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Noise Multiplication for Statistical Disclosure
Control of Extreme Values in Log-normal

Regression Samples

Martin Klein∗, Thomas Mathew†, and Bimal Sinha‡

1 Introduction

Statistical agencies must control disclosure risk when releasing data to the public. If
income data on individuals or businesses are released, it could be possible to match ex-
tremely large values to specific individuals or businesses that are known to be wealthy,
especially if some additional information is available on the same units in the dataset.
The purpose of the present investigation is to explore noise multiplication as a strat-
egy to protect large values in a dataset from disclosure, and to develop methodology
for analyzing the resulting data under the assumption of a log-normal distribution on
the sensitive variable. We assume that the log-scale mean of the sensitive variable is
described by a linear regression on a set of non-sensitive covariates, and that the goal of
the data analysis is to draw inference on parameters in the regression. We focus on the
log-normal distribution because it is well known to be appropriate for modeling income
data ([6]; [8]; [11]; [20]), and for income data, the extreme values usually need disclosure
protection.

In such situations where the extreme values in the dataset require protection, the
method of top coding is often used for statistical disclosure control. Under top coding,
a threshold C is determined, and any value that exceeds C is not reported, instead
what may be reported is the value C itself. Top coding is straightforward to apply, and
usually provides sufficient protection, since very limited information is revealed about
the data values above the threshold C. There are, however, some drawbacks to top
coding, such as: (1) the information contained in the top part of the data is essentially
lost, and (2) there is no explicit tuning mechanism to allow the statistical agency to
balance the level of privacy protection with the accuracy of inferences derived from the
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protected data.

An and Little [5] proposed synthetic data methods as alternatives to top coding
for statistical disclosure control. Under synthetic data methodology, sensitive values
are not released, instead sensitive values are imputed multiple times by draws from an
appropriate statistical model. The multiply imputed values are combined with any non-
sensitive (original) values to produce multiple synthetic copies of the original confidential
data file, which are then released. For a data user, each of the multiple datasets is
analyzed as if it were a true sample from the population, and the results are combined
using simple formulas [27] to obtain the final inference. Multiple imputation (MI) has
been in existence for some time as a viable methodology to handle missing data [35].
Rubin [36] proposed using MI as a method of sensitive data protection. The rigorous
foundations for MI as a method for sensitive data protection were further developed
(e.g., [10]; [9]; [26]; [27, 28, 29, 30]) and this still continues to be an active area of
research. We refer to the recent monograph by Drechsler [10] for a detailed and general
discussion of multiple imputation as a tool for disclosure control. An and Little [5]
and Jenkins et al. [15] argue that synthetic data methodology provides an attractive
alternative to top coding, and a remedy to some of the drawbacks of top coding, because
analysis of the synthetic data is straightforward for a data user, and some information
contained in the top part of the data is retained. The MI method also appears to have a
desirable robustness property to certain model misspecification as discussed by An and
Little [5].

Noise perturbation by addition or multiplication has also been advocated by some
statisticians as a possible data confidentiality protection mechanism [14], [22], [16].
Noise multiplication continues to be investigated for its potential role in statistical
disclosure limitation; see the recent articles by Nayak et al. [24], Sinha et al. [37], and
Lin and Wise [21]. The first public use microdata sample (PUMS) produced from the
Survey of Business Owners (SBO) was released in August 2012 (http://www.census.
gov/econ/sbo/), and noise multiplication was employed for confidentiality protection
of some variables. Here each record corresponds to a business surveyed in the 2007 SBO,
and a number of variables are provided relating to firm size, business characteristics,
and business owner characteristics. In this data product, a number of steps are taken
to protect confidentiality of businesses, and the variables relating to receipts, payroll,
and employment are rounded and multiplied by random noise prior to release [1].

Under the scenario of noise multiplication of values only above the threshold C, the
released information consists of the original observations below C and the observations
above C after noise multiplication. The noise distribution used and the value of the
threshold C will also be publicly available. Furthermore, we shall consider two types of
data releases referred to as cases (I) and (II). In case (I) data release, each released value
includes an indicator of whether or not it has been perturbed (i.e., noise multiplied),
while in case (II), no such indicator is provided. Naturally, case (I) data appear to carry
more information than case (II) data, and so one would expect that case (I) would lead
to more accurate inference than case (II), but at a potentially increased disclosure risk.
We point out that a likelihood-based analysis under noise multiplication of the entire
sample for disclosure control has also been carried out under several parametric models

https://www.census.gov/econ/sbo/
https://www.census.gov/econ/sbo/
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[18].

While data analysis and the accuracy of inferences based on perturbed data is impor-
tant, it is equally important to evaluate the level of disclosure risk incurred by releasing
the perturbed data. To address the issue of accuracy of inference, we present a simula-
tion study (Section 4), and a data analysis example (Section 5.1). To address the issue
of disclosure risk, we present an evaluation in the context of a real data example (Sec-
tion 5.2). Our methodology for evaluating disclosure risk is based on a criterion similar
to one used by Lin and Wise [21] for the same purpose. We also evaluate the disclosure
risk of synthetic data based on this same criterion, and make some comparisons with
perturbation under noise multiplication.

Here is the organization of the paper. Section 2 presents methodology for the statis-
tical analysis of the data resulting from noise multiplication of the observations above
a threshold C, keeping the rest of the data (below C) undisturbed. The main technical
results are presented here. This section also contains details about EM algorithms used
to compute the maximum likelihood estimates of the model parameters. The formulas
for observed Fisher information of the noise multiplied data appear in Appendices 1.1
and 1.2. In Section 3.1, we review methodology for the formal analysis of top coded
log-normal data based on Tobit regression models. Appendix 1.3 provides expressions
for observed Fisher information contained in the top coded data. Following the work of
An and Little [5], we review synthetic data methods in Section 3.2. Section 4 reports
results of a simulation study designed to assess the accuracy of inference under the
proposed noise multiplication method and also to compare accuracy of inference of the
proposed method with that of top coding and synthetic data. In Section 5.1 we present
data analysis results under the proposed noise multiplication method using public use
data from the 2000 U.S. Current Population Survey, and the results are compared with
those obtained from top coded and synthetic data. Section 5.2 presents a disclosure risk
evaluation of the proposed noise multiplication methods in the context of the 2000 U.S.
Current Population Survey data, and compares the disclosure risk of the proposed meth-
ods with that of synthetic data. We conclude the paper in Section 6 with a discussion
of some advantages, drawbacks, and possible extensions of the proposed method.

We end this section with the following general observations. A very appealing fea-
ture of noise multiplication is the presence of an explicit tuning mechanism, namely,
the noise generating distribution, which allows the statistical agency that generates the
data to precisely balance accuracy of the data with the desired level of disclosure con-
trol. Such a tuning mechanism is not available under top coding. Obviously, a noise
generating distribution with large dispersion should provide a high level of disclosure
control with perhaps less accurate inference, and the situation would be reversed if the
noise generating distribution has small dispersion. Compared to top coding, the noise
multiplication method can retain more information about the top part of the data;
therefore, inferences derived from the noise multiplied data can be more accurate than
those derived from top coded data. Another appealing feature of noise multiplication
(which is shared with top coding) is that noise multiplied data are easy for the data
producer to create. The data producer does not need to consider which regressor vari-
ables (or functions of regressor variables) may be important predictors of the response
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variable when creating the noise multiplied data, and yet the methodology in Section 2
can be used to study the nature of this regression, using only a noise multiplied version
of the response variable.

Numerical results presented in Section 4 provide specific guidance on how the dis-
persion of the noise generating distribution affects the accuracy of inference, while the
results in Section 5.2 provide guidance on how the dispersion of the noise generating
distribution affects the level of privacy protection. It should also be noted that as in
the case of top coding, the likelihood-based data analysis under noise multiplication is
complicated, though software can be made available to ease this burden. In fact, an R
code for implementing the proposed methodology is available from us upon request.

2 Methodology For Noise Multiplication of Extreme
Values

Consider a set of n independent and log-normally distributed random variables y1, . . . , yn,
along with a set of n vectors of regressor variables u1, . . . ,un, each having dimension
p × 1 with n > p. We treat the regression variables as fixed (non-random), and we
assume that ln yi ∼ N(u′iβ, σ

2), that is,

yi ∼ fθ(yi|ui) =
1

yiσ
√

2π
exp

[
−(ln yi − u′iβ)2

2σ2

]
, yi > 0, for i = 1, . . . , n, (1)

where θ = (β, σ2), and β ∈ Rp and 0 < σ2 < ∞ are both unknown. Let r1, . . . , rn be
a set of n independent and identically distributed noise random variables each having
the density h(r), where h(r) is a known density of a continuous distribution having
nonnegative support. Then the noise multiplied version of yi is zi = yi × ri, and the
density of zi is gθ(zi|ui) =

∫
fθ( zr |ui)h(r)r−1dr. Now, any observation yi which exceeds

a specified threshold C > 0 is considered sensitive and, under top coding such values are
simply not reported. We now consider the option of reporting zi, the noise perturbed
version of yi. More precisely, for i = 1, ...., n, let us define

∆i = I(yi ≤ C) and xi =

{
yi, if yi ≤ C,
zi, if yi > C,

where I(A) is the indicator function of the event A.

Inference for θ will be based on {(x1,∆1), . . . , (xn,∆n)} along with the regressor
variables (u1, . . . ,un), or based on (x1, . . . , xn) and (u1, . . . ,un). We note that the
latter data do not directly identify which observations have been perturbed, and hence
appear to provide more disclosure control than the former. We shall refer to the former
data type, namely {(x1,∆1,u1), . . . , (xn,∆n,un)}, as case (I), and the latter, namely
{(x1,u1), . . . , (xn,un)}, as case (II). For either the case (I) or case (II) data type, the
maximum likelihood estimator (MLE) θ̂ of the unknown parameter θ can be computed
using the EM algorithm [23], and the covariance matrix of θ̂ can be estimated using the



81

inverse of the observed Fisher information about θ. The MLE of a (scalar) parametric
function ψ(θ) is then readily obtained as ψ(θ̂), and an estimator of the variance of
ψ(θ̂) is obtained by applying the delta method. Wald-type inference can be used to
obtain an approximate level (1 − α) confidence interval for ψ(θ) of the form ψ(θ̂) ±
zα/2[Estimated variance of ψ(θ̂)]1/2 where zα/2 = Φ−1(1−α/2) and Φ(·) is the standard
normal cumulative distribution function (cdf).

We now explain the details of our proposed methods of inference. To begin, the
expression for the joint distribution of (xi, ri,∆i) is given by the following proposition,
which is general, and does not depend on the log-normality assumption on fθ(y|u). The
joint densities of {(xi,∆i), i = 1, · · · , n} and {x1, · · · , xn} follow as corollaries. We use
these results in the sequel to derive EM algorithms, and to derive the expressions in
Appendices 1.1 and 1.2 for the observed Fisher information about θ.

Proposition 1. Let Y ∼ fθ(y|u), independent of R ∼ h(r), and let Z = Y × R,

∆ = I(Y ≤ C), and X =

{
Y if Y ≤ C,
Z if Y > C.

Let u denote a fixed vector of regressor

variables. Then the joint probability distribution of (X,R,∆) is given by

kθ(x, r, δ|u) =


fθ(x|u)h(r), if x < C, 0 < r <∞, δ = 1,

fθ
(
x
r |u
)
h(r)r−1, if 0 < r < x

C , δ = 0,

0, otherwise.

