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Abstract

When statistical agencies release microdata to the public, a major concern
is the control of disclosure risk, while ensuring utility in the released data. Of-
ten some statistical disclosure control methods such as data swapping, mul-
tiple imputation, top coding, and perturbation with random noise, are applied
before releasing the data. This article develops methodology for data analysis
when each original observation is multiplied by random noise for the purpose
of statistical disclosure control. A parametric model is assumed, and specific
details are provided for the exponential, normal and lognormal models. Our
analysis shows that noise multiplied data can yield accurate inferences, and
detailed simulation results provide guidance as to how the dispersion of the
noise generating distribution affects accuracy of the inference.
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1. Introduction

When survey organizations and statistical agencies release microdata to
the public, a major concern is the control of disclosure risk, while simultane-
ously ensuring quality and utility of the released data. Very often some popular
statistical disclosure control methods such as data swapping, multiple imputa-
tion (MI), top coding/bottom coding (especially for income data), and perturba-
tion by random noise, are applied before releasing the data. Multiple imputa-
tion has been in existence for some time as a viable methodology to handle
missing data (see Rubin [1]). Rubin [2] proposed to use multiple imputation
as a method for sensitive data protection. The rigorous foundations for multiple
imputation as a method for data protection were further developed (e.g., Drech-
sler [3]; Drechsler and Reiter [4]; Raghunathan, Reiter, and Rubin [5]; Reiter
[6], [71, [8], [9]), and this still continues to be an active area of research. Noise
perturbation by addition or multiplication has also been advocated by some
statisticians as a possible data confidentiality protection mechanism (Hwang
[10]; Little [11]; Kim and Winkler [12]); and this also continues to be an active
area of research (e.g., Lin and Wise [13], Nayak, Sinha and Zayatz [14]; Sinha,
Nayak and Zayatz [15]).

This article provides a comprehensive account of likelihood based data
analysis methods under noise multiplication for drawing inference about un-
known parameters and specific details are provided for the exponential, normal
and lognormal models. We assume that the entire data set is noise multiplied,
and our analysis shows that noise multiplication can provide accurate results by
appropriately adjusting the variance of the noise generating distribution while
protecting privacy of respondents. Detailed simulation results provide guidance
as to how the noise variance affects accuracy of inference in several parametric
settings.

Regarding application of noise multiplied data, the first public use microdata
sample (PUMS) produced from the Survey of Business Owners (SBO) was re-
leased in August 2012 (http://www.census.gov/econ/sbo/), and noise mul-
tiplication was employed for confidentiality protection of some variables. Here
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each record corresponds to a business surveyed in the 2007 SBO, and a num-
ber of variables are provided relating to firm size, business characteristics, and
business owner characteristics. In this data product, a number of steps are
taken to protect confidentiality of businesses, and the variables relating to re-
ceipts, payroll, and employment are rounded and multiplied by random noise
prior to release [16].

Instead of applying noise multiplication (NM) to the entire data, resulting in
fully noise-perturbed data, often times there are situations when a part of the
data is sensitive and must not be released while the rest of the data can be
used/released without any compromise. This is the set up of top coding, where
values above a certain threshold C' are suppressed and only the number of
values in the data set above C are reported along with the actual values below
C. This is precisely the scenario considered by An and Little [17], and they
have developed data analysis methods based on multiple imputation of the
data above C, in combination with the original values below C. In a separate
communication we have developed in detail the likelihood based data analysis
methods under noise multiplication of the values above C, along with the actual
observations below C, and provided a comparison with An and Little’s [17]
procedure. Note that top coding is akin to the method of type | censoring which
is widely used in reliability studies.

Here is the organization of the paper. In Section 2 we provide details of
the statistical analysis for fully noise-perturbed data. After giving the general
framework for the proposed methodology in Subsection 2.1, specific results for
exponential, normal and lognormal appear in Subsections 2.2, 2.3, and 2.4,
respectively. Simulation results for estimation of mean and variance under a
lognormal distribution are presented in Section 3. Other simulation results, in-
cluding an application using data from the 2000 U.S. Current Population Survey
to illustrate the scope of the methods developed here and also a comparison
with results obtained under multiple imputation, appear in Klein, Mathew, and
Sinha [18]. We conclude the paper with some discussion in Section 4.

