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Abstract
When statistical agencies release microdata to the public, a major concern

is the control of disclosure risk, while ensuring utility in the released data. Of-

ten some statistical disclosure control methods such as data swapping, mul-

tiple imputation, top coding, and perturbation with random noise, are applied

before releasing the data. This article develops methodology for data analysis

when each original observation is multiplied by random noise for the purpose

of statistical disclosure control. A parametric model is assumed, and specific

details are provided for the exponential, normal and lognormal models. Our

analysis shows that noise multiplied data can yield accurate inferences, and

detailed simulation results provide guidance as to how the dispersion of the

noise generating distribution affects accuracy of the inference.
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1. Introduction

When survey organizations and statistical agencies release microdata to

the public, a major concern is the control of disclosure risk, while simultane-

ously ensuring quality and utility of the released data. Very often some popular

statistical disclosure control methods such as data swapping, multiple imputa-

tion (MI), top coding/bottom coding (especially for income data), and perturba-

tion by random noise, are applied before releasing the data. Multiple imputa-

tion has been in existence for some time as a viable methodology to handle

missing data (see Rubin [1]). Rubin [2] proposed to use multiple imputation

as a method for sensitive data protection. The rigorous foundations for multiple

imputation as a method for data protection were further developed (e.g., Drech-

sler [3]; Drechsler and Reiter [4]; Raghunathan, Reiter, and Rubin [5]; Reiter

[6], [7], [8], [9]), and this still continues to be an active area of research. Noise

perturbation by addition or multiplication has also been advocated by some

statisticians as a possible data confidentiality protection mechanism (Hwang

[10]; Little [11]; Kim and Winkler [12]); and this also continues to be an active

area of research (e.g., Lin and Wise [13], Nayak, Sinha and Zayatz [14]; Sinha,

Nayak and Zayatz [15]).

This article provides a comprehensive account of likelihood based data

analysis methods under noise multiplication for drawing inference about un-

known parameters and specific details are provided for the exponential, normal

and lognormal models. We assume that the entire data set is noise multiplied,

and our analysis shows that noise multiplication can provide accurate results by

appropriately adjusting the variance of the noise generating distribution while

protecting privacy of respondents. Detailed simulation results provide guidance

as to how the noise variance affects accuracy of inference in several parametric

settings.

Regarding application of noise multiplied data, the first public use microdata

sample (PUMS) produced from the Survey of Business Owners (SBO) was re-

leased in August 2012 (http://www.census.gov/econ/sbo/), and noise mul-

tiplication was employed for confidentiality protection of some variables. Here
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each record corresponds to a business surveyed in the 2007 SBO, and a num-

ber of variables are provided relating to firm size, business characteristics, and

business owner characteristics. In this data product, a number of steps are

taken to protect confidentiality of businesses, and the variables relating to re-

ceipts, payroll, and employment are rounded and multiplied by random noise

prior to release [16].

Instead of applying noise multiplication (NM) to the entire data, resulting in

fully noise-perturbed data, often times there are situations when a part of the

data is sensitive and must not be released while the rest of the data can be

used/released without any compromise. This is the set up of top coding, where

values above a certain threshold C are suppressed and only the number of

values in the data set above C are reported along with the actual values below

C. This is precisely the scenario considered by An and Little [17], and they

have developed data analysis methods based on multiple imputation of the

data above C, in combination with the original values below C. In a separate

communication we have developed in detail the likelihood based data analysis

methods under noise multiplication of the values above C, along with the actual

observations below C, and provided a comparison with An and Little’s [17]

procedure. Note that top coding is akin to the method of type I censoring which

is widely used in reliability studies.

Here is the organization of the paper. In Section 2 we provide details of

the statistical analysis for fully noise-perturbed data. After giving the general

framework for the proposed methodology in Subsection 2.1, specific results for

exponential, normal and lognormal appear in Subsections 2.2, 2.3, and 2.4,

respectively. Simulation results for estimation of mean and variance under a

lognormal distribution are presented in Section 3. Other simulation results, in-

cluding an application using data from the 2000 U.S. Current Population Survey

to illustrate the scope of the methods developed here and also a comparison

with results obtained under multiple imputation, appear in Klein, Mathew, and

Sinha [18]. We conclude the paper with some discussion in Section 4.