Proof. We let Y ∼ fθ(y|u), independent of R ∼ h(r), and we let ∆ = I(Y ≤ C),
X = Y if Y ≤ C and X = Y × R if Y > C, where C > 0 is a constant. Then letting
Fθ(y|u) =

∫ y
−∞ fθ(t|u)dt and H(r) =

∫ r
0
h(t)dt, we have, for r > 0,

Pr(X ≤ x,R ≤ r,∆ = 1) = Pr(X ≤ x,R ≤ r |∆ = 1) Pr(∆ = 1)
= Pr(Y ≤ x,R ≤ r |Y ≤ C)P (Y ≤ C)
= Pr(Y ≤ x, Y ≤ C,R ≤ r)

=
{

Fθ(x|u)H(r), if x ≤ C,
Fθ(C|u)H(r), if x > C,

(2)
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and, for r > 0, C > 0,

Pr(X ≤ x,R ≤ r,∆ = 0) = Pr(X ≤ x,R ≤ r |∆ = 0) Pr(∆ = 0)
= Pr(Y R ≤ x,R ≤ r |Y > C) Pr(Y > C)
= Pr(Y R ≤ x, Y > C,R ≤ r)

= Pr
(
C < Y ≤ x

R
,R ≤ r

)
=


∫ r

0

∫ x/ω
C

fθ(y|u)h(ω)dydω, if r ≤ x
C ,∫ x/C

0

∫ x/ω
C

fθ(y|u)h(ω)dydω, if r > x
C > 0,

0, if x ≤ 0,

=


∫ r

0

[
Fθ
(
x
ω |u

)
− Fθ(C|u)

]
h(ω)dω, if r ≤ x

C ,∫ x/C
0

[
Fθ
(
x
ω |u

)
− Fθ(C|u)

]
h(ω)dω, if 0 < x

C < r,
0, if x ≤ 0.

(3)

To obtain the joint probability density function (pdf) of (X,R,∆), we differentiate (2)
and (3) with respect to x and r to obtain:

∂2

∂x∂r
Pr(X ≤ x,R ≤ r,∆ = 1) =

{
fθ(x|u)h(r), if x < C,

0, if x > C,

∂2

∂x∂r
Pr(X ≤ x,R ≤ r,∆ = 0) =

 fθ
(
x
r |u
)
h(r)r−1, if r < x

C ,
0, if 0 < x

C < r,
0, if x < 0,

which completes the proof of Proposition 1. �

The following results follow from Proposition 1.

Corollary 1. The joint pdf of (X,∆) is given by

kθ(x, δ|u) =


fθ(x|u), if x < C, δ = 1,

0, if xi > C, δ = 1,∫ x/C
0

fθ
(
x
r |u
)
h(r)r−1dr, if x > 0, δ = 0,

0, if x < 0, δ = 0.

Corollary 2. The likelihood function for θ based on (x1,∆1), ...., (xn,∆n) is given by

L(θ|x1, ...., xn,∆1, ....,∆n,u1, . . . ,un) =
n∏
i=1

kθ(xi,∆i|ui)

=
n∏
i=1

[fθ(xi|ui)]∆i ×

[∫ xi/C

0

fθ

(xi
r

∣∣ui)h(r)r−1dr

]1−∆i

 .
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Corollary 3. The marginal pdf of X is given by

kθ(x|u) = fθ(x|u)I(x < C) +
∫ x/C

0

fθ

(x
r

∣∣u)h(r)r−1drI(x > 0)

=


fθ(x|u) +

∫ x/C
0

fθ
(
x
r |u
)
h(r)r−1dr, if 0 < x < C,

fθ(x|u), if x < 0,∫ x/C
0

fθ
(
x
r |u
)
h(r)r−1dr, if x > C.

Corollary 4. The likelihood function for θ based on x1, ...., xn is given by

L(θ|x1, ...., xn,u1, . . . ,un) =
n∏
i=1

kθ(xi|ui)

=
n∏
i=1

{
fθ(xi|ui)I(xi < C) +

∫ xi/C

0

fθ

(xi
r

∣∣ui)h(r)r−1drI(xi > 0)

}
.

EM Algorithms. We now derive EM algorithms for MLE computation under the case
(I) and case (II) data types. In order to derive EM algorithms, we frame analysis of the
noise perturbed data as a missing data problem. If case (I) data {(x1,∆1), . . . , (xn,∆n)}
are released, then we define the observed and missing data as vi,obs = {(x1,∆1), . . . , (xn,∆n)}
and vi,mis = {r1, . . . , rn}, respectively. If case (II) data {x1, . . . , xn} are released,
then we define the observed and missing data as vii,obs = {x1, . . . , xn) and vii,mis =
{(r1,∆1) . . . , (rn,∆n)}, respectively. In both cases, the complete data are vc = {(x1, r1,∆1),
. . . , (xn, rn,∆n)}, and hence by Proposition 1, the complete data likelihood function is

L(θ|vc)

=
n∏
i=1

h(ri)
xi
√

2πσ2

{
exp

[
− (lnxi − u′iβ)2

2σ2

]}∆i
{

exp

[
− (ln(xi/ri)− u′iβ)2

2σ2

]}1−∆i

∝
n∏
i=1

{
1√
σ2

exp

[
− (lnxi − u′iβ)2

2σ2

]}∆i
{

1√
σ2

exp

[
− (ln(xi/ri)− u′iβ)2

2σ2

]}1−∆i

= (σ2)−n/2
n∏
i=1

{
exp

[
− (lnxi − u′iβ)2

2σ2

]}∆i
{

exp

[
− (ln(xi/ri)− u′iβ)2

2σ2

]}1−∆i

,

and hence we can write the complete data log-likelihood function as

`(θ|vc) = −n
2

ln(σ2)− 1
2σ2

n∑
i=1

{
∆i (lnxi − u′iβ)2 + (1−∆i)

(
ln
xi
ri
− u′iβ

)2
}

= −n
2

ln(σ2)− 1
2σ2

n∑
i=1

(u′iβ)2

− 1
2σ2

n∑
i=1

{
∆i

[
(lnxi)2 − 2(lnxi)(u′iβ)

]
+ (1−∆i)

[(
ln
xi
ri

)2

− 2(u′iβ) ln
xi
ri

]}
.
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The specific details for cases (I) and (II) are given below.

EM Algorithm For Case (I) Type Data Release. The EM algorithm for computing
the MLE of θ based on vi,obs is as follows.

E-step. We have

Q(θ|θ(t)) = Eθ(t) [`(θ|vc)|vi,obs]

= −n
2

ln(σ2)− 1
2σ2

n∑
i=1

(u′iβ)2 − 1
2σ2

n∑
i=1

∆i

[
(lnxi)2 − 2(lnxi)(u′iβ)

]
− 1

2σ2

n∑
i=1

(1−∆i)
{
ψ∗2(xi,θ(t))− 2(u′iβ)ψ∗1(xi,θ(t))

}
,

where

ψ∗1(xi,θ(t)) = Eθ(t)

[(
ln
xi
ri

) ∣∣∣xi,∆i = 0
]

=

∫ xi/C
0

(
ln xi

r

)
exp

[
−{ln(xi/r)−u′iβ

(t)}2

2(σ(t))2

]
h(r)dr∫ xi/C

0
exp

[
−{ln(xi/r)−u′iβ(t)}2

2(σ(t))2

]
h(r)dr

,

ψ∗2(xi,θ(t)) = Eθ(t)

[(
ln
xi
ri

)2 ∣∣∣xi,∆i = 0

]

=

∫ xi/C
0

(
ln xi

r

)2 exp
[
−{ln(xi/r)−u′iβ

(t)}2

2(σ(t))2

]
h(r)dr∫ xi/C

0
exp

[
−{ln(xi/r)−u′iβ(t)}2

2(σ(t))2

]
h(r)dr

.

To compute the conditional expectations above, we used Proposition 1 and Corollary 1
to obtain the conditional density of ri given xi and ∆i = 0.

M-step. By maximizing Q(θ|θ(t)) with respect to θ, we obtain the following equations
which define the sequence of EM iterations:

β(t+1) =

(
n∑
i=1

uiu
′
i

)−1( n∑
i=1

ui

[
∆i lnxi + (1−∆i)ψ∗1(xi,θ(t))

])
,

(σ(t+1))2 =
1
n

n∑
i=1

∆i

(
lnxi − u′iβ(t+1)

)2

+
1
n

n∑
i=1

(1−∆i)
[
ψ∗2(xi,θ(t))− 2(u′iβ

(t+1))ψ∗1(xi,θ(t)) + (u′iβ
(t+1))2

]
,

where the expressions for ψ∗1(xi,θ(t)) and ψ∗2(xi,θ(t)) are given above.
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EM Algorithm For Case (II) Type Data Release. The EM algorithm for com-
puting the MLE of θ based on vii,obs is as follows.

E-step. We have

Q(θ|θ(t)) = Eθ(t) [`(θ|vc)|vii,obs]

= −n
2

ln(σ2)− 1
2σ2

n∑
i=1

(u′iβ)2 − 1
2σ2

n∑
i=1

{[
(lnxi)2 − 2(lnxi)(u′iβ)

]
ψ∗∗0 (xi,θ(t))

}
− 1

2σ2

n∑
i=1

{
ψ∗∗2 (xi,θ(t))− 2(u′iβ)ψ∗∗1 (xi,θ(t))

}
,

where

ψ∗∗0 (xi,θ(t)) = Eθ(t) [∆i|xi]

=
I(xi < C) exp

[
−{ln xi−u

′
iβ

(t)}2

2(σ(t))2

]
I(xi < C) exp

[
−{ln xi−u

′
iβ

(t)}2
2(σ(t))2

]
+
∫ xi/C

0
exp

[
−{ln(xi/ω)−u′iβ(t)}2

2(σ(t))2

]
h(ω)dω

, (4)

ψ∗∗1 (xi,θ(t)) = Eθ(t)

[
(1−∆i)

(
ln
xi
ri

) ∣∣∣xi]

=

∫ xi/C
0

(
ln xi

r

)
exp

[
−{ln(xi/r)−u′iβ

(t)}2

2(σ(t))2

]
h(r)dr

I(xi < C) exp
[
−{ln xi−u

′
iβ

(t)}2
2(σ(t))2

]
+
∫ xi/C

0
exp

[
−{ln(xi/ω)−u′iβ(t)}2

2(σ(t))2

]
h(ω)dω

,

ψ∗∗2 (xi,θ(t)) = Eθ(t)

[
(1−∆i)

(
ln
xi
ri

)2 ∣∣∣xi]

=

∫ xi/C
0

(
ln xi

r

)2 exp
[
−{ln(xi/r)−u′iβ

(t)}2

2(σ(t))2

]
h(r)dr

I(xi < C) exp
[
−{ln xi−u

′
iβ

(t)}2
2(σ(t))2

]
+
∫ xi/C

0
exp

[
−{ln(xi/ω)−u′iβ(t)}2

2(σ(t))2

]
h(ω)dω

.

To compute the conditional expectations above, we used Proposition 1 and Corollary 3
to obtain the conditional density of ∆i and ri given xi; and we used Corollaries 1 and
3 to get the conditional density of of ∆i given xi.

M-step. By maximizing Q(θ|θ(t)) with respect to θ, we obtain the following equations
which define the sequence of EM iterations:

β(t+1) =

(
n∑
i=1

uiu
′
i

)−1( n∑
i=1

ui

[
(lnxi)ψ∗∗0 (xi,θ(t)) + ψ∗∗1 (xi,θ(t))

])
,

(σ(t+1))2 =
1
n

n∑
i=1

(
lnxi − u′iβ(t+1)

)2

ψ∗∗0 (xi,θ(t))

+
1
n

n∑
i=1

{
ψ∗∗2 (xi,θ(t))− 2(u′iβ

(t+1))ψ∗∗1 (xi,θ(t)) + (u′iβ
(t+1))2[1− ψ∗∗0 (xi,θ(t))]

}
,
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where formulas for ψ∗∗0 (xi,θ(t)), ψ∗∗1 (xi,θ(t)), and ψ∗∗2 (xi,θ(t)) are given above.

Remark 1. The results in this section are presented for a general noise generating
distribution h(r). We only assume that h(r) is the density of a continuous distribution
having nonnegative support. In particular, we do not assume that h(r) has mean 1,
which is often required in order to get valid inferences in other noise multiplication
methodologies that rely on moment based estimators of population parameters. Thus,
under our proposed methodology, the choice of h(r) is quite flexible, and in fact, h(r) is
the tuning mechanism that allows the data producer to control the accuracy of inference
and level of privacy of protection. Numerical results presented later in Sections 4 and
5 are designed to give insight about the accuracy of inference and level of privacy
protections of the proposed methods, using the noise density defined in (8), which is
flexible and has no mass in an interval that contains 1.

