (θ), via (9).
However, whatever the degree of cyclicalmemory, we can conduct
inference for fN(θ) as follows. Denote the quantile function of Sθ (b)
by Qθ (·). If we wish to consider a single frequency, the confidence
interval for fN(θ)with asymptotic coverage 1 − α is f (θ)
τθ Qθ (1 − α/2)

,
f (θ)

τθ Qθ (α/2)


, (10)

which follows from P

Qθ (α/2) ≤

f (θ)
τθ fN (θ)

≤ Qθ (1 − α/2)


→

1 − α. Alternatively, a simultaneous confidence interval can be
constructed by considering the maximum and minimum of Sθ (b)
over the pertinent frequencies. Let S(b) = max1≤j≤J Sθj(b)/τθj
and S(b) = min1≤j≤J Sθj(b)/τθj , which have distributions easily
computable from the marginals due to independence (they are
also identically distributed for θj ∈ (0, π)). (Note that our
notation assumes that the same bandwidth fraction b is used for
all frequencies, although this need not be the case in practice.)
The corresponding quantile functions will be denoted by Q and Q
for the maximum and minimum respectively. Let J denote a finite
index set, and consider a set of frequencies θj with 1 ≤ j ≤ J . For
positive real numbers ℓ, u, we have

P

f (θj)
τθj u

≤ fN(θj) ≤

f (θj)
τθj ℓ

∀j


= P


ℓ ≤

f (θj)
τθj fN(θj)

≤ u ∀j


→ P


ℓ ≤ S(b) ≤ S(b) ≤ u


= 1 − P


S(b) ≤ ℓ


− P


S(b) ≥ u


.

The last equality follows from the observation that – when ℓ < u
– the event {S ≤ ℓ} is mutually exclusive with the event {S ≥ u}.
This probability is approximately 1 − α if ℓ, u correspond to the
appropriate critical values; splitting the quantityα evenly amounts
to

ℓ = Q (α/2) u = Q (1 − α/2). (11)

http://escholarship.org/uc/item/6164c110
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This provides the construction of a simultaneous confidence
interval.

3.3. Asymptotic theory for spectral distribution estimation

The estimation of spectral content can be extended to the spec-
tral distribution function F(θ) = (2π)−1

 θ
−π

f (λ) dλ, and because
of the smoothing of the spectral density accomplished by inte-
gration, the behavior of statistical estimates is easier to describe.
In this subsection we assume that the spectral density has short
memory, and hence 0 < f (λ) < ∞ for all λ ∈ [−π, π]. We
make this assumption so that the rate of convergence of spectral
estimates is the same at all frequencies. Indeed, the classical limit
result of Dahlhaus (1985) cannot hold for processes with long
memory poles such that β > 1/2, because the limiting variance
(see below) depends on the integral of the squared spectral density.

Because the spectral density is even, it suffices to study G(θ) =

(2π)−1
 θ
0 f (λ) dλ, and its corresponding estimator G(θ) =

(2π)−1
 θ
0
f (λ) dλ. Very general results for functionals of the pe-

riodogram, under general data process conditions, were obtained
by Dahlhaus (1985); also see the literature cited in that paper for
a history of efforts. Whereas Dahlhaus (1985) utilizes a data taper,
here we utilize a covariance taper – in keeping with the previous
subsection on spectral density estimation – as other literature has
also done (e.g., Priestley (1981)). The novelty of this subsection
lies chiefly in adopting a fixed bandwidth ratio framework, and
somewhat unsurprisingly the same limit distribution and func-
tional limit theorem is obtained as in Dahlhaus (1985); in partic-
ular, neither bandwidth fraction b nor taper plays any role in the
asymptotic distribution.

Utilizing the definition of the spectral density estimator, we at
once obtain

G(θ) = γ0 θ

2π
+ 2

N−1
h=1

Λ(h/bN)γh sin[θh]
2πh

=
1
2π

 π

−π

I(λ)

|h|<N

Λ(h/bN)
sin[θh]
2πh

eiλh dλ,

where we interpret sin[θh]/h to be the value θ whenever h = 0.
Here I(λ) is the periodogram, defined to be N−1 times the magni-
tude squared of the DFT:

I(λ) = N−1

 N
t=1

(Yt − Y )e−iλt


2

.

Let gθ (λ) = Λ(0)


h∈Z
sin[θh]
2πh eiλh, which is the pointwise limit of

gN,θ (λ) =


|h|<N

Λ(h/bN)
sin[θh]
2πh

eiλh.

Because of symmetry, gθ is always real, and so the complex expo-
nential can be replaced by a cosine in its definition. We claim that
this pointwise limit can be taken in the definition ofG(θ). Note that
gθ (λ) = 2−1 1[−θ,θ ](λ), the sinc function. LetG(·) denote the spec-
tral distribution function’s estimate, and the limiting process Z(·)
is defined as a mean zero Gaussian process with covariance kernel

K(θ, ω) = Cov (Z(θ),Z(ω)) = π−1
 π

−π

gθ (λ)gω(λ)f 2(λ) dλ

=
1
2π

 θ∧ω

0
f 2(λ) dλ. (12)

This kernel is simpler than the one found in Dahlhaus (1985), be-
cause we will assume that fourth order cumulants are zero (this
could be relaxed, but then a different approach to the estimation of
limit quantiles in Theorem 3would be needed). The kernel actually
corresponds to the covariance kernel of a heteroscedastic Brown-
ian Motion (see below).

We focus on G(θ) rather than F(θ), because if we are interested
in F(θ) for θ < 0, this is equal toG(π)−G(−θ) by symmetry. So the
following functional limit theorem can be stated; like Theorem 4.1
of Dahlhaus (1985) we require eighth order moments. (Using the
less restrictive tightness criterion described in Karatzas and Shreve
(1991), one could relax the requirement to 4+δmoments, for some
δ > 0, but then other conditions – that are harder to verify –would
have to be added to compensate.)

Theorem 3. Let {Yt} be covariance stationary with mean µ and acf
{γh}, such that the process has short memory, satisfies E[Yt

8
] < ∞,

and such that condition P1, P2, or P3 holds. Also suppose that the fourth
order cumulants are zero. If the taper satisfies (8), then as N → ∞

we have
√
N
G(·)− G(·)

 L
=⇒ Z(·)

in the space C([0, π],R), where the process Z is mean zero Gaussian
with covariance kernel (12).

It is interesting that the taper is irrelevant to the asymptotic
distribution—this is essentially because the integration involved in
the definition of the spectral distributionmakes the tapering in the
spectral density estimation obsolete. However, the taper and the
bandwidth have a substantial impact on the qualitative features of
the estimate (see Section 5). The degree of correlation between dif-
fering values of the spectral distribution estimator depends chiefly
on the smaller frequency, as indicated by (12); variance is increas-
ing in frequency, unto the maximum value G(π) = γ0/2.

