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Abstract: We derive the exact joint asymptotic distribution for multi-
ple Box-Pierce statistics, and use these results to determine appropriate
critical values in joint testing problems of time series goodness-of-fit. By
sequentially testing at various lags, we can identify specific problems with
a model, and identify superior models. A novel α-rationing scheme, moti-
vated by the sequence of conditional probabilities for the statistical tests, is
developed and implemented. This method can be used to produce critical
values and p-values both for each step of the sequential testing procedure,
and for the procedure as a whole. Efficient computational algorithms are
discussed. Simulation studies assess the impact of finite samples on the real
Type I error. It is also demonstrated empirically that the conventional χ2

critical values for the Box-Pierce statistics are too small, with a Type I
error rate greater than the nominal; the new method does not suffer from
this defect, and allows for more rigorous model-building. We illustrate on
several time series how model defects can be identified and ameliorated.

Keywords and phrases: ARIMA models, Ljung-Box statistic, time series
residuals.

Received November 2013.

1. Introduction

The most popular time series goodness-of-fit diagnostic test statistics are the
portmanteau Q statistics introduced by [3] and extended by [17]. The origi-
nal idea is based on ascertaining model goodness-of-fit via examination of the
correlation structure of time series model residuals. The presence of residual
autocorrelation can be measured through the sample autocorrelation function –
denoted by ρ̂k for k ≥ 0 – of these residuals, and the Box-Pierce (BP) and
Ljung-Box (LB) statistics are constructed from a cumulation of the square of
this function over various time lags:

QBP = n

m∑

k=1

ρ̂2k QLB = n(n+ 2)

m∑

k=1

ρ̂2k/(n− k) (1)
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defines the BP and LB Q statistics. Here m is chosen by the practitioner, and
may be viewed as a fixed integer in the asymptotic analysis.

Despite many variants (see the treatment in [16, 24, 14, 15, 25, 11, 12]
and [10]), the original statistics remain quite popular, being featured in com-
monly used statistical software packages such as X-12-ARIMA [6], TRAMO-
SEATS [18], and STAMP [13]. The reason for this popularity is more than just
cultural inertia; these statistics are intuitive, easy to calculate, and simple to
interpret. Various improvements to the initial proposed test statistics have fo-
cused, over four decades, on improving finite sample size and power. However,
an important but neglected topic is the issue of multiple testing, since typically
many of these test statistics are used concurrently.

For example, in X-12-ARIMA the default diagnostic output produces Ljung-
Box Q statistics (hereafter LBs) at a maximum lag up to 24, so that typically
over 20 test statistics are presented simultaneously. Now for 20 independent
tests of the same null hypothesis, with a nominal Type I error rate of .05,
one is extremely likely to obtain at least one significant statistic by chance
alone. (But if all the tests were fully dependent, then the rejection rate would
be identical with the nominal of .05.) The primary aim of this paper is to
use the joint asymptotic distribution of the sample autocorrelations of time
series residuals to derive the joint cumulative distribution function (cdf) of BPs
and LBs1. This mathematical result, along with a practical, fast technique for
computing the joint cdf, allows one to determine the asymptotic p-values and
critical values associated with a sequence of test statistics. Application of the
methodology should be helpful in mitigating an over-abundance of Type I errors,
along with the unfortunate behavior of “data-snooping” with ARIMA models.

The reason that many time series software packages provide multiple BP/LB
statistics is that there is understood, among practitioners, to be some benefit to
examining several such statistics simultaneously (or sequentially); also see the
discussion in [12]. If a BP/LB statistic at lag m is significant, and all statistics
at lower lags are not significant, then the problem with the model manifests at
the mth lag of the residuals – this point is established rigorously in this paper.
Hence, examination of all BP/LB statistics at a variety of lags, in a sequential
manner, can be helpful towards ascertaining specific model defects, providing
the practitioner with guidance about how to improve the model. We show that
statistical power chiefly arises from alternatives corresponding to time series
residuals with significant autocorrelation at lag m.

Prior results on the joint asymptotic limit of the sample autocovariances and
autocorrelations of time series residuals, accounting for parameter estimation
uncertainty, include [23, 4, 24, 25], and [12]. Our formulation extends beyond
the ARMA and SARMA classes of models treated by the above authors, and our
results include the important case of model misspecification. Also the derivations
in [3] assume that the moving average coefficients decay as sample size increases,
which effectively ensures that the limiting covariance matrix of the residual

1A similar result for the sample autocorrelations was used in [12] to derive joint results for
alternative portmanteau statistics, that are essentially modified LBs.
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autocorrelations is idempotent; our results dispense with this assumption, which
we have found to be untenable for small samples and low LB lags.

The second major contribution of this paper (Section 3) is a novel scheme
for multiple testing apportionment of Type I error (called α-rationing; cf. [28]
and later literature) appropriate for sequences of test statistics. Then we assess
(in Section 4) the actual Type I error rate in several ways. We conduct sim-
ulations from finite length Gaussian time series, and look at empirical Type I
error rates based on conventional χ2 critical values, as well as the new joint
critical values discussed in Section 3. All proofs are in the Appendix, which also
contains some supplementary material on time series residual processes.

2. Asymptotic theory for BP and LB statistics

2.1. Models and residuals

This section presents the main theoretical results of the paper. Theorem 1, along
with its corollaries, provides joint asymptotic convergence results for the sam-
ple autocorrelations of time series model residuals, as well as for Q statistics,
assuming a very broad class of time series models are utilized. Previous results,
such as [3], have focused on ARIMA or SARIMA models, relying on the causal
representation to define time series residuals. Here we instead suppose that a
model is formulated via parametrizing a family of spectral densities; this gener-
alizes ARMA models, and allows us to include unobserved components models
as well.

Consider a sample of size n from a stationary time series, denoted X =
{X1, X2, . . . , Xn}′. (If the raw data is nonstationary, we assume it has been
correctly differenced to stationarity already.) The series may have a nonzero
mean µ̃. Time series models for stationary data are formulated by specifying
a family of spectral densities fθ that depend on a parameter θ, which is to
be estimated from the data. We formulate models in terms of spectra, rather
than using a Wold decomposition or State Space Form (SSF), because this is
the most general treatment possible – including non-linear processes and long
memory processes that cannot be represented in SSF.

We use the notation Σ(fθ) to denote the Toeplitz covariance matrix corre-
sponding to the model spectrum fθ, i.e., with jkth entry given by γj−k(fθ),
the lag j − k autocovariance (acv). More generally, we have the inverse Fourier
Transform (FT) of any real-valued function of frequency g defined via γh(g) =

(2π)
−1 ∫ π

−π g(λ)e
iλh dλ. Such weighted integrals will be abbreviated with a 〈·〉

notation, i.e., 〈g〉 = (2π)
−1 ∫ π

−π g(λ)dλ. We will say that g is the FT associated
with the Toeplitz matrix Σ(g). The Gaussian log likelihood function multiplied
by −2, i.e., the “deviance”, is (dispensing with constants) simply

D(θ) = log |Σ(fθ)|+ (X − µι)′Σ−1(fθ) (X − µι) , (2)

where |Σ(fθ)| denotes the determinant of Σ(fθ). Here ι is a vector of n ones,
and the mean µ is essentially a nuisance parameter. Maximum likelihood esti-
mation yields θ̂ as the minimizer of D; we may very well wish to use (2) even



500 T. McElroy and B. Monsell

when our data is not Gaussian (or is not known to be Gaussian), since Max-
imum Likelihood Estimates (MLEs) are consistent for a fairly broad class of
processes (cf., treatment in [29, Chap. 3]). Similar results can be formulated for
parameter estimates that minimize the Whittle likelihood, which is discussed in
[29, Chap. 3]; our Theorem 1 below relies on theoretical results derived in [20],
which are established for both MLEs and Whittle estimates.