Remark 2. The methodology outlined in this section provides tools for performing
model selection in the regression context. For example, a test of significance for an
individual regression coefficient can be obtained by checking if its confidence interval
contains zero. Similarly, since we can compute MLEs of the parameters, and we have an
expression for the likelihood function, likelihood ratio test statistics can be constructed
and used to test a variety of hypotheses (e.g., comparing two competing regression
models, testing significance of a subset of regression coefficients, etc.). This remark
points to an advantage of releasing noise multiplied data over releasing a collection of
summary statistics on the original data. By having the noise multiplied data available,
a data user can explore any linear regression model that may be of interest, which
may include quadratic terms, higher order interaction terms, power transformations of
regressor variables, etc. On the contrary, if only summary statistics are provided, then
the set of linear regression models that could be explored would be much more limited.

3 Review of Top Coding and Synthetic Data
Methodology

As in the previous section, let y1, . . . , yn be a set of independent and log-normally
distributed random variables such that yi ∼ fθ(yi|ui) = 1

yiσ
√

2π
exp

[
−(ln yi−u′iβ)2

2σ2

]
,

yi > 0, where u1, . . . ,un are fixed regressor variables, each having dimension p×1 with
n > p. The unknown parameter is θ = (β, σ2) where β ∈ Rp and 0 < σ2 < ∞. Let
C > 0 be a fixed constant such that any yi > C requires protection, and let ψ(θ) be
the (scalar) population quantity that we want to draw inference on.

3.1 Top Coding

In a pioneering paper by Tobin [38] and in a relatively recent paper by Amemiya [4],
the basics of data analysis under top code scenario have been nicely and extensively
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discussed (except that in the classical Tobit model, ln(C) is taken as 0 and in fact it is
the bottom code which is dealt with). Because of its similarities with the probit models,
Goldberger [13] coined the phrase Tobit models and their analysis based on the normal
distribution of ln(y) is indeed quite straightforward.

Let xi = min{yi, C} and ∆i = I(yi ≤ C), i = 1, . . . , n, and thus the top coded data
that are released are {(x1,∆1), . . . , (xn,∆n)}. Furthermore, let us define ỹi = ln yi,
C̃ = lnC, and x̃i = lnxi = min{ỹi, C̃}. Following Amemiya [4], the likelihood function
of the Tobit model under our setup is given by

L(θ) =
∏

{i : ∆i=0}

[
1− Φ

(
x̃i − u′iβ

σ

)] ∏
{i : ∆i=1}

[
1
σ
φ

(
x̃i − u′iβ

σ

)]
,

where Φ and φ are the standard normal cdf and pdf , respectively. Obviously, the
derivatives of the logarithm of the likelihood function are given by

∂ lnL
∂β

=
1
σ

∑
{i : ∆i=0}

φ
(
x̃i−u′iβ

σ

)
ui

1− Φ
(
x̃i−u′iβ

σ

) +
1
σ2

∑
{i : ∆i=1}

(x̃i − u′iβ)ui

and

∂ lnL
∂(σ2)

=
1

2σ3

∑
{i : ∆i=0}

 (x̃i − u′iβ)φ
(
x̃i−u′iβ

σ

)
1− Φ

(
x̃i−u′iβ

σ

)
−∑n

i=1 ∆i

2σ2
+

1
2σ4

∑
{i : ∆i=1}

(x̃i − u′iβ)2
.

The maximum likelihood estimators obtained by equating the above derivatives to 0,
leading to equations which are nonlinear in the parameters, are usually based on an
iterative scheme such as Newton-Raphson or the method of scoring [3], and it is proved
in Amemiya [2] that the Tobit MLE is strongly consistent and asymptotically nor-

mal with the asymptotic variance-covariance matrix equal to
[
−E

(
∂2 lnL
∂θ∂θ′

)]−1

, where

θ = (β, σ2). The observed Fisher information matrix can then be readily obtained

by replacing the unknown parameters θ by the MLEs in
(
−∂

2 lnL
∂θ∂θ′

)−1

. The expres-
sions for the observed Fisher information about θ contained in the top coded data
are provided in Appendix 1.3. As usual, if θ̂ denotes the MLE of θ, then the MLE
of the (scalar) parametric function ψ(θ) is obtained as ψ(θ̂), and an estimator of the
variance of ψ(θ̂) is obtained by applying the delta method. Wald-type inference can
be used to obtain an approximate level (1 − α) confidence interval for ψ(θ) of the
form ψ(θ̂)±zα/2[Estimated variance of ψ(θ̂)]1/2, where zα/2 = Φ−1(1−α/2). Routines
for fitting Tobit regression models are available in several standard statistical software
packages.

3.2 Synthetic Data

As already noted, MI methods are developed in An and Little [5], for the disclosure
protection of the extreme values. In this scenario, we consider two MI methods presented
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by An and Little [5], namely, parametric MI based on complete data (PMIC) and
parametric MI based on deleted data (PMID). We now briefly describe these methods.
Although it is only the values above C that are considered sensitive, a cut-point CI < C
is selected, and any value yi > CI is imputed. As discussed by An and Little [5], by
choosing the cut-point CI to be less than C, a mixing of sensitive and non-sensitive
values is achieved, which should enhance the level of protection against disclosure. Let
y = {yret,ydel} where yret = {yi : yi ≤ CI} denotes the values of y1, . . . , yn that will be
retained, and ydel = {yi : yi > CI} denotes the values y1, . . . , yn that will be deleted.
Similarly, let U = (Uret,Udel) where Uret = {ui : yi ≤ CI} denotes the values of
u1, . . . ,un that correspond to values in yret, and Udel = {ui : yi > CI} denotes the
values of u1, . . . ,un that correspond to values in ydel, and hence U denotes the set of all
regressor variables. Synthetic data methods are motivated from a Bayesian perspective
under a diffuse prior distribution, hence, let p(θ|U) = p(θ) be a diffuse prior density on
θ.

The PMIC method proceeds as follows. One obtains the posterior distribution
p(θ|y,U) ∝ p(θ)×

∏n
i=1 fθ(yi|ui), and then synthetic data are generated as follows:

1. Draw θ∗ from the posterior distribution p(θ|y,U).

2. For each i such that yi ∈ ydel, obtain the corresponding imputed value y∗i as
a draw from the truncated version of fθ∗(yi|ui), defined as f

(CI ,∞)
θ∗ (yi|ui) =

fθ∗ (yi|ui)×I(CI,∞)(yi)∫∞
CI

fθ∗ (ω|ui)dω . Thus the imputed data y∗del is the set of y∗i values for each i

such that yi ∈ ydel.

Steps (1) and (2) above are repeated independently a total of m times to obtain
y
∗(1)
del , ....,y

∗(m)
del . Finally, we obtain the synthetic data as y∗(j) = (yret,y

∗(j)
del ), j =

1, ....,m. Note that fθ∗(yi|ui) in step (2) denotes the density fθ(yi|ui) with the un-
known θ set equal to θ∗, the posterior draw from step (1).

Now we describe the PMID method. In the PMID method, the model is fit to the
deleted data ydel instead of the complete data. Thus the posterior distribution of θ
is computed as p(θ|ydel,Udel) ∝ p(θ) ×

∏
{i:yi∈ydel} fθ(yi|ui), and synthetic data are

generated as follows:

1. Draw θ∗ from the posterior distribution p(θ|ydel,Udel).

2. For each i such that yi ∈ ydel, obtain the corresponding imputed value y∗i as a draw
from fθ∗(yi|ui). Note that here we do not draw from the truncated distribution
as in PMIC. Thus the imputed data y∗del is the set of y∗i values for each i such
that yi ∈ ydel.

As usual, steps (1) and (2) above are repeated independentlym times to get y∗(1)
del , ....,y

∗(m)
del ,

and the synthetic data are then obtained as y∗(j) = (yret,y
∗(j)
del ), j = 1, ....,m.
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Using the synthetic data, inference is drawn on the (scalar) population quantity ψ(θ)
as follows. Let η = η(y) denote an estimator of ψ(θ) that is computed from the original
data, and let v = v(y) denote an estimator of the variance of η, also computed from the
original data. For instance, η may be the maximum likelihood estimator of ψ(θ), and
v may be the estimated asymptotic variance obtained from the inverse of the observed
Fisher information matrix. Let y∗(1), ....,y∗(m) denote the m sets of multiply imputed
data, based on PMID or PMIC, as described above. Given the synthetic data, one then
proceeds to compute ηj = η(y∗(j)) and vj = v(y∗(j)), the analogs of η and v, on the jth
synthetic dataset, for j = 1, ....,m. As discussed by An and Little [5], the MI estimator
of ψ(θ) is η̄m = 1

m

∑m
j=1 ηj , and the estimator of the variance of η̄m is Tm = bm/m+ v̄m,

where bm = 1
m−1

∑m
j=1(ηj − η̄m)2 and v̄m = 1

m

∑m
j=1 vj . An approximate level (1− α)

confidence interval for ψ(θ) is η̄m ± zα/2T
1/2
m where zα/2 = Φ−1(1 − α/2) and Φ(·) is

the standard normal cdf .

We have described above the synthetic data methodology in the framework of a
general density fθ(yi|ui). For our log-normal scenario, we have

fθ(yi|ui) =
1

yiσ
√

2π
exp

[
−(ln yi − u′iβ)2

2σ2

]
, yi > 0,θ = (β, σ2),

and we specify a standard diffuse prior on θ as p(β, σ2) ∝ (σ2)−1,β ∈ Rp, 0 < σ2 <∞.
Under the PMIC method, the posterior distribution of θ is obtained as p(β, σ2|y,U) =
p(β|σ2,y,U)p(σ2|y,U) where the distributions p(σ2|y,U) and p(β|σ2,y,U) are de-
fined by [12]:

(σ2|y) ∼ (n− p)s̃2

χ2
n−p

and (β|σ2,y) ∼ Np
(
β̃, σ2V

)
, (5)

where

β̃ =

(
n∑
i=1

uiu
′
i

)−1( n∑
i=1

ui ln yi

)
, V =

(
n∑
i=1

uiu
′
i

)−1

,

s̃2 =
1

n− p

n∑
i=1

(
ln yi − u′iβ̃

)2

.

Under the PMID method, the posterior distribution of θ is p(β, σ2|ydel,Udel) =
p(β|σ2,ydel,Udel)p(σ2|ydel,Udel), where p(σ2|ydel,Udel) and p(β|σ2,y,Udel) are the dis-
tributions defined by

(σ2|ydel) ∼
(ndel − p)s̃2

del

χ2
ndel−p

and (β|σ2,ydel) ∼ Np
(
β̃del, σ

2Vdel

)
, (6)
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where

β̃del =

 ∑
{i : yi∈ydel}

uiu
′
i

−1 ∑
{i : yi∈ydel}

ui ln yi

 , Vdel =

 ∑
{i : yi∈ydel}

uiu
′
i

−1

,

s̃2
del =

1
ndel − p

∑
{i : yi∈ydel}

(
ln yi − u′iβ̃del

)2

, ndel =
n∑
i=1

I(yi > CI).

4 Simulation Study to Assess Accuracy of Inference

In this section we report results of a simulation study. The purposes of the simulation
study are to (1) evaluate the performance of the noise multiplication methods in finite
samples, (2) evaluate how much the accuracy of inference is reduced as the dispersion of
the noise generating distribution increases, (3) compare accuracy of inference of case (I)
noise multiplied data with accuracy of inference of case (II) noise multiplied data, and
(4) compare the proposed noise multiplication methods with top coding and synthetic
data methods. The statistical computing software R [25] was used for all computations.

To conduct the simulation, we generate data under the following special case of
model (1):

ln yi ∼ N(β0 + β1ui1, σ
2). (7)

To generate data in the simulation, we set β0 = 1, β1 = 1.5, and σ2 = 1. The covariates
ui1 are generated independently (across i) from a N(δ = 0, τ2 = 1) distribution one
time at the beginning of the simulation, and then held constant from one iteration to
the next. The top coding threshold C is taken to be the 90th percentile of a log-normal
distribution having log-scale mean β0 +β1δ and log-scale variance σ2 +τ2β2

1 . That is, C
is the 90th percentile of the marginal distribution of yi, obtained by integrating out the
covariate u1i; hence in any particular iteration of the simulation, approximately 10% of
the yi values will exceed C.