We end this section with two general observations. First, while standard
and often optimum parametric inference can be drawn for the three chosen
standard probability models based on unperturbed data, such an analysis is
far from being close to optimum or even simple when noise multiplication (NM)
is used. We have essentially relied on the asymptotic theory, providing enough
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computational details of the maximum likelihood estimators (MLEs) and ob-
served Fisher information matrices in each case. Second, we should point out
that our approach to modify the microdata to protect the confidentiality of all
records and carry out the analysis based on noise-modified microdata data is
different from modifying the microdata when the goal is to release tables with
frequency counts (Evans, Zayatz, and Slanta [19]). Moreover, the focus of this
paper is on data analysis methods based on noise-modified microdata rather
than on a study of the effectiveness of the procedures in protecting the data.

2. Data Analysis Under Full Noise Multiplication

2.1 General Framework

Perturbation of data by random noise for the purpose of statistical disclosure
limitation has been discussed by Hwang [10]; Little [11]; and Kim and Winkler
[12]. More recently, some results have emerged in a nonparametric setup for
estimation of the moments, and for inference about the quantiles of a variable
Y based on noise multiplied data (Nayak, Sinha and Zayatz [14]; Sinha, Nayak
and Zayatz [15]). Briefly, Nayak, Sinha, and Zayatz [14] discussed at length
various issues related to the statistical properties of random noise perturbation
methods for data masking. Under the noise multiplication scenario, issues such
as confidentiality protection, moment estimation, properties of balanced noise
distribution, and effects on data quality and privacy protection in the context of
tabular data were addressed at length. In a subsequent paper, Sinha, Nayak,
and Zayatz [15] proposed some inferential procedures for quantile estimation
based on noise multiplied micro data. It turns out that this is indeed a difficult
inferential problem, and an empirical Bayes solution based on a nonparametric
model was developed by the authors. Furthermore, Lin and Wise [13] de-
veloped methods for estimating regression parameters using noise multiplied
data.

Consider a random variable Y having the density fy(y) where fo(y) is a
parametric model with unknown parameter vector 6. Let R be a noise random
variable having the completely known density h(r). We assume that both fy(y)
and h(r) are densities of continuous distributions and we assume the support of
h(r) is nonnegative. The noise multiplied random variable is Z =Y x R and its
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probability density function (pdf) is go(z) = ffg(f)h(r)r‘ldr. Let y1,...,yn ~
iid ~'Y denote a random sample of size n from the distribution fy(y), and let
r1,...,Tn ~ iid ~ R be a set of noise random variables generated from A(r).
The noise multiplied version of y; is z; = y; x r;, and thus, z1,..., 2, can be
thought of as a random sample from the distribution g¢(z). For convenience,
lety = (y1,.- -y ¥Un), t = (r1,...,1n),and z = (z1,...,2p).

When the components of the parameter vector § have moment-type inter-
pretations based on Y, they admit simple unbiased (not necessarily optimum)
estimates based on z (Hwang [10]; Nayak, Sinha, and Zayatz [14]); however,
efficient inference for 6 based on z is far from being simple due mainly to the
possible complexity of go(2). In the context of masking by noise multiplication,
unlike our setup where R has a specified noise distribution, independent of the
data Y, Kim [20], Sullivan and Fuller [21], [22] and Little [11] dealt with the
case when R is made data-dependent. This procedure, while it keeps intact
certain basic moments of the original data, obviously renders considerable dif-
ficulty in the inference process. In this context, it is rather interesting to quote
Little [11], which indeed provides a compelling motivation for our research: Al-
though a full likelihood-based analysis may not be feasible in many settings, |
think the modeling perspective provides a useful basis for assessing simpler
approximate methods. Future work might provide more detailed applications
of the modeling approach to specific masking procedures. Our goal here is
to provide exact and approximate efficient inference procedures when noise
multiplication is used as a data masking mechanism.

Here is an outline of our approach. We assume that the information avail-
able to the data user consists of the noise multiplied data z, knowledge of the
form of the parametric model fy(y), and knowledge of the noise generating
distribution h(r). Then, to circumvent the complexity of the marginal likelihood
based on z, we apply the EM algorithm to compute the MLE of 6 (Dempster,
Laird, and Rubin [23]; Little and Rubin [24]). We derive the observed Fisher
information matrix and use it to estimate the standard deviation of the MLE.
We construct approximate 1 — « level confidence intervals for scalar parame-
ters as (MLE + z,/, x estimated standard deviation of the MLE) where z, /> =
®~1(1 — «/2) and ®() is the standard normal cumulative distribution function.
We note that it is also possible to use a bootstrap procedure to estimate the
variance of the MLE and to compute confidence intervals for unknown parame-
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ters (Efron [25]; Efron and Tibshirani [26]). To apply the EM algorithm, we frame
the analysis of noise multiplied data as a missing data problem. In order to do
s0, we define uohs = (21, .-+, 2n), Umis = (1, --sTn), Ue = (Uobs, Wmis ), 10 de-
note the observed data, missing data, and complete data, respectively. Using
the notations in the previous paragraph, the complete data likelihood can obvi-
ously be expressed as L(f|u.) =[]\, [f@ (z—) L’")} and the observed data

likelinood as L(@luons) =TT [ fo (%) 2rdar].