We end this section with two general observations. First, while standard

and often optimum parametric inference can be drawn for the three chosen

standard probability models based on unperturbed data, such an analysis is

far from being close to optimum or even simple when noise multiplication (NM)

is used. We have essentially relied on the asymptotic theory, providing enough
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computational details of the maximum likelihood estimators (MLEs) and ob-

served Fisher information matrices in each case. Second, we should point out

that our approach to modify the microdata to protect the confidentiality of all

records and carry out the analysis based on noise-modified microdata data is

different from modifying the microdata when the goal is to release tables with

frequency counts (Evans, Zayatz, and Slanta [19]). Moreover, the focus of this

paper is on data analysis methods based on noise-modified microdata rather

than on a study of the effectiveness of the procedures in protecting the data.

2. Data Analysis Under Full Noise Multiplication

2.1 General Framework

Perturbation of data by random noise for the purpose of statistical disclosure

limitation has been discussed by Hwang [10]; Little [11]; and Kim and Winkler

[12]. More recently, some results have emerged in a nonparametric setup for

estimation of the moments, and for inference about the quantiles of a variable

Y based on noise multiplied data (Nayak, Sinha and Zayatz [14]; Sinha, Nayak

and Zayatz [15]). Briefly, Nayak, Sinha, and Zayatz [14] discussed at length

various issues related to the statistical properties of random noise perturbation

methods for data masking. Under the noise multiplication scenario, issues such

as confidentiality protection, moment estimation, properties of balanced noise

distribution, and effects on data quality and privacy protection in the context of

tabular data were addressed at length. In a subsequent paper, Sinha, Nayak,

and Zayatz [15] proposed some inferential procedures for quantile estimation

based on noise multiplied micro data. It turns out that this is indeed a difficult

inferential problem, and an empirical Bayes solution based on a nonparametric

model was developed by the authors. Furthermore, Lin and Wise [13] de-

veloped methods for estimating regression parameters using noise multiplied

data.

Consider a random variable Y having the density fθ(y) where fθ(y) is a

parametric model with unknown parameter vector θ. Let R be a noise random

variable having the completely known density h(r). We assume that both fθ(y)

and h(r) are densities of continuous distributions and we assume the support of

h(r) is nonnegative. The noise multiplied random variable is Z = Y ×R and its



Klein et. al. 5

probability density function (pdf ) is gθ(z) =
∫
fθ( zr )h(r)r

−1dr. Let y1, . . . , yn ∼
iid ∼ Y denote a random sample of size n from the distribution fθ(y), and let

r1, . . . , rn ∼ iid ∼ R be a set of noise random variables generated from h(r).

The noise multiplied version of yi is zi = yi × ri, and thus, z1, . . . , zn can be

thought of as a random sample from the distribution gθ(z). For convenience,

let y = (y1, . . . , yn), r = (r1, . . . , rn), and z = (z1, . . . , zn).

When the components of the parameter vector θ have moment-type inter-

pretations based on Y , they admit simple unbiased (not necessarily optimum)

estimates based on z (Hwang [10]; Nayak, Sinha, and Zayatz [14]); however,

efficient inference for θ based on z is far from being simple due mainly to the

possible complexity of gθ(z). In the context of masking by noise multiplication,

unlike our setup where R has a specified noise distribution, independent of the

data Y , Kim [20], Sullivan and Fuller [21], [22] and Little [11] dealt with the

case when R is made data-dependent. This procedure, while it keeps intact

certain basic moments of the original data, obviously renders considerable dif-

ficulty in the inference process. In this context, it is rather interesting to quote

Little [11], which indeed provides a compelling motivation for our research: Al-

though a full likelihood-based analysis may not be feasible in many settings, I

think the modeling perspective provides a useful basis for assessing simpler

approximate methods. Future work might provide more detailed applications

of the modeling approach to specific masking procedures. Our goal here is

to provide exact and approximate efficient inference procedures when noise

multiplication is used as a data masking mechanism.

