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Abstract: While it is typical in the econometric signal extraction literature to
assume that the unobserved signal and noise components are uncorrelated,
there is nevertheless an interest among econometricians in the hypothesis of
hysteresis, i.e. that major movements in the economy are fundamentally linked.
While specific models involving correlated signal and noise innovation
sequences have been developed and applied using state space methods, there
is no systematic treatment of optimal signal extraction with correlated compo-
nents. This paper provides the mean square error optimal formulas for both
finite samples and bi-infinite samples and furthermore relates these filters to the
more well-known Wiener–Kolmogorov (WK) and Beveridge–Nelson (BN) signal
extraction formulas in the case of ARIMA component models. Then we obtain
the result that the optimal filter for correlated components can be viewed as a
weighted linear combination of the WK and BN filters. The gain and phase
functions of the resulting filters are plotted for some standard cases. Some
discussion of estimation of hysteretic models is presented, along with empirical
results on an economic time series. Comparisons are made between signal
extractions from traditional WK filters and those arising from the hysteretic
models.
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1 Introduction

In the econometric literature on nonstationary signal extraction, two popular
approaches have developed, each based on an underlying assumption on the
relationship of signal and noise: namely, that these components are uncorre-
lated (i.e. orthogonal) or that they are fully correlated (i.e., collinear). These
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assumptions are motivated alternatively by economic considerations – reflecting
a priori beliefs on the nature of the driving forces underpinning an economic
variable – or through statistical considerations of identifiability of a given time
series model. The ambiguity is due to the fact that neither signal nor noise is
actually observed, so the actual correlation structure of the putative components
cannot be directly measured. In between these two extreme viewpoints – ortho-
gonality on the one hand and collinearity on the other hand – exists a generic
formulation where there is some degree of cross-correlation between signal and
noise. Ghysels (1987) investigated this phenomenon for time series with trend
and seasonality. The term hysteresis has been introduced (Jäger and Parkinson
1994) to describe this situation with respect to trends and cycles; we use it more
generally in this paper to denote a correlation between the unobserved signal
and noise.

More generally, the term “hysteresis” refers to a dynamical system whose
output depends not only upon the inputs but upon the internal state of the
system. There is a considerable amount of economic literature on this topic.
Proietti (2006) gives an overview with a focus on the case of nonzero correlation;
the key reference for the full correlation case is Beveridge and Nelson (1981), but
also see Snyder (1985), Ghysels (1987), Ord, Koehler, and Snyder (1997),
Hyndman et al. (2002), and Oh, Zivot, and Creal (2008). The literature on
orthogonal components goes back to Wiener (1949), but more recent references
include Bell and Hillmer (1984), Bell (1984), Harvey (1989), Harvey and Jäger
(1993), Maravall (1995), and McElroy (2008). This is not an exhaustive list: for
further reading see the references in Proietti (2006) and Bell (2004). The paper at
hand does not seek to enter the argument as to whether hysteresis exists and/or
is a useful concept, because this has been argued in many other papers. Instead
we focus on providing a complete and general mathematical analysis of hyster-
esis, in order to better elucidate the properties of signal extraction in this
context.

In particular, we provide exact optimal formulas for nonstationary signal
extraction (with a nonstationary noise component) when cross-correlation is
present in varying degrees, for both finite samples and bi-infinite samples.
Although formulas for stationary bi-infinite samples can be found in Whittle
(1963), our formulas for the nonstationary case are novel. The new finite sample
formulas allow for a quite general treatment of hysteresis and are practical for
implementation on real series (without requiring the labor of state space meth-
ods). Here optimality refers to a statistic that has minimum mean squared error
among all statistics linear in the time series, or alternatively one that has
minimum mean squared error among all statistics when the series is a sample
from a Gaussian process. So the statistics are classical, in the sense that they are
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conditional expectations under a Gaussian assumption, but are derived under
the new and somewhat heterodox assumption of cross-correlation in the com-
ponents, thereby generalizing the standard formulas employed in the orthogonal
paradigm.

In order for these results to be useful in applied econometric analysis, one
needs algorithms to fit hysteretic models to time series data. The most viable
approach at present is to set up a structural model for the observed time series,
directly estimating the cross-correlation of signal and noise innovations along
with the other parameters; see Proietti (2006) for an in-depth discussion. Some
supplementary explication is offered in our article, with algorithms for a simple
hysteretic structural model. Our main focus is to provide explicit signal extrac-
tion formulas and illustrate how these can be implemented for linear structural
models.1 Furthermore, we develop a fundamental interpretation of the optimal
hysteretic filter as a convex combination of the Beveridge–Nelson (BN) and
Wiener–Kolmogorov (WK) filters2 in the case of ARIMA models, building on
the classical approach of Bell and Martin (2004). The filters are then examined
in the frequency domain through the plotting of their gain and phase delay
functions.

The organization of this paper is as follows. In Section 2, we develop
the main mathematical material, with proofs in the Appendix. The special case
of ARIMA component models is developed in Section 3, and we connect the
BN and WK filters to the hysteretic filters. A discussion of implementation of
the signal extraction filters is also provided,3 with a frequency domain
analysis of the filters that provides further insight into the role of hysteresis.
Section 4 proposes a simplistic structural hysteretic model, with a discussion of
its estimation utilizing unconstrained optimization of the exact Gaussian like-
lihood. Then Section 5 provides an application of these models to several
economic time series, with comparisons of traditional and hysteretic signal
statistics. Section 6 summarizes our findings, with supplementary material in
the Appendix.

1 By this we mean any unobserved component time series model – see Gersch and Kitagawa
(1983) and Harvey (1989) – where each component, once suitably differenced to reduce to
stationarity, can be viewed as a linear process.
2 Technically, the WK filter only applies to the case of stationary signal and noise, but by a
standard abuse of terminology we extend this appellation to the case of nonstationary signal
and noise as developed in Bell (1984).
3 R code (R Development Core Team 2012) for the finite sample filters is available from the first
author.
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2 Signal extraction formulas

Consider a sample of size n from a time series fYtg, i.e. a realization from the

vector Y ¼ ðY1;Y2; . . . ;YnÞ0. We suppose this vector can be decomposed into

signal S and noise N, via Y ¼ Sþ N: For example, the signal might be the
trend component, while the noise might consist of the seasonal and irregular
components. From now on, we refer to fYtg as the aggregate process. Following
Bell (1984), we let fYtg be an integrated process such the differenced series fWtg
is stationary, where Wt ¼ δðBÞYt, B is the backshift operator, and δ is a poly-

nomial with all roots located on the unit circle of the complex plane. (Also,
δð0Þ ¼ 1 by convention.) This δðzÞ is referred to as the differencing operator of
the series, and we assume it can be factored into relatively prime polynomials

δSðzÞ and δNðzÞ[i.e. polynomials with no common zeroes; see discussion in Bell
(1984)], such that the series fUtg and fVtg defined via

Ut ¼ δSðBÞSt Vt ¼ δNðBÞNt ½1�

are mean zero stationary time series that could possibly be correlated with one
another. Note that δS ¼ 1 and/or δN ¼ 1 are included as special cases (in these
cases either the signal or the noise or both are stationary). We let d be the order
of δ, and dS and dN the orders of δS and δN ; since the latter operators are
relatively prime, δ ¼ δS � δN and d ¼ dS þ dN :

Now we can write eq. [1] in a matrix form, as follows. Let Δ be a ðn� dÞ � n
matrix with entries given by Δij ¼ δi�jþd (the convention being that δk ¼ 0 if k<0
or k >d), i.e.

Δ ¼
δd � � � δ1 1 0 0 � � �
0 δd � � � δ1 1 0 � � �
..
. . .

. . .
. . .

. . .
. . .

. ..
.

0 � � � 0 δd � � � δ1 1

26664
37775

The matrices ΔS and ΔN have entries given by the coefficients of δS and δN ,
but are ðn� dSÞ � n and ðn� dNÞ � n dimensional, respectively. This means
that each row of these matrices consists of the coefficients of the corresponding
differencing polynomial, horizontally shifted in an appropriate fashion. Hence

W ¼ ΔY U ¼ ΔSS V ¼ ΔNN

where W, U, V, S, and N are column vectors of appropriate dimension,
with covariance matrices ΓW , ΓU , and so forth. We also have need of differencing
matrices of reduced dimension, denoted as ΔN and Δ S; these have the
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same entries as ΔN and ΔS, but have dimension ðn� dÞ � ðn� dSÞ and
ðn� dÞ � ðn� dNÞ, respectively, such that

Δ ¼ ΔSΔN ¼ ΔNΔS: ½2�
A proof of eq. [2] can be found in McElroy and Sutcliffe (2006). With these
notations it is possible to write the mean square error (MSE) linear optimal
statistic bS as a linear function of Y, i.e. bS ¼ FY . The error covariance matrix,
i.e. the covariance matrix of bS� S, is denoted by M.