We focus upon separable models, where the innovation variance σ2 is the final

parameter of θ, and we write θ = {[θ]′, σ2}′. Also, f [θ] is defined by setting the

innovation variance to unity, i.e., f [θ] = fθ/σ
2 by definition. We are interested

in testing the goodness-of-fit of the data to a model-class F = {(f [θ], σ
2) :

[θ] ∈ Θ, σ2 ∈ (0,∞)}, with Θ an r-dimensional space. The true spectrum of

the process is some unknown f̃ , and we seek to discern whether f̃ ∈ F or not;
if it is, there is some [θ̃] ∈ Θ and σ̃2 such that f̃ = f [θ̃]σ̃

2. When f̃ 6∈ F , the

tilde notation on parameters then refers to Pseudo-True Values (PTVs), i.e.,

the minimizers of the Kullback-Leibler (KL) discrepancy between f̃ and F ; see

[29, Chap. 3] and [22] for background. To be precise, [θ̃] is the minimizer of

[θ] 7→ 〈f̃ /f [θ]〉, and σ̃2 = 〈f̃ /f [θ̃]〉. The PTVs need not be unique, but in many

cases of interest (e.g., AR models) they are.
Now the MLE for [θ] can be determined by minimizing (with respect to [θ])

the sum of squared residuals, which we take to be the vector Σ−1/2(f [θ])(X−µ̃ι).
The square root refers to the matrix square root described in [7, Chap. 4]. This
vector of residuals exactly corresponds to a Gaussian white noise vector when
the model is correctly specified and ([θ], µ) are replaced by the true parameters

([θ̃], µ̃). Estimated residuals are obtained by substituting the MLE [θ̂] and X =
n−1 ι′X for ([θ], µ); although a GLS estimate for µ could also be used, the
nature of the mean estimate won’t be relevant for our asymptotic treatment of
Q statistics. The result is a vector R of estimated residuals:

R = Σ−1/2(f [θ̂])(X −Xι). (3)

This definition of residual corresponds to the innovations algorithm [4, Chap. 8],

and is quite general2. This minimization produces the MLE [θ̂]; the innovation
variance is estimated by the average of squared centered residuals. The sample
acvs of the residuals are

γ̂k =
1

n

n−k∑

t=1

(Rt −R)(Rt+k −R)

for k ≥ 0, where we have taken the biased definition (this won’t matter asymp-
totically, since we will always have k = o(n) in our treatment). Because the

innovation variance is defined via σ̃2 = 〈f̃ /f[θ̃]〉, we can estimate it via γ̂0.

2[1] offered this definition, where Σ1/2 was the lower Cholesky factor of Σ, and demon-
strated that statistics based upon such residuals had superior size properties than other defi-
nitions.
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The BP and LB statistics are computed from weighted linear combinations of
squared sample acvs γ̂k. Let the sample autocorrelations (acs) be defined via
ρ̂k = γ̂k/γ̂0; then (1) gives the definition of the Q statistics.

The centering by R will not affect the asymptotic distributions, and so it is
valid to approximate the sample acv by n−1R′L(k)R, where R is given in (3)
and the matrix L(k) is the symmetrization of the kth power of the lag matrix,
namely a matrix of all zeroes except the value 1/2 on the bands given by all
entries i, j such that |i − j| = k. When k = 0 this is just the identity matrix,
and in all cases it is a Toeplitz matrix with associated Fourier Transform given
by cos(kλ) – which will be denoted by ck(λ). See [27] for background on lag
matrices. Also, centering R by X is irrelevant asymptotically, so that the sample
acv of the residuals can be approximately written as

γk =
1

n
[X − µ̃]

′
Σ(f

−1

[θ̂] ck) [X − µ̃] .

Likewise, let ρk = γk/γ0.

2.2. Asymptotic results

The theoretical contribution of the paper is the following theorem and two
corollaries, which generalize previous results of [25] to non-ARMA/SARMA
models. The asymptotic covariance matrix of [3] was idempotent, though later
derivations in [23] corrected this approximation, with which our result agrees.
Moreover, we explicitly derive the limit theory for the case of a misspecified
model, and consider multiple Q statistics jointly, both of which are new facets.
We first focus on the joint asymptotic distribution of γk for k = 0, 1, . . . ,m.
The Gaussian assumption can be relaxed if working with QMLEs instead of
MLEs, so long as we include the extra conditions found in [8]; see the discussion
at the end of the proof of Theorem 2 in [20]. Also, the asymptotic variance
for non-Gaussian data depends on the fourth cumulants, and its estimation is
not straight-forward (see Theorem 3.1.2 of [29, Chap. 3]. Below, we consider
the gradient ∇ with respect to the full parameter vector θ, so that the final
derivative is with respect to σ2; hence the final component of ∇f [θ] is zero.

Theorem 1. Suppose that the PTVs θ̃ exist uniquely in the interior of the
parameter space, which is compact and convex, and that the Hessian of the KL
discrepancy is invertible at the PTVs. Suppose that the process {Xt} is mean zero
Gaussian and stationary, and that the model spectrum fθ is twice continuously
differentiable in θ and continuous in λ; also that the derivatives with respect to
θ are uniformly bounded in λ away from zero and infinity. Then the following
weak convergence holds as n → ∞:

{√
nγk +

√
n 〈ck

(
σ̃2 − f̃ /f [θ̃]

)
〉
}m

k=1

L
=⇒ N

(
0, V (θ̃)

)
. (4)

The asymptotic variance is given by

Vkℓ(θ) = 2 〈ckcℓf̃2f−2
[θ] 〉 − 2b′k(θ)M

−1
f (θ)〈cℓf̃2∇fθf

−2
θ f

−1

[θ] 〉
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− 2b′ℓ(θ)M
−1
f (θ)〈ck f̃2∇fθf

−2
θ f

−1

[θ] 〉
+ 2b′k(θ)M

−1
f (θ)〈f̃2∇fθ∇′fθf

−4
θ 〉M−1

f (θ)bℓ(θ)

bk(θ) = 〈ckf
−2

[θ]∇θf [θ]f̃〉,

where Mf(θ) is the Hessian of the KL discrepancy between f̃ and fθ. Here
the indexing is k, ℓ = 1, 2, . . . ,m. Moreover, the same results are true with γ̂k
substituted for γk. Under the Null Hypothesis of a correct model, the asymptotic
variance simplifies to

Vkℓ(θ) = 2σ41{k=ℓ} − 2b′k(θ)M
−1
f (θ)bℓ(θ)

and γ0
P−→ σ̃2.

Remark 1. The asymptotic bias term 〈ck(σ̃2− f̃/f [θ̃])〉 is identically zero when

the model is correctly specified, but otherwise may be nonzero (note that σ̃2 =

〈f̃ /f [θ̃]〉). However, it is possible for this bias to be zero even when the model

is incorrect, which has ramifications for the Q statistics considered below; in
such a case the LB and BP test statistics will be inconsistent. Under the Null
Hypothesis, the first term of V is just proportional to the identity matrix; the
second term arises solely from the uncertainty in the MLEs. In particular, if
we fix a particular parameter rather than estimating it, we can zero out the
corresponding entries of bk and bℓ. When σ2 is a parameter, then for any k =
1, 2, . . . ,m the vector bk(θ) has r+1 components with the last component equal
to 〈ck〉 = 0, whereas the first r components are given by σ2〈ck∇[θ] log f [θ]〉.
Mf(θ) is the Hessian of the Kullback-Leibler discrepancy, which under the Null
Hypothesis of a correct model is equal to twice the Fisher information matrix.

From Theorem 1 we can derive as a corollary the joint asymptotic limit
of the sample acs. We first define the notion of residual autocorrelations: the
lag k autocovariance of the asymptotic residual process is defined to be γ̃k =

〈ckf̃ f
−1

[̃θ] 〉, and hence the lag k autocorrelation is ρ̃k = σ̃−2〈ck f̃f
−1

[̃θ] 〉, using the

fact that 〈f̃f−1

[̃θ] 〉 = σ̃2. The sample residual autocorrelations are consistent for

these asymptotic residual autocorrelations, as shown next.

Corollary 1. Suppose the same conditions as Theorem 1. Whether or not the
model is true,

{√n (ρk − ρ̃k)}mk=1
L

=⇒ N
(
0, V (θ̃)/σ̃4

)
. (5)

Moreover, the same results are true with ρ̂k substituted for ρk in (5).

Remark 2. When the model is correctly specified, the vector of asymptotic
residual autocorrelations – denoted by ρ̃ – is zero. Denoting the limiting covari-
ance matrix in (5) by V (θ) = V (θ)σ−4, we can write

V m(θ) = 1m − 2C′N−1C
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with N the upper r × r sub-matrix of Mf . Here 1m denotes an identity matrix
of dimension m; the subscript on V highlights the dimension of the matrix. The
r ×m dimensional matrix C is defined to have entry jk given by

Cjk = [bk(θ)]j/σ
2 =

〈
ck

∂

∂θj
log f [θ]

〉
.