The noise generating distribution is taken as

h(r) =


γ(ξ2 − ξ1)−1, if ξ1 ≤ r ≤ ξ2,
(1− γ)(ξ4 − ξ3)−1, if ξ3 ≤ r ≤ ξ4,
0, otherwise,

(8)

where 0 < ξ1 < ξ2 < 1 < ξ3 < ξ4 < ∞ and 0 ≤ γ ≤ 1. Notice that this h(r) is
simply a mixture of the Uniform(ξ1, ξ2) and Uniform(ξ3, ξ4) distributions, with mixing
probability γ, and its mean is

1
2

(ξ1 + ξ2)γ +
1
2

(ξ3 + ξ4)(1− γ),

and variance is

1
12

(ξ2 − ξ1)2γ +
1
12

(ξ3 − ξ4)2(1− γ) +
1
4

[(ξ1 + ξ2)− (ξ3 + ξ4)]2γ(1− γ).
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The noise distribution (8) is quite flexible, and has the desirable feature that it is a
nonnegative distribution, but has no mass in the interval (ξ2, ξ3) which contains 1.
Hence, the noise multiplier ri generated from this distribution is always bounded away
from 1, guaranteeing that the relative distance between the noise multiplied value zi =
riyi and the original value yi, defined by

∣∣ zi−yi
yi

∣∣ = |ri − 1|, is bounded away from zero.
Thus by choosing the parameters of this noise generating distribution appropriately, the
data producer can guarantee a specified relative distance between the noise perturbed
value and the original value. Furthermore, note that the density (8) does not necessarily
have mean 1, and the lengths of the two intervals (ξ1, ξ2) and (ξ3, ξ4) could be quite
different, depending on how the data producer wants to perturb the data. The mixing
parameter γ also gives the data producer control over how often noise multiplication will
deflate or inflate the original value. For example, by taking γ close (equal) to 1, the data
producer would ensure that the perturbed values are usually (always) deflated versions
of the original confidential value. For the simulation study, we consider the following
four settings for the parameters in (8). (In the following, the numbers in parentheses are
the mean and variance, respectively, of the corresponding noise generating distribution.)

Setting h1 : ξ1 = 0.8, ξ2 = 0.9, ξ3 = 1.1, ξ4 = 1.2, γ = 0.5, (1.000, 0.023).
Setting h2 : ξ1 = 0.5, ξ2 = 0.9, ξ3 = 1.1, ξ4 = 1.5, γ = 0.8, (0.820, 0.071).
Setting h3 : ξ1 = 0.5, ξ2 = 0.9, ξ3 = 1.1, ξ4 = 1.5, γ = 0.5, (1.000, 0.103).
Setting h4 : ξ1 = 0.1, ξ2 = 0.8, ξ3 = 1.2, ξ4 = 1.5, γ = 0.8, (0.630, 0.164).

(9)

The simulation results are reported in Tables 1–4. We report simulation results in
the case that the parameter of interest is β1, the slope of the regression line, and the
case that the parameter of interest is σ2, the residual variance. Tables 1 and 2 show
results for inference on β1, and Tables 3 and 4 show results for inference on σ2. Tables 1
and 3 show results for sample sizes n = 200 and 500, and Tables 2 and 4 show results for
sample sizes n = 1000 and 1500. These tables display results for the following methods.

UD: Analysis based on unperturbed data, without any masking.

TC: Analysis based on top coded data using the Tobit model, as described in Section
3.1. For fitting the Tobit model to the top-coded data, we use the R function tobit
from the R package AER [17], which provides the parameter estimates along with their
estimated covariance matrix.

PMIC2, PMIC4, PMID2, and PMID4: Analysis based on the PMIC and PMID meth-
ods described in Section 3.2. Let nS denote the number of values in the sample that
exceed the top coding threshold C. For PMIC2 and PMID2, CI is chosen so that 2nS
values in the sample are larger than CI . For PMIC4 and PMID4, CI is chosen so that
4nS values in the sample are larger than CI .

NMh1.i, NMh2.i, NMh3.i, NMh4.i: Each of these four rows indicate analysis based on
case (I) type noise multiplied data as presented in Section 2 with h(r) taken as the



92

Table 1: Inference for the slope β1 for n = 200 and 500.

n Method RMSE SD ŜD Cvg. Rel.
×103 ×103 ×103 % Len.

200 UD 69.4 69.4 68.8 94.4 1.000
TC 75.7 75.7 75.4 94.8 1.095
PMIC2 (m = 50) 74.8 74.8 69.1 93.0 1.004
PMIC4 (m = 50) 74.4 74.4 69.5 93.4 1.010
PMID2 (m = 50) 69.6 69.6 69.5 94.9 1.010
PMID4 (m = 50) 69.8 69.8 69.7 94.7 1.012
NMh1.i 69.8 69.8 69.0 94.4 1.003
NMh1.ii 69.8 69.8 69.0 94.4 1.003
NMh2.i 70.3 70.3 69.5 94.8 1.010
NMh2.ii 70.6 70.6 69.7 94.5 1.012
NMh3.i 70.4 70.4 69.6 94.6 1.012
NMh3.ii 70.6 70.6 69.8 94.5 1.014
NMh4.i 71.5 71.5 71.2 94.5 1.034
NMh4.ii 74.3 74.3 74.5 95.0 1.082

500 UD 43.9 43.9 43.5 94.2 1.000
TC 47.4 47.4 47.2 94.8 1.086
PMIC2 (m = 50) 47.0 47.0 43.7 92.7 1.004
PMIC4 (m = 50) 47.6 47.6 43.9 92.7 1.008
PMID2 (m = 50) 44.1 44.1 43.8 94.3 1.006
PMID4 (m = 50) 44.2 44.2 43.9 94.4 1.009
NMh1.i 44.1 44.1 43.6 94.0 1.003
NMh1.ii 44.1 44.1 43.6 94.1 1.003
NMh2.i 44.3 44.3 44.0 94.3 1.010
NMh2.ii 44.4 44.4 44.1 94.4 1.013
NMh3.i 44.3 44.3 44.0 94.3 1.012
NMh3.ii 44.4 44.4 44.1 94.2 1.014
NMh4.i 45.2 45.2 44.9 94.5 1.032
NMh4.ii 47.6 47.6 47.2 94.2 1.085
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Table 2: Inference for the slope β1 for n = 1000 and 1500.

n Method RMSE SD ŜD Cvg. Rel.
×103 ×103 ×103 % Len.

1000 UD 31.4 31.4 31.2 94.6 1.000
TC 33.8 33.8 33.7 94.9 1.081
PMIC2 (m = 50) 33.6 33.6 31.3 92.9 1.003
PMIC4 (m = 50) 34.0 34.0 31.4 93.0 1.006
PMID2 (m = 50) 31.6 31.6 31.3 94.5 1.005
PMID4 (m = 50) 31.6 31.6 31.4 94.9 1.007
NMh1.i 31.4 31.4 31.3 94.8 1.003
NMh1.ii 31.5 31.5 31.3 94.7 1.003
NMh2.i 31.7 31.7 31.5 94.9 1.009
NMh2.ii 31.9 31.9 31.6 94.8 1.012
NMh3.i 31.7 31.7 31.5 95.0 1.011
NMh3.ii 31.8 31.8 31.6 94.9 1.013
NMh4.i 32.3 32.3 32.1 94.8 1.030
NMh4.ii 34.0 34.0 33.7 95.1 1.082

1500 UD 26.5 26.5 25.9 94.7 1.000
TC 28.5 28.5 28.2 95.1 1.088
PMIC2 (m = 50) 28.4 28.4 26.0 92.7 1.003
PMIC4 (m = 50) 28.6 28.6 26.1 92.5 1.006
PMID2 (m = 50) 26.6 26.6 26.1 94.4 1.004
PMID4 (m = 50) 26.7 26.7 26.1 94.5 1.006
NMh1.i 26.6 26.6 26.0 94.7 1.003
NMh1.ii 26.6 26.6 26.0 94.7 1.003
NMh2.i 26.6 26.6 26.2 94.6 1.010
NMh2.ii 26.7 26.7 26.3 94.7 1.012
NMh3.i 26.7 26.7 26.2 95.0 1.012
NMh3.ii 26.8 26.8 26.3 94.7 1.014
NMh4.i 27.1 27.1 26.8 95.1 1.032
NMh4.ii 28.5 28.5 28.1 94.7 1.083
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Table 3: Inference for the residual variance σ2 for n = 200 and n = 500.

n Method RMSE SD ŜD Cvg. Rel.
×103 ×103 ×103 % Len.

200 UD 100.2 99.5 98.8 93.5 1.000
TC 107.5 106.9 106.5 93.4 1.079
PMIC2 (m = 50) 107.8 107.4 99.5 91.6 1.007
PMIC4 (m = 50) 109.4 109.3 100.4 92.0 1.017
PMID2 (m = 50) 100.8 100.8 100.8 94.4 1.020
PMID4 (m = 50) 101.5 101.4 101.3 94.3 1.026
NMh1.i 100.5 99.8 99.2 93.5 1.004
NMh1.ii 100.6 99.8 99.2 93.4 1.005
NMh2.i 102.0 101.3 100.2 93.2 1.015
NMh2.ii 102.5 101.8 100.6 93.0 1.019
NMh3.i 101.8 101.1 100.3 93.2 1.015
NMh3.ii 102.2 101.4 100.5 93.3 1.018
NMh4.i 103.8 103.2 102.5 93.5 1.037
NMh4.ii 108.6 107.9 106.5 93.1 1.078

500 UD 62.5 62.4 63.0 95.0 1.000
TC 66.7 66.6 67.5 94.8 1.071
PMIC2 (m = 50) 67.0 67.0 63.3 93.1 1.004
PMIC4 (m = 50) 69.1 69.1 63.6 92.7 1.010
PMID2 (m = 50) 63.0 62.9 63.7 95.6 1.011
PMID4 (m = 50) 63.4 63.4 64.0 95.4 1.015
NMh1.i 62.8 62.7 63.2 94.9 1.004
NMh1.ii 62.9 62.7 63.2 95.0 1.004
NMh2.i 63.3 63.2 63.9 95.1 1.013
NMh2.ii 63.6 63.5 64.1 95.2 1.017
NMh3.i 63.3 63.2 63.8 95.2 1.013
NMh3.ii 63.4 63.3 64.0 95.2 1.016
NMh4.i 64.6 64.5 65.1 94.8 1.033
NMh4.ii 67.5 67.3 67.6 94.8 1.072
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Table 4: Inference for the residual variance σ2 for n = 1000 and 1500.

n Method RMSE SD ŜD Cvg. Rel.
×103 ×103 ×103 % Len.

1000 UD 44.8 44.7 44.6 94.7 1.000
TC 47.7 47.6 47.6 94.6 1.066
PMIC2 (m = 50) 47.8 47.8 44.8 93.2 1.003
PMIC4 (m = 50) 48.6 48.6 44.9 93.0 1.007
PMID2 (m = 50) 45.1 45.1 45.0 95.1 1.007
PMID4 (m = 50) 45.2 45.2 45.1 94.6 1.011
NMh1.i 44.9 44.8 44.8 94.7 1.004
NMh1.ii 44.9 44.9 44.8 94.8 1.004
NMh2.i 45.3 45.2 45.2 94.7 1.013
NMh2.ii 45.5 45.5 45.4 94.4 1.016
NMh3.i 45.4 45.4 45.2 94.6 1.013
NMh3.ii 45.5 45.4 45.3 94.6 1.015
NMh4.i 46.0 45.9 46.0 94.7 1.031
NMh4.ii 47.6 47.5 47.7 95.2 1.069

2000 UD 36.0 36.0 36.5 95.0 1.000
TC 38.4 38.4 38.7 95.1 1.062
PMIC2 (m = 50) 38.7 38.7 36.6 93.1 1.003
PMIC4 (m = 50) 39.7 39.7 36.7 93.3 1.006
PMID2 (m = 50) 36.2 36.2 36.7 95.4 1.006
PMID4 (m = 50) 36.3 36.3 36.8 95.3 1.009
NMh1.i 36.1 36.1 36.6 95.0 1.003
NMh1.ii 36.1 36.1 36.6 95.0 1.004
NMh2.i 36.5 36.5 36.9 95.1 1.012
NMh2.ii 36.7 36.7 37.0 95.2 1.016
NMh3.i 36.5 36.5 36.9 95.1 1.012
NMh3.ii 36.6 36.6 37.0 95.2 1.015
NMh4.i 37.2 37.2 37.5 95.2 1.029
NMh4.ii 38.7 38.7 38.9 95.3 1.067
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mixture density defined in (8). For NMh1.i the parameters in h(r) are set to the values
of Setting h1 in (9); for NMh2.i the parameters in h(r) are set to the values of Setting
h2 in (9), and so on.