As an application of Theorem 3, we can construct uniform con-
fidence bands about the spectral distribution function. This is in
contrast to the application discussed in Section 3.2, where simul-
taneous confidence intervals were constructed for a finite number
of frequencies. For real numbers ℓ, uwe have the confidence band
[G(θ)−u/

√
N,G(θ)−ℓ/√N] – as a function of θ ∈ [0, π] – yield-

ing coverage as follows:

P
G(θ)− u/

√
N ≤ G(θ) ≤G(θ)− ℓ/

√
N,∀θ ∈ [0, π]


= 1 − P


sup
θ∈[0,π ]

√
N (G(θ)− G(θ)) ≥ u


− P


inf

θ∈[0,π ]

√
N (G(θ)− G(θ)) ≤ ℓ


→ 1 − P


sup
θ∈[0,π ]

Z(θ) ≥ u


− P


inf
θ∈[0,π ]

Z(θ) ≤ ℓ


as N → ∞. The random variables Z = infθ∈[0,π ] Z(θ) and Z =

supθ∈[0,π ] Z(θ) determine the spread of the confidence band, and
can be calculated via simulation when the covariance kernel is
known, or is estimable. Another possibility is to estimate the limit
distribution via subsampling (this might be preferable if the as-
sumption on the fourth cumulant is not tenable), as in Politis et al.
(1993).

Let the corresponding quantile functions be denoted by R and
R respectively. Then the confidence band probability is approxi-
mately 1 − α if ℓ, u correspond to the appropriate critical values;
splitting α evenly yields

ℓ = R(α/2) u = R(1 − α/2). (13)

This construction differs somewhat from (11), because in that case
the limit theorem was formulated as a ratio (for spectral density
estimation), whereas here the limit theorem is formulated as a dif-
ference (for spectral distribution estimation). Although the limit
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Z(θ) does not depend on the taper, it does require a knowledge
of f . In practice, one must construct an estimate of the covariance
kernel (12); we next describe our procedure.

Let M denote a mesh of frequencies, providing a discretization
of the Riemann integral defining K(θ, θ). Then

1
2π

 θ

0
f 2(λ) dλ ≈

1
2M

⌊Mθ/π⌋
t=0

f 2(tπ/M),

which is the variance of a heteroscedastic random walk. That
is, suppose that {ϵt} is an independent Gaussian sequence, with
each randomvariable having variance f 2(tπ/M)/(2M) forM fixed.
Then Uℓ =

ℓ
t=1 ϵt is a heteroscedastic random walk with vari-

ance approximately K(θ, θ), where ℓ = ⌊Mθ/π⌋. We can easily
simulate this Gaussian sequence by multiplying f (tπ/M)/

√
2M

times iid normals.Moreover, the covariance function of the process
{Uℓ} is approximately that of the kernel K , because of the random
walk structure.

If f is known (as in the case of hypothesis testing) then we can
simulate the process {Uℓ} and obtain an approximation to {Z(θ)},
with the association ℓ = ⌊Mθ/π⌋. However, in many applications
f is unknown and must be estimated. One could use the tapered
spectral density estimates discussed above, or the periodogram
(integration over frequencies smooths it out sufficiently to provide
consistency). Thus, we constructϵt viamultiplyingf (tπ/M)/√2M
by a standard normal, independently for each t , and construct the
corresponding heteroscedastic random walk {Uℓ}. Here f could
be the periodogram or the same tapered spectral estimate upon
which our original G is based. Then with Z(θ) = U⌊Mθ/π⌋, we
approximate Z and Z by theminimumandmaximum, respectively,
over theM valuesU1, . . . ,UM . Repeated samples for {ϵt} then yield
an estimate for the distribution of Z and Z . Consistency of this
implicit estimator K follows from the same assumptions as used
in Theorem 3. The upper quantile of R and lower quantile of R yield
estimates of u and ℓ. This procedure has been implemented and
tested in simulation (see Section 5 below).

Alternatively, one may be interested in testing some null
hypothesis that naturally supplies f to us. For example, we may
be studying the time series residuals arising from a fitted model,
and seek to test whether these residuals behave as white noise.
Ignoring issues of parameter estimation error, we wish to test
whether f (λ) ≡ γ0, and hence we can estimate the covariance
kernel viaK(θ, ω) = γ 2

0
θ ∧ ω

2π
.

This is the kernel of a Brownian Motion process on [0, π], scaled
byγ0. There exist published quantile functions for the supremum
and infimum of BMs, and so the construction of ℓ, u is relatively
straightforward. In this problem, the null hypothesis also dictates
the form of G, i.e., G(θ) = γ0 θ/(2π), so that if this particular
function G fails to lie completely within the confidence bands, we
have evidence to reject the null hypothesis. However, such an ap-
proach ultimately presumes a parametric specification for the orig-
inal spectrum, and there are other techniques available for testing
model goodness-of-fit in such a scenario. In our applications below,
we focus upon nonparametric approaches to spectral estimation.

4. Higher order accuracy of the fixed bandwidth fraction

In this paper we have adopted the asymptotic perspective that
bandwidth in spectral estimates is to be viewed as a fixed fraction
b of the sample size. Conventional asymptotics stipulate that the
bandwidth is vanishing relative to sample size, and the spectral
estimates become consistent. As in the HAC literature – which ex-
amines the distribution of the self-normalized mean as b → 0,
and makes comparison to the conventional asymptotic normality
results – we intend to examine the behavior of our limits Sθ (b) in
Theorem 2 as b → 0. The point of this is to show that Sθ (b) can be
viewed as the classical limit distribution Sθ (0) plus other stochas-
tic terms that are order b, b2, and so forth. This will demonstrate
a higher-order accuracy for the fixed bandwidth fraction asymp-
totics.

Unlike in the HAC case of a standardized sample mean statistic,
where the b = 0 case corresponds to a Gaussian random variable,
for spectral estimation the b = 0 case corresponds to point mass
at the spectral density, i.e., Sθ (0) = f (θ) with probability one.
Therefore, expansions of the distribution of Sθ (b) as b → 0 will
use slightly different techniques than those employed in Sun et al.
(2008). We pursue an analysis of the Laplace Transform of Sθ (b),
providing a small b expansion, and relate this transform to the
cumulative distribution function of Sθ (b). We utilize an expansion
of the Laplace Transform in terms of functions that have known
Laplace inverses; we believe this to be a novel method, potentially
generalizable to other types of distribution problems.

This method will result in an expansion of the right tailed cu-
mulative distribution function (cdf) in terms of polynomials and
exponential functions, with coefficients given by polynomial func-
tions of the cumulants. We show how to compute these cumu-
lants directly from the tapers—although similar types of cumulant
calculations have previously appeared in the HAC literature (Sun
et al., 2008). However, we do not view this expansion as the most
practical method for calculating the cdf; in practice, one wants the
quantiles of the limit distribution, and these can be obtained via
simulation (Section 5).