The matrix V m has a nested structure, which means that V k is the upper k× k
block of V m whenever k ≤ m – this follows from the structure of C3.

From Corollary 1 and the above Remark, we at once obtain distributional
results for the BP and LB statistics, generalizing previously published results
beyond the ARMA class. Let Qm denote either QBP or QLB, as defined in (1)
with lag equal to m, being based on m autocorrelations.

Corollary 2. Suppose the same conditions as Theorem 1. For some integer M
let YM be a mean zero Gaussian random vector of dimension M and covariance
matrix V M (θ̃), and let Ym for any 1 ≤ m ≤ M denote the first m components
of YM . Then when the model is correctly specified,

{Qm}Mm=1
L

=⇒ {Y ′
m Ym}Mm=1

as n → ∞. When the model is incorrectly specified such that ρ̃ 6= 0, then

Qm = oP (1) +
√
n (ρ− ρ̃)′

√
n (ρ− ρ̃) + 2

√
n ρ̃′

√
n (ρ− ρ̃) + n ρ̃′ρ̃

for each 1 ≤ m ≤ M .

In Corollary 2, the expansion forQm under the alternative hypothesis (i.e., for
ρ̃ 6= 0) shows three terms, the first of which converges to Y ′

m Ym. The second
term, when divided by

√
n, converges to ρ̃′ Ym, and the third term is the positive

constant ρ̃′ρ̃ times n. This indicates that the power of the test is asymptotically
dominated by the quantity ρ̃′ρ̃; of course this can still be zero when a model
is misspecified (e.g., an EXP model can produce this behavior), but taking a
sufficiently high number of lags should guard against this occurrence.

2.3. Discussion of asymptotic theory

The theoretical results of this have ramifications for sequential testing. Sequen-
tial testing refers to examination of the variousQm in the orderQ1, Q2, . . . , QM .
If by the mth test we have so far failed to reject the null hypothesis, then we
have failed to reject the hypothesis that ρ̃2k = 0 for 1 ≤ k ≤ m. Now proceeding

to test statistic Qm+1, we seek to test whether
∑m+1

k=1 ρ̃2k > 0; given our previ-
ously retained null hypotheses, we essentially are testing whether ρ̃m+1 6= 0. If
the m + 1th test statistic is significant, we can conclude that there is residual
autocorrelation at lag m + 1, and not at the other previous lags. On the other
hand if Qm+1 is not significant, we can conclude that ρ̃m+1 = 0, and proceed.

3In comparison with [23], our matrix C′ equals his X, and our matrix N equals his I/2
(half the Fisher information matrix).
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Note that this sequential procedure gives more insight into potential modeling
problems than just testing the portmanteau QM – a significant QM only indi-
cates that

∑M
k=1 ρ̃

2
k > 0, but we don’t know at which lags problems are really

arising. But if we have an idea about which lags are causing difficulties, then we
may be able to improve the model; this is further illustrated in Section 4.3.

We now provide some additional discussion of the limit distribution of Corol-
lary 2. Let us focus on the case of just a single Qm statistic. Since Ym is normal
with variance V m, we can simply characterize the limiting distribution of the
Qm statistic via the Laplace Transform (LT) as follows [30]:

E exp{−φY ′
m Ym} = |1M + 2φV m|−1/2

.

This formula, however, is of little use in determining quantiles except in special
cases, discussed below. Also see [9] for background on this distribution.

Note that the first term of V m (see Remark 2) is the identity matrix, which
indicates that when we ignore parameter estimation error (i.e., set the bk vectors

identically to zero) the above LT reduces to (1 + 2φ)−m/2. This is recognizable
as the LT for the sum of m iid χ2 variables on one degree of freedom, i.e., in
this special case Y ′

mYm is χ2 on m degrees of freedom. But when parameter
uncertainty is present, V m will not be diagonal and the LT might not be the
product of LTs for χ2 variables.

In [3] the authors propose a formula for V m that is somewhat different. In
fact, accounting for differences in notation, they essentially propose

V ♯
m(θ) = 1m − C′(CC′)

−1
C,

which means replacing the upper left portion of the Fisher information matrix
with CC′. Of course N 6= 2CC′, but [3] argue that it is a suitable approx-
imation especially when m is large and assuming that the coefficients in the
Wold decomposition decay at a suitable rate as the sample size increases. More-
over, it is a convenient substitution because then 1m − V ♯

m is idempotent with
rank r, so that m − r eigenvalues of V ♯

m are equal to unity, and the remaining
r eigenvalues are zero. We can apply Proposition 2 of [30] to conclude that the
limiting distribution would then be a χ2

m−r. We know of one case (discussed
below) where this approximation is actually valid without assuming that the
Wold coefficients depend on sample size n; i.e., we discuss below a case where
V m has all its eigenvalues equal to either zero or one.

Consider the EXP(r) model of [2], which has spectral density given by f [θ](λ)=

exp{[θ]′−→c (λ)}, with −→c denoting the column vector of functions ck. For this
model, bk is one half the kth unit vector, and N = .5 1r. Hence V is diagonal
with the first r entries equal to zero and the remaining m − r entries equal to
one. This is quite a special structure, and is not true for ARMA models. To di-
gress briefly – since it is pertinent to the time series fitting problem in general –
seems appropriate here.

Let the periodogram be defined as I(λ) = n−1
∑

|k|<n γke
−iλk. Gaussian

maximum likelihood estimation – or asymptotically equivalently, fitting via min-
imization of KL discrepancy between model and periodogram – essentially works



Multiple Box-Pierce 505

to minimize the sample variance 〈I/f [θ]〉 of time series residuals, whereas Q

statistics test whether the residual spectrum I/f [θ̂] behaves like white noise.

Because the gradient of KL for the EXP(r) model equals 〈−→c I/f [θ]〉, minimiza-
tion necessarily entails that the first r sample autocorrelations of the residual
process are zero – which is what the Q statistics are attempting to verify. It is
this strong property of EXP models that is responsible for the simple asymptotic
structure of the Q statistics.

As for the exact asymptotic distribution in the general case with fixed coeffi-
cients – leaving aside the useful approximation of [3] for the moment – we note
that C has a null space of dimension at least m− r by the rank-nullity theorem,
and hence m− r eigenvalues of V m are equal to unity. Then the limiting LT is
that of a χ2

m−r variable plus an independent variable with LT

exp

{
−1

2

r∑

ℓ=1

log(1 + 2φ[1− λℓ])

}
,

with λ1, . . . , λr the r nonzero eigenvalues of 2C′N−1C. In practice, these r
eigenvalues can be quite close to zero for values of m only a little larger than r,
depending upon the model and the underlying process. This makes the inversion
of V m infeasible and the approximation of [3] quite useful. On the other hand,
the degrees of freedom in the [3] approach is m − r, so that no distributional
result can be used when m ≤ r; in these cases, V m may be quite different from
an idempotent matrix, and is a fortiori invertible. Moreover, in the sequential
approach to testing advocated below, the joint behavior of the LBs for small m
is indispensable. In applications one evaluates V m at parameter estimates, such
as MLEs.

As an example of the above claim, we have found that when fitting simulated
data with an Airline model (r = 2), the χ2 approximation to the distribution is
decent for m ≥ 5 (this also depends upon the parameter values of the simulated
true Airline process). In contrast, for 1 ≤ m ≤ 4 the χ2 approximation can be
quite poor and V m is easily invertible. In this case, the exact distribution should
be used, it being superior to the χ2

m−2 – which moreover is not even defined for
m = 1, 2.

3. Sequential testing of Q statistics

The joint testing problem is to determine a sensible sequence of critical values for
a given overall Type I error rate α. The challenge is that there are so many ways
to divide up the mass of a multivariate probability density. However, when the
statistics have a sequential relationship, we can describe a methodical procedure
to obtain critical values.