Here is an outline of our approach. We assume that the information avail-

able to the data user consists of the noise multiplied data z, knowledge of the

form of the parametric model fθ(y), and knowledge of the noise generating

distribution h(r). Then, to circumvent the complexity of the marginal likelihood

based on z, we apply the EM algorithm to compute the MLE of θ (Dempster,

Laird, and Rubin [23]; Little and Rubin [24]). We derive the observed Fisher

information matrix and use it to estimate the standard deviation of the MLE.

We construct approximate 1 − α level confidence intervals for scalar parame-

ters as (MLE ± zα/2 × estimated standard deviation of the MLE) where zα/2 =

Φ−1(1 − α/2) and Φ(·) is the standard normal cumulative distribution function.

We note that it is also possible to use a bootstrap procedure to estimate the

variance of the MLE and to compute confidence intervals for unknown parame-
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ters (Efron [25]; Efron and Tibshirani [26]). To apply the EM algorithm, we frame

the analysis of noise multiplied data as a missing data problem. In order to do

so, we define uobs = (z1, ...., zn), umis = (r1, ...., rn), uc = (uobs,umis), to de-

note the observed data, missing data, and complete data, respectively. Using

the notations in the previous paragraph, the complete data likelihood can obvi-

ously be expressed as L(θ|uc) =
∏n
i=1

[
fθ

(
zi
ri

)
h(ri)
ri

]
and the observed data

likelihood as L(θ|uobs) =
∏n
i=1

[∫
fθ

(
zi
ri

)
h(ri)
ri

dri

]
.

Taking logarithm, if ℓ(θ|uc) = lnL(θ|uc) =
∑n
i=1 ln fθ( ziri ) (ignoring con-

stants), the E-step is then carried out by starting with the estimate θ(t) (at the

tth step) and computing

Q
(
θ|θ(t)

)
= Eθ(t) [ℓ(θ|uc)|uobs] =

n∑
i=1

Eθ(t)

[
ln fθ

(
zi
ri

) ∣∣∣zi] (1)

and the M -step is carried out by maximizing Q(θ|θ(t)) with respect to θ, result-

ing in θ(t+1). It would be rather easy to evaluate the one dimensional integral

(with respect to r) in Q(θ|θ(t)) above, either explicitly or numerically. The itera-

tion from θ(t) to θ(t+1) defined through the E and M -steps can then be run until

a stopping criterion is met. For many choices of fθ(y), the M-step will have a

closed form. The E-step is also quite feasible since the one-dimensional inte-

grals appearing in (1) are straightforward to evaluate using numerical or Monte

Carlo methods. Details of computation of the MLEs, and the derivation of the

observed Fisher information for the exponential, normal and lognormal models

appear in the following subsections.

Remark. We have assumed above that the information available to the data

user consists of (i) noise multiplied data z, (ii) knowledge of the form of the

underlying parametric model which generates the original data, and (iii) knowl-

edge of the noise generating distribution. One of the reviewers has correctly

pointed out that the assumption about the availability of this complete knowl-

edge to the data users may not always hold! If data users are provided only with

the noise-perturbed data (to protect confidentiality) and nothing else, perhaps

not much can be done in terms of drawing valid statistical inference. However,

with the added information about the noise distribution, some features (such as

moments) of the original data can be estimated based on the noise multiplied

data (Nayak, Sinha and Zayatz [14]).
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2.2 Details for Exponential Data

We assume Y ∼ fθ(y) = 1
θ e

− y
θ , 0 < y < ∞, where θ is the unknown positive

scalar parameter. Then the joint pdf gθ(z, r) of (Z,R) is gθ(z, r) = 1
θ e

− z
rθ h(r)r−1,

and hence we have the following expressions for the marginal pdf gθ(z) of Z,

and for the conditional pdf gθ(r|z) of R, given Z = z:

gθ(z) =
∫ ∞

0

1
θ
e−

z
rθ h(r)r−1dr, gθ(r|z) =

e−
z
rθ h(r)r−1∫∞

0
e−

z
wθ h(w)w−1dw

, (2)

for 0 < r <∞ and 0 < z <∞. Hence the complete data likelihood L(θ|uc) and

loglikelihood ℓ(θ|uc) can be expressed, respectively, as

L(θ|uc) =
1
θn
e
− 1
θ

∑n
i=1

zi
ri , ℓ(θ|uc) = −n ln θ − 1

θ

n∑
i=1

zi
ri
.