Fixing θ so that we can drop the subscript, the distribution of
S(b) is characterized by its Laplace Transform (LT). From Tziritas
(1987), the LT of a Gaussian quadratic form ⟨Z, Z⟩T – for a Gaussian
process Z with covariance kernel K , and a quadratic form ⟨·, ·⟩T
with operator T – is given by

E exp{−s⟨Z, Z⟩T } = exp


∞
j=1

(−1)j
κj

j!
sj

,

where κj is the jth cumulant of S(b), and has the formula

κj = 2j−1 (j − 1)! tr[(KT )j]. (14)

Also see the discussion in McElroy and Politis (2012). Briefly, the
Gaussian process Z is defined on the space of real-valued function
of domain [0, 1], such that the action of an operator A on any
element x of this space is given by (Ax)(s) =

 1
0 A(s, t)x(t)dt . In Eq.

(14), both K and T are operators, and their composition has action
on an element x given by

(KTx)(s) =

 1

0

 1

0
K(s, u)T (u, t)x(t)dtdu.

Also, tr denotes the trace of an operator, i.e., tr(A) =
 1
0 A(s, s) ds.

The limit distribution S(b) in Theorem 2 is the sum of two such
independent and identically distributed Gaussian quadratic forms
(just one copy if θ = 0, π ), because it can be written as the sum of
two random variables of the type 1

0

 1

0
T (r, s)B(r)B(s) drds,

where T (r, s) is equal to −b−2Λ̈((r − s)/b) plus secondary terms
involving the Dirac delta function. Because the Gaussian processesB are FBBs, the covariance kernel K is that of FBB (Samorodnitsky
and Taqqu, 1994). Trivially, the LT of the sum of two iid random
variables is the square of their common LT, which amounts to a
doubling of each cumulant. In the following treatment, we provide
an expansion for the cdf in terms of cumulants; these are given



218 T.S. McElroy, D.N. Politis / Journal of Econometrics 182 (2014) 211–225
by doubling the formula for κj in (14) when θ ≠ 0, π , but at
frequency zero or π we just take the formula (14) directly. Since
the trace of powers of KT is not convenient to calculate, we provide
a feasible approximation to the κj inMcElroy and Politis (2014); see
http://escholarship.org/uc/item/6164c110.

The right-tailed cdf of ⟨Z, Z⟩T will be denoted by F , and its pdf
by p. The LT of a function φ (of non-negative support) is denoted
by Lφ , where

Lφ(s) =


∞

0
φ(x)e−sx dx.

Then LF (s) = s−1(1 − Lp(s)) using integration by parts, and
Lp(s) = E exp{−s⟨Z, Z⟩T }. Next, letting

0
j=1 (an empty sum) be

equal to zero for convenience, consider the infinite expansion

LF (s) =

∞
k=0

s−1


exp


k

j=1

(−1)j
κj

j
sj


− exp


k+1
j=1

(−1)j
κj

j
sj


, (15)

and denote the kth term by the function Gk(s). Each such function
is actually of order bk, and by carefully expanding them in an
appropriate fashion, is the infinite sum of functions with known
LT inverse. The initial term in the expansion is

G0(s) = s−1 1 − e−κ1s


= L1[0,κ1]
(s),

i.e., it is the LT of the indicator function on [0, κ1]. This makes
sense, because the right-tailed cdf should tend, as b → 0, to
an indicator function with boundary marked by its point mass,
namely κ1 = Λ(0) (shown below). The higher order terms are
more complicated, but contribute additional perturbations to this
indicator function.

The key to the following theorem is the following class of
polynomials: let φn be supported on [0,∞) such that

ψn+1(z, x) =


∂2

∂z∂x


ψn(z, x) ezx


e−zx/n

and φn(x) = ψn(−1, x). Thus φ1(x) = 1, φ2(x) = 1 − x, φ3(x) =

1−2x+x2/2, etc. These polynomials have the remarkable property
that

Lφn+1e−·(s) = sn(1 + s)−(n+1), (16)
as shown in Gradshteyn and Ryzhik (1994). Now we can state the
main expansion result, which applies more generally than to just
the spectral density estimation problem.

Theorem 4. Suppose that a Gaussian quadratic form ⟨Z, Z⟩T with
covariance kernel K has cumulants given by (14). Then there exist
coefficient sequences {α

(k)
j } for each k ≥ 1 such that

Gk(s) =

∞
n=0

α
(k)
n+1

(n + 1)!
sn(1 + s)−(n+1)

=

∞
n=0

α
(k)
n+1

(n + 1)!
Lφn+1e−·(s)

and G0(s) = s−1

1 − e−κ1s


, where


k≥0 Gk is the Laplace

Transform of the right-tailed cdf of ⟨Z, Z⟩T . The right-tailed cdf has
the expansion

F(x) = 1[0,κ1](x)+

∞
n=0

α
(1)
n+1

(n + 1)!
φn+1(x)e−x

+

∞
n=0

α
(2)
n+1

(n + 1)!
φn+1(x)e−x

+ · · · .

The coefficient sequences {α
(k)
n } are derived in the proof, and

are fairly complicated expressions in terms of the cumulants. Next,
we apply Theorem 4 to the case where b → 0, noting that each
subsequent term in the expansion is of higher order. As discussed
in Sun et al. (2008) in the case of a regular taper and a shortmemory
covariance kernel K , the cumulants satisfy κj = O(bj−1); assuming
this, we have the following corollary.

Corollary 1. Suppose that a Gaussian quadratic form ⟨Z, Z⟩T with
covariance kernel K has cumulants given by (14), and also suppose
that κj = O(bj−1) as b → 0. Then

∞
n=0

α
(k)
n+1

(n + 1)!
φn+1(x)e−x

= O(bk)

as b → 0, for each k ≥ 1.

We note that the cumulants need not have the behavior κj =

O(bj−1) when long memory or negative memory is present, as
demonstrated in McElroy and Politis (2012) for the θ = 0 case.
In that paper it was shown that the small b behavior of S0(b) has
a distribution that either explodes to infinity (the case of long
memory) or shrinks to zero (the case of negative memory).

Remark 2. As an example, consider the case that κj = 0 for j > 2,
which corresponds to treating all higher order terms in b as zero.
Then the LT of the pdf is just

exp{−κ1s + κ2s2/2},

which corresponds to a (positive) random variable with mean
κ1 and variance κ2, and all higher order cumulants exactly zero.
If the random variable were not enforced to be positive, it
would correspond to the Gaussian distribution by its cumulant
characterization. However, the actual limit is positive and non-
Gaussian. Pretending – for the sake of making a comparison with
the vanishing bandwidth fraction scenario – that this distribution
is really Gaussian would yield the limit theoremf (θ)
f (θ)

L
=⇒ N (κ1, κ2).