The difference from the conventional signal extraction literature is that
we allow for cross-correlation between differenced signal fUtg and differenced
noise fVtg, namely E½UV 0� ¼ ΓUV can be nonzero. In general, ΓUV will not be
square. Note that ΓVU ¼ E½VU 0� ¼ Γ0UV . Now from eq. [2] it follows that

W ¼ ΔNU þ ΔSV : ½3�
Then the covariance matrices are related by

ΓW ¼ ΔSΓVΔ
0
S þ ΔNΓUΔ

0
N þ ΔNΓUVΔ

0
S þ ΔSΓVUΔ

0
N ; ½4�

which follows from eq. [3]. We need to assume that ΓU , ΓV , and ΓW are invertible;
by stationarity of the underlying process they will be Toeplitz. As was estab-
lished for conventional signal extraction theory (Bell 1984) and extended to the
finite sample case by McElroy (2008), it is useful to consider an assumption
relating the initial values of the process to the differenced signal and noise:

Assumption A (Bell 1984). The initial values Y� ¼ ðY1;Y2; . . . ;YdÞ0 are uncorre-
lated with fUtg and fVtg.

This is Assumption A of Bell (1984), which has become a standard working
assumption in state space approaches to signal extraction [see Bell and Hillmer
(1991)]. A consequence of this assumption, which is appealing (see the proof of
Theorem 1), is that the minimum MSE linear estimator of differenced signal U
given Y is identical with the optimal MSE estimator of U given W. The next result
presents a formula for the minimum MSE linear estimator of signal S given Y. In
the Appendix, we present two proofs – one that verifies optimality of the
estimator, and another longer proof that constructively derives the estimator.

Theorem 1 Assume that fUtg and fVtg are mean zero stationary time series, and
assume the invertibility of ΓU , ΓV , and ΓW. Under Assumption A, the MSE linear
optimal signal extraction filter is given by

F ¼ M�1 Δ0
N Γ

�1
V ΔN þ PΓ�1

W Δ
� �

;
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where M is an invertible matrix, and both M and P are given by

M ¼ Δ0
SΓ

�1
U ΔS þ Δ0

N Γ
�1
V ΔN

P ¼ Δ0
SΓ

�1
U ΓUVΔ0

S � Δ0
N Γ

�1
V ΓVUΔ0

N :

Let the signal extraction error be denoted by ε ¼ FY � S. Then the error covar-
iance matrix Γε is

Γε ¼ M�1 �M�1 PΓ�1
W P0 þ Δ0

NΓ
�1
V ΓVUΓ�1

U ΔS þ Δ0
SΓ

�1
U ΓUVΓ�1

V ΔN
� �

M�1:

Remark 1 In the special case that U and V are not cross-correlated, P ¼ 0 and
we at once obtain the more classical signal extraction filters (McElroy 2008).
When P is nonzero, F and Γε need not be centro-symmetric.

Remark 2 The result also holds more generally when fUtg and/or fVtg are not
stationary (e.g. they are heteroscedastic). When the latent processes are station-
ary, simpler formulas are available; see the proof of Theorem 1 for more detail.

For large sample sizes, the inversion of M that is required by Theorem 1 can be

time-consuming and prone to rounding errors. In the Appendix, we develop an
alternative formula, which is less compactly expressed than that given above, but
has some computational advantages. As the sample size becomes quite large, the
central filters (i.e. the middle rows of F) will have coefficients similar to those of a
bi-infinite filter. The case of a bi-infinite sample is somewhat easier to describe;

now the signal extraction filter is allowed to depend on past and future values of

the aggregate process. In this case, we seek the MSE optimal statistic bSt ¼ ΨðBÞYt,
for a signal extraction filter ΨðzÞ. Because we seek to derive time-invariant filters,
we need to assume that fUtg and fVtg are jointly weakly stationary (so Remark 2
above no longer applies). We employ the notation fW and fU for the spectral

density functions of fWtg and fUtg, while fUV is the cross-spectral density of fUtg
and fVtg– so fUVðλÞ ¼ fVUð�λÞ. We adopt the conventions of Brockwell and Davis
(1991), so that E½UtþhVt� is the lag h value of cross-covariance function (of U

with V), with corresponding cross-spectral density fUVðλÞ ¼
P

h2Z E½UtþhVt�e�ihλ.
In the expressions below, we utilize the abbreviation z ¼ e�iλ, it being

understood by context when z refers to a power series’ argument, and when it
refers to the complex exponential. Then we have the following relations in
analogy with eq. [4]:

fWðλÞ ¼ fUðλÞδNðzÞδNð�zÞ þ fUVðλÞδNðzÞδSð�zÞ
þ fVUðλÞδSðzÞδNð�zÞ þ fVðλÞδSðzÞδSð�zÞ

½5�
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for λ 2 ½�π; π�. Then the frequency response function (frf) for ΨðzÞ is given in the
following result.

Theorem 2 Under Assumption A, and assuming that fWðλÞis positive for all λ, the
MSE linear optimal signal extraction filter has frf given by

ΨðzÞ ¼ fUðλÞδNðzÞδNð�zÞ þ fUVðλÞδNðzÞδSð�zÞ
fWðλÞ :

Let the signal extraction error process be denoted by fεtg, with εt ¼ ΨðBÞYt � St.
Then the error process is weakly stationary and has spectral density

fεðλÞ ¼ fUðλÞfVðλÞ � fVUðλÞfUVðλÞ
fWðλÞ :

Remark 3 We can factor the numerator of ΨðzÞ and write the filter as

ΨðzÞ ¼ fUðλÞδNð�zÞ þ fUVðλÞδSð�zÞ
fWðλÞ δNðzÞ:

This shows that the filter applies the noise-differencing filter δNðzÞ first to the
input series, which is a necessary aspect of a signal extraction filter where
nonstationary noise is involved [see discussion in McElroy (2012)]. In the classi-

cal case wherein fUV ;0, the numerator also contains the factor δNð�zÞ, so that

input series are initially differenced by the filter δNðzÞδNð�zÞ. For example, if

δNðzÞ ¼ 1� z and fUV �0, then the filter differences an input time series once.

But if fUV ;0, the filter involves the factor δNðzÞδNð�zÞ ¼ ��zð1� zÞ2, so that the
filter involves two temporal differences.

Remark 4 An intuitive connection between the finite sample (Theorem 1) and bi-
infinite sample (Theorem 2) formulas can be provided by considering the mini-
mum MSE estimator of U given Y – see the proof of Theorem 1:

ΔS F ¼ ΓU Δ0
N þ ΓUV Δ0

S

� �
Γ�1
W Δ:

Replacing covariance matrices by the corresponding spectral densities and
cross-spectral densities and differencing matrices by differencing polynomials
(transposition corresponds to conjugation of the complex exponential argument)
then yields

fUðλÞδNð�zÞ þ fUVðλÞδSð�zÞ
� �

δðzÞ=fWðλÞ;
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which is δSðzÞΨðzÞ; this is the frf for the optimal bi-infinite filter for estimating
Ut given fYtg. The connection between signal estimators of S given Y and St
given fYtg is less direct, but can be inferred from the above relationship for the
differenced signal.

It sometimes occurs in applications that fW is noninvertible. So long as any

zeroes occurring in fW are also present in all of the components, Theorem 2 is
still valid. For example, the so-called canonical trend process fWtg is given by
ð1� BÞWt ¼ ð1þ BÞat, where fatg is white noise, and therefore fW is noninver-
tible. When no hysteresis is present, the decomposition into long-term trend and
cycle, as described in Kaiser and Maravall (2005), produces component models

that each contain the 1þ B factor in their moving averages. Hence ð1þ zÞð1þ �zÞ
can be canceled from numerator and denominator of the frf, so that the simpli-
fied frf is well-defined.

3 The ARIMA case: relation to BN and WK filters

In this section, we consider a bi-infinite process that can be represented in terms
of ARIMA component models and compare the hysteretic filters to the BN and
WK filters. With notation borrowed from Bell and Martin (2004), we suppose the
process satisfies Yt ¼ St þ Nt as before, with

’ðBÞYt ¼ θðBÞat ’SðBÞSt ¼ θSðBÞbt ’NðBÞNt ¼ θNðBÞct: ½6�

The polynomials ’, ’S, and ’N can always be factored into portions involving
roots on the unit circle and roots outside the unit circle. The former are denoted

by δ, δS, and δN as in Section 2, but the latter are denoted by f, fS, and fN , i.e.
these are the autoregressive polynomials. The innovation sequences fatg, fbtg,
and fctg are white noise of variance σ2a, σ2b, and σ2c, but we allow for the

possibility that fbtg and fctg are cross-correlated. The orders of the various

polynomials are q; qS; and qN for moving average polynomials, and p; pS; and

pN for full autoregressive polynomials (including the differencing operators).
It is natural to ask whether θS, fS, θN , and fN can be computed from a

knowledge of θ and f; such a procedure is called a component decomposition.
When no hysteresis is present, Hillmer and Tiao (1982) describe a procedure
based on a partial fraction decomposition of θðzÞθð�zÞ; also see the discussion in

Bell and Martin (2004). In the case of full hysteresis, i.e. the innovation
sequences are fully correlated, the component decomposition follows from a
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partial fraction decomposition of θðzÞ, as discussed in Brewer, Hagan, and
Perazzelli (1975) and Brewer (1979) – also see Proietti (1995) for the seasonal
case. More specifically, if bt ¼ bat and ct ¼ cat for some constants b and c, then

one solves

θðzÞ ¼ b’NðzÞθSðzÞ þ c’SðzÞθNðzÞ

for b, c and θS, θN , using partial fractions. Apart from these two extreme cases –
of either no cross-correlation or full cross-correlation of latent components –
there is no published algorithm for obtaining the component decomposition,
and this seems to be a challenging mathematical problem (see further discus-
sion in Section 4).