The E and M -steps for computing the MLE of θ based on z are as follows.

E-step. We compute

Q(θ|θ(t)) = Eθ(t) [ℓ(θ|uc)|uobs] = −n ln θ−1
θ

n∑
i=1

ziEθ(t)

[
1
ri

∣∣∣zi] = −n ln θ−1
θ

n∑
i=1

ziψ
(
θ(t), zi

)
where ψ(θ(t), zi) = Eθ(t) [

1
ri
|zi].

M-step. By maximizing Q(θ|θ(t)) with respect to θ, we obtain the following

equation which defines the sequence of EM iterations:

θ(t+1) =
1
n

n∑
i=1

ziψ
(
θ(t), zi

)
.

The expression for ψ(θ(t), z) follows directly from the conditional pdf of R, given

Z = z, which is given by (2). Note that in the special case when h(r) is the

uniform(1 − ϵ, 1 + ϵ) density, upon direct integration, ψ(θ(t), z) simplifies to

ψuniform(θ(t), z) =
θ(t)

z

[
e
− z

θ(t)(1+ϵ) − e
− z

θ(t)(1−ϵ)

]
∫ 1+ϵ

1−ϵ e
− z

wθ(t) dw
w

.

The observed Fisher information is −
[∑n

i=1
∂2 ln gθ(zi)

∂θ2

]
θ=θ̂(z)

where θ̂(z) is the

MLE of θ computed based on z. The expressions for the derivatives are:

∂ ln gθ(z)
∂θ

= −1
θ

+

∫∞
0
e−

z
rθ
zh(r)
r2θ2 dr∫∞

0
e−

z
rθ
h(r)
r dr

,

∂2 ln gθ(z)
∂θ2

=
1
θ2

− 2z
θ3

∫∞
0
e−

z
rθ
h(r)
r2 dr∫∞

0
e−

z
rθ
h(r)
r dr

+
z2

θ4

∫∞
0
e−

z
rθ
h(r)
r3 dr∫∞

0
e−

z
rθ
h(r)
r dr

− z2

θ4

[∫∞
0
e−

z
rθ
h(r)
r2 dr∫∞

0
e−

z
rθ
h(r)
r dr

]2

.
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A remark is now in order because a special choice of the noise generating

distribution h(r) will lead to simplified inferential methods. We refer to this

choice of h(r) as a customized noise distribution, which is defined by

hδ(r) =
δδ+1

Γ(δ + 1)
r−δ−2e−

δ
r , 0 < r <∞, δ > 1.

It is easy to verify that E(R) = 1, as desired, and var(R) = σ2
r = 1

δ−1 . We

choose δ > 1 for a desirable level of noise variation. A direct computation

shows that the pdf of gθ(z) takes the form

gθ(z) =
δ + 1
θ

× δδ+1

( zθ + δ)δ+2
, 0 < z <∞.

This readily leads to the following likelihood and log-likelihood based on z:

L(θ|uobs) = θ−n×
n∏
i=1

(zi
θ

+ δ
)−δ−2

, ℓ(θ|uobs) = −n ln θ−(δ+2)
n∑
i=1

ln
(zi
θ

+ δ
)
.

Then θ̂(z), the maximum likelihood estimate of θ, can be directly computed in

this case by solving the equation:

∂ℓ(θ|uobs)
∂θ

= −n
θ

+
δ + 2
θ2

n∑
i=1

zi
( ziθ + δ)

= 0,

which can be simplified as

n∑
i=1

zi
zi + θδ

=
n

δ + 2
.

The observed Fisher information about θ contained in the data uobs, is now

obtained as

−
[
∂2ℓ(θ|uobs)

∂θ2

]
θ=θ̂(z)

=

[
n(δ + 1)

θ2
− δ2(δ + 2)

n∑
i=1

1
(zi + θδ)2

]
θ=θ̂(z)

.