The basic idea of sequential testing is related to ideas in the biostatistics
literature [28]. Consider a sequence of test statistics {Tm} for m = 1, 2, . . . ,M
(where M = ∞ is allowed, although in our LB application M < ∞), where
rejection occurs when Tm > xm. Quantities of considerable interest are the
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conditional probabilities

αm+1 = P [Tm+1 > xm+1|Tm ≤ xm, . . . , T1 ≤ x1] . (6)

This represents, for a given sequence of critical values xℓ, the probability of rejec-
tion now, given that we have not rejected up to now. Also set α1 = P[T1 > x1].
A closely related quantity is the joint probability

pm+1 = P [Tm+1 ≤ xm+1, Tm ≤ xm, . . . , T1 ≤ x1] . (7)

Of course we have the relation αm+1 = 1− pm+1/pm. The overall assessment of
the procedure involves computing the probability that at least one test rejects,
i.e., the event ∪m{Tm > xm}. Now while [28] focus on computing the joint prob-
abilities pm (7), we emphasize the αms, although there is a ready equivalence
between the two approaches. We first note a few elementary facts.

Let α = P[∪m{Tm > xm}], which is called the Type I error rate of the
sequential procedure – whereas the sequential Type I error rates are the quanti-
ties αm. This is nomenclature. By induction, pm+1 = Πm+1

ℓ=1 (1−αℓ). In addition

α = 1− pM , which also equals
∑M

m=1 αmpm−1 (with p0 = 1), as shown in [28].
Consider two extreme cases: first, if all the tests are independent, then αm is

the mth marginal probability. If the tests are also identically distributed, then

the sequential critical values are all the same, and equal to 1 − (1− α)
1/M

. If
instead all the tests are fully dependent (say, actually identical), then there is
really no multiple testing problem, and α must equal the sequential conditional
probability. More generally, the test statistics are somewhat dependent and the
relationship of marginal to joint distribution is more complicated.

The first challenge is to determine, for a given α, the critical values xm such
that the corresponding sequential conditional or joint probabilities aggregate
appropriately to α. As an initial step, one must choose the numbers pm or αm

to satisfy the appropriate constraint; then we may determine the xm sequentially
given certain information about the distribution functions. Whereas [28] choose
to work with the pm, partitioning them such that they sum to α, we in contrast
work with the αm. The reason is that we find these to be a more intuitive
quantity, given their interpretation in the sequence of tests. In fact, it seems
reasonable to impose that all the αm numbers be identically equal, say to a
common value α0. Although this decision is arbitrary, it imposes an equitable
restriction – each step of our testing procedure is treated equally. However,
this approach need not generate the maximal possible power; determining a
most powerful sequence of Type I error rates αm for Q statistics is difficult
to discover a priori, because power depends on the nature of the alternative
hypothesis through the unknown ρ̃, the residual asymptotic autocorrelations.

Our setting of equal sequential Type I error rates implies that pm = (1− α0)
m

and we must choose α0 = 1 − (1− α)
1/M

(this approach does not work when
M = ∞, and in fact the sequential conditional probabilities must decay, being
non-constant, in this case). This is equivalent to taking a geometrically decay-
ing sequence of joint probabilities in the [28] rationing of α. Note that if the
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tests happened to be independent, order would be unimportant and we should
set all probabilities equal; setting all the conditional probabilities to be equal
generalizes this concept to potentially dependent statistics.

A second challenge is to compute, for a given sequence xm, the joint and
conditional probabilities. In practice, this is much easier than finding critical
values, so we describe it first. Note that when the various xm correspond to
the observed values of actual test statistics, the corresponding probabilities can
be interpreted as sequential (conditional or joint) p-values. The algorithm is to
compute p1, p2, . . . , pM in sequence – potentially using Monte Carlo simulation if
analytic formulas are unavailable – and then determine each αm, which depend
on knowing pm and pm−1. The p-value of the sequential procedure would then
be just pM . Explicitly, if we have J Monte Carlo draws of the various statistics,

with the jth draw denoted T
(j)
ℓ for 1 ≤ ℓ ≤ m and 1 ≤ j ≤ J , then

pm ≈ J−1
J∑

j=1

1
{T

(j)
m ≤xm,...,T

(j)
1 ≤x1}

= J−1#

{
j : max

1≤ℓ≤m

[
T

(j)
ℓ − xℓ

]
≤ 0

}
.

The second expression is useful for encoding the method, e.g., in R [26].

Now consider computation of critical values, using the α-rationing scheme de-
scribed above. First compute x1 such that 1−α0 = 1−α1 = P[T1 ≤ x1], possibly
by inverting the marginal distribution, otherwise by using the approximation to
p1 above, noting that 1−p1 = α1. Given a knowledge of x1, x2, . . . , xm, we wish
to compute xm+1 such that 1 − αm+1 equals P[Tm+1 ≤ xm+1|Tm ≤ xm, . . . ,
T1 ≤ x1]. So consider a subset L(xm, xm−1, . . . , x1) ⊂ {1, 2, . . . , J} consisting of

only those Monte Carlo draws j such that max1≤ℓ≤m[T
(j)
ℓ − xℓ] is less than or

equal to zero. Then

1− α0 = 1− αm+1 ≈ |L(xm, xm−1, . . . , x1)|−1
∑

j∈L(xm,xm−1,...,x1)

1
{T

(j)
m+1≤xm+1}

.

Hence, one only needs the (1 − α0)th largest order statistic of the collection

T
(j)
m+1 − xm+1 such that j ∈ L(xm, xm−1, . . . , x1), and this will be the approxi-

mation to xm+1.

We have found such a procedure to be effective, written in R, for determining
critical values of Q statistics (more details given below). For simulation studies
we lowered J to be 104 in order for the computations to finish in a reasonable
amount of time, but for real data analysis J = 105 provided increased accuracy –
while the calculations of all critical values and p-values completed in a few
seconds.

It may arise that we desire some subset of the full sequence of test statistics.
Of course, one could just relabel the subsequence and start the analysis over
again. An alternative way of thinking about it is to view certain test statistics
Tj as “missing”: then set pj = pj−1 and αj = 0, and essentially declare xj = ∞.
Then when p-values are computed, the jth statistic offers no restrictions on the
probabilities, as all Monte Carlo draws will be less than ∞. For critical values,
use the same trick. Of course, if K of a sequence of M statistics are missing in

this manner, then we should compute α0 = 1 − (1 − α)
1/(M−K)

, since we only
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really have M −K statistics to consider. Our R code is adapted to handle the
calculations for any subset of Q statistics that is desired.

Consider computation of the joint probabilities of asymptotic Q statistics, us-
ing the theoretical results of Section 2. Suppose that we consider a sequence ofM
asymptotic Q-statistics, denoted by the random vector Q = [Q1, Q2, . . . , QM ],
and we want to know the joint cdf for all the Qm with 1 ≤ m ≤ M , evaluated
at non-negative numbers qm. Clearly

P [Q1 ≤ q1, . . . , QM ≤ qM ] =

∫ qM

0

· · ·
∫ q1

0

pQ(u1, . . . , uM ) du1 · · · duM ,

and we will denote this function by FQ(q1, . . . , qM ). Let YM denote a Gaussian
vector of length M with covariance matrix V M ; this is simple to simulate once

V
1/2

M is computed, which is valid even when V M is non-invertible (e.g., idempo-
tent) or close to singular. Let Y 2

M denote the component-wise squaring of YM ,
and let A be an M × M aggregation matrix with Ajk = 1 whenever j ≥ k,
and zero otherwise. Then Q is equal in distribution to AY 2

M . So by Monte Carlo
methods we can easily approximate FQ. Note that direct simulation of the en-
tire process to get the finite-sample distribution is not feasible; each draw of a
Gaussian series, taking the model and MLE as truth, would need to be fitted
with residuals computed – this is too expensive to be practical.

VM can be computed from the theoretical results, utilizing the null hypoth-
esis, with MLEs substituted for PTVs. Details on the computation of V M for
the case of a SARIMA model can be found in supplementary material for this
paper [21]. Expressions for the ARMA and SARMA cases can be found in [23].

4. Numerical studies and data analysis

In order to evaluate the practical importance of these ideas, it is helpful to do
a simulation study. This will assess the impact of having a finite sample on the
use of asymptotic critical values, under the rather idealized scenario of Gaussian
data. Secondly, the new method should be compared to the standard Box-Pierce
method on real time series, in order to form an idea of how much the proposed
methodology really matters in practice. We first consider a simulation study of
finite sample size impact, and then consider analysis of 9 U.S. Census Bureau
time series.