NMh1.ii, NMh2.ii, NMh3.ii, NMh4.ii: Each of these four rows indicate analysis based
on case (II) type noise multiplied data as presented in Section 2 with h(r) taken as
the mixture density defined in (8). For NMh1.ii the parameters in h(r) are set to the
values of Setting h1 in (9); for NMh2.ii the parameters in h(r) are set to the values of
Setting h2 in (9), and so on.

For the estimators of parameters β1 and σ2 under each of the methods, the following
quantities were estimated by Monte Carlo simulation based on 5000 iterations: the root
mean squared error (RMSE), standard deviation (SD), expected value of standard devi-
ation estimator (ŜD), coverage probability of the nominal level 0.95 confidence interval
(Cvg.), and expected length of the confidence interval relative to the expected length of
the confidence interval computed on the unperturbed data (Rel. Len.). For estimating
standard deviation, we use the square root of the appropriate variance estimator; and for
confidence intervals, we always take the nominal level as 0.95. To facilitate a comparison
of the methods, all results shown for unperturbed data are based on MLEs, observed
Fisher information, and confidence intervals of the form (MLE) ± (1.96 × estimated
standard deviation). For EM algorithms used under noise multiplication, the stopping
criterion used was max

{∣∣∣β(t)
0 − β

(t+1)
0

∣∣∣ , ∣∣∣β(t)
1 − β

(t+1)
1

∣∣∣ , ∣∣(σ(t))2 − (σ(t+1))2
∣∣} ≤ 10−5.

To get starting values of parameter estimates to use in the EM algorithms, we run a
linear regression of lnxi on ui. As mentioned above, the statistical computing software
R [25] was used for the computations. The integrate function in R was used to eval-
uate the required univariate integrals that could not be obtained in closed form. For
methods PMIC2, PMIC4, PMID2, and PMID4, we used m = 50 sets of imputed values,
and model (7) was used to generate the imputed values. The choice m = 50 may be
larger than what is often used in practice, but we chose a large value in order to get a
clear picture of accuracy of inference of the multiple imputation method. Furthermore,
we refer to Reiter [29] for a discussion of issues that arise when the model used for
generating synthetic data differs from the model used for data analysis. The following
is a summary of the findings from our simulation study.

1. In terms of RMSE and SD of the point estimators, the noise multiplication methods
give reasonable results in all of the simulation scenarios we considered. In each of the
simulation settings of Tables 1–4, the RMSE and SD under noise multiplication are
similar to and just slightly larger than the RMSE and SD based on the unperturbed
data. Also, in all cases of noise multiplication considered, the SD estimators are
nearly unbiased for the true SD. Notice that the methods NMh2.i, NMh2.ii, NMh4.i,
and NMh4.ii have a noise generating distribution with mean not equal to 1 (refer to
(9)), yet all results remain valid for these methods.

2. Comparing noise settings h1 and h2, we notice that the RMSE, SD, and relative
confidence interval length are larger for h2 than for h1. This finding is expected
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since the noise distribution h2 has greater dispersion than h1. A similar conclusion
holds if one compares noise settings h2 with h4, or h3 with h4. The noise settings h2
and h3 are very similar, the only difference being the value of the mixing probability
γ, and the simulation results are nearly equivalent.

3. In Tables 1 and 2, we see that for inference on β1 under noise multiplication, the
coverage probability of confidence intervals is quite close to the nominal value of 0.95.
However, for inference on σ2, we see in Table 3 that under noise multiplication, the
coverage probability is slightly below the nominal value when n = 200. However,
in this case of n = 200, we see that the confidence interval for σ2 based on the
unperturbed data (which is also a Wald-type interval as described above) is also below
the nominal value because the sample size is too small for the sampling distribution
of the MLE of σ2 to be well approximated by normality. Thus, even though the
noise multiplication method yields a confidence interval with slightly low coverage
probability here, it gives an inference which is quite similar to the inference obtained
using the unperturbed data. For the larger sample sizes n = 500 (right hand panel of
Table 3), and n = 1000 and 1500 (Table 4) we see that both the noise multiplication
methods and the unperturbed data yield confidence intervals for σ2 with coverage
probability very close to the nominal level of 0.95.

4. If we observe noise multiplied data under case (I) of Section 2, then a top coded
sample can be re-constructed from the observed data. However, a case (I) noise
multiplied sample cannot be constructed from the top coded data. So in this sense,
case (I) noise multiplied data carry more information than top coded data. The
simulation results confirm this statement because the case (I) noise multiplication
method generally leads to a shorter confidence interval and smaller SD than top
coding for all noise distributions that we considered in Tables 1–4.

5. Clearly, we cannot re-construct a case (II) noise multiplied sample (as defined in
Section 2) based on only the top coded data. Likewise, if we observe a case (II) noise
multiplied data and the noise density is (8), the complete top coded sample cannot
be deterministically re-constructed from these observed data. In fact, considering
that the range of possible xi values is (0,∞), the following cases are possible:

(a) if 0 < xi < Cξ1, then we know xi is not noise perturbed (i.e., xi = yi);

(b) if Cξ1 < xi < C, then xi is either not noise perturbed or perturbed by a noise
multiplier in the interval (ξ1, ξ2);

(c) if C < xi < Cξ3, then xi is definitely noise perturbed by a noise multiplier in
the interval (ξ1, ξ2);

(d) if Cξ3 < xi, then xi is definitely noise perturbed and the noise multiplier may
be either in the interval (ξ1, ξ2) or (ξ3, ξ4).

Hence, in case (a) above, Pr(∆i = 1|xi) = 1; in case (b), 0 < Pr(∆i = 1|xi) < 1; and



98

in cases (c) and (d), Pr(∆i = 1|xi) = 0. Recall that by (4),

Pr(∆i = 1|xi)

=
I(xi < C) exp

[
−{ln xi−u

′
iβ}

2

2σ2

]
I(xi < C) exp

[
−{ln xi−u

′
iβ}2

2σ2

]
+
∫ xi/C

0
exp

[
−{ln(xi/ω)−u′iβ}2

2σ2

]
h(ω)dω

, (10)

and therefore in case (b), while we would not know for sure, it may be possible to
make an informed guess as to whether or not xi is noise perturbed based on the
value of Pr(∆i = 1|xi) (which could be estimated by replacing unknown parameters
by their estimates). So we would usually expect a case (II) noise multiplied sample to
carry more information than a top coded sample, but since there can be cases where
a large number of xi values fall in case (b) above, and Pr(∆i = 1|xi) is not close to
0 or 1, there can be scenarios where a case (II) noise multiplied sample carries less
information than a top coded sample (with the trade off likely being an enhanced
level of privacy protection). The simulation results confirm this statement; for most
of the noise settings we considered, the case (II) noise multiplication scenario leads to
a shorter confidence interval and smaller SD than top coding. But, in several of the
scenarios considered, we observe that under method NMh4.ii, where a large number
of xi values can fall in case (b) because the interval Cξ1 < xi < C is fairly large
(here ξ1 = 0.1), the case (II) noise multiplied sample yields RMSE and SD slightly
larger than top coding.

6. As expected, the case (I) noise multiplied data always yield more or equally accurate
inference than case (II) noise multiplied data. For instance, in Setting h1, where
the variance of the noise generating distribution is small, the results in Tables 1–4
between methods NMh1.i and NMh1.ii are nearly identical. But in Setting h4, where
the dispersion of the noise generating distribution is much larger, the method NMh4.i
is noticeably more accurate than NMh4.ii.

7. In Tables 1–4, we observe that for inference on both β1 and σ2, the methods PMIC2
and PMIC4 yield confidence intervals with coverage probability below the nominal
level, even for the larger sample sizes n = 1000 and 1500. On the other hand,
the methods PMID2 and PMID4 tend to yield confidence intervals having coverage
probability close to the nominal level in each of the chosen simulation settings. The
PMID methods also tend to give accurate inference in terms of RMSE, SD, ŜD, and
relative confidence interval length. In each case, it would be possible to select a
noise generating distribution for which the noise multiplication method has similar
accuracy to an MI method.

8. The EM algorithms used to compute the MLE under noise multiplication tended to
be stable and to converge rapidly.
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5 Data Analysis Illustration and Disclosure Risk
Evaluation Using Current Population Survey Data

In this section we present an application based on public use data from the 2000 Cur-
rent Population Survey (CPS) March supplement. These data are available online from
http://www.census.gov/cps/, and have been used previously by Reiter [31, 32] and
Drechsler and Reiter [9] for illustrating various aspects of multiple imputation method-
ology. The entire data comprise household, family, and individual records. For our
illustration, we focus on the household records, as did Reiter [31, 32] and Drechsler and
Reiter [9]. The data file contains records on 51,016 households, and of these households,
50,661 of them have positive household income.

In Section 5.1, we present an example of the inferences on regression parameters ob-
tained using our proposed noise multiplication methodology. Furthermore, we compare
the inferences obtained under noise multiplication with those obtained on the original
data, and also with those obtained based on the statistical disclosure control methods
of top coding and synthetic data. In Section 5.2, we provide a disclosure risk evaluation
of our proposed noise multiplication method, and compare the disclosure risk of noise
multiplication with that of synthetic data. We proceed as if the n = 50,661 households
with positive income are a random sample, and as if the household income value is
confidential for the high income households (of course, in reality, these are public use
data). There are additional available variables on these households that can be used as
covariates. After some exploratory analysis to determine which covariates may serve as
good predictors of household income, we choose to include the following covariates:

P: household property tax,

N: number of people in household,

L: number of people in the household who are less than 18 years old,

A: age for the head of the household,

E: education level for the head of the household (coded to take values 31–46),

M: martial status for the head of the household (coded to take values 1–7),

R: race for the head of the household (coded to take values 1–4),

S: sex for the head of the household (coded to take values 1–2).

We refer to the Current Population Survey March 2000 technical documentation (avail-
able at http://www.census.gov/prod/techdoc/cps/cpsmar00.pdf) for the meaning
of the coding of the variables E, M, R, and S, and for additional information about the
dataset. In the notation of Section 2, the variable y is total income for the household,

https://www.census.gov/cps/
https://www.census.gov/prod/techdoc/cps/cpsmar00.pdf
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and u, the vector of regressors, includes the following variables:{
1, P, N, L, A, I(E=32), I(E=33) . . . , I(E=46),

I(M=2), I(M=3), . . . , I(M=7), I(R=2), I(R=3), I(R=4), I(S=2)

}
,

(11)

where I(E=32) is an indicator for E=32, I(E=33) is an indicator for E=33, and so on.

The model matrix

u
′
1
...
u′n

 has n = 50,661 rows and p = 30 columns, and has full column

rank.

5.1 Data Analysis Illustration

For the data analysis, we report results based on unperturbed data, top coded data, syn-
thetic data, and noise multiplied data. Specifically, we analyze the data using the meth-
ods UD, TC, PMIC2, PMIC4, PMID2, PMID4, NMh1.i, NMh1.ii, NMh2.i, NMh2.ii,
NMh3.i, NMh3.ii, NMh4.i, and NMh4.ii, as defined in Section 4. Results of the data
analysis appear in Tables 5 and 6. The top coding threshold C is taken as the empirical
90th percentile of the household income variable. For the synthetic data methods, the
regression model used for imputation includes all the variables in (11), and hence is the
same as the model used for data analysis. Table 5 displays the parameter estimates
in the regression of logarithm of household income on the variables in (11). The rows
of this table give the estimates of the various parameters (row 1 gives the estimate of
the intercept, row 2 gives the estimate of the regression coefficient for P, row 3 gives
the estimate of the regression coefficient for N, and so on), and the columns correspond
to the different methods defined previously. Similarly, Table 6 displays the estimated
standard deviation of each parameter estimator under each method. The data analysis
is conducted in R [25] using the computational methods discussed in Section 4. Further-
more, the convergence criterion and starting values for EM algorithms, and the number
of multiple imputations used are the same as in Section 4. The following is a summary
of the findings of the data analysis.

1. We notice in Tables 5 and 6, that when the variance of the noise generating distribu-
tion is fairly small such as in Setting h1, the noise multiplication methods give almost
identical results as the unperturbed data. For all noise generating distributions con-
sidered, the results under noise multiplication tend to be in line with those obtained
for the unperturbed data. Naturally, the standard deviation estimates based on noise
multiplied data tend to increase when dispersion in the noise generating distribution
increases.