2.3 Details for Normal Data

We assume Y ∼ fθ(y) = 1
σ
√

2π
e−

(y−µ)2

2σ2 , where θ = (µ, σ2) is the unknown pa-

rameter vector. Then the joint pdf gθ(z, r) of (Z,R) is gθ(z, r) = 1
σ
√

2π
e−

( z
r
−µ)2

2σ2 h(r)r−1,

and hence we have the following expressions for the marginal pdf gθ(z) of Z,
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and for the conditional pdf gθ(r|z) of R, given Z = z:

gθ(z) =
1

σ
√

2π

∫ ∞

0

e−
( z
r
−µ)2

2σ2 h(r)r−1dr, gθ(r|z) =
e−

( z
r
−µ)2

2σ2 h(r)r−1∫∞
0
e−

( z
w

−µ)2

2σ2 h(w)w−1dw

,

(3)

for 0 < r < ∞ and −∞ < z < ∞. Hence the complete data likelihood and

loglikelihood can now be expressed, respectively, as

L(θ|uc) =
1
σn
e
− 1

2σ2
∑n
i=1

(
zi
ri

−µ
)2

, ℓ(θ|uc) = −n lnσ − 1
2σ2

n∑
i=1

(
zi
ri

− µ

)2

.

The E and M-steps for computing the MLE of θ based on z are as follows.

E-step. We compute

Q(θ|θ(t)) = Eθ(t) [ℓ (θ|uc) |uobs] = −n lnσ − 1
2σ2

n∑
i=1

[
z2
i ψ2

(
θ(t), zi

)
− 2µziψ1(θ(t), zi) + µ2

]
,

where ψ1

(
θ(t), zi

)
= Eθ(t)

[
1
ri
|zi
]

and ψ2

(
θ(t), zi

)
= Eθ(t)

[
1
r2i
|zi
]
, and expres-

sions for these two quantities can be obtained based on gθ(r|z) given in (3).

M-step. By maximizing Q(θ|θ(t)) with respect to θ we obtain the following equa-

tions which define the sequence of EM iterations:

µ(t+1) =
1
n

n∑
i=1

ziψ1

(
θ(t), zi

)
, [σ(t+1)]2 =

1
n

n∑
i=1

z2
i ψ2

(
θ(t), zi

)
− [µ(t+1)]2.

The observed Fisher information is

−
n∑
i=1

(
∂2 ln gθ(zi)

∂µ2
∂2 ln gθ(zi)
∂µ∂(σ2)

∂2 ln gθ(zi)
∂µ∂(σ2)

∂2 ln gθ(zi)
∂(σ2)2

)
θ= ˆθ(z)

where θ̂(z) is the MLE of θ based on z. The expressions for the derivatives are:

∂ ln gθ(z)
∂µ

=
1
σ2

[∫∞
0
gθ(z, r) zrdr
gθ(z)

− µg(z)

]
,

∂2 ln gθ(z)
∂µ2

=
z2

σ4gθ(z)

[∫ ∞

0

gθ(z, r)
dr

r2
−

(
∫∞
0
gθ(z, r)drr )2

gθ(z)

]
− 1
σ2
,

∂ ln gθ(z)
∂σ2

=
1

2σ4

∫∞
0
gθ(z, r)( zr − µ)2dr

gθ(z)
− 1

2σ2
,
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∂2 ln gθ(z)
(∂σ2)2

= − 1
σ6

∫∞
0
gθ(z, r)( zr − µ)2dr

gθ(z)
+

1
4σ8

∫∞
0
gθ(z, r)( zr − µ)4dr

gθ(z)

− 1
4σ8

[∫∞
0
gθ(z, r)( zr − µ)2dr

gθ(z)

]2

+
1

2σ4
,

∂2 ln gθ(z)
∂µ∂σ2

=
∂

∂µ

[
1

2σ4

∫∞
0
gθ(z, r)( zr − µ)2dr

gθ(z)

]

=
1

2σ4gθ(z)

[
−2
∫ ∞

0

gθ(z, r)(
z

r
− µ)dr +

1
σ2

∫ ∞

0

gθ(z, r)(
z

r
− µ)3dr

]
− 1

2σ6

[∫∞
0
gθ(z, r)( zr − µ)dr][

∫∞
0
gθ(z, r)( zr − µ)2dr

]
g2
θ(z)

= − 1
σ4

∫∞
0
gθ(z, r)( zr − µ)dr

gθ(z)
+

1
2σ6

∫∞
0
gθ(z, r)( zr − µ)3dr

gθ(z)

− 1
2σ6

[
∫∞
0
gθ(z, r)( zr − µ)dr][

∫∞
0
gθ(z, r)( zr − µ)2dr]

g2
θ(z)

.