The classic small-b results (Anderson, 1971) state that
N/M

f (λ)
f (λ)

− 1


L

=⇒ N (0,

Λ2(x) dx)

for λ ∈ (0, π) and taper Λ (satisfying Λ(0) = 1) of bandwidth
M , such that M/N + 1/M → 0. Taking M = bN in this result
indicates that our results provide a higher order extension of the
classical results, so long as κ1 = Λ(0) and κ2/b ∼


Λ2(x) dx; this

is shown in McElroy and Politis (2014).

Of course, these results are of a theoretical nature. The actual
limiting quantiles vary dramatically with b and the long memory
parameter β , so that the finite-sample distribution of the spec-
tral density estimate is more accurately captured by utilizing both
b and β , as opposed to using the vanishing bandwidth approx-
imation via the normal distribution. This was demonstrated in
simulation studies of HV for the β = 0 case; for β ≠ 0, the situa-
tion is more egregious (using short memory quantiles when there
is long/negative memory produces badly mis-sized statistics—see
McElroy and Politis (2014)).

5. Numerical studies of size and bandwidth selection

This section now discusses some more practical aspects
of spectral density estimation. We first discuss the simulated
quantiles for the limit variable in Theorem2using three tapers, and
investigate coverage in finite sample simulations as a function of
bandwidth fraction b. A discussion of optimal bandwidth selection,
as well as a more thorough exposition of quantile simulation and
coverage, can be found in McElroy and Politis (2014).

http://escholarship.org/uc/item/6164c110
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5.1. Computing the spectral distribution

As in McElroy and Politis (2012), we have simulated the distri-
bution of Sθ (b) for some tapers, when θ ≠ 0, π (the case of θ =

0, π produces a distribution for Sθ (b) identical to theHAC case, and
its quantiles can be found in published literature such as Kiefer and
Vogelsang (2005)), and here we summarize the tables of McElroy
and Politis (2014).We focus on the Bartlett and Trapezoidal tapers.

First consider the limit distribution Sθ (b) of Theorem 2 in the
case that θ ≠ 0, π . In this case, recall that mean centering is ir-
relevant, so that the limit is a quadratic functional of FBM rather
than FBB; moreover, there is a doubling effect, where Sθ (b) is re-
ally the sum of two iid random variables. In the case that θ = 0
or θ = π , the limit Sθ (b) is given by just one of these random
variables. Furthermore, when θ = 0 and we construct our spec-
tral estimates by mean-centering, then the limit distribution S0(b)
involves FBB instead of FBM. Alternatively, if no mean centering is
utilized in the estimates (and the truemean is zero) then the distri-
bution of S0(b) involves FBM rather than FBB. The case of S0(b)with
mean-centering, utilized as a studentization of the sample mean,
was studied in McElroy and Politis (2012); tables of quantiles for
S0(b) and Sπ (b) have not been published, to our knowledge.

Both lower and upper quantiles have been estimated for the
limit distributions, for a variety of long memory parameters
β . (Specifically, in McElroy and Politis (2014) we consider
β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, and the quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99.) Because the case of a
frequency between 0 and π involves the sum of two iid variables
(Theorem 2), versus just one such variable in the frequency 0 or
π case, the quantiles in the former case are a bit larger and have
more positive mass. When using non-positive definite tapers, such
as the Trapezoidal tapers, the limit distribution has some mass
on the negative half-line, and there is more such mass in the
frequency 0 and π cases. No such negative mass occurs with the
Bartlett taper, because it is positive definite. Another feature is
the small b behavior of the quantiles as a function of β , namely
that the quantiles shrink towards zero as β increases, when b is
small. However, for negative memory (β < 0) the quantiles tend
to decrease as a function of b, whereas the opposite is true for
positivememory (β > 0). In comparisonwith the quantiles for the
self-normalized sample means in the HAC literature (McElroy and
Politis, 2009, 2011), the small b behavior as a function of memory
is inverted, because in the self-normalized case the variable Sb(0)
is in the denominator of the limit distribution.

One implication of the small b behavior of Sb is that, while for
short memory the distribution becomes centered around unity, for
β < 0 there is more probability mass on values greater than one,
whereas for β > 0 there is a greater probability of values less
than one. When constructing confidence intervals, it is therefore
possible in the long memory case for both the lower and upper
quantiles to be less than unity, so that the confidence interval
does not encase the estimator—the point estimate will lie below
both the lower and upper limits of the interval. In contrast, for the
negative memory case, the point estimate can lie above both the
lower and upper limits of the interval. There is nothing incorrect
mathematically about this feature, though itmay look unusual (see
the figures below for our applications); the effect diminishes as b
is increased.

5.2. Simulation study of finite-sample coverage

The large bandwidth asymptotic theory provides a superior ap-
proximation to the finite-sample distribution of spectral estima-
tors, as discussed in HV and Sun et al. (2008). Hence, this should
provide superior coverage for confidence intervals and confidence
bands; the work of HV illustrates this superior coverage, as com-
pared to the classical normal approximation (utilizing small b
methods). We seek here to extend those numerical results to an
investigation of long memory, and also to spectral bands. There-
fore,we first consider a seasonal longmemory process CM(β ,π/6),
adopting the pattern of study discussed in HV. Second, we con-
sider an AR(2) process that generates a spectral peak, and compute
the spectral distribution estimators, generating the corresponding
confidence band. We are interested in determining the proportion
of simulations for which the estimated spectral bands contain the
true spectral distribution.

The long memory study begins by simulating 5000 Gaussian
time series of lengthN = 50, 100, 200 fromaprocesswith spectral
density

f (λ) = ([2 − 2 cos(λ− θ)] [2 − 2 cos(λ+ θ)])−β ,

which satisfies (3). Here we take θ = π/6, which is a fre-
quency of interest in monthly economic time series exhibiting
seasonality (see Holan and McElroy (2012) for discussion of sea-
sonal long memory modeling, and McElroy and Holan (2012)
for computational aspects). As mentioned in Section 3, infer-
ence is conducted for the moving parameter fN(θ), and we
consider various values of the long memory parameter: β =

−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8. The case of β = 0 corresponds
to white noise, and fN(θ) = f (θ) exactly – cf. (9) – in this case.
Other values of fN(π/6) are produced in Table 1.

For each of 5000 simulations, we compute the spectral estimatef (θ) at the frequency θ = π/6 of interest, construct the interval
using (10), and record the proportion of simulations for which
fN(π/6) is contained therein. We construct the interval using
the true β (which would be unknown in practice) to determine
quantiles. We consider two tapers (Bartlett and Trapezoidal
.5) and four choices of b = .04, .10, .20, .50. This study
differs somewhat from the approach in HV, which compares the
cumulative distribution function (determined by simulation) of
Nf (θ)/VN(θ) against the cumulative distribution function of Sb(θ);
here we highlight the incidence of under- or over-performance in
finite sample. Of course, HV focuses on β = 0 as well. Tables 1 and
2 provide empirical coverage based on α = .05, .10 confidence
intervals, where the target quantity fN(π/6) is displayed in the
tables as well.