Supposing for now that the component models are known – either by a
decomposition algorithm or by a structural estimation of the model (Section 4) –
we proceed to describe the hysteretic filter using the ARIMA model notation.

First, let z ¼ e�iλ for any frequency λ 2 ½�π; π�. The cross-covariance function of

the innovation fctg relative to fbtg is defined via

ρh ¼ E½ctþhbt�; h 2 Z

which has cross-covariance generating function ρðzÞσbσc; it follows from the
Cauchy–Schwarz inequality that jρðzÞj � 1. Then we have:

fUðλÞ ¼ θSðzÞθSð�zÞ
fSðzÞfSð�zÞ σ

2
b

fVðλÞ ¼ θNðzÞθNð�zÞ
fNðzÞfNð�zÞ σ

2
c

fUVðλÞ ¼ θSðzÞθNð�zÞ
fSðzÞfNð�zÞ ρð

�zÞσbσc

fVUðλÞ ¼ θNðzÞθSð�zÞ
fNðzÞfSð�zÞ ρðzÞσbσc: ½7�

The optimal hysteretic filter arising from application of Theorem 2 will be
denoted by ΨH , and clearly depends on the function ρ:

ΨHðzÞ ¼ θSðzÞθSð�zÞ’NðzÞ’Nð�zÞσ2b þ θSðzÞθNð�zÞ’NðzÞ’Sð�zÞρð�zÞσbσc
θðzÞθð�zÞσ2a

: ½8�
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This follows from substitution of the relevant spectra into Theorem 2. We
observe that both the BN and the WK filters (for bi-infinite processes) are special
cases of Theorem 2 where ρðzÞ is set equal to one and zero, respectively [see
Beveridge and Nelson (1981) and Bell (1984)]; this follows from a further alge-
braic relation among the hysteretic, BN,4 and WK filters that is derived below.
(The case that ρðzÞ is set equal to –1 also produces full correlation between
components and yields the negative of the BN filter described below.) In what
follows, we describe a relationship between the formulas in eqs. [8]–[10], where
the polynomials θ, θS, θN , ’N , and ’S are the same numerically in each formula.
The formulas for the BN and WK filters are

ΨBNðzÞ ¼ θSðzÞ’NðzÞσb
θðzÞσa ½9�

ΨWKðzÞ ¼ θSðzÞθSð�zÞ’NðzÞ’Nð�zÞσ2b
θðzÞθð�zÞσ2a

: ½10�

Since ΨBN is a signal extraction filter, we may denote it also by ΨS
BN when there

is the need to distinguish it from the Beveridge–Nelson noise extraction filter
given by

ΨN
BNðzÞ ¼

θNðzÞ’SðzÞσc
θðzÞσa ;

which is in turn equal to the noise hysteretic filter when ρ; 1. Then we have

ΨHðzÞ ¼ ΨS
BNðzÞ

θSð�zÞ’Nð�zÞσb þ θNð�zÞ’Sð�zÞρð�zÞσc
θð�zÞσa

� �
¼ ΨS

BNðzÞ ΨS
BNð�zÞ þ ρð�zÞΨN

BNð�zÞ
� �

¼ ΨWKðzÞ þ ρð�zÞΨS
BNðzÞΨN

BNð�zÞ:

½11�

This derivation uses several facts. The first equality arises from splitting the
rational function in eq. [8] into polynomials involving z on the left and z on the
right. The second equality utilizes the conjugate of the BN noise filter. The last
equality is a simple rearrangement of terms, recognizing that ΨWKðzÞ is the
squared modulus of ΨS

BNðzÞ.

4 See the Appendix for the derivation of the BN filter.
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Let us interpret this interesting relationship. When ρ;0, eq. [11] reduces to
ΨH ¼ ΨWK , which is true because when no hysteresis is present, the optimal
signal extraction filter is given by the WK. But when ρ; 1, full hysteresis holds
and ΨN

BN ¼ 1�ΨS
BN , so that the right-hand side of eq. [11] produces

ΨWKðzÞ þΨS
BNðzÞð1�ΨS

BNðzÞÞ ¼ ΨS
BNðzÞ:

Thus, the hysteretic filter is equal to the BN filter in this case. More generally, as
in the work of Proietti (2006), the innovation correlation function ρðzÞ ¼ ρ might
be constant in ½�1; 1�, and then the hysteretic filter is just a weighted combina-
tion of the familiar WK and BN (signal and noise) filters. When ρðzÞ is non-
constant, additional lag and amplitude effects are superimposed on the consti-
tuent filters. In summary, setting ρ identically to unity or zero, respectively, in
the hysteretic filter (eq. [11]) will yield either the BN or WK filter.

The actual implementation of the finite sample formulas is straightforward
once the spectra and cross-spectra are known. To obtain these, one needs to
compute the fitted components models that follow eq. [6]. How is this to be
accomplished in practice? A current approach in the literature on hysteresis uses
structural models with correlated innovations and computes the log Gaussian
likelihood using state space algorithms; see Proietti (2006). In Section 4, we
provide details on a structural hysteretic model that generalizes the work of
Proietti (2006) to seasonal time series, providing a full illustration of how to fit
component models that follow eq. [6].

It is also possible for the correlation ρ to arise from the model itself, as in the
work of Harvey and Trimbur (2007). In that paper an underlying continuous time
model is stipulated for trend and noise components, and the way in which
sampled signal and noise are defined implies a hysteretic structure, with corre-
lation derivable from other parameters of the model. Another natural way in
which cross-component correlation may arise is through the signal extraction
estimates themselves, even from a model that utilizes an assumption of zero
hysteresis. It is well-known that the WK approach results in signal and noise
extractions that are cross-correlated. The cross-covariance generating function
induced by the signal and noise extractions has different behavior, depending
on whether underlying hysteresis is present. When the components are ortho-
gonal, the cross-covariance generating function converges to zero as the lag
increases, whereas this does not happen when the series is nonstationary and
hysteresis is present.

Note that for long time series (say more than 360 observations) the matrix
approach is still quite fast in practice, since the required inversion of non-
Toeplitz matrices of dimension equal to sample size is very fast relative to
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model fitting. (Signal extraction requires a few matrix inversions, whereas
optimizing a likelihood requires such an inversion during each evaluation
step; state space methods that utilize the Kalman recursions can be used to
reduce computation time.) The extra time required over a state space approach
is operationally irrelevant for series of moderate length, and in any event may be
warranted if one is interested in the full covariance matrix of the error process.
So in summary the procedure is:
1. Obtain fitted component models that follow eq. [6];
2. Compute the autocovariance and cross-covariance functions5 corresponding

to fU , fV , fUV , and fVU given in eq. [7];
3. Use these quantities to compute P, M, and F in Theorem 1.

We next illustrate the frf of hysteretic filters, adopting the trend–cycle paradigm
studied in Proietti (2006). In particular, the signal is a smooth trend given by the

model ð1� BÞ2St ¼ bt, whereas the noise is a stochastic cycle given by

ΦðBÞNt ¼ ct, and ΦðBÞ ¼ 1� 2κ cosðωÞBþ κ2B2. The persistence of the cycle is
determined by κ 2 ð0; 1Þ, while the chief frequency is governed by ω 2 ð0; 2πÞ.
As in Section 4, the correlation between the white noise sequences fbtg and fctg
is ρ 2 ½�1; 1�, and they each have variance σ2b and σ2c, respectively.

The signal extraction problem is identical with trend estimation, whereas
the noise extraction problem corresponds to cycle estimation. A third component
of white noise could also be included in this simple process, but this somewhat
clouds intuition and is therefore omitted here (we consider three component
models in the next section). We calculate the frfs for the hysteretic filter ΨH , for
both trend and cycle estimation, and plot the resulting components: real and
imaginary portions (the frf is complex in general), squared gain (labeled just as
gain), and phase delay. See Findley and Martin (2006) for definitions of these
frequency domain functions.

The parameters of the cyclical model are κ ¼ :8 and ω ¼ π=60– for a cycle of
period roughly 5 years – and σb ¼ σc ¼ 1. For these parameters, we compute the

hysteretic, BN, and WK filters as described above. That is, ΨH is computed via
eq. [8] using ρ ¼ �:5, whereas ΨBN and ΨWK are computed using eqs. [9] and [10]
respectively, essentially ignoring the true values of ρ. However, ΨBN and ΨWK

still depend implicitly on ρ through eq. [5], because θðzÞ appearing in eqs. [9]

5 Standard algorithms – in R for instance – produce the autocovariances for fU and fV ; a little
more work is required for the cross-covariances, but similar principles are in play.
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and [10] is calculated from fW , which in turn depends upon the true value of ρ.