2.4 Details for Lognormal Data

We assume Y ∼ fθ(y) = 1
yσ

√
2π
e−

(ln y−µ)2

2σ2 , 0 < y < ∞, where θ = (µ, σ2) is

the unknown parameter vector. Then the joint pdf gθ(z, r) of (Z,R) is gθ(z, r) =
1

zσ
√

2π
e−

(ln z−ln r−µ)2

2σ2 h(r), and hence we have the following expressions for the

marginal pdf gθ(z) of Z, and for the conditional pdf gθ(r|z) of R, given Z = z:

gθ(z) =
1

zσ
√

2π

∫ ∞

0

e−
(ln z−ln r−µ)2

2σ2 h(r)dr, gθ(r|z) =
e−

(ln z−ln r−µ)2

2σ2 h(r)∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr
,

(4)

for 0 < r < ∞ and 0 < z < ∞. The complete data likelihood and log-likelihood

can be expressed as

L(θ|uc) =
1
σn
e
− 1

2σ2
∑n
i=1(ln

zi
ri

−µ)2
, ℓ(θ|uc) = −n lnσ− 1

2σ2

n∑
i=1

(ln
zi
ri

)2+
µ

σ2

n∑
i=1

ln
zi
ri
−nµ

2

2σ2
.

The E and M-steps for computing the MLE of θ based on z are as follows.

E-step. We compute

Q(θ|θ(t)) = Eθ(t) [ℓ(θ|uc)|uobs] = −n lnσ − 1
2σ2

n∑
i=1

[
ψ2

(
θ(t), zi

)
+

µ

σ2
ψ1

(
θ(t), zi

)]
− nµ2

2σ2
,
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where ψ1(θ(t), zi) = Eθ(t) [ln
zi
ri
|zi] and ψ2(θ(t), zi) = Eθ(t) [(ln

zi
ri

)2|zi], and these

two quantities can be readily computed based on the conditional pdf ofR, given

z, mentioned in (4).

M-step. By maximizing Q(θ|θ(t)) with respect to θ, we obtain the following

equations which define the sequence of EM iterations:

µ(t+1) =
1
n

n∑
i=1

ψ1(θ(t), zi), (σ(t+1))2 =
1
n

n∑
i=1

ψ2(θ(t), zi) − (µ(t+1))2.

The observed Fisher information is

−
n∑
i=1

(
∂2 ln gθ(zi)

∂µ2
∂2 ln gθ(zi)
∂µ∂(σ2)

∂2 ln gθ(zi)
∂µ∂(σ2)

∂2 ln gθ(zi)
∂(σ2)2

)
θ= ˆθ(z)

where θ̂(z) is the MLE of θ based on z. The expressions for the derivatives are:

∂ ln gθ(z)
∂µ

=

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 ln z−ln r−µ
σ2 h(r)dr∫∞

0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr
,

∂2 ln gθ(z)
∂µ2

= − 1
σ2

+

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 ( ln z−ln r−µ
σ2 )2h(r)dr∫∞

0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

−

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 ln z−ln r−µ
σ2 h(r)dr∫∞

0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

2

,

∂2 ln gθ(z)
∂µ∂σ2

= − 1
σ4

×
∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

+
1

2σ6
×
∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)3h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

− 1
2σ6

[∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)h(r)dr ×
∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln(z/r) − µ)2h(r)dr
]

[∫∞
0
e−

(ln(z/r)−µ)2

2σ2 h(r)dr
]2 ,

∂ ln gθ(z)
∂σ2

= − 1
2σ2

+
1

2σ4

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)2h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr
,
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∂2 ln gθ(z)
(∂σ2)2

=
1

2σ4
+

1
σ6

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)2h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

+
1

4σ8

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)4h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

− 1
4σ8

∫∞
0
e−

(ln z−ln r−µ)2

2σ2 (ln z − ln r − µ)2h(r)dr∫∞
0
e−

(ln z−ln r−µ)2

2σ2 h(r)dr

2

.

A customized noise distribution, permitting closed form evaluation of gθ(z),

is obtained as follows. Since Y follows a lognormal distribution, implying lnY ∼
N(µ, σ2) and since Z = Y×R, we chooseR ∼ lognormal with lnR ∼ N(−ψ2

2 , ψ
2).