Taking logarithm, if £(0lu.) = InL(fluc) = 377, In fo(Z) (ignoring con-
stants), the E-step is then carried out by starting with the estimate #() (at the
t" step) and computing

Q <9|9(t)) = FEyw [Z(9|uc)|uobs] = ZEe(t) |:ln Jo <il)
i=1 !

] (1)

and the M-step is carried out by maximizing Q(#|6®)) with respect to 6, result-
ing in 81 It would be rather easy to evaluate the one dimensional integral
(with respect to 7) in Q(A|#™®)) above, either explicitly or numerically. The itera-
tion from #®) to 9(*+1) defined through the E and M-steps can then be run until
a stopping criterion is met. For many choices of fy(y), the M-step will have a
closed form. The E-step is also quite feasible since the one-dimensional inte-
grals appearing in (1) are straightforward to evaluate using numerical or Monte
Carlo methods. Details of computation of the MLEs, and the derivation of the
observed Fisher information for the exponential, normal and lognormal models
appear in the following subsections.

Remark. We have assumed above that the information available to the data
user consists of (i) noise multiplied data z, (ii) knowledge of the form of the
underlying parametric model which generates the original data, and (iii) knowl-
edge of the noise generating distribution. One of the reviewers has correctly
pointed out that the assumption about the availability of this complete knowl-
edge to the data users may not always hold! If data users are provided only with
the noise-perturbed data (to protect confidentiality) and nothing else, perhaps
not much can be done in terms of drawing valid statistical inference. However,
with the added information about the noise distribution, some features (such as
moments) of the original data can be estimated based on the noise multiplied
data (Nayak, Sinha and Zayatz [14]).
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2.2 Details for Exponential Data

We assume Y ~ fy(y) = se~ %, 0 < y < oo, where ¢ is the unknown positive

scalar parameter. Then the joint pdf go(z,7) of (Z, R) is go(z,7) = e~ 7o h(r)r—1,

and hence we have the following expressions for the marginal pdf go(z) of Z,

and for the conditional pdf go(r|z) of R, given Z = z:
1

96(2) :/0 ke o h(r)rtdr, ge(r|z) = e h(r)r”

Jo~ e h(w)yw=dw’

()

for0 < r <ooand0 < z < co. Hence the complete data likelihood L(6|u.) and
loglikelihood ¢(f]u.) can be expressed, respectively, as

1 noz 1 = 2
L(flu,) = gn € NS , L(0luc) = —nlnf — ) j—
i=1""

The E and M-steps for computing the MLE of 8 based on z are as follows.
E-step. We compute

1 < 1
Q010M) = Eyeoy [0(0]ue)[uops] = —nln 9—5 ;ziEg(t) L

zz} nlnH—EZzlw (

i=1
where (01, z;) = Egen[-|2i].

M-step. By maximizing Q(9|9 (1)) with respect to #, we obtain the following
equation which defines the sequence of EM iterations:

e = 15" (00, 2).
n
i=1

The expression for (A, ) follows directly from the conditional pdf of R, given
Z = z, which is given by (2). Note that in the special case when h(r) is the
uniform(1 — ¢, 1 + €) density, upon direct integration, (6", z) simplifies to

o) {67 00 (11¢) _ 679<t’)(1—e)i|
z

/(/)uniform(g(t)7 Z) = 1+€
1—e

- ez(t) dw
w

n 8%Ingg(z) ] .

i=1 062 0=0(z)

MLE of 6§ computed based on z. The expressions for the derivatives are:
Ongy(z) _ 1, Jo~e 7 2pdr

80 fO T h(T d7

=z h(r _ =z 2
Plngg(z) 1 22 fo e_ﬁhﬁig)dr 2 fooo e‘ﬁ’ﬁ—g)dr 2 fooc e hr(’i;)dr
e

The observed Fisher information is — [ >° where 0(z) is the

002 02 93 e e—m M) g 04 [ e~ ) g 04
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A remark is now in order because a special choice of the noise generating
distribution h(r) will lead to simplified inferential methods. We refer to this
choice of h(r) as a customized noise distribution, which is defined by

56+1

ho(r) = 5551 o

_s
r e r, 0<r<oo, §>1.