2. In almost all cases, the noise multiplied data yield smaller standard deviation esti-
mates than top coded data. In fact, in all cases, the case (I) noise multiplied data
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yield smaller standard deviation estimates than top coded data. but we see that the
standard deviation estimates under NMh4.ii tend to be larger than those under top
coding; the reasons for these phenomena are explained in Section 4 (refer to points
4 and 5 in the discussion of simulation results in Section 4).

3. We note from Table 6 that the PMIC2 and PMIC4 methods yield large standard
deviations in comparison with most of the other methods including top coding. On
the other hand, the PMID methods give standard deviation estimates that are similar
to the estimates based on the unperturbed data. Similarly, we notice in Table 5 that
the parameter estimates under the PMIC methods often differ from the estimates
based on the unperturbed data, while the PMID methods give estimates more in line
with the unperturbed data.

In summary, the PMID2, PMID4, and noise multiplication methods all appear to
give reasonable results, and can usually offer increased accuracy compared to top-coding.
The PMID2 and PMID4 methods appear to give quite accurate inferences. The noise
multiplication methods with low dispersion in the noise generating distribution provide
results almost identical as the unperturbed data. The case (I) noise multiplied data
provide more accurate inference than top coding in all cases.

5.2 Disclosure Risk Evaluation

In this section we report the results of a disclosure risk evaluation in the context of the
CPS data example. Our main purpose is to evaluate the level of disclosure protection
offered by the proposed noise multiplication method, and to compare noise multipli-
cation with the synthetic data methods PMIC and PMID on the basis of disclosure
risk. We have not included top coding in this study because top coding only reports if
a particular yi value exceeds C, but provides no further information about this value.
While evaluation of disclosure risk when releasing any kind of perturbed data is essen-
tial, there is no unique way to exactly quantify it or even define it. Reiter [33], Reiter
and Mitra [34], Klein and Sinha [19] and others have attempted it earlier with their own
approaches and understandings. In this section we take the following premise.

Having observed the released privacy protected data (e.g., case (I) noise multiplied
data, case (II) noise multiplied data, or synthetic data), let ŷi denote an intruder’s
estimate of the confidential target value yi. We assume that ŷi is some function of the
data that are released after a method of statistical disclosure control has been applied
to the yi values that exceed C. We measure the level of privacy protection using the
following criterion, which is similar to the one used by Lin and Wise [21]:

pi,ε = Pr
{∣∣∣∣ ŷi − yiyi

∣∣∣∣ ≤ ε ∣∣∣y} . (12)

In the above probability, ε > 0, y = (y1, . . . , yn) is the vector of original observations,
and because we have conditioned on y, the above probability is free of the unknown
parameters β and σ2. For some reasonable choice of ε, if the probability (12) is small,
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then we would conclude that there is a high level of protection against disclosure of yi;
on the other hand, if this probability is large, then we would conclude that the amount
of protection against disclosure of yi is low. In order to compute (12) we need to fix
the form of the estimator ŷi, and there are a variety of possibilities. For the disclosure
risk evaluation presented here, the estimators ŷi of yi in (12) based on noise multiplied
data and synthetic data, are as follows.

Case (I) noise multiplied data. In the notation of Section 2, for case (I) noise
multiplied data, we define the estimator ŷi as follows:

ŷi =

{
xi, if ∆i = 1,
Eθ̂(I)

(yi|xi,∆i = 0), if ∆i = 0,
(13)

where Eθ̂(I)
(yi|xi,∆i = 0) denotes the conditional expectation of yi, given ∆i = 0 and

xi, with the unknown parameters θ = (β, σ2) set equal to their MLEs, denoted by
θ̂(I) = (β̂(I), σ̂

2
(I)). Here, the MLEs (β̂(I), σ̂

2
(I)) are computed based on case (I) noise

multiplied data using the EM algorithm of Section 2. An expression for the conditional
expectation is obtained as:

Eθ(yi|xi,∆i = 0) = Eθ

(
xi
ri

∣∣∣xi,∆i = 0
)

=

∫ xi/C
0

(
xi
r

)
exp

[
−{ln(xi/r)−u′iβ}

2

2σ2

]
h(r)dr∫ xi/C

0
exp

[
−{ln(xi/r)−u′iβ}2

2σ2

]
h(r)dr

, (14)

where the second equality above follows by using Proposition 1 and Corollary 1 of
Section 2 to obtain the conditional density of ri given xi and ∆i = 0. Notice that when
∆i = 0, the estimator ŷi defined in (13) uses information from the released case (I)
noise multiplied data, information in the covariates, and also information in the noise
generating distribution h(r). These three pieces of information need to be made public
in order to draw valid inferences using the methods developed in Section 2, and hence
we have defined a ŷi that makes use of all of the above information. Obviously, when
∆i = 1, yi is not sensitive and we simply have ŷi = xi = yi.

Case (II) noise multiplied data. Working again under the notation of Section 2, for
case (II) noise multiplied data, we consider an estimator ŷi that has a similar form as
(13), except that in this case ∆i, the indicator for yi ≤ C, is not observed. Hence, for
case (II) noise multiplied data, we define ŷi as

ŷi = Eθ̂(II)
(yi|xi). (15)

Here, Eθ̂(II)
(yi|xi) denotes the conditional expectation of yi given xi, with the unknown

parameters θ = (β, σ2) set equal to their MLEs (denoted by θ̂(II) = (β̂(II), σ̂
2
(II))). Here,
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the MLEs are computed based on case (II) noise multiplied data using the EM algorithm
of Section 2. To evaluate Eθ(yi|xi), note that,

Eθ(yi|xi) = Eθ[Eθ(yi|xi,∆i)|xi]
= Eθ(yi|xi,∆i = 1) Pr(∆i = 1|xi) + Eθ(yi|xi,∆i = 0)[1− Pr(∆i = 1|xi)]

= xi Pr(∆i = 1|xi) + Eθ

(
xi
ri

∣∣∣xi,∆i = 0
)

[1− Pr(∆i = 1|xi)]. (16)

The expression for Eθ(yi|xi,∆i = 0) is given by (14), and the expression for Pr(∆i =
1|xi) is given by (10), and therefore, by plugging these expressions into (16) and sim-
plifying, we get

Eθ(yi|xi)

=
xi I(xi < C) exp

[
−{ln xi−u

′
iβ}

2

2σ2

]
+
∫ xi/C

0

(
xi
r

)
exp

[
−{ln(xi/r)−u′iβ}

2

2σ2

]
h(r)dr

I(xi < C) exp
[
−{ln xi−u

′
iβ}2

2σ2

]
+
∫ xi/C

0
exp

[
−{ln(xi/r)−u′iβ}2

2σ2

]
h(r)dr

.

Notice that the estimator ŷi defined in (15) uses information from the released case (II)
noise multiplied data, information in the covariates, and also information in the noise
generating distribution h(r).

Synthetic data. For the synthetic data methods PMIC and PMID discussed in Section
3.2, let y∗i1, . . . , y

∗
im denote the values corresponding to yi in the m released synthetic

datasets. In the notation of Section 3.2, recall that if yi > CI , then y∗i1, . . . , y
∗
im are

obtained as draws from a posterior predictive distribution; otherwise, if yi ≤ CI , then
y∗i1 = · · · = y∗im = yi. So a natural and simple estimator of yi based on the synthetic
data is ŷi = 1

m

∑m
j=1 y

∗
ij .

Now that we have defined suitable estimators ŷi under noise multiplied and synthetic
data, we can evaluate the probabilities pi,ε, as defined by (12), for each method. As in
Section 5.1, we take the threshold C as the 90th empirical percentile of total household
income. Since our dataset consists of n = 50, 661 households, there are 5,066 values of yi
that exceed C. For case (I) and case (II) noise multiplied data, we use simulation (with
5,000 iterations) to estimate the pi,ε values for each of the methods NMh1.i, NMh2.i,
NMh3.i, NMh4.i, NMh1.ii, NMh2.ii, NMh3.ii, and NMh4.ii as defined in Section 4.
Within each iteration of the simulation, we use the integrate function in R to evaluate
the integrals that appear in (13) and (15). For synthetic data, we also use simulation
(with 5,000 iterations) to estimate the pi,ε values for each of the methods PMIC2,
PMIC4, PMID2, and PMID4, as defined in Section 4; and for each of these methods we
consider two options for the number of imputations: m = 5 and m = 50.

The results of our computations are summarized in Table 7. The table summarizes
the distribution of pi,ε for the 5,066 yi-values that require protection because they exceed
the threshold C (the 90th empirical percentile of y1, . . . , yn). The table shows the 1st
quartile (Q1), median, mean, and 3rd quartile (Q3) of these 5,066 pi,ε-values under



106

Table 7: Distribution of pi,ε = Pr{| ŷi−yiyi
| ≤ ε |y} in the CPS data example for the 5,066

yi-values that exceed C and thus require protection.
ε = 0.1 ε = 0.2

Q1 Med. Mean Q3 Q1 Med. Mean Q3

PMIC2 (m = 5) 0.10 0.22 0.20 0.29 0.21 0.42 0.39 0.55
PMIC2 (m = 50) 0.00 0.04 0.21 0.39 0.01 0.27 0.40 0.82
PMIC4 (m = 5) 0.07 0.17 0.15 0.23 0.16 0.35 0.31 0.46
PMIC4 (m = 50) 0.00 0.07 0.21 0.44 0.01 0.35 0.41 0.82
PMID2 (m = 5) 0.04 0.30 0.25 0.43 0.17 0.59 0.48 0.75
PMID2 (m = 50) 0.00 0.11 0.33 0.72 0.00 0.79 0.57 0.99
PMID4 (m = 5) 0.00 0.07 0.13 0.24 0.01 0.21 0.28 0.53
PMID4 (m = 50) 0.00 0.00 0.13 0.06 0.00 0.01 0.30 0.69
NMh1.i 0.14 0.49 0.35 0.51 0.93 1.00 0.95 1.00
NMh1.ii 0.14 0.23 0.25 0.31 0.93 1.00 0.95 1.00
NMh2.i 0.28 0.37 0.37 0.49 0.59 0.68 0.64 0.73
NMh2.ii 0.11 0.21 0.22 0.29 0.35 0.41 0.43 0.47
NMh3.i 0.19 0.27 0.28 0.35 0.40 0.45 0.54 0.69
NMh3.ii 0.08 0.13 0.16 0.24 0.23 0.38 0.38 0.48
NMh4.i 0.04 0.08 0.16 0.23 0.10 0.23 0.33 0.59
NMh4.ii 0.00 0.06 0.10 0.15 0.12 0.19 0.22 0.30

each of the methods. The results are provided in the table for the cases when ε = 0.1
and ε = 0.2, and the rows of the table correspond to the different statistical disclosure
control methods, using notation defined in Section 4 (as explained above). Histograms
of the pi,0.1 values for the 5,066 yi-values that exceed C under the noise multiplication
methods are provided in Figures 1 and 2, while similar histograms under the synthetic
data methods are provided in Figures 3 and 4. The following is a summary of the
findings of our disclosure risk evaluation.