Then E(R) = 1 and var(R) = σ2
r = eψ

2 − 1. This readily yields

lnZ ∼ N(µz = µ− ψ2

2
, σ2
z = σ2 + ψ2). (5)

Since the MLEs of µz and σ2
z are µ̂z = 1

n

∑n
i=1 ln zi and σ̂2

z = 1
n

∑n
i=1(ln zi −

µ̂z)2, we obtain the MLEs of µ and σ2 as µ̂ = µ̂z + ψ2

2 and σ̂2 = σ̂2
z − ψ2. The

estimated variance-covariance matrix of (µ̂z, σ̂2
z) is obtained from the observed

Fisher information matrix for (µz, σ2
z), given by

Iobs(µ̂z, σ̂2
z) =

(
n
σ̂2
z

0

0 n
2σ̂4
z

)
.

The estimated variances of meaningful and useful functions g(., .) of µz and σ2
z

can be easily obtained by the delta method. We provide below examples of

such functions.

1. g(µz, σ2
z) = eµ+σ2

2 = eµz+
ψ2

2 +σ2
2

2. g(µz, σ2
z) = e2µ+2σ2 − e2µ+σ2

= e2µz+2σ2
z−ψ

2 − e2µz+σ
2
z

3. g(µz, σ2
z) = eµ+cσ = eµz+

ψ2

2 +c(σ2
z−ψ

2)
1
2

Note that the first and second functions are, respectively, the mean and vari-

ance of the original lognormal random variable Y , expressed in terms of the

mean and variance of the random variable lnZ, specified in (5). Similarly, the

third function is a percentile of Y . Recall once again that data are not available

on Y , but on the perturbed quantity Z. In other words, inference on the above
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functions related to the distribution of Y can now be carried out using the data

on Z.

3. Simulation Study
In order to evaluate the finite sample performance of our proposed likeli-

hood based analysis of noise multiplied data, we performed a simulation study

in the context of the lognormal distribution with fθ(y) = 1
yσ

√
2π

exp[−(log y −
µ)2/(2σ2)], y > 0, θ = (µ, σ2), and we fix µ = 0, σ2 = 1. Details of a simulation

study that includes the exponential and normal populations appear in the tech-

nical report Klein, Mathew, and Sinha [18]. In the case of the exponential and

normal populations, the major findings of the simulation study were generally

similar to those for the lognormal. Our observations on the simulation results

are based on the results appearing in Tables 1 - 4. The rows in Tables 1 - 4

show results for the following methods:

UD: Analysis based on unperturbed data with no masking.

MI: Analysis based on synthetic data created via multiple imputation using the

methodology of Reiter [6]. Here, multiple imputation is used to create

m = 50 synthetic datasets. The value m = 50 may be larger than what

is typically used in practice, but we select a large value in order to get a

clear picture of the accuracy of inference under the MI method. Specific

details of our implementation of the MI method in this scenario appear

in the technical report Klein, Mathew, and Sinha [18]. As discussed in

Section 1, the method of creating synthetic data via multiple imputation

is a popular technique for statistical disclosure limitation. Therefore we

include this method in the simulation study so that we may compare it

with our proposed noise multiplication method.

NM10U, NM20U, NM30U, NM40U, NM50U, NM60U, NM70U, NM80U, NM90U:

These nine rows indicate analysis based on the proposed noise multipli-

cation method presented in Section 2 (specifically, Subsection 2.4 for the

lognormal population), where h(r) is the uniform(1− ϵ, 1 + ϵ) density. For

NM10U we take ϵ = 0.10, for NM20U we take ϵ = 0.20, and so on.

NM10C, NM20C, NM30C, NM40C, NM50C, NM60C, NM70C, NM80C, NM90C:

These nine rows indicate analysis based on the proposed noise multi-

plication method presented in Section 2 where h(r) is the customized
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noise distribution for the lognormal as defined in Subsection 2.4 (that

is, lnR ∼ N(−ψ2

2 , ψ
2)). For NM10C we choose ψ so that the variance

of R equals the variance of the uniform(1 − 0.1, 1 + 0.1) distribution, for

NM20C we choose ψ so that the variance of R equals the variance of the

uniform(1 − 0.2, 1 + 0.2) distribution, and so on.