It is easy to verify that F(R) = 1, as desired, and var(R) = o2 = 5. We

choose § > 1 for a desirable level of noise variation. A direct computation
shows that the pdf of gg(z) takes the form

_(5+1 56+1

go(2) 7 x(§+6)5+2,0<z<oo.

This readily leads to the following likelihood and log-likelihood based on z:

_n = 2 - - Zi
L(0lugps) = 0 Xil;[l (g + 5) . 0(O]uops) = —nlnf—(5+2) ;m (g + 5) .

Then 6(z), the maximum likelihood estimate of ¢, can be directly computed in
this case by solving the equation:

oH(Ouos)  n 642 Xn: 2
(

=——+ =
a0 AE EAN)

207

=1
which can be simplified as

Z Zi - n
2z 4+05 S§+2

i=1

The observed Fisher information about 6 contained in the data ugs, is now
obtained as

—52(5+2)§n:

n(6+1)
92

_ {826(9|uob3)}
90° 0=0(z)

. 2
(2 +69) 0=0(z)

2.3 Details for Normal Data

_w=w? .
L_e” 752", where 6 = (u,0?) is the unknown pa-
Z—n

)2

rameter vector. Then the joint pdf go(z,7) of (Z, R)is go(z,7) = Ujge_ 27 h(r)r7i,

and hence we have the following expressions for the marginal pdf go(2) of Z,

We assume Y ~ fy(y) =

oV 2
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and for the conditional pdf gs(r|z) of R, given Z = z:

z_ 2
z u)

e h(r)r=1
57“)2 ’
Jo e =T h(w)ywtdw
3)
for0 < r < oo and —oc0 < z < oco. Hence the complete data likelihood and

loglikelihood can now be expressed, respectively, as

oo (Z*H)Q

e~ 27 h(r)r~tdr, go(r|z) =

(=) = —
A =
9 ov2r Jo

L(9|uc)fale 2 S (30)" gy = —nmo — QZ(M>

The E and M-steps for computing the MLE of 6 based on z are as follows.
E-step. We compute

Q010D = By [£(0]ue) [uons] = —nlno — 2— Z [z?wg (H(t), zz) — 2uzih (09, ) + pi?

where ¢ (0, 2;) = By [%\zl] and ¢, (09, z;) = By [%m} and expres-
sions for these two quantities can be obtained based on gy (r|z) given in (3).
M-step. By maximizing Q(0|0*)) with respect to § we obtain the following equa-
tions which define the sequence of EM iterations:

1 n
P = =N "z (9(t)72i) , [ot P ZZ (2> <9(t) ) — [ptIP,
n =1
The observed Fisher information is

n 8% Inge(z:) 0%Inge(zi)
o Z op? Oud(o?)
(62 Inge(zi) 92 lng9<zi>>
i=1 opd(c?) 9(02)2 0=0(z)

where 6(z) is the MLE of ¢ based on z. The expressions for the derivatives are:

Olngy(z) 1 157 go(z,r)Zdr
op o? 90(2)

- ug(Z)l ,

o2 olge(z

02 1n go(2) 22 o dr (Jy" ge(z,7)%)? 1
( ) [/0 gg(Z,’l“) ]

Png(x) _ 1 J aoer)G e 1

o2 204 g0(2) 202’
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(902)? o6 90(2) 10" 90(2)
1[&%%unwi—uvw] 1
408 go(2) 2047

- g |2 e E it 2 [T anein) -
L[S g0z ) (G = w)dr]fy” ge(zm) (2 — p)*dr]
20° 95(2)

LT gz ) (E —pdr 1 [ gelz7) (2 — p)dr
ot 9o(2) 206 9o(2)
1 [fo ge(z ) (2 = w)dr]lfy” ge(z.m) (2 — p)*dr]

206 92(2) '

2.4 Details for Lognormal Data

CYE m?

We assume Y ~ fy(y) = yml/g ,0 <y < oo, where 0 = (u,0?) is
the unknown parameter vector. Then the joint pdf go(z,r) of (Z, R) is go(z,7) =
1 _(nz—Inr—p?