The first thing to observe is the pattern of fN(π/6) as a function
of N and β—it decreases with N if β < 0, is fixed at .5 when
β = 0, and increases rapidly to infinity when β > 0. The
actual coverage results display improved accuracy (in general) for
increasing sample size, and somewhat inferior coverage for smaller
values of b. Negative values of β lead to under-coverage (this can
be quite poor for β = −.8 and small values of b), while positive
values of β tend not to have worse performances, as compared to
β = 0. In comparing tapers, it is quite noticeable that the Bartlett
is inferior to the Trapezoidal taper; the latter is known to have
superior bias properties in the short memory case, and this may be
carrying over to the long memory case as well. Trapezoidal tapers
tend to produce spectral estimates with slightly lower values
than those constructed via a Bartlett taper, and the corresponding
asymptotic distributions are shifted to the left (having positive
mass at negative values). When a trapezoidal estimate produces
a negative spectral estimate, the confidence interval construction
given in Section 3 fails (because dividing by a negative number
invalidates the inequality relations), and instead we replace such
estimates with zero. (Another possibility is to replace negative
values with half of the Bartlett estimate.) Essentially, our spectral
estimate is computed using the maximum with zero, and the
limit distribution should be modified accordingly. In cases where
a lower quantile is negative, we replaced the lower boundary of
the interval by zero (a more rigorous approach is to simulate
the distribution max{Sb(θ), 0}); even using such an approximate
technique, we obtained quite favorable results for the Trapezoidal
taper, across all values of β .
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Table 1
Empirical size for simulations of a cyclical long memory process of parameter β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, with spectral density estimates (at frequency π/6)
computed using a Bartlett taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were constructed for α = .05, .10, and empirical coverage is given in each
cell for both nominal levels.

Empirical coverage for Bartlett taper

β −.8 −.6 −.4 −.2 0 .2 .4 .6 .8

N = 50, f50(π/6) .055 .084 .141 .256 .5 1.05 2.38 6.17 19.57

b = .04 .021, .017 .234, .187 .536, .445 .761, .670 .831, .744 .793, .706 .751, .661 .764, .658 .795, .706
b = .10 .233, .191 .614, .532 .809, .729 .885, .824 .915, .849 .916, .853 .925, .867 .932, .876 .939, .892
b = .20 .650, .569 .861, .788 .915, .858 .930, .877 .940, .890 .947, .896 .949, .901 .953, .904 .955, .908
b = .50 .786, .712 .904, .840 .930, .871 .943, .890 .946, .891 .948, .896 .948, .900 .947, .896 .947, .901

N = 100, f100(π/6) .033 .056 .108 .224 .5 1.20 3.14 9.30 33.36

b = .04 .022, .015 .333, .263 .687, .600 .852, .775 .884, .815 .880, .805 .873, .797 .897, .826 .917, .856
b = .10 .304, .251 .744, .663 .884, .805 .925, .866 .936, .882 .940, .885 .938, .884 .945, .890 .950, .905
b = .20 .732, .654 .906, .840 .930, .877 .942, .889 .952, .899 .943, .899 .954, .907 .957, .907 .959, .917
b = .50 .822, .753 .913, .854 .935, .883 .942, .896 .951, .901 .941, .886 .951, .901 .954, .901 .949, .904

N = 200, f200(π/6) .020 .038 .082 .195 .5 1.38 4.14 14.02 56.75

b = .04 .037, .025 .494, .396 .823, .738 .918, .855 .942, .882 .932, .877 .932, .872 .941, .887 .949, .903
b = .10 .366, .293 .812, .726 .920, .856 .942, .889 .949, .899 .945, .889 .942, .886 .944, .895 .951, .909
b = .20 .790, .725 .921, .863 .941, .888 .950, .895 .954, .903 .952, .900 .948, .897 .952, .906 .960, .920
b = .50 .848, .785 .930, .875 .947, .897 .949, .896 .948, .898 .948, .900 .944, .897 .949, .901 .952, .909
Table 2
Empirical size for simulations of a cyclical long memory process of parameter β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, with spectral density estimates (at frequency π/6)
computed using a Trapezoidal .50 taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were constructed for α = .05, .10, and empirical coverage is given
in each cell for both nominal levels.

Empirical coverage for trapezoidal .50 taper

β −.8 −.6 −.4 −.2 0 .2 .4 .6 .8

N = 50, f50(π/6) .055 .084 .141 .256 .5 1.05 2.38 6.17 19.57

b = .04 .703, .652 .694, .631 .751, .697 .819, .750 .832, .758 .811, .731 .769, .676 .785, .687 .824, .740
b = .10 .870, .803 .933, .895 .952, .911 .952, .912 .950, .902 .957, .909 .955, .904 .958, .910 .965, .925
b = .20 .894, .797 .937, .867 .952, .895 .955, .904 .942, .892 .949, .898 .946, .892 .948, .893 .957, .906
b = .50 .904, .858 .925, .886 .942, .895 .941, .897 .950, .900 .947, .893 .945, .898 .941, .887 .951, .898

N = 100, f100(π/6) .033 .056 .108 .224 .5 1.20 3.13 9.30 33.36

b = .04 .918, .864 .944, .904 .938, .900 .938, .886 .927, .869 .928, .867 .933, .867 .942, .889 .954, .912
b = .10 .893, .834 .932, .903 .939, .899 .939, .890 .938, .884 .947, .892 .941, .887 .945, .887 .949, .901
b = .20 .917, .842 .956, .895 .954, .895 .951, .897 .955, .904 .952, .907 .984, .908 .954, .905 .960, .915
b = .50 .913, .866 .932, .891 .941, .900 .944, .895 .952, .899 .949, .896 .952, .900 .949, .896 .946, .900

N = 200, f200(π/6) .020 .038 .082 .195 .5 1.38 4.14 14.02 56.75

b = .04 .914, .853 .950, .908 .958, .923 .953, .913 .951, .906 .948, .898 .949, .895 .949, .896 .956, .914
b = .10 .920, .869 .937, .908 .944, .908 .947, .901 .949, .888 .945, .896 .951, .897 .946, .896 .953, .908
b = .20 .919, .844 .952, .886 .959, .898 .952, .905 .951, .897 .952, .907 .957, .908 .952, .903 .956, .912
b = .50 .927, .885 .943, .902 .943, .900 .948, .906 .948, .898 .948, .901 .950, .901 .945, .893 .950, .897
Now these coverage results are idealized, because we presume
to know the true β when utilizing limit quantiles. In practice, an
estimate of β would be obtained, and then appropriate quantiles
could be simulated. If we instead always utilize β = 0 quantiles,
even when mis-specified, the coverage deteriorates significantly
(we have not systematically investigated this) because the quantile
functions are quite sensitive to β .