4.1. Simulation study

Here we are interested in drawing samples from a monthly Gaussian Airline
model with parameters .6 and .6 for the nonseasonal and seasonal moving av-
erage parameters, and unit innovation variance, with sample sizes of 10, 15,
and 20 years. Since the data is seasonal, there may be considerable interest in
residual autocorrelations at lags 12 and 24. By a “full” set of Q statistics, we
mean the sequential procedure involving Qm for 1 ≤ m ≤ 24. But we might also
consider certain subsets of the full M = 24 collection of Q statistics, as alluded
to in Section 3.
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Table 1

Simulation Results for LB Statistics

n=120 n=180 n=240
Type .01 .05 .10 .01 .05 .10 .01 .05 .10
Full .0166 .0564 .1098 .0168 .0540 .0990 .0170 .0582 .1038
Partial .0162 .0588 .1034 .0132 .0536 .0988 .0140 .0588 .1056
Restricted .0162 .0552 .1100 .0160 .0514 .1014 .0164 .0590 .1012
Maximal .0166 .0578 .1060 .0156 .0524 .0980 .0176 .0608 .1024
Classical .0848 .2766 .4408 .0790 .2846 .4598 .0838 .2820 .4560

Empirical Type I error for the sequential procedure, based on a nominal α = .01, .05, .10,
for each of the five methods (see text). Results are based on 5000 simulations of a Gaussian
airline model with parameters .6, .6, with sample sizes n = 120, 180, 240.

Table 2

Simulation Results for BP Statistics

n=120 n=180 n=240
Type .01 .05 .10 .01 .05 .10 .01 .05 .10
Full .0058 .0298 .0616 .0082 .0342 .0676 .0120 .0418 .0784
Partial .0094 .0412 .0772 .0096 .0440 .0812 .0096 .0476 .0896
Restricted .0054 .0274 .0542 .0068 .0314 .0630 .0092 .0404 .0770
Maximal .0056 .0232 .0444 .0082 .0306 .0570 .0110 .0402 .0728
Classical .0600 .2252 .3844 .0650 .2494 .4226 .0722 .2572 .4262

Empirical Type I error for the sequential procedure, based on a nominal α = .01, .05, .10,
for each of the five methods (see text). Results are based on 5000 simulations of a Gaussian
airline model with parameters .6, .6, with sample sizes n = 120, 180, 240.

In particular, we might only be interested in those lags of the Q statistics
deemed to be important to the model. One such subset – henceforth referred
to as the “partial” set – consists of lags 1,2,3,4,12, and 24. Or we might just
take the seasonal lags Q12 and Q24; this choice will be called the “restricted”
set. Finally, one might just consider Q24, which being a marginal distribution
has no multiple testing issue – this will be called the “maximal” set. Then for
any of the four sets – full, partial, restricted, or maximal – we can determine
the sequential Type I error rate appropriately, given a selection of the α for
the sequential procedure described in Section 3. Of course, final results are
contingent upon the set of statistics that is utilized.

For each simulation, we fit the airline model and construct critical values
using the sequential procedure, for each of the four sets of Q statistics, for α =
.01, .05, .10.We also compute the critical values for the classical method, which is
defined by utilizing χ2

m−r quantiles when the lag m exceeds r (this method does
not use the sequential procedure, because it does not assume anything about the
joint distribution of the Q statistics). By determining empirical model rejection
rates over many simulations, we can evaluate the competing methods in terms
of their Type I error, taking finite-sample effects into account.

The simulations were 5000 draws from a Gaussian airline model, with param-
eters .6, .6, with sample sizes n = 120, 180, 240. Tables 1 and 2 summarize the
empirical size results for the four subsets of statistics, both LB and BP, as well
as the classical method. The coverage of the new methods is somewhat rough
when n = 120, and yet far superior to the classical method, which rejects far
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Table 3

Descriptions of Monthly Retail Sales Series, covering the period 1992 through 2007
(Source: U.S. Census Bureau)

Series Description of Retail Sales Series

Elect Electronics and Appliance Stores
Food Food Services and Drinking Places
Furn Furniture and Home Furnishing Stores
Gas Gasoline Stations

GenMerch General Merchandise Stores
Groc Grocery

MenCloth Men’s Clothing
Motor Motor Vehicle and Parts Dealers

WomCloth Women’s Clothing

too often (as expected). The LB statistics were over-sized, with only marginal
improvement as sample size increased. The BP statistics were under-sized, but
actually improved quite a bit by sample size n = 240. Overall, the LB statistics
have better size than the BP statistics, which is not surprising given the moti-
vation for their definition [17]. Although the finite sample distribution is slow
to converge to the asymptotic, the coverage for these subsets of Q statistics is
adequate for practical applications, and is greatly superior to the classical cov-
erage. The coverage for the partial and restricted cases is quite similar to that
of the maximal case, which is encouraging.

4.2. Census bureau time series

We consider nine seasonal time series published by the Census Bureau from the
Monthly Retail Sales Survey. Table 3 gives the names and descriptions of these
series4. All series cover the period 1992 through 2007 inclusive (truncated to
avoid the Great Recession, for simplicity). In each case we have performed the
following analysis: fitted a SARIMA model (identified as best according to the
automdl spec of X-12-ARIMA), with fixed effects handled appropriately; com-

puted V (θ̂) at the MLEs, as well as the LB statistics for lags 1 through 24; eval-
uated our proposed methodology with a sequential procedure α of .01, .05, .10
using either the full, partial, restricted, or maximal sets of Q statistics, along
with the classical procedure. The competing sets of critical values are plotted
along with the actual LB statistics.

In each graph (Figure 1 through 9), for a fixed value of α, we see the actual
LB statistics plotted as a function of lag, with the critical values plotted in
other colors. If the former curve crosses above any of the critical values, it
indicates rejection of the specified model according to that particular criterion.
It is apparent that the results are sensitive to whether we adopt the full, partial,
restricted, or maximal sets of Q statistics, as well as what the given α is set to be.

4Descriptions of data sources and reliability are available from the Census Bureau
web site http://www.census.gov/retail/mrts/how_surveys_are_collected.html. Program
overviews and current data are available from the site http://www.census.gov/cgi-bin/

briefroom/BriefRm.

https://www.census.gov/retail/mrts/how_surveys_are_collected.html
https://www.census.gov/cgi-bin/briefroom/BriefRm
https://www.census.gov/cgi-bin/briefroom/BriefRm
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Fig 1. Critical values and LB statistics for Motor series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.

In general, the modified critical values increase as a function of lag, but less
smoothly than with the classical method. In most cases, the classical critical
values are lower than the proposed full critical values, so that fewer models
are rejected with the proposed method. However, this story changes when we
move to the partial or restricted sets of Q statistics. Note that there is not so
much discrepancy between the classical and proposed critical values as might be
thought initially, which is due to the fact that the sequence of Q statistics are
cross-correlated; recall that when the test statistics are fully correlated, there
is no multiple testing problem. Also, since the critical values of the classical
method ignore multiple testing, they should approximately agree (at lag 24)
with the maximal critical value of our new method. This is because the only
discrepancies between them would be due to our use of Corollary 1 to compute
the critical values, as opposed to a χ2

24−r. Since 24− r is fairly large, the idem-

potent approximation of V is reasonably accurate, so that the exact asymptotic
distribution differs very little from the χ2

24−r, as discussed in Section 2.

Another general feature is that the first r critical values for the default method
are not available, since the degrees of freedom would not be positive in this case.
Also, critical values decrease as we move from the upper α = .01 panel to the
bottom α = .10 panel; note that the y-axes on the three panels have not been
standardized, since it is not our primary intention to make comparisons across α.

Let us now discuss the individual results. All series required a log transforma-
tion, and were linearized (i.e., all types of fixed effects, such as outliers, Easter
and trading day, were removed) before further analysis. For the Motor series
(Figure 1) a (012)(011) model was identified, and there seem to be no problems
with it according to any of the four proposed sets of Q statistics, though accord-
ing to the classical method rejection at the .05 and .10 levels is warranted. The
Food series (Figure 2) has an airline model, and there is rejection – according
to classical criteria – at α = .05, .10 at a few distinct lags. But accounting for
multiple testing indicates this model would not be rejected at all. For the Elect
series (Figure 3) a (211)(011) model was identified, so that r = 4 (fairly high
for a SARIMA model). For α = .05 we have rejection of the model based on the
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Fig 2. Critical values and LB statistics for Food series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.
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Fig 3. Critical values and LB statistics for Elect series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.
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Fig 4. Critical values and LB statistics for Furn series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.

classical, full, restricted, and maximal schemes, but not for the partial scheme.
Rejection at rate α = .10 occurs for all the schemes, and the problems seem to
arise from the higher lags; no rejections occur at α = .01.