We have plots for ρ ¼ �:5: see Figures 1–4.
The squared gain and phase delay are probably of chief interest. For the

hysteretic trend in Figure 1, the low-pass shape of the squared gain function is
familiar, although in the ρ ¼ 0:5 case there is a “nose” in the cycle-band
reminiscent of a concurrent filter. For positive cross-correlation, there is phase
advance at cyclical frequencies, whereas the opposite effect – phase delay in the

cycle band – is evident when ρ ¼ �0:5. The cycle filter squared gain functions
are as expected, and there is considerable phase advance at low frequencies
when ρ ¼ �0:5.
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Figure 1: frfs for hysteretic trends and cycles. Left panels are for the case ρ ¼ :5, right panels for
the case ρ ¼ �:5. Bottom panels are for cycle filtering, top panels are for trend filtering. Within
each panel, the plotted functions are real part frf, imaginary part frf, squared gain, and phase
delay, moving from top to bottom
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The squared gain functions for the BN trend filter in Figure 2 are qualita-
tively similar to the hysteretic case. The phase delay functions for the BN cycle
filter is not well-defined at frequency zero, resulting in non-informative explo-
sive behavior. For the WK case in Figure 3, there is no phase delay (since the
filters are symmetric). The low-pass shape for the trend and cycle filters is even
more pronounced in the WK case, but qualitatively the impact of ρ ¼ 0:5 versus
ρ ¼ �0:5 is the same.

Finally, we track the relations between the hysteretic, BN, and WK filters in
Figure 4. This is the visual display corresponding to eq. [11], where ρ ¼ �0:5. We
don’t examine squared gain or phase delay comparisons, since eq. [11] does not
apply to these nonlinear functions of the frf. The trend (real part) frfs for
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Figure 2: frfs for BN trends and cycles. Left panels are for the case ρ ¼ :5, right panels for the
case ρ ¼ �:5. Bottom panels are for cycle filtering, top panels are for trend filtering. Within
each panel, the plotted functions are real part frf, imaginary part frf, squared gain, and phase
delay, moving from top to bottom
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ρ ¼ �0:5 show some dramatic differences, with the hysteretic filter providing
much more smoothing than the BN and WK filters. For the cycle filters, there is
an interesting negative dip in hysteretic and BN filters – associated with their
asymmetry – at the low frequencies.

4 Estimation of structural hysteretic models

In order to utilize the formulas of Theorem 1, it is necessary to have the
autocovariance and cross-covariance functions for the components. This section
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Figure 3: frfs for WK trends and cycles. Left panels are for the case ρ ¼ :5, right panels for the
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each panel, the plotted functions are real part frf, imaginary part frf, squared gain, and phase
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discusses the general approach to this problem and then considers the identifia-
bility and estimation of a particular basic structural model.

4.1 Latent trend, seasonal, and irregular components

The two most popular model-based approaches in the econometrics literature for
obtaining models for latent components are the structural and decomposition
methods. The former postulates models for the unobserved signal and noise –
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Figure 4: Real part of frfs for trend and cycle filters, for hysteresis, BN, and WK approaches. Left
panels are for the case ρ ¼ :5, right panels for the case ρ ¼ �0:5. Bottom panels are for cycle
filtering, top panels are for trend filtering
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and this includes cross-correlation structure – so that for any choice of para-
meters the autocovariances for the aggregate process are calculated via eq. [4].
In this way, Gaussian maximum likelihood estimation yields the component
models, and the signal extraction formulas can then be applied. (Alternatively,
one can utilize the Whittle likelihood by using the spectral representation of the
model.) In contrast, the decomposition approach begins with a posited model
for the aggregate process and obtains models for the components using algebra;
see Hillmer and Tiao (1982) for the orthogonal case and Brewer (1979) for the
collinear case.

Much of the current work on hysteresis (Proietti 2006) adopts the structural
approach within the context of Harvey’s basic structural models, modeling the
cross-correlation via cross-correlated white noise innovation sequences for sig-
nal and noise. The model estimation and signal extraction computations (corre-
sponding to the matrix formulas of Theorem 1) are efficiently carried out through
state space algorithms. The results of Theorem 2 can be used to understand the
frequency domain properties of these signal extraction filters.

We now describe the methodology for fitting a structural hysteretic model;
we adopt the approach of direct specification of the components in order to
simplify identification issues. A typical application to economic time series will
involve a model with seasonal, trend, and irregular components. So we posit the
existence of a seasonal component P (typically an S is used, but to avoid
confusion with the signal notation, we use P for periodic), a trend component
T, and a (white noise) irregular component I such that Y ¼ P þ T þ I. The
seasonal differencing and trend differencing operators are denoted by δPðzÞ
and δTðzÞ, respectively, such that their application to fPtg and fTtg, respec-
tively, yield weakly stationary series. Hence we have by assumption

’YðBÞYt ¼ ΘYðBÞat

’PðBÞPt ¼ ΘPðBÞbt

’TðBÞTt ¼ ΘTðBÞct
for innovation sequences fatg, fbtg, and fctg, which along with fItg, a white
noise. We use Θ to denote moving average polynomials, whereas ’ denotes a

combined autoregressive and unit root differencing polynomial. As mentioned
above, we use δ for differencing polynomials; if we wish to refer to the non-unit
root factors of ’, i.e. the pure autoregressive portions, then we use the symbol f.
These conventions apply to aggregate Y, trend T, and seasonal P. It is conve-

nient in the following treatment to assume that ’Y ¼ ’T’P.
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We assume that ’P and ’T are relatively prime; this only constitutes a
decision about how the signals are conceived. Allowing for correlation between
bt, ct, and It– but for simplicity we suppose that cross-correlation only occurs at
lag zero – produces the following analog of eq. [5]:

ΘYðzÞΘYð�zÞ
’YðzÞ’Yð�zÞ σ

2
a ¼

ΘPðzÞΘPð�zÞ
’PðzÞ’Pð�zÞ σ

2
b þ

ΘTðzÞΘTð�zÞ
’TðzÞ’Tð�zÞ σ

2
c þ σ2I

þ ΘPðzÞ
’PðzÞ τσbσI þ

ΘPð�zÞ
’Pð�zÞ τσbσI þ

ΘTðzÞ
’TðzÞ �σcσI þ

ΘTð�zÞ
’Tð�zÞ �σcσI

þ ΘTðzÞΘPð�zÞ
’TðzÞ’Pð�zÞ ρσbσc þ

ΘPðzÞΘTð�zÞ
’PðzÞ’Tð�zÞ ρσbσc:

½12�

The correlation between bt and It is denoted by τ, the correlation between ct and

It is denoted by �, and the correlation between bt and ct is denoted by ρ. Clearly
τ, �, and ρ are bounded by one in magnitude; also it follows – by the injunction
that the covariance matrix of bt, ct, and It be non-negative definite – that

1� ðρ2 þ �2 þ τ2Þ þ 2ρ�τ 	 0. Parameters satisfying this injunction are said to

be admissible. Note that any admissible choice of ΘT , ΘP, σb, σc, τ, �, and ρ

must also satisfy eq. [12], for some polynomial Θ; it is easy to see that δðBÞYt can
be expressed as a linear combination of a tri-variate stationary vector process,
and hence the left-hand side of eq. [12] will always be non-negative.

Now eq. [12] tells us how the structural components are related to the
aggregate process, even as the terms on the right-hand side sum up to the left-
hand side. Passing into time domain via integration against eiλh, we obtain a
relation of autocovariances. Parameters enter into the covariance quantities,
which are in turn aggregated to the whole.

4.2 The basic hysteretic structural model

Here we further illustrate the relation of latent components in eq. [12] through a

specific class of structural models. Let ’PðzÞ ¼ UðzÞ ¼ 1þ z þ � � � þ z11 and

’TðzÞ ¼ ð1� zÞd with d ¼ 1; 2. Also set ΘPðzÞ and ΘTðzÞ equal to unity by fiat,

so that the only parameters are ψ ¼ ðσ2b; σ2c; σ2I ; ρ; τ; �Þ0. This corresponds to the

Local Level Model or Smooth Trend Model, as well as the basic seasonal model,
popularized in Harvey (1989) and utilized in the software STAMP. Here we allow

for nonzero correlation between the three innovations.
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Then with Wt ¼ δðBÞYt, the differenced aggregate process’ spectral density
is given by

fWðλÞ ¼ σ2b j1� zj2d þ σ2c jUðzÞj2 þ σ2I j1� zj2djUðzÞj2

þ τ σb σI UðzÞ þ Uð�zÞð Þj1� zj2d þ �σc σI ð1� zÞd þ ð1� �zÞd
� 	

jUðzÞj2

þ ρσb σc ð1� zÞdUð�zÞ þ ð1� �zÞdUðzÞ
� 	

:

½13�
Estimation is now straightforward in principle, because the exact Gaussian
likelihood for the differenced aggregate variables can be easily computed from
the above expression – see Section 4.3. However, the model with d ¼ 1 is
actually not identified, whereas the d ¼ 2 case is indeed identifiable; details
are provided in the following discussion. In applications we therefore restrict
attention to the d ¼ 2 case, and henceforth refer to this model [13] as the Basic
Hysteretic Structural Model (BHSM).