For the second simulation study, we wish to investigate the
coverage for the spectral distribution band method described in
Section 3. We consider a cyclical process {Yt} given by the AR(2)
equation (1 − 2ρ cos(θ)B + ρ2B2)Yt = ϵt , for {ϵt} a white noise
process of unit variance. We consider θ = π/6, and values ρ =

.7, .8, .9 to generate several different cycles (values of θ closer
to zero make estimation more challenging in some ways). Then
we take 1000 Gaussian draws from this process of sample size
N = 50, 100, 200, and compute the spectral distribution estimateG(·), and form the confidence band about it utilizing the quantiles
ℓ and u from (13), determined using both the true unknown f to
compute the kernel K (as an unavailable baseline) as well as the
estimatedK utilizing an estimated spectral density (withmesh size
M = 600), as described in Section 3.3. The spectral distribution
estimate is constructed with a particular choice of taper (Bartlett
or Trapezoidal .5) and bandwidth fraction (b = .04, .1, .2, .5), and
the spectral density estimate used to estimate the kernel K uses
the same specification. Once the bands are determined, the true
spectral distribution can be plotted, and coverage is determined by
the condition that the true function lies entirely within the bands.
For α = .05, .10 we determine the empirical coverage. Results
are summarized in Tables 3 and 4; in each cell, the first entry
corresponds to using the estimated K , whereas the second entry
utilizes perfect knowledge of the true f .

It is remarkable that results for spectral band coverage aremuch
inferior to those of spectral density coverage, in general. Under-
coverage seems to be the general malaise, and small values of
b accentuate the affliction. However, some intuitive results can
be gleaned from the tables. First, coverage improves with sam-
ple size (albeit, sometimes moving from under-coverage to over-
coverage); second, coverage is better for lower values of ρ; third,
the under-coverage problem is less egregious when omniscience
about f is utilized. Regarding the second point, recall that higher
values of ρ indicate a sharper spectral peak, causing the spectral
distribution to depart from a diagonal line (the case of white noise)
andmore closely resemble a step function—correctly capturing the
width of uncertainty is more challenging when serial correlation is
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Table 3
Empirical coverage for spectral distribution bands based on the Bartlett taper with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size
N = 50, 100, 200 from a cyclical AR(2) process of frequency θ = π/6 and persistency ρ = .7, .8, .9. Coverage for both nominal levels α = .10, .05 is given in each
cell, with the first entry based on an estimator of the spectrum, and the second entry based on perfect knowledge of the true spectrum.

Empirical coverage for Bartlett taper

Bandwidth Coverage, α = .10 Coverage, α = .05

N = 50 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .503, .917 .388, .886 .345, .942 .583, .974 .486, .956 .433, .972
b = .10 .768, .944 .703, .937 .647, .962 .811, .969 .761, .961 .707, .979
b = .20 .833, .952 .796, .942 .750, .966 .862, .969 .838, .961 .796, .979
b = .50 .856, .939 .851, .941 .818, .968 .889, .960 .887, .961 .848, .980

N = 100 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .703, .893 .642, .891 .428, .854 .765, .960 .716, .958 .516, .937
b = .10 .849, .946 .836, .948 .673, .942 .887, .977 .878, .980 .747, .963
b = .20 .884, .950 .877, .952 .785, .954 .913, .980 .913, .983 .832, .965
b = .50 .904, .946 .901, .954 .840, .956 .939, .976 .931, .982 .880, .967

N = 200 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .794, .896 .747, .886 .565, .806 .850, .935 .825, .942 .670, .903
b = .10 .883, .924 .882, .931 .803, .911 .919, .957 .918, .962 .850, .953
b = .20 .903, .927 .908, .937 .857, .925 .933, .958 .938, .965 .902, .962
b = .50 .924, .923 .932, .934 .897, .927 .943, .957 .956, .966 .926, .962
Table 4
Empirical coverage for spectral distribution bands based on the Trapezoidal .50 taper with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size
N = 50, 100, 200 from a cyclical AR(2) process of frequency θ = π/6 and persistency ρ = .7, .8, .9. Coverage for both nominal levels α = .10, .05 is given in each cell,
with the first entry based on an estimator of the spectrum, and the second entry based on perfect knowledge of the true spectrum.

Empirical coverage for trapezoidal .50 taper

Bandwidth Coverage, α = .10 Coverage, α = .05

N = 50 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .773, .904 .686, .913 .584, .921 .831, .931 .770, .939 .674, .939
b = .10 .861, .948 .839, .947 .754, .947 .879, .971 .874, .958 .797, .965
b = .20 .866, .949 .859, .949 .802, .949 .892, .973 .889, .960 .824, .968
b = .50 .883, .943 .878, .946 .825, .950 .914, .972 .905, .961 .855, .972

N = 100 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .888, .930 .868, .938 .755, .933 .915, .973 .902, .971 .823, .962
b = .10 .903, .949 .898, .949 .859, .945 .922, .975 .925, .974 .886, .967
b = .20 .912, .946 .911, .948 .880, .945 .930, .976 .937, .976 .908, .970
b = .50 .924, .935 .927, .943 .896, .945 .938, .972 .948, .976 .920, .969

N = 200 ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

b = .04 .912, .943 .880, .925 .798, .910 .943, .977 .923, .963 .866, .953
b = .10 .916, .943 .909, .928 .902, .936 .948, .975 .941, .964 .921, .963
b = .20 .923, .938 .918, .928 .908, .932 .952, .971 .946, .959 .923, .960
b = .50 .943, .931 .935, .915 .918, .925 .965, .969 .962, .958 .935, .959
present. The third point has ramifications for hypothesis testing,
where we might hypothesize a specific formula for f (e.g., white
noise or a cyclical AR(2)) and then test this hypothesis by seeing
whether the spectral distribution estimate is completely contained
in bands computed from that particular f . Finally, the impact of ta-
per can be seen with reduced under-coverage of the flat-top ta-
per, which is especially prevalent in the small b case. However,
we remind the reader that flat-top tapers are not positive definite,
so that spectral density estimates can have negative values, and
therefore the spectral distribution estimates need not be mono-
tonically increasing in frequency.

6. Empirical applications

Spectral analysis has a diverse range of statistical applications;
here we highlight a few applications through two empirical analy-
ses.

6.1. Identifying residual seasonality in retail series

Suppose one is analyzing amonthly or quarterly economic time
series, such as total retail sales, and is interested in identifying pe-
riodicities by estimating spectral peaks. For retail series, season-
ality is typically the most salient dynamic in the data, effectively
masking trend and business cycle movements. Seasonal adjust-
ment should remove seasonalitywhile ideally leaving the other dy-
namics undisturbed; inadequate seasonal adjustment is indicated
by the presence of spectral peaks at seasonal frequencies. Here we
utilize the spectral distribution function to affirm the adequacy of
seasonal adjustment.