—5=€ 2072 h(r), and hence we have the following expressions for the
marginal pdf g¢(z) of Z, and for the conditional pdf go(r|z) of R, given Z = z:

_ (nz—In rfu)z

_ (nz— ltll ;4)2 e 202 h(‘r)

z) = h(r)dr, rlz) = ,
99( ZO’\/%/ ( ) 99( | ) fooo e_wh(r)dr
(4)

for0 < r < oo and 0 < z < oo. The complete data likelihood and log-likelihood
can be expressed as

1 2
L(Bfue) = e mr BT ““,KMm»:—nmof—sEZ 2§er

The E and M-steps for computing the MLE of 6 based on z are as follows.
E-step. We compute

QO10D) = By [(0]ue)[tops] = —nlno — — Z (02 (60,2) + Lo (09,2)] - 255

(2

202

2

202’
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where 11 (01, z;) = g [In 2 |z,] and 1 (01, z;) = By [(In 2)2| 2], and these
two quantities can be readily computed based on the conditional pdf of R, given
z, mentioned in (4).

M-step. By maximizing Q(6|6")) with respect to 6, we obtain the following
equations which define the sequence of EM iterations:

1 n
pE =0 @), () Z% — (U2,

The observed Fisher information is

n 8?2 lnge(zl) 0% Ingg(2:
_ Z oud(o?)
9?2 1nge(zZ 9% In go(2i)
i=1 010(c?) (02)2 6=6(z)

where 6(z) is the MLE of 9 based on z. The expressions for the derivatives are:

(In z—In 'r—;z)Q

Olngo(z)  Jyoe ot melnrup gy

ag

0o _(nz—lnr—m? ’
O Jo e " h(r)dr
, (1217#0 Inz—Inr—p\2
Pmgo(z) 1 Joe S A L
5 frd 2 (In z nr lt)2
o T
2
Mhﬂz Inr
fO #’uh( )d?‘
so _ (nz—Inr—p)2 '
fo e T h(r)dr
w
Plglz) 1 f7e (2= I = johtrydr
5 =~ 0o _(nz—Inr—p?2
8/Lag o f() e : 202 h(’f‘)d?"

(Inz—Inr—p)2

w)2h(r)dr

4 1 J e 2 (Inz —Inr — w)3h(r)dr
— X
6 00 _(nz—nrfu2
20 Jo e i h(r)dr
0o _(nz—Inr—m? co _(nz—Inr—u?
) Jo e 222 (Inz —Inr — p)h(r)dr x [ e 202 (In(z/r) —
B ﬁ _ (n(= /r )2 2
fo . h(r)dr
_ (nz— lnr )2
dlngy(z) 1 [ e (Inz —Inr — w)?h(r)dr
2 :_72 954 o _(nzlmr—p)? )
do 20 20 fo o : h(r)dr
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o _ (nz—lnr—p?
Plnge(z) 1 1 Jo e 222 (Inz —1Inr — p)2h(r)dr
(90%)° 200 " I e (e h(r)dr

1 fo T = (Inz —Inr — p)*h(r)dr

408 I e — ey h(r)dr

_ (nz— lnr W) 2
1| [ e (lnz —1Inr — p)?h(r)dr
— s TP
4o Jo € S h(r)dr

A customized noise distribution, permitting closed form evaluation of gy(2),
is obtained as follows. Since Y follows a lognormal distribution, implying InY" ~
N(u,o?)and since Z = Y x R, we choose R ~ lognormal with In R ~ N(—”’;, P?).
Then E(R) = 1 and var(R) = o2 = ¢¥” — 1. This readily yields

2
anNN(uz:uf%,crfzaerz/JQ). (5)

Since the MLEs of . and o2 are i, = 23" | Inz;and 62 = L 3" (Inz; —
fi.)?, we obtain the MLEs of y and % as i = fi, + w and 62 = 62 — ¢%. The
estimated variance-covariance matrix of (ji.,52) is obtalned from the observed
Fisher information matrix for (u.,o?), given by

o 7 0
Iobs(MZaU,g) = ( N " > .
0 @

The estimated variances of meaningful and useful functions g¢(.,.) of . and o2
can be easily obtained by the delta method. We provide below examples of
such functions.

1. g(MZ7U§) = e“"‘# — e“z"l‘%z"l‘%
2. g(ps,02) = 220 2uto® _ 2ua4202 9%  2us+t0?
3. g(/iz,Uz) — eHteco — 6“2+§+c(037w2)%
Note that the first and second functions are, respectively, the mean and vari-
ance of the original lognormal random variable Y, expressed in terms of the
g g
mean and variance of the random variable In Z, specified in (5). Similarly, the

third function is a percentile of Y. Recall once again that data are not available
on Y, but on the perturbed quantity Z. In other words, inference on the above
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functions related to the distribution of Y can now be carried out using the data
on Z.