We give some details on the identifiability of the BHSM. The autocovariance
and cross-covariance sequences for each of the six terms in eq. [13] are given as
follows. We denote the cross-covariance functions for differenced components
as γPT , γPI , etc., with an argument z denoting the corresponding generating
function. Then eq. [13] can be rewritten as

γWWðzÞ ¼ σ2b γPPðzÞ þ σ2c γTTðzÞ þ σ2I γIIðzÞ
þ τ σb σI γPIðzÞ þ γPIð�zÞð Þ þ �σc σI γTIðzÞ þ γTIð�zÞð Þ
þ ρσb σc γPTðzÞ þ γPTð�zÞð Þ:

This equation involves six separate functions of z, which are actually self-con-
jugate (and hence real-valued) with symmetric coefficients. Letting ζ j ¼ zj þ z�j as
a shorthand, these autocovariance and cross-covariance functions are given by

γPPðzÞ ¼ 2� ζ 1

γTTðzÞ ¼ 12þ 11ζ 1 þ 10ζ 2 þ 9ζ 3 þ � � � þ ζ 11

γIIðzÞ ¼ 2� ζ 12

γPIðzÞ þ γPIð�zÞ ¼ 2� ζ 1 þ ζ 11 � ζ 12

γTIðzÞ þ γTIð�zÞ ¼ 2� ζ 12

γPTðzÞ þ γPTð�zÞ ¼ �ζ 1 þ ζ 11
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when d ¼ 1. Note that γIIðzÞ and γTIðzÞ þ γTIð�zÞ are identical, essentially because

j1� zj2 ¼ ð1� zÞ þ ð1� �zÞ. This means that the model is not identifiable; for

example, if σ2b ¼ 0 and σ2c ¼ 1, then both the setting σ2I ¼ 2; � ¼ 0 and the setting

σ2I ¼ 1; � ¼ 1 yield σ2I þ �σc σI ¼ 2, so that fWW is not an injective function of
the parameters. For d ¼ 2 the autocovariances and cross-covariances are
given by

γPPðzÞ ¼ 6� 4ζ 1 þ ζ 2

γTTðzÞ ¼ 12þ 11ζ 1 þ 10ζ 2 þ 9ζ 3 þ � � � þ ζ 11

γIIðzÞ ¼ 4� 2ζ 1 þ ζ 11 � 2ζ 12 þ ζ 13

γPIðzÞ þ γPIð�zÞ ¼ 6� 4ζ 1 þ ζ 2 � ζ 10 þ 3ζ 11 � 3ζ 12 þ ζ 13

γTIðzÞ þ γTIð�zÞ ¼ �2ζ 1 þ ζ 11 þ ζ 13

γPTðzÞ þ γPTð�zÞ ¼ �ζ 1 þ ζ 2 � ζ 10 þ ζ 11:

In this case, the six generating functions are distinct, and the model is identifi-

able. We briefly discuss identifiability for structural moving average models, but
more detail can be found in Morley, Nelson, and Zivot (2003). Suppose the

spectrum for an MA(q) process fWtg can be expressed as fWW ¼ Pm
j¼1 βjfj for

real numbers β1; β2; . . . ; βm(these are either parameters or some function of the
parameters), and real-valued functions fj, all of which have a q-dependent

covariance sequence. Transforming the equation via the inverse Fourier trans-
form then relates the qþ 1 nonzero autocovariances of fWtg to the transforms of
the fj, summed against the βj. Due to the fact that each fj is real-valued, the

inverse Fourier transforms are a symmetric sequence, and there are qþ 1 non-
zero corresponding covariances in each case. Writing each of these as a vector

γðfjÞ, the vector of autocovariances for fWtg is equal to
Pm

j¼1 βjγðfjÞ, and iden-

tifiability of the βj quantities is equivalent to the linear independence of the γðfjÞ
vectors.

To see this, let β ¼ ½β1; . . . ; βm�0 and suppose both β and ~β yield the exact

same function fWW ; then
Pm

j¼1ðβj � ~βjÞγðfjÞ equals the zero vector, and linear

independence of the γðfjÞ implies that β ¼ ~β, i.e. identifiability. But linear

dependence means that some distinct ~β ¼ β þ r exists that yields the same fWW

as β, making the model non-identifiable. Furthermore, in the case of our BHSM
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we can uniquely solve for the parameters given the βj(provided such a solution

exists – here β1; β2; β3 	 0 must hold). Thus, a sufficient condition for the

identifiability of the six BHSM parameters is the linear independence of the six
covariance vectors given above. Hence, when d ¼ 1 the linear dependence
becomes obvious, two of the vectors being identical (the matrix made of the
six columns vectors actually has rank 4), whereas with d ¼ 2 we can simply
verify that the matrix of six column vectors has rank 6.

4.3 Estimation of the BHSM

We next discuss parametrization and maximum likelihood estimation of the
BHSM. Recalling that W ¼ ΔY and letting its covariance matrix be denoted by
ΓW , our scaled log likelihood is

W 0Γ�1
W W þ log jΓW j:

This uses the assumption – common in signal extraction problems in time series
analysis – that the initial dþ 11 values of the sample are uncorrelated with
fWtg. Evaluation is possible if we can calculate the autocovariances in ΓW
from eq. [13]. Minimizing the above objective function yields the maximum
likelihood estimates (MLEs) for the parameter vector ψ, and these will be
denoted by bψ.

An interesting facet of evaluating the likelihood is guaranteeing that the
three innovations have a positive definite correlation matrix. Our approach
follows that of Pinheiro and Bates (1996). Define a sequence of “pre-parameters”
# ¼ ð#1; . . . ; #6Þ0 that are unconstrained (i.e. can be any real number) and are
mapped into the constrained vector ψ as described below. The mapping guar-

antees that variances are positive and the joint covariance matrix is positive
definite. We preserve the notation of Pinheiro and Bates (1996) for convenience.
The idea is to decompose the joint covariance matrix of the three innovation
sequences into its Cholesky factors and then do a spherical coordinates trans-
form on the six free variables of the Cholesky factor:

,11 ¼ exp#1 ,21 ¼ exp#2 ,31 ¼ exp#3

,22 ¼ π
exp#4

1þ exp#4
,32 ¼ π

exp#5

1þ exp#5
,33 ¼ π

exp#6

1þ exp#6
:

These six new variables are derived through simple exponential and logistic
transforms. Of course an arc-tangent function could be utilized for the latter
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three variables, but the logistic is convenient for differential calculations later.
Next, the Cholesky factor L is upper triangular with entries

,11 ,21 cosð,22Þ ,31 cosð,32Þ
0 ,21 sinð,22Þ ,31 sinð,32Þ cosð,33Þ
0 0 ,31 sinð,32Þ sinð,33Þ:

264
375

Finally, the covariance matrix of the innovations is L0L. After some algebra, we
discover that

ψ1 ¼ expf2#1g ψ2 ¼ expf2#2g ψ3 ¼ expf2#3g

ψ4 ¼ cosð,22Þ ψ5 ¼ cosð,32Þ ψ6 ¼ cosð,22Þ cosð,32Þ þ sinð,22Þ sinð,32Þ cosð,33Þ:

One can easily check that the determinant (with ρ ¼ ψ4, τ ¼ ψ5, � ¼ ψ6) equals

sin2ð,22Þ sin2ð,32Þ cos2ð,33Þ times ψ1ψ2ψ3, and hence is always non-negative.
One can initialize a maximum likelihood estimation routine with #j ¼ 0 for

all j. This, in a sense, places one at the center of the six-dimensional manifold

that the parameter vector belongs to. It is easy to obtain the standard errors for

the original parametrization. If the MLE for # is asymptotically normal at rate
ffiffiffi
n

p
and variance matrix V, approximated by the numerical Hessian, then the MLE

for ψ has asymptotic variance DVD0 with Djk ¼ @
@#k

ψjð#Þ, expressed as a function

of # and with the MLE b# plugged in. The matrix D follows from calculus. The

first five rows make up a diagonal matrix with entries

D11 ¼ 2 expf2#1g

D22 ¼ 2 expf2#2g

D33 ¼ 2 expf2#3g

D44 ¼ � sin
π exp#4

1þ exp#4

� �
π exp#4

ð1þ exp#4Þ2

D55 ¼ � sin
π exp#5

1þ exp#5

� �
π exp#5

ð1þ exp#5Þ2
:

The last row of D has nonzero entries in its last three columns:
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D64 ¼� sin
π exp#4