The Furn series was identified as a (210)(011) model, and Figure 4 gives no
reason to reject it (by any of the methods). The Gas series in Figure 5 follows
a (012)(011) model, and at the α = .05 level is rejected under the classical,
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Fig 5. Critical values and LB statistics for Gas series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.
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Fig 6. Critical values and LB statistics for GenMerch series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.
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Fig 7. Critical values and LB statistics for Groc series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.

maximal, and restricted schemes. The problem lags occur at lags 11 and 13
in this case. At α = .10 the model would be rejected by the full scheme as
well, while there would be no rejections for α = .01. The GenMerch series of
Figure 6 follows an (011)(110) model, and there is no evidence whatsoever to
reject it. The story is the same for the Groc series (Figure 7), which was iden-
tified with a (110)(011) model. Likewise, the MenCloth and WomCloth series



514 T. McElroy and B. Monsell

Lag

5 10 15 20

0
1

0
2

0
3

0
4

0
5

0

●

●

●

●

●

●

New Crit, full

New Crit, partial

New Crit, restricted

New Crit, maximal

Old Crit

LBs

Lag

5 10 15 20

0
1

0
2

0
3

0
4

0

●

●

●

●

●

●

New Crit, full

New Crit, partial

New Crit, restricted

New Crit, maximal

Old Crit

LBs

Lag

5 10 15 20

0
1

0
2

0
3

0
4

0

●

●

●

●

●

●

New Crit, full

New Crit, partial

New Crit, restricted

New Crit, maximal

Old Crit

LBs

Fig 8. Critical values and LB statistics for MenCloth series. From left to right, the procedure’s
Type I error rates are .01, .05, and .10.
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Fig 9. Critical values and LB statistics for WomCloth series. From left to right, the proce-
dure’s Type I error rates are .01, .05, and .10.

(Figures 8 and 9) were both identified with (011)(011) models, which cannot be
rejected.

In summary, five of the nine series (Furn, GenMerch, Groc, MenCloth, Wom-
Cloth) provide no evidence of model misspecification. Two of the series (Elect
and Gas) yield model rejection results both for the classical and the proposed
methods, so there is an agreement of decisions. Finally, two of the series (Motor
and Food) would be rejected by the classical method, while not being rejected
by any of the proposed methods. We know that critical values are increased by
accounting for multiple testing, so it is not surprising that sometimes we will
incorrectly reject some models when using conventional χ2 critical values.

4.3. A refined model for elect series

We now investigate the Elect series further. Figure 3 indicates that lag 13 can
be an issue in the residuals, because the Q statistics are not significant for
lags 1 through 12. Examination of the sample autocorrelation function for the
differenced series indicates there is negative correlation at lag 13, but little
correlation at other lags – this structure is difficult to capture with a SARIMA
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Fig 10. Critical values and LB statistics for Elect series, using gap moving average model.
From left to right, the procedure’s Type I error rates are .01, .05, and .10.

model. In particular, a moving average process with nonzero coefficient only
at lag 13 cannot be described by an airline model (for the differenced series),
because the lag 13 coefficient of an airline model is the product of the model’s
two parameters, each of which in turn equals the lag 1 and the lag 12 coefficients
of the moving average. So instead of the identified (211)(011) SARIMA model,
we will consider an order 13 moving average model where the first 12 coefficients
are forced to be zero.

For this model, the one parameter is θ̂13 = .261 and the residuals appear to
be white upon visual inspection. The LB statistics were then computed, and the
revised results are plotted in Figure 10; this can be compared with Figure 3.
(Note that in the calculation of V M , having fixed coefficients in an MA(13)
model means that the first 12 components of each bk vector in Theorem 1 is zero,
and V M must be adjusted accordingly.) According to the full or partial criteria,
the model is adequate, although the classical method flags some problems, and
with α = .10 the restricted and maximal criteria still flag a problem at lag 24.
However, the model seems to be a great improvement from the standpoint of
time series residuals.

We might also evaluate the new model against the old model according to
other criteria. The models are non-nested, so a Generalized Likelihood Ratio test
cannot be applied. We can assess out-of-sample forecast performance by fore-
casting to horizons 1 and 12 based upon the two models being fitted to reduced
spans of data; we utilized the revisions history diagnostic of X-12-ARIMA and
X-13ARIMA-SEATS. The revisions history of the accumulated forecast error is
generated with a start date of January 1992 and terminal dates of January 2000
up through December 2007.

Both the SARIMA (211)(011) – denoted as Model 1 – and the new model –
denoted as Model 2 – are fitted to each span, their forecasts generated to either 1
or 12 steps ahead, and cumulative sums of squared forecast errors are generated.
The differences of the accumulating sums of squared forecast errors between the
two competing models are plotted in the top panel of Figure 11. As each new
data point is added, the span expands by one month and both models are re-
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Fig 11. Forecasting revisions history (left panel) and AICC difference history (right panel)
plots for comparison of Model 1 (the SARIMA model) and Model 2 (the new moving average
model).

fitted, and new forecasts at horizons 1 and 12 are computed and a new difference
in the accumulated forecast error is generated. (The dates on the x-axis of
Figure 11 are not the span terminal dates, but the date of the corresponding
forecast.)

If the direction of the accumulating differences is predominantly downward,
this means that the forecast errors are persistently smaller for the first model,
which indicates a preference for the second model. For more examples of forecast
error history plots, see [5].

We see that Model 2 performs better than Model 1 at 1-step ahead, but
is inferior at 12 step-ahead forecasting. [22] argues that when working with
misspecified models – so that one has not effectively “whitened the data’s spec-
trum” – parameter estimates attuned to 1-step ahead or 12-step ahead loss can
be quite different, and the 12-step ahead performance of models fitted according
to a 1-step ahead criterion can be disappointing. In this case, the new model
is useful for 1-step ahead forecasting, but for horizon 12 the default SARIMA
(211)(011) is preferable.

There is a sizable dip in the 1-step ahead performance of Model 2, relative to
Model 1, in the final year. Additional analysis reveals that the structure of the
series changes slightly near the beginning of 2007 (leading into the Great Reces-
sion). Examining the revision history of the differences of the AICC diagnostic
for the two models (bottom panel of Figure 11) shows the same pattern in the
final years. This is not surprising, given that AICC is calculated from the Gaus-
sian likelihood, which is directly related to the sum of squared forecast errors.

In summary, the sequential examination of Q statistics leads us to consider
the 13th lag, and an alternative model that better whitens the spectrum. The
resulting model has better 1-step ahead forecast performance, and superior AIC,
as compared to the SARIMA (211)(011) contender, although the 12-step ahead
forecasting performance is inferior. This demonstrates chiefly that the sequence
of Q statistics – as opposed to sole consideration of one Q statistics with a high
lag m – can be useful for determining alternative models. This is because the
power of a Q statistic at lag m+1 – given that all others at lags less than m+1
are not significant – is chiefly generated by residual autocorrelation at lag m+1.
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This reasoning, without formal justification until now, has served to justify the
widespread use of multiple Q statistics in time series software used around the
world.

5. Conclusion

This paper makes several novel contributions to an important problem in time
series analysis. The use of Q statistics is widespread, has a long legacy (more
than four decades), and despite recent alternatives seems likely to continue to
occupy a central place among time series model diagnostics. Two outstanding
issues with the conventional use of BP and LB statistics are that the asymptotic
theory currently in common use is flawed, and secondly the use of multiple Q
statistics suffers from the ubiquitous multiple testing problem.