3. Simulation Study

In order to evaluate the finite sample performance of our proposed likeli-
hood based analysis of noise multiplied data, we performed a simulation study
in the context of the lognormal distribution with fy(y) = yo’xl/g exp[—(logy —
©w)?/(202)], y >0, 0 = (u,0?), and we fix u = 0, 02 = 1. Details of a simulation
study that includes the exponential and normal populations appear in the tech-
nical report Klein, Mathew, and Sinha [18]. In the case of the exponential and

normal populations, the major findings of the simulation study were generally

similar to those for the lognormal. Our observations on the simulation results
are based on the results appearing in Tables 1 - 4. The rows in Tables 1 - 4
show results for the following methods:

UD: Analysis based on unperturbed data with no masking.

MI: Analysis based on synthetic data created via multiple imputation using the
methodology of Reiter [6]. Here, multiple imputation is used to create
m = 50 synthetic datasets. The value m = 50 may be larger than what
is typically used in practice, but we select a large value in order to get a
clear picture of the accuracy of inference under the Ml method. Specific
details of our implementation of the MI method in this scenario appear
in the technical report Klein, Mathew, and Sinha [18]. As discussed in
Section 1, the method of creating synthetic data via multiple imputation
is a popular technique for statistical disclosure limitation. Therefore we
include this method in the simulation study so that we may compare it
with our proposed noise multiplication method.

NM10U, NM20U, NM30U, NM40U, NM50U, NM60U, NM70U, NM80U, NM90U:
These nine rows indicate analysis based on the proposed noise multipli-
cation method presented in Section 2 (specifically, Subsection 2.4 for the
lognormal population), where h(r) is the uniform(1 — ¢, 1 + €) density. For
NM10U we take € = 0.10, for NM20U we take ¢ = 0.20, and so on.

NM10C, NM20C, NM30C, NM40C, NM50C, NM60C, NM70C, NM80C, NM90C:
These nine rows indicate analysis based on the proposed noise multi-
plication method presented in Section 2 where h(r) is the customized
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noise distribution for the lognormal as defined in Subsection 2.4 (that
is, nR ~ N(—wg,qﬁ)). For NM10C we choose 4 so that the variance
of R equals the variance of the uniform(1 — 0.1,1 + 0.1) distribution, for
NM20C we choose 1 so that the variance of R equals the variance of the
uniform(1 — 0.2, 1 + 0.2) distribution, and so on.

Tables 1 and 2 show results when the parameter of interest is u, and Ta-
bles 3 and 4 show results when the parameter of interest is o2. Tables 1 and
3 give results for the sample sizes n = 30 and 50, respectively; while Tables
2 and 4 show results for n = 100 and 200, respectively. For the point estima-
tors of the parameters, the following quantities were estimated by Monte Carlo
simulation based on 5000 iterations: the root mean squared error (RMSE),
bias, standard deviation (SD), mean of estimated standard deviation (S/]\)),
coverage probability of the nominal 0.95 level confidence interval (Cvg.), and
expected length of the confidence interval relative to the expected length of
the confidence interval computed on the unperturbed data (Rel. Len.). To fa-
cilitate a comparison of results, the results for unperturbed data are based
on MLEs, observed Fisher information, and confidence intervals of the form
(MLE +1.96 x estimated standard deviation of the MLE). For the EM algorithm,
the stopping criterion used was max {|u() — p(+D| | |(0c®)2 — (o(t+D)2|} <
10~5. The statistical computing software R [27] was used for all computations,
and the integrate function in R was used to evaluate the required univariate in-
tegrals that could not be obtained in a closed form. The following is a summary
of the findings of the simulation study.

1. For estimating u, Tables 1 and 2 indicate that the noise multiplication
method gives valid results in the chosen simulation settings. In each of
the scenarios of Tables 1 and 2, the bias is close to zero, SD for the noise
multiplication method is similar to SD for the unperturbed data, and Cvg.
is close to the nominal coverage probability of 0.95. Comparing SD and
SD in Tables 1 and 2, we see that under the noise multiplication method,
the bias in the estimated standard deviation is generally small. As one
would expect for noise multiplication, RMSE, SD, and Rel. Len. increase
as the dispersion in the noise generating distribution increases.

2. For estimating o2, most of the observations noted above (for the case of
estimating p) continue to hold, except that in Table 3 when n = 30 and
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50, we notice that Cvg. under the noise multiplication method is below the
nominal level of 0.95. However, Cvg. under the unperturbed data (which
is also based on a Wald-type confidence interval) is also below 0.95 be-
cause the sample sizes n = 30 and 50 are too small for the sampling
distribution of the MLE of 2 to be well approximated by normality. Thus,
in Table 3, even though the noise multiplication method yields confidence
intervals with low coverage, it still provides inference comparable to that
from unperturbed data.