1þ exp#4

� �
π exp#4

ð1þ exp#4Þ2
� cos π exp#5

1þ exp#5

� �
þ cos

π exp#4

1þ exp#4

� �
π exp#4

ð1þ exp#4Þ2
� sin π exp#5

1þ exp#5

� �
� cos π exp#6

1þ exp#6

� �

D65 ¼� cos
π exp#4

1þ exp#4

� �
� sin π exp#5

1þ exp#5

� �
π exp#5

ð1þ exp#5Þ2

þ sin
π exp#4

1þ exp#4

� �
� cos π exp#5

1þ exp#5

� �
π exp#5

ð1þ exp#5Þ2
� cos π exp#6

1þ exp#6

� �

D66 ¼ sin
π exp#4

1þ exp#4

� �
� sin π exp#5

1þ exp#5

� �
� sin π exp#6

1þ exp#6

� �
π exp#6

ð1þ exp#6Þ2

Suppose now that we wish to estimate a constrained structural hysteretic
model, where some of the ρ; τ; � parameters are forced to be zero. Clearly these
generate nested models, and conveniently the nested model is not on the
boundary of the parameter space of the nesting model. Then the Gaussian
Likelihood Ratio (GLR) theory of Taniguchi and Kakizawa (2000) can be applied:
we take the difference of the log likelihoods, and the asymptotic distribution is
χ2r where r is the number of correlations set to zero. Now if one correlation is
zero, the determinant of the covariance matrix has the form 1� ðx2 þ y2Þ times
the product of the innovation variances, and hence we can utilize a simple
circular coordinate transform. Letting ψ4 and ψ5 denote the two nonzero correla-
tions, we have

ψ4 ¼
exp#4

1þ exp#4
cos

π exp#5

1þ exp#5

� �

ψ5 ¼
exp#4

1þ exp#4
sin

π exp#5

1þ exp#5

� �
:

But if two correlations are fixed at zero, then just let

ψ4 ¼
expf#4g � 1
1þ exp#4

:

In this manner, the implementation of the BHSM is achieved. R code is available
from the first author upon request.
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5 Data applications

Our objective is not to decide the question of the extent to which hysteresis exist
in economic time series, but rather to show how model estimation and signal
extraction may be done when hysteresis is present. To that end we examine the
fitting of the BHSM to multiple economic time series. We begin our data analysis
with 88 U.S. Census Bureau monthly time series for which the Box–Jenkins
airline model was selected by the automatic modeling procedure of TRAMO.6

We then fit the BHSM to each of these series, looking for cases where the
hysteretic model’s performance is fairly competitive with that of the airline
model. There were six cases where this occurred, and we focus our analysis
on two of these six for which the likelihoods were better.

The initial 88 series were selected from a broader class of 146 time series,
consisting of 39 foreign trade, 10 retail, 10 housing, and 87 manufacturing time
series. Most of these exhibit trading day effects, about half have significant
Easter effects, and many have additive and/or level shift outliers. Accounting
for transformations and fixed effects, produced a subset of 88 series7 for which
the Box–Jenkins airline model was selected, most of which required a log
transformation. Therefore, in fitting the BHSM to these models, we are in
essence comparing the hysteretic model against the best SARIMA models
obtained for these series.

Series m42110 and x42100 – both of them Foreign Trade series – had BHSM
models with likelihoods superior to the airline model. Table 1 summarizes the
fits, with standard errors in parentheses. For the airline models, all parameters
were significantly different from zero, and the values close to 0.6 for the moving
average parameters are not uncommonly encountered for monthly economic
series. On the other hand, the variance parameters for the BHSMs are also
significantly different from zero and are generally smaller than the innovation
variance of the airline models. Actually, while the irregular variance σ2I is
comparable in magnitude to the airline innovation variance σ2, the other var-
iances – especially that for the trend – are much smaller in magnitude. However,
these values are compatible with our experience with canonical decompositions
of the airline model. For m42110 the three correlation parameters are also clearly
significant, but approach full collinearity; for x42100 the uncertainty in ρ and �

is extremely high, marring their interpretability.

6 This is software developed at the Bank of Spain (Maravall and Caporello 2004).
7 34 foreign trade, 4 retail, 6 housing, and 44 manufacturing.
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It is clear that for m42110 the BHSM is only marginally superior to the airline
model, and from the perspective of Akaike Information Criterion (AIC) is not
better at all (note that we cannot use the χ2 GLR test since the models are not
nested). For x42100 the AIC of the BHSM is barely superior to that of the airline
model – and given the statistical uncertainty in the likelihoods, it is hard to
prefer one over the other. Both BHSMs have some full correlations, indicating
redundancies among the innovation sequences.8 Redundancy in this case
means full collinearity of some of the innovations, implying the possibility of
a more simplified model. All the estimated coefficients are at least two standard
errors away from zero, excepting the ρ and � correlations in the BHSM fit of
x42100.

For these series, we can assess model goodness-of-fit via computing the
model residuals. One only needs the covariance matrix of the differenced

Table 1: MLEs, likelihoods, and AIC for series m42110 and x42100, for both the
airline model and the BHSM

Airline model m42110 x42100

Lik 287.60 238.16
AIC −569.20 −470.31
θ 0.65 (0.046) 0.65 (0.120)
Θ 0.56 (0.053) 0.65 (0.151)
σ2 0.0062 (0.00052) 0.012 (0.0033)
BHSM m42110 x42100
Lik 288.35 241.49
AIC −564.69 −470.97
σ2b 0.00028 (0.00008) 0.00066 (0.000196)
σ2c 0.0000066 (0.0000027) 0.000022 (0.0000081)
σ2I 0.0020 (0.00031) 0.0088 (0.000887)
ρ −0.993 (0.099) −0.519 (0.363)
τ 0.995 (0.111) −1.000 (0.0000033)
� −1.000 (0.0149) 0.519 (0.362)

Note: Standard errors for parameter estimates are in parentheses.

8 This phenomenon was quite common for the BHSM fitted to other series; redundancy in the
parameter vector ψ manifested numerically through a final Hessian with some eigenvalues
equal to zero, or even a negative number. The latter case indicates a saddle point in the
likelihood, where routines such as Nelder–Mead, BFGS, and simulated annealing typically
fail. However, m42110 and x42100 did not have this problem, their Hessians being positive
definite.
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aggregate variables evaluated at the MLEs, which will be denoted bΓW . Then the
time series residuals are

R ¼ bΓ�1=2
W W;

where we can use a matrix square root or a Cholesky factor to define bΓ1=2W . Note
that the χ2 distribution theory for the Box–Pierce statistic does not apply for the
BHSM, since it is not an ARIMA process. The ACF plots of the residuals are given
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Figure 5: Sample autocorrelation plots for time series residuals. The upper panels correspond
to series m42110, while the lower panels correspond to series x42100. The left panels are for
the fitted airline model, whereas the right panels are for the fitted BHSM
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in Figure 5. Note that some remaining cyclical structure seems to be present in
the residuals of the BHSM for x42100, although not many of the correlations are
significantly different from zero.

Based upon this analysis, we choose to provide an illustration of the
BHSM method on the m42110 series. We reiterate that we are not primarily
concerned with empirical validation of the hysteresis hypothesis [see Jäger
and Parkinson (1994)], but in how to extract signals of interest when hyster-
esis is deemed to be present. We next compute extractions of seasonal, trend,
nonseasonal, and irregular for these series, along with their standard errors,
and compare the same quantities that arise from using the fitted airline
model, using an assumption of zero hysteresis. These latter signal extractions
are computed using the TRAMO-SEATS software, whereas the BHSM compo-
nents are extracted using software written in R. Figure 6 displays some of
these results, showing the trend, nonseasonal (i.e. seasonal adjustment), and
seasonal components, along with time-varying MSEs and the concurrent
filters.

The trends arising from the hysteretic and WK methods (with the airline
model) are compared against the data in the top left panel of Figure 6. It appears
that the trends are slightly more oscillatory in the WK case. In contrast, the
TRAMO-SEATS seasonal is slightly more stable than the seasonal extracted using
the BHSM model. The seasonal extractions for both approaches are displayed in
the top right and middle right panels. In addition, the action of the concurrent
filters can be examined in the middle left panel of Figure 6, which displays
seasonal adjustment concurrent filters. Both have the characteristic dips – which
serve to remove seasonality – but the WK filter places a bit more weight on the
current observation. The actual extractions, displayed in the bottom right panel,
have the corresponding behavior: the BHSM seasonal adjustment is slightly less
erratic, while the WK seasonal adjustment is more timely. Overall, the extrac-
tions are quite similar.