1. We see in Table 7, and Figures 1 and 2, that when comparing the methods NMh1.i,
NMh2.i, NMh3.i, and NMh4.i, the pi,ε values tend to be largest under NMh1.i and
smallest under NMh4.i. A similar conclusion holds when one compares the pi,ε values
under NMh1.ii, NMh2.ii, NMh3.ii, and NMh4.ii. Such a finding is expected because
among the noise distributions h1, h2, h3, and h4, the distribution h1 is the least
dispersed, while the distribution h4 is the most dispersed (refer to (9)). We notice
in Figures 1(a) and 1(c) that the noise methods NMh1.i and NMh2.i, tend to yield
a value of pi,0.1 that is larger than 0.5 for many yi values. On the other hand, in
Figures 2(b) and 2(d) we see that the noise methods NMh3.ii and NMh4.ii, yield a
value of pi,0.1 that is smaller than 0.5 for almost all yi values. In fact, the method
NMh4.ii gives a value of pi,0.1 ≤ 0.05 for a large proportion of yi values. Thus, it
is clear that the choice of the noise generating distribution plays a critical role in
setting the level of protection against disclosure.
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2. We notice in Table 7 that for some yi values, NMh1.ii provides more privacy pro-
tection than NMh1.i. Similarly, for some yi values, NMh2.ii provides more privacy
protection than NMh2.i, NMh3.ii provides more privacy protection than NMh3.i,
and NMh4.ii provides more privacy protection than NMh4.i. The increase in privacy
protection in case (II) over case (I) noise multiplied data can occur under the noise
distribution (8), because for any yi value whose corresponding xi falls in the interval
(Cξ1, C), it is not known with certainty whether this xi is noise multiplied or not,
that is, whether ∆i = 0 or = 1. (Among the yi that exceed C, it is those values for
which C < yi <

C
ξ1

that can potentially have xi in (Cξ1, C).) On the other hand,
under case (I) noise multiplied data, the value of ∆i is always known because it is
explicitly released. As a result, there is an additional component of uncertainty in
the estimator (15) in comparison with the estimator (13), caused by not knowing the
value of ∆i with certainty (which can be readily seen by comparing equation (16)
with (13)). Furthermore, to compute ŷi, we plug an estimate of the unknown param-
eter θ into the conditional expectations (13) and (15); and we saw in Section 4 that
the estimate of θ under case (II) noise multiplication is less efficient than that under
case (I) noise multiplication. The additional uncertainty translates to an increase in
privacy protection as measured by criterion (12). Figures 1 and 2 indicate that case
(II) noise multiplication can provide a substantial increase in privacy protection in
comparison with case (I) noise multiplication, for many of the sensitive values. The
increase in privacy protection in case (II) over case (I) occurs for quite a large pro-
portion of observations under the noise setting h4 (Figures 2(c) and 2(d)), because
in this case ξ1 = 0.1, and hence the interval (Cξ1, C), is quite wide. Of course, this
gain in privacy protection is at the expense of a slight loss in accuracy of inference,
as shown in Section 4 and Section 5.1.

3. For the synthetic data methods, we notice in Table 7 that when m increases from
5 to 50, the disclosure risk increases substantially for some observations, while for
others, the disclosure risk decreases substantially. To examine the situation further,
Figure 3 shows histograms of the pi,0.1 values for all yi > C for the PMID2 and
PMID4 methods, and Figure 4 shows histograms of the pi,0.1 values for all yi > C
for the PMIC2 and PMIC4 methods. We observe in Figures 3 and 4 that when m
increases from 5 to 50, the disclosure risk for a portion of the observations becomes
quite high, while for many observations the value of pi,0.1 becomes very small.

To see why the disclosure risk can become so high for some observations and small
for others, consider first the PMID methods. Under the PMID methods, for fixed
y we have ŷi = 1

m

∑m
j=1 y

∗
ij

P→ E(y∗i1|y) as m → ∞ by the Law of Large Numbers,
where

E(y∗i1|y) = exp[u′iβ̃del]E
{

exp
[
(σ∗)2(1 + u′iVdelui)/2

]
|y
}
,

and (σ∗)2|y ∼ (ndel − p)s̃2
del/χ

2
ndel−p, and β̃del, s̃2

del, Vdel, and ndel are defined in
Section 3.2 just after equation (6). We ran a Monte Carlo simulation with 10,000
iterations to compute ψi(y) = E{exp[(σ∗)2(1+u′iVdelui)/2] |y}; we found that under
PMID2,

1.061 ≤ ψi(y) ≤ 1.077, for all i such that yi ∈ ydel,
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and under PMID4,

1.077 ≤ ψi(y) ≤ 1.081, for all i such that yi ∈ ydel,

where ydel = {yi : yi > CI} as defined in Section 3.2. Thus we conclude that for
large m, ŷi ≈ ψi(y) exp[u′iβ̃del], and since ψi(y) is always just slightly larger than
1, ŷi is just slightly greater than the fitted value from the regression of ln yi on ui
(based on all yi ∈ ydel) transformed back to the yi scale. So for data points such
that yi is well approximated by the fitted value exp[u′iβ̃del], the value of pi,ε will
be large for large m, otherwise the value of pi,ε will be small. Figures 5(a) and
5(b) illustrate this point. Figure 5(a) plots the observed yi versus the fitted value
exp[u′iβ̃del] for those yi with pi,0.1 ≤ 0.5 under PMID2 with m = 50, while Figure
5(b) shows a similar plot for those yi with pi,0.1 > 0.5 under PMID2 with m = 50.
We notice in Figure 5(b) that the yi values with pi,0.1 > 0.5 are well approximated
by their fitted values, while in Figure 5(a) we see that the yi values with pi,0.1 < 0.5
are not approximated as well by the fitted values. A similar situation occurs under
the PMIC2 method, as displayed by Figures 5(c) and 5(d). Notice in Figure 5(d)
that there is a strong linear relationship between yi and the fitted value exp[u′iβ̃] for
those yi values with pi,0.1 > 0.5 under PMIC2. However, in this case the fitted values
tend to be much smaller than the original values, which occurs because, under PMIC,
synthetic data are sampled from a truncated distribution. In the PMIC method, after
generating parameter values from the complete data posterior distribution, synthetic
data values are drawn from a truncated log-normal distribution, and as a result, for
fixed y, ŷi = 1

m

∑m
j=1 y

∗
ij

P→ E(y∗i1|y) as m→∞ where

E(y∗i1|y) = E

exp
[
u′iβ

∗ + (σ∗)2/2
] 1− Φ

(
lnCI−u′iβ

∗

σ∗ − σ∗
)

1− Φ
(

lnCI−u′iβ∗
σ∗

)
 ∣∣∣∣∣ y

 ,

and (β∗, (σ∗)2), conditional on y, have the joint posterior distribution (5).

4. Looking again at Figure 3, we notice that the pi,0.1 values tend to be concentrated
closer to zero under PMID4 in comparison with the pi,0.1 values under PMID2, when
the number of imputations m is the same. So in this sense, PMID4 can provide more
protection than PMID2, as expected. A similar conclusion holds when one looks at
Figure 4, and compares pi,0.1 values under PMIC2 with those under PMIC4, for the
same value of m.

5. When comparing the privacy protection of noise multiplication with that of synthetic
data, it is difficult to make any overall conclusions. Under noise multiplication, the
noise generating distribution acts as a tuning mechanism; while under synthetic
data, the values of CI and m are the tuning mechanisms. It appears that through
the choice of the tuning mechanism, noise multiplication and synthetic data can
yield similar levels of privacy protection. For instance, by looking at Figures 2(d)
and 3(c), we note how the methods NMh4.ii and PMID4 with m = 5 tend to give a
similar distribution of pi,0.1 values; so the level of privacy protection offered by those
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two methods appears to be similar. On the other hand, looking at Figure 3(d), we
see that under PMID4 with m = 50, most of the yi values are well protected (the
histogram has a spike near 0), but a few yi values have large pi,0.1, and hence are not
well protected. Similarly, looking at Figure 2(c), we see that under NMh4.i, there are
a few yi values that have a large pi,0.1 value, while most pi,0.1 values are small. Thus,
under synthetic data, when one increases m which allows for more accurate inferences
[27], one also increases the potential for disclosure of some observations. Similarly,
under noise multiplication, when one releases the indicators ∆1, . . . ,∆n which allows
for more accurate inferences (Section 2), one also increases the potential for disclosure
of some observations.

In summary, based on the criterion pi,ε, under noise multiplication (either case (I)
or case (II) data release) the data producer can control the disclosure risk by choosing
h(r) to achieve a desired level of protection. In order to do so, the data producer could
select a few candidate noise distributions (such as h1, h2, h3, and h4 of (9)), and run
a simulation study based on the actual dataset that requires protection, similar to the
one presented in this section for the CPS data example. The data producer would then
examine the distribution of pi,ε values under each noise setting, and choose the noise
distribution that yielded satisfactory results (or if none were found to be satisfactory,
run a another simulation with different noise distributions). In the case of synthetic
data, obviously there is no noise distribution to set, but the quantities CI and m can
be tuned. Thus the data producer could choose a few candidate values of CI and m,
and then run a simulation to compute the corresponding pi,ε values. As with noise
multiplied data, the data producer would then examine the distribution of pi,ε values
for each combination of CI and m, and choose the combination that yields satisfactory
results.

6 Discussion

Methodologies for disclosure limitation need to be balanced with accuracy of the infer-
ence before releasing data to the public in order to achieve the dual goals of disclosure
avoidance and data utility. In the top code scenario, where only values above a thresh-
old C > 0 require protection, we have considered noise multiplication under two data
release scenarios: case (I) in which each released value includes an indicator of whether
or not it was noise perturbed, and case (II) in which no such indicator is provided. We
developed data analysis methods under both cases, and argued that case (I) should al-
ways provide more accurate inference than top coding at C, while case (II) can provide
either more or less accurate inference than top coding at C, depending on the dispersion
of the noise generating distribution. Our empirical results show that both cases provide
almost equally accurate inferences when the noise variance is small, and, as expected,
the difference in accuracy increases as the dispersion in the noise distribution increases.
The case (II) data release may be more desirable for statistical agencies than the case (I)
data release, as case (II) can provide an enhanced level of protection against disclosure,
as shown in Section 5.2. The results of this article show how to obtain valid inferences
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Figure 1: Histograms of pi,0.1 values for yi > C under NMh1 and NMh2 methods.
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Figure 2: Histograms of pi,0.1 values for yi > C under NMh3 and NMh4 methods.
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Figure 3: Histograms of pi,0.1 values for yi > C under PMID2 and PMID4 methods.
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Figure 4: Histograms of pi,0.1 values for yi > C under PMIC2 and PMIC4 methods.
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(a) yi > C with pi,0.1 ≤ 0.5 under PMID2
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(b) yi > C with pi,0.1 > 0.5 under PMID2
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Figure 5: Plots of observed yi values versus the fitted values (defined as eu
′
iβ̃ under

PMIC2 and eu
′
iβ̃del under PMID2) for large and small pi,0.1 values when the number of

imputations is m = 50.
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in both cases. When the dispersion in the noise generating distribution is small, noise
multiplication appears to provide inferences that are almost identical to those from the
unperturbed data, but naturally, the disclosure risk may be high.

Parametric statistical procedures based on synthetic data and noise multiplied data
can provide comparable inferences in many cases that we considered. The accuracy
of inferences obtained from these two different methods could usually be made nearly
equivalent by setting the noise variance appropriately. An appealing feature of noise
multiplication is its flexibility; the noise generating distribution acts as a tuning mech-
anism, and its choice allows one to balance data quality with confidentiality protection.
While inferences become less accurate when the noise variance is large, we note that the
inferences generally are still valid, i.e., confidence interval coverage probability is gener-
ally maintained at the nominal level, bias of standard deviation estimators is small, etc.
We should note that in this scenario, synthetic data also provide a tuning mechanism,
through the choice of the cut-point CI , and the number of imputations m, as discussed
in Section 5.2.

As with top coding, noise multiplied data have the feature that the data are easy for
the data producer to create. When creating the noise multiplied version of yi, the data
producer does not need to consider which regressor variables to include in ui, and yet the
methodology presented here enables a data user to perform an analysis, using the noise
multiplied version of yi, to determine which variables would be good predictors of yi.
Nevertheless, there are drawbacks of the noise multiplication method. For instance, the
proposed likelihood-based analysis is complicated for data users to apply, as it requires
EM algorithms and careful expressions for observed Fisher information. However, if
software is available, then complexity of the data analysis will not be an issue. In
our numerical evaluations, we found that the EM algorithms were quite stable, and
converged rapidly. Our methodology can be used with a noise generating distribution
such as (8), which has no mass in an interval that contains 1 (as illustrated in Sections 4
and 5), and hence provides a positive lower bound for the relative distance between the
original and noise multiplied values. As we have mentioned previously, if data related to
income are released, then the large values often require protection. In such situations,
top coding is routinely applied, and the noise multiplication methods presented in this
article can serve as an alternative method of statistical disclosure control.