The first issue is shown in this paper to be of primary concern when the
number of lags m in a Q statistic are small; for larger m the χ2 approximate
asymptotic distribution of [3] is highly accurate. But given that small lags are of
key interest in practice – and that the BP method furnishes no critical values at
all when m is exceeded by the model order, since the degrees of freedom would
be in essence negative – our correct asymptotic distribution is compelling. Our
analysis generalizes and extends previous treatments of the topic, and also fur-
nishes additional insight by allowing examination of the eigenvalues, so that one
can understand the real differences between the χ2 heuristic and the actual limit.

The second issue is resolved in the paper through a sequential testing para-
digm, which has precedent in [28], but is developed somewhat differently here.
When a series of test statistics is fully dependent, one need not worry about
multiple testing, but for independent or partially dependent statistics, getting
the Type I error rate is a serious issue. Our approach is effective and practical,
as illustrated through our numerical studies.

In particular, our procedure involves an initial specification of a Type I er-
ror rate for the entire testing procedure, which is split equally into sequential
error rates for conditional probabilities of rejection given that rejection has not
yet occurred. The computations of critical values require software to compute
the crucial asymptotic covariance matrix V , which is only approximately idem-
potent for large lags. Equipped with the MLEs and a knowledge of the fitted
SARIMA model, R software can rapidly produce this matrix and determine the
corresponding asymptotic distributions of sample autocorrelations of time series
residuals5. We propose a Monte Carlo method for determining joint and condi-
tional probabilities of test statistics, and for the corresponding critical values. In
our implementation this process requires only a few seconds (this time depends
on the number of Monte Carlo draws) for each series, no matter its length, and
therefore is not onerous. Given the grossly inadequate inferences that can arise
from using the classical method, i.e., by ignoring the multiple testing problem,
our proposed method is both important and viable.

5R code for fitting SARIMA models, computing their time series residuals, computing V ,
and calculating the critical values is available upon request.
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The crucial defect of the classical method is its inadequate handling of the
multiple testing problem; the use of χ2 critical values is a secondary, and lesser
problem. Our derivation of the exact distribution is important chiefly because
it allows treatment of the joint distribution – if one were only concerned with a
single Q statistic at high lag, then the methodology proposed here would grant
little improvement in return for a slight delay in computing time, and we would
not advocate it. The key is that typical users of time series software do indeed
examine multiple Q statistics simultaneously. Our method is able to address this
case, as well as the case where a single Q statistic for a low lag is of interest.
The main tradeoff is the additional computational time required.

Appendix A: Time series residual processes

A key concept in time series model fitting is to “whiten the spectrum.” A time
series sample decorrelated by a given model (of the types considered in Section 2)

has asymptotic spectrum given by f̃ /f [θ̃]. The Whittle likelihood seeks to fit

models by minimizing the integral of an empirical version of the time series
residual spectrum, namely the periodogram divided by model spectrum. But
with either MLE or Whittle estimation, under typical regularity assumptions
the asymptotic time series residual spectrum is f̃/f [θ̃].

This quantity is featured prominently in the asymptotic analysis of Q statis-
tics – see Remark 1. One might hope that the autocovariances of this resid-
ual process would be small (or zero); when the model is correctly specified,

f [θ̃] = f̃ /σ̃2, and the residual process is white noise. Typically, when the model

is misspecified, the positive lag autocovariances of the residual process will be
nonzero, but this need not always be true. As mentioned in Section 2, the EXP(r)
model will have the first r positive lag autocovariances of the residual process
equal to zero; this is because the PTVs (by definition) minimize the KL discrep-
ancy, and therefore are zeroes of the gradient function, which has kth component
given by the integral of ck times the residual spectrum. In other words, when
fitting a potentially misspecified EXP(r) model such that θ̃ is the PTV, then
necessarily the first r autocovariances of the residual spectrum are zero, which
ensures that the BP and LB test statistics are inconsistent when m ≤ r.

However, this intriguing property need not be true for misspecified ARMA
models. As an example, consider fitting an AR(1) to an MA(1). Say the MA
process is written Xt = (1 + θB)ǫt, so that the PTV for the AR(1) parameter
is the lag one autocorrelation, or θ/(1+ θ2). Plugging this value into the AR(1)
spectrum, the residual spectrum becomes

∣∣∣∣1 +
θ3

1 + θ2
z − θ2

1 + θ2
z2
∣∣∣∣
2

,

where z = e−iλ. So the residual process is an MA(2). For an invertible MA,
θ ∈ (−1, 1), which we henceforth assume. The autocovariances of the residual
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process then are given by

γ0 = (1 + θ2)
−2 (

1 + 2θ2 + 2θ4 + θ6
)

γ1 = (1 + θ2)
−2

θ3

γ2 = (1 + θ2)
−1

(−θ2).

At higher lags the autocovariances are zero. The maximal values of the lag
one and two autocorrelations is ±1/6, and occur for θ = ±1. These are clearly
the cases of worst model misspecification, whereas θ = 0 implies no model
misspecification, and the residual spectrum is white noise.

More generally, these types of calculations are extremely difficult to per-
form analytically – although the limiting MLEs for fitted AR models are simple
enough (they are just solutions of Yule-Walker equations, expressible through
the true autocovariances of the DGP), for more general ARMA models the solu-
tion requires nonlinear optimization. The point is that residual autocorrelations
may be fairly large when there is misspecification present; these are the quan-
tities driving the power of the Q statistics, as is clear from the asymptotic bias
in Theorem 1.

Appendix B: Proofs

We first introduce a concept from [19]: we say that A ∼ B for two matrices
A and B if Z ′AZ − Z ′AZ = OP (1) for all vectors Z with uniformly bounded
second moments, as the dimension n → ∞.

Lemma 1. Suppose that the model spectral density is continuously differentiable
in λ and is positive. Then

Σ−1/2(fθ̂)L
(k)Σ−1/2(fθ̂) ∼ Σ(f−1

θ̂
ck).

The result follows from Lemmas 2, 3, and 4 of [19], which can be easily
extended to handle spectra depending on random coefficients, so long as the
spectra are continuously differentiable.

Proof of Theorem 1. Let the periodogram of the uncentered data be defined

as I(λ) = n−1|∑n
t=1 Xte

−iλt|2 for λ ∈ [−π, π] (the previous definition above

inserted a centering by the sample mean), and note that γk = 〈f−1

[θ̂] ckI〉. Since
we have a linear functional of the periodogram, it makes no difference whether
we consider an integral or a discrete sum over Fourier frequencies, and we may
apply Theorem 2 of [20] with the weighting functions gθ,k = ck/f [θ]. Then

∇gθ,k = −ck∇f [θ]/f
2

[θ], where the last component is zero (since the derivative

is with respect to σ2). It also follows that

∇fθ =

[
σ2 ∇ f [θ]

f [θ]

]
,
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where ∇ refers to the gradient with respect to [θ]. Then the expression bk(θ)
from Theorem 2 of [20] is

bk(θ) = 〈(fθ − f̃)∇gθ,k + gθ,k∇fθ〉
= −〈ck(fθ − f̃)∇f [θ]f

−2

[θ] − ckf
−1

[θ]∇fθ〉

= 〈ckf
−2

[θ]

(
∇fθf [θ] −∇f [θ](fθ − f̃)

)
〉

= 〈ckf
−2

[θ]

(
∇′

f [θ]f̃ , f
2

[θ]

)′

〉

= 〈ckf̃ f
−2

[θ] ∇f [θ]〉.

The function pθ,k of [20] is then given by

pθ,k = −f−2
θ b′k(θ)M

−1
f (θ)∇fθ.

Then the stated formula for Vkℓ(θ) follows from the formula in Theorem 2 of [20]:

Vkℓ(θ) = 2 〈gθ,kgθ,ℓf̃2〉+ 2 〈pθ,kgθ,ℓf̃2〉+ 2 〈gθ,kpθ,ℓf̃2〉+ 2 〈pθ,kpθ,ℓf̃2〉.