3. Under noise multiplication we find that for the methods NM10U and NM10C
where the dispersion in the noise generating distribution is small, the re-
sults are nearly identical to the results for the unperturbed data.

4. Generally we observe that when the variance of the noise generating
distribution is small, the customized noise distribution of Subsection 2.4,
and the uniform(1 — ¢, 1 + €) noise distribution both tend to give similar
results. As this variance increases though, we find that the customized
noise distribution yields more accurate inference than the uniform(1 —
€,1 + €) noise.

5. In all the simulation settings considered, the Ml method tends to give valid
results in terms of the quantities considered in Tables 1 and 4. In each
case of noise multiplication, one can select a value for the variance of the
noise distribution, at which noise multiplication gives similar results as Ml.
For instance, in Table 1 when n = 50, the methods NM50U and NM50C
give similar inference as the Ml method. We also notice that in Table
3, while the unperturbed data and noise multiplication method give Cvg.
below the nominal value, the Ml method maintains the nominal coverage
probability more closely.

6. Finally, we remark that the EM algorithm used to calculate the MLE tended
to be quite stable, and also converged rapidly.

4. Discussion

How to alter data before releasing it to the public continues to be a vital
concern of statistical agencies in order to minimize the risk of disclosure. How-
ever, this goal has to be balanced with the interest of preserving the utility of
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the released data. Our main goal in this paper has been to develop rigorous
data analysis methodology for noise multiplied data under noise multiplication
of each observation in the dataset. We have developed all the necessary theo-
retical results for analyzing noise multiplied data, when the original (unmasked)
sample arises from three standard parametric distributions: exponential, nor-
mal and lognormal. Furthermore, our basic framework is quite general, and
can be applied to other parametric models as well. Our simulation results in-
dicate that when a large noise variance providing a high degree of protection
against disclosure is used, inference is typically less accurate but still valid (i.e.,
bias is small, confidence interval coverage probability is maintained at the nom-
inal level, etc.). The results of this article provide guidance regarding the effect
of noise variance on data quality, however the impact of the noise variance
on disclosure risk requires further investigation. It should be noted that the
methodology presented in Section 2 applies to a general noise generating dis-
tribution h(r). Therefore, the statistical agency can choose this distribution in
order to achieve a desired balance between accuracy of inference and protec-
tion against disclosure. For instance, a choice of i(r) that has no mass around
1 would provide a lower bound on the relative distance between each original
and its noise multiplied value. An appealing feature of noise multiplication is its
flexibility; the noise distribution h(r) acts as a tuning mechanism.
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Table 1: Inference for the log scale mean . based on fully masked LN (u = 0,02 = 1) data

Results for n = 30

Results for n = 50

RMSE Bias  SD SD Cvg. Rel. | RMSE Bias SD SD Cvg. Rel

x10%  x10° x103 x 103 % Len. x10%  x10° x103 x103 % Len.
uD 180.08 -0.10 180.08 178.24 9436 1.000 | 142.92 0.95 14292 139.29 94.06 1.000
MI 184.65 -0.71 184.65 188.34 9492 1.057 | 14579 1.19 14578 145.04 94.64 1.041
NM10U | 180.29 -0.32 180.29 17855 94.18 1.002 | 143.21 0.90 143.21 139.51 94.06 1.002
NM10C | 180.46 -0.20 180.46 178.58 94.32 1.002 | 143.27 1.02 143.26 139.52 94.14 1.002
NM20U | 180.99 -0.37 180.99 179.34 93.98 1.006 | 143.30 1.07 143.29 140.24 94.10 1.007
NM20C | 181.34 -0.13 181.34 179.35 94.10 1.006 | 143.90 0.86 143.90 140.26 93.90 1.007
NM30U | 183.34 0.36 183.34 180.93 94.20 1.015 | 144.94 1.68 144.93 14152 94.22 1.016
NM30C | 182.12 0.77 182.11 180.89 94.42 1.015| 14526 1.37 14525 141.35 93.88 1.015
NM40U | 184.28 0.46 184.28 183.26 94.32 1.028 | 145.78 1.85 14577 143.30 94.42 1.029
NM40C | 184.37 -0.38 184.37 182.93 94.16 1.026 | 146.27 1.28 146.26 142.78 94.24 1.025
NM50U | 189.38 -0.24 189.38 186.52 94.10 1.046 | 149.82 0.85 149.81 14560 93.96 1.045
NM50C | 188.88 -0.51 188.88 185.02 94.40 1.038 | 149.54 1.31 149.54 144.87 93.80 1.040
NM60U | 193.14 -0.34 193.14 190.76 94.24 1.070 | 152.49 1.37 152.48 149.14 93.82 1.071
NM60C | 189.61 0.43 189.61 188.21 94.10 1.056 | 151.02 0.31 151.02 147.18 93.96 1.057
NM70U | 199.34 113 199.34 196.17 93.90 1.101 | 159.06 -0.00 159.06 153.78 93.44 1.104
NM70C | 195.07 -1.62 195.06 191.19 93.88 1.073 | 153.84 1.00 153.83 149.67 93.90 1.075
NM8OU | 207.71 2.08 207.70 204.14 93.90 1.145| 165.26 0.68 165.26 159.88 94.06 1.148
NM8OC | 199.22 0.09 199.22 194.36 93.42 1.090 | 157.14 0.27 157.14 152.23 93.92 1.093
NMOOU | 223.68 3.98 223.64 21741 93.98 1.220 | 17253 211 17252 170.03 94.06 1.221
NM90C | 201.57 1.48 201.56 198.56 94.04 1.114 | 159.67 1.63 159.66 154.99 93.56 1.113
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Table 3: Inference for the log scale variance % based on fully masked LN (u = 0,02 = 1) data