It should be noted that our work deals with the analysis of a univariate response
variable whose log-scale mean is described by a multiple linear regression on a set of
non-sensitive regressor variables. In a future communication we hope to take up the
multivariate regression scenario, and the scenario of noise multiplied regressor variables.
Furthermore, the methodology for noise multiplication as presented in Section 2 could
be extended to other parametric models besides the log-normal. Finally, we note that
our proposed methodology relies on asymptotic normality of the maximum likelihood
estimator for drawing inferences; however, it would also be possible to use ideas akin to
those of Charest [7] to derive a fully Bayesian approach to obtain posterior inferences
for the unknown parameters.
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Appendix

1 Expressions for Observed Fisher Information

1.1 Case (I) Noise Multiplied Data as Defined in Section 2

Here we work under the notation of Section 2. Using Corollary 2 of Section 2, we have
the log-likelihood function as

`(θ|x1, . . . , xn,∆1, . . . ,∆n,u1, . . . ,un) =
n∑
i=1

ln kθ(xi,∆i|ui).

Thus the observed Fisher information matrix with dimension (p+ 1)× (p+ 1) is

−
n∑
i=1

(
∂2 ln kθ(xi,∆i|ui)

∂β∂β′
∂2 ln kθ(xi,∆i|ui)

∂β∂(σ2)
∂2 ln kθ(xi,∆i|ui)

∂(σ2)∂β′
∂2 ln kθ(xi,∆i|ui)

∂(σ2)2

)
θ=θ̂(I)

,

where θ̂(I) is the MLE of θ = (β, σ2) based on the data (x1,∆1,u1), . . . , (xn,∆n,un).
Defining

µi = u′iβ, ai(r) = exp

[
−
(
ln
(
xi
r

)
− µi

)2
2σ2

]
, bi(r) = ln

(xi
r

)
− µi, (17)

the expressions for the elements of the observed Fisher information matrix are:

∂ ln kθ(xi,∆i|ui)
∂βj

=
(lnxi − µi)∆iuij

σ2
+ (1−∆i)

∫ xi
C

0
ai(r)bi(r)uij 1

σ2h(r)dr∫ xi
C

0
ai(r)h(r)dr

,

∂2 ln kθ(xi,∆i|ui)
∂β2

j

= −
u2
ij

σ2
+ (1−∆i)u2

ij

[∫ xi
C

0
ai(r)b2i (r)

1
σ4h(r)dr∫ xi

C

0
ai(r)h(r)dr

−
{∫ xi

C

0
ai(r)bi(r) 1

σ2h(r)dr∫ xi
C

0
ai(r)h(r)dr

}2
]
,

∂2 ln kθ(xi,∆i|ui)
∂βj∂βj′

= −uijuij
′

σ2
+ (1−∆i)uijuij′

[∫ xi
C

0
ai(r)b2i (r)

1
σ4h(r)dr∫ xi

C

0
ai(r)h(r)dr

−
{∫ xi

C

0
ai(r)bi(r) 1

σ2h(r)dr∫ xi
C

0
ai(r)h(r)dr

}2
]
,
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∂2 ln kθ(xi,∆i|ui)
∂βj∂σ2

= − (lnxi − µi)∆iuij
σ4

+ (1−∆i)uij

[
−
∫ xi
C

0
ai(r)bi(r) 1

σ4h(r)dr∫ xi
C

0
ai(r)h(r)dr

+
1

2σ6

∫ xi
C

0
ai(r)b3i (r)h(r)dr∫ xi
C

0
ai(r)h(r)dr

− 1
2σ6

{
∫ xi
C

0
ai(r)bi(r)h(r)dr}{

∫ xi
C

0
ai(r)b2i (r)h(r)dr}{∫ xi

C

0
ai(r)h(r)dr

}2

]
,

∂ ln kθ(xi,∆i|ui)
∂(σ2)

= − 1
2σ2

+
∆i(lnxi − µi)2

2σ4
+

(1−∆i) 1
2σ4

∫ xi
C

0
ai(r)b2i (r)

h(r)
r dr∫ xi

C

0
ai(r)

h(r)
r dr

,

∂2 ln kθ(xi,∆i|ui)
(∂σ2)2

=
1

2σ4
− (lnxi − µi)2∆i

σ6
+ (1−∆i)

[
− 1
σ6

∫ xi
C

0
ai(r)b2i (r)h(r)dr∫ xi
C

0
ai(r)h(r)dr

+
1

4σ8

∫ xi
C

0
ai(r)b4i (r)h(r)dr∫ xi
C

0
ai(r)h(r)dr

− 1
4σ8

{∫ xi
C

0
ai(r)b2i (r)h(r)dr∫ xi
C

0
ai(r)h(r)dr

}2]
.

1.2 Case (II) Noise Multiplied Data as Defined in Section 2

Here we work under the notation of Section 2. Using Corollary 4 of Section 2, we have
the log-likelihood function as `(θ|x1, . . . , xn,u1, . . . ,un) =

∑n
i=1 ln kθ(xi|ui). Thus the

observed Fisher information matrix with dimension (p+ 1)× (p+ 1) is

−
n∑
i=1

(
∂2 ln kθ(xi|ui)

∂β∂β′
∂2 ln kθ(xi|ui)

∂β∂(σ2)
∂2 ln kθ(xi|ui)
∂(σ2)∂β′

∂2 ln kθ(xi|ui)
∂(σ2)2

)
θ=θ̂(II)

,

where θ̂(II) is the MLE of θ = (β, σ2) based on the data (x1,u1), . . . , (xn,un). Defining
µi, ai(r) and bi(r) as in (17), the expressions for the derivatives are:

∂ ln kθ(xi|ui)
∂βj

= uij
e−

(ln xi−µi)
2

2σ2 ln xi−µi
σ2 I(xi < C) +

∫ xi
C

0
ai(r)I(xi > 0)bi(r) 1

σ2h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

= −µiuij
σ2

+
uij
σ2

e− (ln xi−µi)
2

2σ2 (lnxi)I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)(ln xi

r )h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

 ,
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∂2 ln kθ(xi|ui)
∂β2

j

= −
u2
ij

σ2
+
u2
ij

σ4

×
e−

(ln xi−µi)
2

2σ2 (lnxi)(lnxi − µi)I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0) ln

(
xi
r

)
bi(r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

−
u2
ij

σ4

{[
e−

(ln xi−µi)
2

2σ2 (lnxi)I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0) ln
(xi
r

)
h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 (lnxi − µi)I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)bi(r)h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)h(r)dr

]−2
 ,

∂2 ln kθ(xi|ui)
∂βj∂βj′

= −uijuij
′

σ2
+
uijuij′

σ4

×
e−

(ln xi−µi)
2

2σ2 (lnxi)(lnxi − µi)I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0) ln

(
xi
r

)
bi(r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

− uijuij′

σ4

{[
e−

(ln xi−µi)
2

2σ2 (lnxi)I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0) ln
(xi
r

)
h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 (lnxi − µi)I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)bi(r)h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)h(r)dr

]−2
 ,

∂ ln kθ(xi|ui)
∂σ2

= − 1
2σ2

+
1

2σ4

e− (ln xi−µi)
2

2σ2 (lnxi − µi)2I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)b2i (r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

 ,



123

∂2 ln kθ(xi|ui)
∂βj∂σ2

=
µiuij
σ4
− uij
σ4

×

e− (ln xi−µi)
2

2σ2 (lnxi)I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0) ln

(
xi
r

)
h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

+
uij
2σ6

×
e−

(ln xi−µi)
2

2σ2 (lnxi)(lnxi − µi)2I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)(ln xi

r )b2i (r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

− uij
2σ6

{[
e−

(ln xi−µi)
2

2σ2 (lnxi)I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0) ln
(xi
r

)
h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 (lnxi − µi)2I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)b2i (r)h(r)dr

]

×

[
e−

(ln xi−µi)
2

2σ2 I(xi < C) +
∫ xi

C

0

ai(r)I(xi > 0)h(r)dr

]−2
 ,

∂2 ln kθ(xi|ui)
∂(σ2)2

=
1

2σ4

− 1
σ6

e− (ln xi−µi)
2

2σ2 (lnxi − µi)2I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)b2i (r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr


+

1
4σ8

e− (ln xi−µi)
2

2σ2 (lnxi − µi)4I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)b4i (r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(x > 0)h(r)dr


− 1

4σ8

e− (ln xi−µi)
2

2σ2 (lnxi − µi)2I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)b2i (r)h(r)dr

e−
(ln xi−µi)2

2σ2 I(xi < C) +
∫ xi
C

0
ai(r)I(xi > 0)h(r)dr

2

.

1.3 Top Coded Data as Defined in Section 3.1

Here we work under the notation of Section 3.1, and we let

wobs = {(x̃1,∆1,u1), . . . , (x̃n,∆n,un)}

denote the observed top coded data. The likelihood function for θ based on wobs can
be expressed as

L(θ|wobs) =
n∏
i=1

([
1
σ
φ

(
x̃i − u′iβ

σ

)]∆i
[
Φ̄
(
x̃i − u′iβ

σ

)]1−∆i
)
,
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and the loglikelihood as

`(θ|wobs) = − ln(σ)

(
n∑
i=1

∆i

)
+

n∑
i=1

∆i lnφ
(
x̃i − u′iβ

σ

)
+

n∑
i=1

(1−∆i) ln Φ̄
(
x̃i − u′iβ

σ

)
,

where φ(u) is the standard normal pdf , Φ(u) is the standard normal cdf , and Φ̄(u) =
1−Φ(u). Thus the observed Fisher information matrix with dimension (p+ 1)× (p+ 1)
is

−

(
∂2`(θ|wobs)
∂β∂β′

∂2`(θ|wobs)
∂β∂(σ2)

∂2`(θ|wobs)
∂(σ2)∂β′

∂2`(θ|wobs)
∂(σ2)2

)
θ=θ̂TC

,

where θ̂TC is the MLE of θ = (µ, σ2) based on the top coded data wobs. To compute
the elements of the Fisher information matrix, we shall use the following properties:
φ′(u) = −uφ(u) and

∂

∂σ2

φ
(
x̃i−u′iβ

σ

)
Φ̄( x̃i−u

′
iβ

σ )

 =
1

2σ2

φ
(
x̃i−u′iβ

σ

)(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
( x̃i − u′iβ

σ

)
−
φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
 .

By direct calculations, we get

∂`(θ|wobs)
∂βj

=
1
σ2

n∑
i=1

∆i(x̃i − u′iβ)uij +
1
σ

n∑
i=1

(1−∆i)uij
φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

) ,
∂`(θ|wobs)
∂(σ2)

= − 1
2σ2

n∑
i=1

∆i +
1

2σ4

n∑
i=1

∆i(x̃i − u′iβ)2

+
1

2σ3

n∑
i=1

(1−∆i)(x̃i − u′iβ)
φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

) ,
∂2`(θ|wobs)

∂β2
j

= − 1
σ2

n∑
i=1

∆iu
2
ij +

1
σ2

n∑
i=1

(1−∆i)uij

(
x̃i − u′iβ

σ

) φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
− 1
σ2

n∑
i=1

(1−∆i)uij

 φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
2

,

∂2`(θ|wobs)
∂βj∂βj′

= − 1
σ2

n∑
i=1

∆iuijuij′ +
1
σ2

n∑
i=1

(1−∆i)uijuij′
(
x̃i − u′iβ

σ

) φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
− 1
σ2

n∑
i=1

(1−∆i)uijuij′

 φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
2

,
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∂2`(θ|wobs)
∂βj∂(σ2)

= − 1
σ4

n∑
i=1

∆iuij(x̃i − u′iβ)− 1
2σ3

n∑
i=1

(1−∆i)uij
φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
+

1
2σ3

n∑
i=1

(1−∆i)uij

(
x̃i − u′iβ

σ

)2 φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
− 1

2σ3

n∑
i=1

(1−∆i)uij

(
x̃i − u′iβ

σ

) φ
(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
2

,

∂2`(θ|wobs)
∂(σ2)2

=
1

2σ4

n∑
i=1

∆i −
1
σ6

n∑
i=1

∆i(x̃i − u′iβ)2

− 3
4σ5

n∑
i=1

(1−∆i)
(x̃i − u′iβ)φ

(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
+

1
4σ4

n∑
i=1

(1−∆i)
(
xi − u′iβ

σ

)3
 φ

(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)


− 1
4σ4

n∑
i=1

(1−∆i)
(
xi − u′iβ

σ

)2
 φ

(
x̃i−u′iβ

σ

)
Φ̄
(
x̃i−u′iβ

σ

)
2

.
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