We apply the spectral distributionmethodology to themonthly
series of total retail sales for the major industry classifications 441
(Motor Vehicles and Parts Dealers), available from the US Census
Bureau.2 We consider a variety of tapers and bandwidth fractions
for the seasonally adjusted data, covering the years 1992 through
2012.Wewill generate a graphof the spectral distribution estimate
with sufficient resolution to examine business cycle effects, as well
as seasonality, and also provide measures of uncertainty for the
entire function. Because the business cycle has a period of two to
ten years in general, the minimum number of frequencies needed

2 Monthly Retail Trade and Food Services survey.
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Fig. 1. Spectral distribution estimate using estimated covariance kernel for Retail 441 series, utilizing a Bartlett taper and bandwidth fractions b = .04, .1, .2, .5 in upper
left, upper right, lower left, and lower right panels respectively. The confidence bands at .95 and .90 nominal coverage are displayed as red (outermost) and green (middle)
curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is 60 (a ten year cycle for monthly data corresponds to frequency
π/60). Thus we will take ωj = π j/60 for 0 ≤ j ≤ 60; note that
ωj for 1 ≤ j ≤ 5 are the business cycle frequencies. Also ω0 = 0
corresponds to the trend frequency, andω10k for k = 1, 2, 3, 4, 5, 6
corresponds to seasonal frequencies.

Supposing that this retail series has been processed by the pro-
gram X-12-ARIMA, we then compute the (trend-differenced) ad-
justment’s spectral distribution function, calculating the spectral
bands to quantify uncertainty. Inadequate seasonal adjustment can
result in distorted business cycle and/or trend estimates, and thus
has severe implications for econometric analysis; see discussion in
Bell and Hillmer (1984). Any sudden jumps around the seasonal
frequencies indicate residual seasonality, while a straight diago-
nal line corresponds to perfect white noise. We compute the spec-
tral distribution estimate and its confidence bands (with estimated
kernel) utilizing the methodology of Section 5, considering both
the Bartlett taper and the Trapezoidal .5 tapers, each with band-
widths b = .04, .1, .2, .5. The bands are computed at the range
of frequencies discussed above, with green (middle) curves corre-
sponding to the .90 coverage and red (outermost) curves for the
.95 coverage.

Fig. 1 shows the result for the Bartlett taper, while Fig. 2 shows
results for the Trapezoidal .50 taper. The steady growth in the
spectral plots between cycles 0 and 1 (i.e., for frequencies up to
π/6) indicates near constant spectral mass, and behavior similar
to white noise; there is no sharp increase in the vicinity of any
of the key seasonal cycles. One overall conclusion, from each of
the plots, is that no significant seasonality remains. The impact
of bandwidth fraction is much less apparent than in the spectral
density estimates, which we expect from our asymptotic theory.
One interesting feature can be discerned when comparing tapers;
the trapezoidal tapers produce, in some cases, spectral distribution
estimates that decrease at some frequencies, violating the fact
that spectral distribution functions are monotonically increasing.
This occurs because the flat-top tapers are not positive definite; in
contrast the Bartlett taper, being positive definite, does not have
this problem—though we can expect the width of the spectral
bands about the estimator to be too small, especially for small b,
as discussed in Section 5.

Since the spectral distribution displayed in Fig. 1 corresponds
to the series that will subsequently be used for econometric
analysis,3 what can we deduce about Retail 441 series’ dynamics?
The most salient feature is a dramatic tapering in the slope
somewhere around frequency π/12, or mid-way between cycles
0 and 1. This indicates a large degree of power at the trend and
business cycle frequencies, which tapers off around π/12 with
much less variation at higher frequencies. This is consistent with
the generic spectral portrait of an economic series. Identifying the
ordinate of this ‘‘kink’’ in the spectral distribution (which is more
pronounced when b is larger) is delicate, depending on the taper
and bandwidth, but can be used as the basis for designing band-
pass filters for business cycle estimation.

6.2. Long memory spectral analysis of housing starts

Here we consider regional housing starts, for the South region,
measured at a monthly frequency from 1964 through 2012, avail-
able from the US Census Bureau. We analyze the data here with a
nonparametric approach, attempting to plot the spectral estimates
for a variety of bandwidths, taking any seasonal long memory into
account when quantifying uncertainty. We consider the same grid
of frequencies as in the retail series, but are principally interested
in the seasonal frequencies.

The South starts has been cleaned of outliers and level
shifts, and we utilize a log transformation to stabilize variability.

3 Typically, all economic analyses are based upon official published seasonal
adjustments.
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Fig. 2. Spectral distribution estimate using estimated covariance kernel for Retail 441 series, utilizing a Trapezoidal .50 taper and bandwidth fractions b = .04, .1, .2, .5
in upper left, upper right, lower left, and lower right panels respectively. The confidence bands at .95 and .90 nominal coverage are displayed as red (outermost) and green
(middle) curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Analysis of sample autocorrelation plots for the first differences
(to eliminate trend growth) reveals the presence of highly persis-
tent correlation at seasonal lags (multiples of twelve), which indi-
cates either nonstationarity or seasonal long memory. A common
approach with such series is to utilize seasonal differencing – un-
der the assumption of seasonal unit roots being present – but here
we proceed with a hypothesis of stationarity, instead proceeding
to estimate the seasonal long memory. This seems to be a plausi-
ble investigation, given the long sample size.

In order to obtain the right quantiles in each case, it is necessary
to know the cyclical memory. It is reasonable to suppose, based
on the form of nonstationarities in such series and the discussion
above, that cyclical memorymay be present at frequenciesω10k for
0 ≤ k ≤ 6, and at no others. To estimate the cyclical memory βθ
for these seven frequencies, one can adopt the crude estimation
method described in McElroy and Politis (2011), adapted to
nonzero frequencies:

log
f (θ) = β log(n)+ ϵn.

This regression equation is to be viewed as depending on sample
size n, taking subsamples of length n for 100 ≤ n ≤ N , with
N = 587. The error ϵn is equal to the logarithm of the spectral
estimate divided by nβ , and hence is approximately distributed
as log Sb(θ) when n is large. These regression errors are highly
cross-correlated across various values of n, but nevertheless we
will utilize ordinary least squares to get a rough estimate of β; see
McElroy and Politis (2007) for a similar methodology.

We only need a rough estimate of β , because we only have
quantiles for values ofβ belonging to the grid {−.8,−.6,−.4,−.2,
0, .2, .4, .6, .8} anyways; we adopt the quantiles for a value of β
closest to that derived from the regression. In this way we can
obtain the quantiles for each spectral estimate at each of the six
spectral peaks, using β = 0 at the non-seasonal frequencies. The
estimates for the six spectral peaks are 0.42, 0.29, −0.02, 0.05,
0.09, and −0.01 respectively. Therefore we shall use β = .4
quantiles for the first peak, β = .2 quantiles for the second peak,
and β = 0 quantiles for all other frequencies. We produce spectral
density estimates only for the Bartlett taper (in log scale), with the
bandwidth fractions b = .04, .1, .2, .5. (More extensive results can
be found in McElroy and Politis (2014).) We focus on α = .05, the
results for α = .10 looking quite similar. Recall that the quantiles
utilized at frequency 0 and π are different, and induce a slightly
wider interval; results are displayed in log scale for the Bartlett
taper in Fig. 3.