The optimal signal extraction matrix F for hysteretic processes need not be
centro-symmetric, as is the case with orthogonal components (McElroy 2008),
with the result that the time-varying MSEs need not be symmetric with respect to
the center point of the sample – this is seen in the bottom left panel of Figure 6.
This is an interesting contrast, between the BHSM and airline model’s MSE plot.
While the lower error in the hysteretic extraction (at least in the center of the
sample) might lead one to think it superior, the reader must keep in mind that
the actual target signals have different definitions, having disparate stochastic
structure. The main point of this comparison is to contrast the symmetry of the
WK case with the asymmetry of the hysteretic case.
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Figure 6: Signal extraction output for m42110, from the BHSM and airline model. The top left
panel displays logged data (red) along with the trend extractions (black for BHSM, blue for
airline). The upper right panel displays the extracted seasonal for the BHSM, while the middle
right panel displays the extracted seasonal for the airline model. The bottom right panel
displays extracted seasonal adjustments for both models. The center left panel displays the
seasonal adjustment concurrent filter weights for the BHSM and airline models, while the
bottom left panel shows the time-varying MSEs for both seasonal adjustments
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6 Conclusions

This paper sets out much of the mathematical and statistical theory for hysteretic
time series, taking for granted that such processes are of interest to the statistical
and econometric community. Indeed, analysis of economic data utilizing hystere-
tic models has already been going on for several years, primarily via a state space
formulation – see Ghysels (1987) and Proietti (2006). In this context, our paper
presents several novel contributions: (i) exact MSE optimal signal extraction
formulas for both the bi-infinite and the finite sample contexts; (ii) linkages of
hysteretic filters to more well-known BN and WK filters in the context of compo-
nent Auto Regressive Moving Average processes; (iii) frequency domain analysis
of the bi-infinite filters, examined for simple trend-cycle processes; (iv) introduc-
tion of the BHSM, a straightforward generalization of the classical Basic Structural
Model to trend–seasonal–irregular processes having hysteresis; (v) demonstration
of the BHSM performance on a Foreign Trade series of the U.S. Census Bureau.

We have not undertaken a justification of the use of hysteretic models in
econometrics, or an extensive vetting of the BHSM for empirical analysis. This is
beyond the goals of the paper, which are more humble and properly methodo-
logical: given that a time series analyst wishes to consider using a hysteretic
model for his data, the material in this paper will be crucially important for
understanding: (a) how to model it, (b) how to estimate it (both model para-
meters and the actual signal extraction statistics), and (c) how to think about the
properties of hysteretic filters. Whereas some previous literature, alluded to in
the introduction, does consider the first point (a), we provide additional material
from a fairly broad and general perspective. Hysteretic models may be appro-
priate for some data, in which case the tools of this paper should prove quite
useful for modeling and analysis.

Appendix

Derivation of the BN filter

The original BN filter of Beveridge and Nelson (1981) was applied to nonseasonal
time series, yielding a decomposition into permanent and transitory compo-
nents. This was achieved by supposing the innovations of signal and noise to
be identical (rather than orthogonal). We extend this notion of the BN filter to
the general scenario outlined in Section 3 (and following) by taking at ¼ bt ¼ ct
in eq. [6]. Then the MSE optimal filters have zero error and are given by de-
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correlating the aggregate process (via the filter ’ðzÞ=θðzÞ) followed by re-corre-
lating according to the signal’s pattern, namely by the filter θSðzÞ=’SðzÞ.
Multiplying these filters yields θSðzÞ’NðzÞ=θðzÞ. The formula we provide in
Section 3 generalizes this treatment slightly to the case of a filter derived
under the assumption that the innovations are fully (positively) correlated (i.e.
they may have different variances). This leads to the insertion of the factor σb=σa
in the formula for ΨBN .

By definition, this filter will produce optimal extractions under the full
positive correlation hypothesis, and of course the signal and noise extractions
aggregate back to the original aggregate variables. This defines the filter; of
course it may be applied to data that does not satisfy the hypotheses under
which the filter was derived. It is in this sense that we may speak of the
hysteretic filter as being a convex combination of WK and BN filters – it is an
algebraic fact, involving statistical quantities derived under incompatible sto-
chastic assumptions.

We are not aware of prior references to this generalized BN filter, but are not
comfortable claiming that our derivation is novel. This sort of idea, and con-
struction, has close precedents in Morley, Nelson, and Zivot (2003) and Proietti
(2006).

We also mention an interesting interpretation of the BN filter in the case of a
trend plus noise decomposition, namely that it can be interpreted as the optimal
concurrent filter in an orthogonal decomposition. Consider the special case of an
Ið1Þ data process fYtg that satisfies ð1� BÞYt ¼ θðBÞat, where the polynomial (or
causal power series) θðzÞ is invertible. Then the BN decomposition can be written

θðBÞat ¼ θð1Þat þ θðBÞ � θð1Þð Þat;
which can be compared to ð1� BÞYt ¼ ð1� BÞSt þ ð1� BÞNt. Thus, using the
notation of eq. [6] we have θSðzÞ ¼ θð1Þ, a constant, while θNðzÞ ¼
ðθðzÞ � θð1ÞÞ=ð1� zÞ and ’SðzÞ ¼ 1� z and ’NðzÞ ¼ 1. Note that a single innova-
tion fatg drives both component processes. The assumed invertibility of θðzÞ
ensures that θNðzÞ has a convergent power series expansion. The BN filter can
then be expressed as θð1Þ=θðzÞ.

Suppose now that we take the same component model definitions – namely
ð1� BÞSt ¼ bt, a white noise of variance θ2ð1Þσ2a, and Nt ¼ θNðBÞct, with fctg
another white noise – but instead of having a common innovation drive the
components, we assume they are uncorrelated. The concurrent filter in this case,
using the formulas of Bell and Martin (2004), is

1� z
σ2a θðzÞ

1� �z
θð�zÞ

σ2b
ð1� zÞð1� �zÞ

� �
þ
¼ σ2b

σ2a θðzÞθð1Þ
;
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which simplifies to θð1Þ=θðzÞ. Here the bracket notation with the plus subscript
indicates that in the power series expansion, we only retain the terms corre-
sponding to non-negative powers of z.

Proofs

Proof of Theorem 1. Following the same technique as McElroy (2008), it suffices
to show that the error process ε ¼ bS� S is uncorrelated with Y. Using I to denote
an identity matrix, the error process is

ε ¼ FN � ðI � FÞS
¼ M�1 Δ0

NΓ
�1
V þ PΓ�1

W ΔS

� �
V

�M�1 Δ0
SΓ

�1
U � PΓ�1

W ΔN

� �
U:

From Assumption A, it follows that ε is uncorrelated with Y�. Since Y can be
expressed as a linear combination of Y� and W, as discussed in McElroy (2008),
it suffices to show that ε is uncorrelated with W. To that end, we have

E½εW 0� ¼ M�1 Δ0
NΓ

�1
V þ PΓ�1

W ΔS

� �
ΓVΔ0

S þ ΓVUΔ0
N

� �
�M�1 Δ0

SΓ
�1
U � PΓ�1

W ΔN

� �
ΓUΔ0

N þ ΓUVΔ0
S

� �
¼ M�1 Δ0 þ Δ0

NΓ
�1
V ΓVUΔ0

N þ P��1
W ΔSΓVΔ

0
S þ ΔSΓVUΔ

0
N

� �� �
�M�1 Δ0 þ Δ0

SΓ
�1
U ΓUVΔ0

S � P��1
W ΔNΓUΔ

0
N þ ΔNΓUVΔ

0
S

� �� �
¼ M�1ð�P þ PÞ ¼ 0;

using eq. [4]. This establishes MSE linear optimality. For the error covariance
matrix, we obtain the formula by expanding E½εε0� and simplifying the algebra.

It may be instructive to offer a constructive derivation of the formula for F.
Recall that U ¼ ΔS S and V ¼ ΔN N; the minimum MSE linear estimator of U
given Y is the same as the optimal estimator of U given W (by Assumption A),
and hence its formula is

CovðU;WÞ CovðW;WÞ½ ��1W ¼ ΓU Δ0
N þ ΓUV Δ0

S

� �
Γ�1
W W ;

which utilizes eq. [3]. By linearity, the above estimate must be equal to ΔS times
the optimal estimate of S given Y. Similarly, we can derive the minimum MSE
linear estimator of V given Y via

CovðV ;WÞ CovðW ;WÞ½ ��1W ¼ ΓV Δ0
S þ ΓVU Δ0

N

� �
Γ�1
W W :
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(This tactic, whereby we directly compute the best linear estimate of S given Y,
can be used to derive F as well, but requires considerably more algebra than the
approach given here.) Collecting these results, and letting F denote the matrix
such that FY is the minimum MSE linear estimator of S given Y, we obtain

ΔS F ¼ ΓU Δ0
N þ ΓUV Δ0

S

� �
Γ�1
W Δ

ΔN F ¼ ΔN � ΓV Δ0
S þ ΓVU Δ0

N

� �
Γ�1
W Δ:

The second equation utilizes ΔN F ¼ ΔN � ΔNðI � FÞ and the fact that I � F is the
linear optimal estimator of the noise N given Y. Now knowing algebraically the
form of both ΔS F and ΔN F permits us to solve for F, presuming that the

intersection of the null spaces of ΔS and ΔN is the zero vector; this follows

from the assumption that δSðzÞ and δNðzÞ are relatively prime. Then multiply

ΔS F by Δ0
S Γ

�1
U (this is not a unique choice, e.g. we could just utilize Δ0

S instead

and get an alternative expression for the unique F) and ΔN F by Δ0
N Γ

�1
V and add

the result. Then utilizing eq. [2], this yields

MF ¼ Δ0 þ Δ0
S Γ

�1
U ΓUV Δ0

SΓ
�1
W Δþ Δ0

N Γ
�1
V ΔN � Δ0 � Δ0

N Γ
�1
V ΓVU Δ0

N Γ
�1
W Δ;

which simplifies to Δ0
N Γ

�1
V ΔN þ PΓ�1

W Δ. Inverting M then yields the formula
for F. □

Proof of Theorem 2. Our strategy is to demonstrate that the filter ΨðzÞ produces
a signal extraction error process that is orthogonal to the aggregate process,
implying MSE linear optimality [cf. Bell (1984)]. It is clear from the given formula
that δNðzÞ can be factored out, leaving ΨðzÞ ¼ ΩðzÞδNðzÞ with