Results for n = 30

Results for n = 50

RMSE  Bias SD SD Cvg. Rel. | RMSE Bias SD SD Cvg. Rel

x 103 x103 x103 x 103 % Len. x 103 x 103 x103 x 103 % Len.
uD 25750 -30.14 255.73 250.42 89.60 1.000 | 199.30 -19.91 198.30 196.02 91.48 1.000
MI 283.05 40.68 280.11 293.92 94.14 1.174 | 211.95 21.45 210.86 216.95 9424 1.107
NM10U | 258.02 -30.13 256.25 251.28 89.54 1.003 | 200.32 -20.09 199.31 196.65 91.34 1.003
NM10C | 257.82 -29.83 256.09 251.36 89.48 1.004 | 200.29 -19.97 199.29 196.67 91.32 1.003
NM20U | 260.03 -31.82 258.07 253.48 89.20 1.012 | 202.43 -20.00 201.44 198.71 91.46 1.014
NM20C | 261.97 -31.11 260.12 25359 89.72 1.013 | 201.96 -19.44 201.02 198.76 91.58 1.014
NM30U | 264.21 -32.18 262.25 257.93 89.64 1.030 | 206.21 -19.50 205.28 202.32 91.58 1.032
NM30C | 266.40 -30.53 264.65 257.95 89.56 1.030 | 204.69 -20.33 203.68 201.85 91.56 1.030
NM40U | 272.10 -32.54 270.14 26454 89.38 1.056 | 210.89 -20.43 209.90 207.30 91.52 1.058
NM40C | 272.07 -30.22 270.38 263.81 89.48 1.053 | 209.70 -22.07 208.53 205.98 91.48 1.051
NM50U | 279.67 -32.89 277.73 273.75 90.14 1.093 | 215.93 -24.10 21458 213.73 91.60 1.090
NM50C | 279.85 -34.70 277.69 269.91 89.10 1.078 | 213.91 -20.04 212.97 212.00 91.88 1.082
NM60U | 299.21 -34.27 297.24 28598 88.96 1.142 | 227.60 -22.26 22651 223.82 91.62 1.142
NM60C | 286.55 -32.00 284.76 279.20 89.24 1.115|221.25 -19.18 22042 218.83 91.76 1.116
NM70U | 309.44 -42.62 306.50 300.97 89.40 1.202 | 238.43 -22.68 237.34 237.02 91.52 1.209
NM70C | 298.14 -3521 296.06 288.17 89.60 1.151 | 230.41 -19.67 229.57 226.32 91.50 1.155
NM8OU | 334.66 -49.35 331.00 322.94 88.10 1.290 | 260.19 -30.19 258.44 253.81 90.72 1.295
NM8OC | 305.85 -40.30 303.19 297.72 89.56 1.189 | 238.91 -22.74 237.82 234.13 91.32 1.194
NM9OU | 366.82 -52.33 363.06 356.45 88.38 1.423 | 286.05 -30.25 284.45 280.63 91.30 1.432
NM9OC | 317.95 -35.60 315.95 310.72 89.22 1.241 | 247.29 -2557 24596 242.69 91.48 1.238
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