The impact of bandwidth fraction is quite evident in the plots;
smaller values of b enforce more smoothing. As was noted in
Section 5, when long memory is present the confidence interval
can lie completely above the point estimate, and this is evident
in the figures with b = .04. Apart from the two long memory
seasonal peaks, the other frequencies do not have this property,
as they have short memory dynamics. We also highlight that at
frequencies 0 and π the confidence intervals are slightly wider to
reflect the heighteneduncertainty. Note that the logarithmic trans-
form, which was used for easier viewing, is not possible for the
trapezoidal tapers, because the spectral density estimates take on
negative values (not displayed). The impact of the trapezoidal ta-
per, in contrast to the Bartlett, is to shift the estimate downwards—
this improves bias and coverage, but at the cost of losing positivity.
Otherwise, there is little to discriminate between the tapers, given
the same choice of bandwidth.

The main features evident from this analysis are that two spec-
tral peaks are present at the first and second seasonal frequencies.
The evidence of the existence of spectral peaks at the third and fifth
seasonal frequencies is less apparent, whereas there seems to be
no peak at all at the fourth seasonal frequency. This summary is
corroborated by the rough estimates of the cyclical memory pa-
rameters. As a result, we deduce that seasonal dynamics in South
starts are driven by phenomena recurring once or twice a year. It is
known that construction activity tapers considerably in the winter
months, and weather predominantly drives the seasonality. Given
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Fig. 3. Spectral density estimate in log scale for South series, utilizing a Bartlett taper and bandwidth fractions b = .04, .1, .2, .5 in upper left, upper right, lower left, and
lower right panels respectively. The confidence intervals (red dashed lines) are for .95 nominal coverage.
this spectral portrait, signal extraction filters for the first and sec-
ond stochastic seasonal could be derived or designed, and the once-
a-year and twice-a-year persistent components could be estimated
and separated. If the series is to be seasonally adjusted, a filter that
suppresses only the first and second seasonal frequencies may be
adequate.

7. Conclusion

This paper provides a new study of taper-based spectral esti-
mation from the perspective of fixed bandwidth ratio asymptotics.
Classical spectral estimation theory assumes that the bandwidth
is negligible with respect to sample size, asymptotically, while the
so-called ‘‘fixed-b asymptotics’’ allows for a constant ratio of band-
width to sample size. Previous work on fixed-b asymptotics for
spectral density estimation (HV) has focused on short memory dy-
namics and a single frequency, but we make extensions in several
directions: (i) we study joint convergence over a finite collection
of fixed frequencies; (ii) we allow for cyclical long memory at any
of these frequencies; (iii) we provide results for flat-top tapers and
tapers with kinks, extending the cases studied by HV (Bartlett and
smooth tapers); (iv) we provide a discussion of higher-order ac-
curacy in the short memory case, by an expansion of the cumula-
tive distribution function of the spectral density estimate’s limit;
(v) we study spectral distribution estimation in the context of
fixed-b asymptotics, and develop the application of simultaneous
confidence bands; (vi) we tabulate the spectral density estimate’s
limit quantiles, as a function of taper, memory parameter, and
bandwidth fraction; (vii) we empirically examine coverage of the
spectral density and spectral distribution estimates.

The relevance of spectral estimation for econometric analysis is
the following: the spectrum captures the second order structure
of a stationary series in a compact, graphical manner. One may
wish to stare at this graph to gain insight, as peaks in the spectral
density (or steep increases in the spectral distribution) correspond
to quasi-periodic dynamics in the data; this in turn indicates to
the practitioner what types of filters can be utilized or designed
to extract features of interest. Understanding these graphs can
help one to avoid simple mistakes of generating spurious signal
extraction estimates. For example, if one is interested in extracting
a business cycle component and utilizes some sort of band-pass
filter, a spurious cycle can be extracted from the data when no
spectral peak actually exists—e.g., applying a band-pass filter to
white noise will generate a business cycle from a purely random
sequence. However, utilizing a band-pass filter when there is
actually a spectral peak in that particular band will produce a
reasonable estimate of actual cyclical dynamics.

As another example, we can design seasonal adjustment filters
that have zeros only at the seasonal frequencies where actual
peaks have occurred—recall the South starts application. By
knowing where the peaks in the spectrum actually occur, we can
avoid inducing unneeded zeros in the spectrum of the seasonal
adjustment, which in turn can generate negative autocorrelation
at seasonal lags in the filter output (see Bell and Hillmer (1984)
for discussion). The broader point is that informed filter design
flows naturally from inspection of the graph of a spectral density
estimate. Many features of econometric interest – such as trends
and business cycles and turning point indicators – can be captured
through correct filter design.

For those econometricians disinclined to study spectral graphs,
but are chiefly interested in the information conveyed by the
parameters of fitted models, one may view the spectral density
estimate as a proxy for a model-based spectrum, and essentially
fit the model via matching the two. This is the philosophy behind
theWhittle likelihood (see Taniguchi and Kakizawa (2000)), which
aims to fit a time series model by choosing parameter values
such that the integral (over all frequencies) of the ratio of spectral
estimate (typically the periodogram, but taper-based estimates can
also be used) to the model’s spectral density is minimized (one
also requires a penalty term involving the log innovation variance).
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Yet another application would be the construction of the spectral
distribution estimate from a fitted model’s residuals, and a formal
test (via the confidence band methodology described above) of
the white noise hypothesis (which corresponds, leaving aside the
impact of uncertainty in estimated parameters, to a correct model
specification). Still other uses for the spectrum exist, which the
interested reader can find in the abundant spectral literature.

Although this paper attempts to study several questions, many
more are raised in the process. What is the statistical behavior,
from a fixed-b perspective, when frequencies are becoming
asymptotically closer to one another? What is a sensible criterion
for locally-optimal bandwidth selection that takes into account the
smoothness across multiple frequencies? (Thus, optimality should
be discussed in different terms from the HAC literature, which only
has a single frequency to consider.) Can the results here be utilized
to improve long-memory estimation, extending the log-spectrum
regression ideas of Geweke and Porter-Hudak (1983)? Some of
these queries we plan to study in future research.
Disclaimer This paper is released to inform interested parties of
ongoing research and to encourage discussion of work in progress.
The views expressed are those of the authors and not necessarily
those of the US Census Bureau. Dimitris Politis’ research was
partially supported by NSF grant DMS 13-08319 and DMS 12-
23137.
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