ΩðzÞ ¼ fUðλÞδNð�zÞ þ fUVðλÞδSð�zÞ
fWðλÞ :

Similarly, it is easily verified that 1�ΨðzÞ ¼ ΦðzÞδSðzÞ with

ΦðzÞ ¼ fVðλÞδSð�zÞ þ fVUðλÞδNð�zÞ
fWðλÞ :

Then εt ¼ ΨðBÞYt � St ¼ ΩðBÞVt �ΦðBÞUt. This shows that fεtg is weakly
stationary. The aggregate process fYtg can be written in terms of a linear
combination of d initial values summed with a linear function of the differenced
process fWtg– see Bell (1984). Hence by Assumption A, it is sufficient to
demonstrate that εt is uncorrelated with Wtþh for any t and h. Now
Wtþh ¼ δNðBÞUtþh þ δSðBÞVtþh, so that
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E εtWtþh½ � ¼ ΩðBÞ δSðB�1ÞγVðhÞ þ δNðB�1ÞγVUðhÞ
� �

�ΦðBÞ δNðB�1ÞγUðhÞ þ δSðB�1ÞγUVðhÞ
� �

;

which is independent of t, but holds for all h. Thus, taking the Fourier transform
yields X

h2Z
zhE εtWtþh½ � ¼ ΩðzÞ δSð�zÞfVðλÞ þ δNð�zÞfVUðλÞ

� �
�ΦðzÞ δNð�zÞfUðλÞ þ δSð�zÞfUVðλÞ

� �
:

Then simple algebra, along with the above formulas for ΩðzÞ and ΦðzÞ, producesP
h2Z z

h
E½εtWtþh� ¼ 0, and hence E½εtWtþh� ¼ 0 for all h. A second calculation

produces

E εtεtþh½ � ¼ ΩðBÞΩðB�1ÞγVðhÞ � ΩðBÞΦðB�1ÞγVUðhÞ
�ΦðBÞΩðB�1ÞγUVðhÞ þΦðBÞΦðB�1ÞγUðhÞ:

Again, summing against zh yields

fεðλÞ ¼ ΩðzÞΩð�zÞfVðλÞ � ΩðzÞΦð�zÞfVUðλÞ �ΦðzÞΩð�zÞfUVðλÞ þΦðzÞΦð�zÞfUðλÞ:

Now plugging in for Ω and Φ gives the stated result. □

Alternative calculation of F

We mentioned in the proof of Theorem 1 that there is more than one expression
for the signal extraction matrix F, although numerically all such formulas are
equal. A different approach to the problem, based upon results of Bell and
Hillmer (1988), can be developed that has some computational advantages. Let
S� denote the first dS values of the vector S, conceived of as initial values of the
process. Likewise, let N� denote the first dN values of the vector N, and Y� the
first d values of the vector Y. As described in Bell and Hillmer (1988), it is always
possible to algebraically describe S� as a linear function of Y�, U, and V, and
likewise for N�. We review and develop these relationships below.

We use the notation In to denote an identity matrix of dimension n. We can
relate the signal vector S to its initial values S� and differenced values U, and
similarly for the noise, via the transformations

S�
U

� �
¼ IdS 0

ΔS

� �
S and

N�
V

� �
¼ IdN 0

ΔN

� �
N:
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Let us denote these matrices by �S and �N , respectively; they are unit lower
triangular and invertible, which allows us to express S directly in terms of S� and
U (and N in terms of N� and V). Taking only the first d rows of ��1

S yields

½Id 0�S ¼ ½Id 0���1
S

S�
U

� �
¼ IdS 0

AS BS

� �
S�
U

� �
:

This calculation first uses the fact that – because �S is unit lower triangular with
first dS rows given by ½IdS 0�– the first dS rows of ��1

S are also given by ½IdS 0�.
The matrices AS and BS correspond to the next dN rows of ��1

S . With a similar
notation and decomposition for N, and noting that Sþ N ¼ Y, we obtain

Y� ¼ ½Id 0�Sþ ½Id 0�N

¼ IdS 0

AS BS

� �
S�
U

� �
þ IdN 0

AN BN

� �
N�
V

� �
¼ IdS IdN

AS AN

� �
S�
N�

� �
þ 0

BS

� �
U þ 0

BN

� �
V :

The d� d matrix that multiplies the signal and noise initial values is denoted by
½H1H2� in Bell and Hillmer (1988) and is there proved to be invertible. We will
denote it by the symbol Ω. Note that its inversion is inexpensive due to its
relatively low dimension of d. It now follows that

S� ¼ ½IdS 0�Ω�1 Y� � 0
BS

� �
U � 0

BN

� �
V

� �

N� ¼ ½0 IdN �Ω�1 Y� � 0
BS

� �
U � 0

BN

� �
V

� �
:

These relations between signal and noise initial values are an exact algebraic

relation, and a direct implication of the nonstationary signal and noise struc-
ture; no stochastic assumptions have been used yet. The relations can be utilized

to produce signal extraction estimates as follows. From S ¼ ��1
S ½S0�;U 0�0 we

deduce that the linear optimal estimate of S can be constructed from estimates

of S� and U, followed by application of ��1
S . This latter matrix does not require

inversion in general, but rather expresses in matrix notation the notion of
recursion. Namely, we can always compute St from dS prior values (in time)

together with Ut, i.e. St ¼ �PdS
j¼1 δ

S
j =δ

S
0St�j þ Ut. In the proof of Theorem 1, we

discussed the optimal linear estimates of U given Y, and estimates of V given Y,

which we shall denote by bU and bV. Then the optimal linear estimates of the

signal and noise initial values are just
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bS� ¼ IdS 0½ �Ω�1 Y� � 0
BS

� � bU � 0
BN

� � bV� �

cN� ¼ 0 IdN½ �Ω�1 Y� � 0
BS

� � bU � 0
BN

� � bV� �
:

It is easy to check, using Assumption A, that the error S� � bS� is orthogonal to Y.
The algorithm is to first compute bU and bV via ΔS FY and ΔN ðI � FÞY, i.e.

bU ¼ ΓU Δ0
N þ ΓUV Δ0

S

� �
Γ�1
W W

bV ¼ ΓV Δ0
S þ ΓVU Δ0

N

� �
Γ�1
W W:

Then the formula for bS� is utilized, and finally bS is obtained recursively (andbN ¼ Y � bS). Such an algorithm can avoid the inversion of large matrices, except-
ing the work involved in inverting ΓW ; however, this is a Toeplitz matrix, and
hence the innovations algorithm of Brockwell and Davis (1991) can be utilized.

Some readers may find it illuminating to derive F directly from
CovðS;YÞ CovðY ;YÞ�1, which we now derive, utilizing the above expressions.
Let � denote the differencing matrix with upper rows ½1d 0� and bottom rows Δ.
Because W is orthogonal to Y�, we find that

CovðY ;YÞ ¼ ��1 CovðY�;Y�Þ 0
0 ΓW

� �
�y:

Moreover, U is orthogonal to Y�, so that

CovðS;YÞ ¼ ��1
S

CovðS�;Y�Þ CovðS�;WÞ
0 CovðU;WÞ

� �
�y:

Therefore, we obtain

CovðS;YÞ CovðY ;YÞ�1 ¼ ��1
S

CovðS�;Y�Þ CovðS�;WÞ
0 ΓUΔ0

N þ ΓUVΔ0
S

� �
CovðY�;Y�Þ�1; 0

Γ�1
W Δ

" #

¼ ��1
S

CovðS�;Y�Þ CovðY�;Y�Þ�1; 0
h i

þ CovðS�;WÞΓ�1
W Δ

ΓUΔ0
N þ ΓUVΔ0

S

� �
Γ�1
W Δ

24 35:
Now utilizing the expression of S� above, written in terms of Y�, U, and V, it
follows that

CovðS�;Y�Þ ¼ IdS 0½ �Ω�1 CovðY�;Y�Þ
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CovðS�;WÞ ¼ � IdS 0½ �Ω�1 0
BS

� �
ΓU Δ0

N þ ΓUV Δ0
S

� �þ 0
BN

� �
ΓV Δ0

S þ ΓVU Δ0
N

� �� �
:

As a result,

CovðS;YÞ CovðY ;YÞ�1

¼ ��1
S

IdS 0
� �

Ω�1 ½Id 0� � 0

BS

� �
ΓU Δ0

N þ ΓUV Δ0
S

� �þ 0

BN

� �
ΓV Δ0

S þ ΓVU Δ0
N

� �� �
Γ�1
W Δ

� �
ΓUΔ0

N þ ΓUVΔ0
S

� �
Γ�1
W Δ

264
375

This is the same formula for F as given above.
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