Furthermore, under the Null Hypothesis – evaluating at the PTVs – we obtain
f̃ = σ̃2 f [θ̃], and

bk(θ̃) = σ̃2 〈ck f
−1

[θ̃] ∇f [θ̃]〉.
Moreover, we have

〈f̃2∇fθ∇′fθf
−4
θ 〉 = 〈∇ log fθ̃∇′ log fθ̃〉,

which equals Mf (θ̃) (the Hessian of KL discrepancy equals twice the Fisher
information when the Null Hypothesis holds). Finally,

〈ckf̃2∇fθ̃f
−2

θ̃
f
−1

[θ] 〉 = 〈ck∇fθ̃f
−1

[θ̃] 〉 = σ̃2 〈ck∇f [θ̃]f
−1

[θ̃] 〉,

where the last equality follows from 〈ck〉 = 0. Since this quantity equals bk(θ̃),
the formula for Vkℓ simplifies as stated. The convergence in probability of γ0

follows similarly:

〈If−1

[θ̂] 〉
P−→ 〈f̃ f−1

[θ̃] 〉 = σ̃2,

so long as the Null Hypothesis holds.
The conditions of the theorem guarantee that Lemma 1 holds. Also since

X = OP (n
−1/2), we can show using Lemmas 2, 3, and 4 of [19], along with

the Cauchy-Schwarz inequality, that R = OP (1/
√
n). (We use the fact that

ι′Σ−1/2(f [θ])ι = O(n).) Then
√
nγ̂k = n−1/2R′L(k)R + OP (n

−1/2). Expanding
again using the same techniques,

n−1/2R′L(k)R = n−1/2Y ′Σ−1/2(f)L(k)Σ−1/2(f)Y +OP (n
−1/2),

where Y is the demeaned X vector. In these calculations, the spectral density
can be evaluated at any parameter, even θ̂. Finally, we can apply Lemma 1 to
conclude that

√
nγ̂k = OP (n

−1/2) +
√
nγk.
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Proof of Corollary 1. The result is immediate from Slutsky’s theorem. Also
since γ̂k and γk are asymptotically equivalent, the same follows for the au-
tocorrelations.

Supplementary Material

Supplement to “The multiple testing problem for Box-Pierce statis-

tics”

(doi: 10.1214/14-EJS892SUPP; .pdf).

References

[1] Ansley, C. and Newbold, P. (1979). On the finite sample distribu-
tion of residual autocorrelations in autoregressive-moving average models.
Biometrika 66 547–553.

[2] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar
time series. Biometrika 60 217–226. MR0323048

[3] Box, G. and Pierce, D. (1970). Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal of
the American Statistical Association 65 1509–1526. MR0273762

[4] Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods,
2nd ed. Springer, New York. MR1093459

[5] Findley, D. F. andHood, C. C. H. (1999). X-12-ARIMA and its applica-
tion to some Italian indicator Series. In Seasonal Adjustment Procedures –
Experiences and Perspectives, pp. 231–251. Rome: Istituto Nazionale di
Statistica (ISTAT).

[6] Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and
Chen, B. C. (1998). New capabilities and methods of the X-12-ARIMA
seasonal adjustment program. Journal of Business and Economic Statistics
16 127–177 (with discussion).

[7] Golub, G. and Van Loan, C. (1996). Matrix Computations. Johns Hop-
kins University Press, Baltimore. MR1417720

[8] Hosoya, Y. and Taniguchi, M. (1982). A central limit theorem for sta-
tionary processes and the parameter estimation of linear processes. Ann.
Statist. 10 132–153. MR0642725

[9] Imhof, J. (1961). Computing the distribution of quadratic forms in normal
variables. Biometrika 48 419–426. MR0137199

[10] Kan, R. and Wang, X. (2010). On the distribution of sample autocorre-
lation coefficients. Journal of Econometrics 154 101–121. MR2558954

[11] Katayama, N. (2008). An improvement of the portmanteau statistic. Jour-
nal of Time Series Analysis 29 359–370. MR2392777

[12] Katayama, N. (2009). On multiple portmanteau tests. Journal of Time
Series Analysis 30 487–504. MR2560415

[13] Koopman, S., Harvey, A., and Doornik, J. (2000). STAMP 6.0: Struc-
tural Time Series Analyser, Modeller, and Predictor. Timberlake Consul-
tants, London.

http://dx.doi.org/10.1214/14-EJS892SUPP
http://www.ams.org/mathscinet-getitem?mr=0323048
http://www.ams.org/mathscinet-getitem?mr=0273762
http://www.ams.org/mathscinet-getitem?mr=1093459
http://www.ams.org/mathscinet-getitem?mr=1417720
http://www.ams.org/mathscinet-getitem?mr=0642725
http://www.ams.org/mathscinet-getitem?mr=0137199
http://www.ams.org/mathscinet-getitem?mr=2558954
http://www.ams.org/mathscinet-getitem?mr=2392777
http://www.ams.org/mathscinet-getitem?mr=2560415


522 T. McElroy and B. Monsell

[14] Kwan, A. and Sim, A. (1996). On the finite-sample distribution of modi-
fied portmanteau tests for randomness of a Gaussian time series. Biometrika
83 938–943. MR1440057

[15] Kwan, A. and Wu, Y. (1997). Further results on the finite-sample dis-
tribution of Monti’s portmanteau test for the adequacy of an ARMA(p, q)
model. Biometrika 84 733–736. MR1603964

[16] Ljung, G. (1986). Diagnostic testing of univariate time series models.
Biometrika 73 725–730. MR0897866

[17] Ljung, G. and Box, G. (1978). On a measure of lack of fit in time series
models. Biometrika 65 297–303.

[18] Maravall, A. and Caporello, G. (2004). Program TSW: Revised Ref-
erence Manual. Working Paper 2004, Research Department, Bank of Spain.
http://www.bde.es.

[19] McElroy, T. (2008). Statistical properties of model-based signal extrac-
tion diagnostic tests. Communications in Statistics, Theory and Methods
37 591–616. MR2392345

[20] McElroy, T. and Holan, S. (2009). A local spectral approach for as-
sessing time series model misspecification. Journal of Multivariate Analysis
100 604–621. MR2478185

[21] McElroy, T. and Monsell, B. (2014). Supplement to “The multiple
testing problem for Box-Pierce statistics”. DOI:10.1214/14-EJS892SUPP.

[22] McElroy, T. and Wildi, M. (2013). Multi-step ahead estimation of time
series models. International Journal of Forecasting 29 378–394.

[23] McLeod, A.I. (1978). On the distribution of residual autocorrelations in
Box-Jenkins models. Journal of the Royal Statistical Society, Series B 40

296–302. MR0522212
[24] Monti, A. (1994). A proposal for residual autocorrelation test in linear

models. Biometrika 81 776–780. MR1326425
[25] Peña, D. and Rodriguez, J. (2002). A powerful portmanteau test of

lack of fit for time series. Journal of the American Statistical Association
97 601–610. MR1941476

[26] R Development Core Team (2009). R: A language and environment
for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org.

[27] Pollock, D. (1999). A Handbook of Time-Series Analysis, Signal Pro-
cessing and Dynamics. Academic Press, New York. MR1737528

[28] Slud, E. andWei, L. (1982). Two-sample repeated significance tests based
on the modified Wilcoxon statistic. Journal of the American Statistical
Association 77 862–868. MR0686410

[29] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statis-
tical Inference for Time Series. Springer-Verlag, New York. MR1785484

[30] Tziritas, G. (1987). On the distribution of positive-definite Gaussian
quadratic forms. IEEE Transactions on Information Theory 33 895–906.
MR0923244

http://www.ams.org/mathscinet-getitem?mr=1440057
http://www.ams.org/mathscinet-getitem?mr=1603964
http://www.ams.org/mathscinet-getitem?mr=0897866
http://www.bde.es
http://www.ams.org/mathscinet-getitem?mr=2392345
http://www.ams.org/mathscinet-getitem?mr=2478185
http://dx.doi.org/10.1214/14-EJS892SUPP
http://www.ams.org/mathscinet-getitem?mr=0522212
http://www.ams.org/mathscinet-getitem?mr=1326425
http://www.ams.org/mathscinet-getitem?mr=1941476
http://www.R-project.org
http://www.ams.org/mathscinet-getitem?mr=1737528
http://www.ams.org/mathscinet-getitem?mr=0686410
http://www.ams.org/mathscinet-getitem?mr=1785484
http://www.ams.org/mathscinet-getitem?mr=0923244

	Introduction
	Asymptotic theory for BP and LB statistics
	Models and residuals
	Asymptotic results
	Discussion of asymptotic theory

	Sequential testing of Q statistics
	Numerical studies and data analysis
	Simulation study
	Census bureau time series
	A refined model for elect series

	Conclusion
	Time series residual processes
	Proofs
	Supplementary Material
	References