Tables 1 and 2 show results when the parameter of interest is µ, and Ta-

bles 3 and 4 show results when the parameter of interest is σ2. Tables 1 and

3 give results for the sample sizes n = 30 and 50, respectively; while Tables

2 and 4 show results for n = 100 and 200, respectively. For the point estima-

tors of the parameters, the following quantities were estimated by Monte Carlo

simulation based on 5000 iterations: the root mean squared error (RMSE),

bias, standard deviation (SD), mean of estimated standard deviation (ŜD),

coverage probability of the nominal 0.95 level confidence interval (Cvg.), and

expected length of the confidence interval relative to the expected length of

the confidence interval computed on the unperturbed data (Rel. Len.). To fa-

cilitate a comparison of results, the results for unperturbed data are based

on MLEs, observed Fisher information, and confidence intervals of the form

(MLE ±1.96×estimated standard deviation of the MLE). For the EM algorithm,

the stopping criterion used was max
{∣∣µ(t) − µ(t+1)

∣∣ , ∣∣(σ(t))2 − (σ(t+1))2
∣∣} ≤

10−5. The statistical computing software R [27] was used for all computations,

and the integrate function in R was used to evaluate the required univariate in-

tegrals that could not be obtained in a closed form. The following is a summary

of the findings of the simulation study.

1. For estimating µ, Tables 1 and 2 indicate that the noise multiplication

method gives valid results in the chosen simulation settings. In each of

the scenarios of Tables 1 and 2, the bias is close to zero, SD for the noise

multiplication method is similar to SD for the unperturbed data, and Cvg.

is close to the nominal coverage probability of 0.95. Comparing ŜD and

SD in Tables 1 and 2, we see that under the noise multiplication method,

the bias in the estimated standard deviation is generally small. As one

would expect for noise multiplication, RMSE, SD, and Rel. Len. increase

as the dispersion in the noise generating distribution increases.

2. For estimating σ2, most of the observations noted above (for the case of

estimating µ) continue to hold, except that in Table 3 when n = 30 and



Klein et. al. 15

50, we notice that Cvg. under the noise multiplication method is below the

nominal level of 0.95. However, Cvg. under the unperturbed data (which

is also based on a Wald-type confidence interval) is also below 0.95 be-

cause the sample sizes n = 30 and 50 are too small for the sampling

distribution of the MLE of σ2 to be well approximated by normality. Thus,

in Table 3, even though the noise multiplication method yields confidence

intervals with low coverage, it still provides inference comparable to that

from unperturbed data.

3. Under noise multiplication we find that for the methods NM10U and NM10C

where the dispersion in the noise generating distribution is small, the re-

sults are nearly identical to the results for the unperturbed data.

4. Generally we observe that when the variance of the noise generating

distribution is small, the customized noise distribution of Subsection 2.4,

and the uniform(1 − ϵ, 1 + ϵ) noise distribution both tend to give similar

results. As this variance increases though, we find that the customized

noise distribution yields more accurate inference than the uniform(1 −
ϵ, 1 + ϵ) noise.

5. In all the simulation settings considered, the MI method tends to give valid

results in terms of the quantities considered in Tables 1 and 4. In each

case of noise multiplication, one can select a value for the variance of the

noise distribution, at which noise multiplication gives similar results as MI.

For instance, in Table 1 when n = 50, the methods NM50U and NM50C

give similar inference as the MI method. We also notice that in Table

3, while the unperturbed data and noise multiplication method give Cvg.

below the nominal value, the MI method maintains the nominal coverage

probability more closely.

6. Finally, we remark that the EM algorithm used to calculate the MLE tended

to be quite stable, and also converged rapidly.

4. Discussion

How to alter data before releasing it to the public continues to be a vital

concern of statistical agencies in order to minimize the risk of disclosure. How-

ever, this goal has to be balanced with the interest of preserving the utility of
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the released data. Our main goal in this paper has been to develop rigorous

data analysis methodology for noise multiplied data under noise multiplication

of each observation in the dataset. We have developed all the necessary theo-

retical results for analyzing noise multiplied data, when the original (unmasked)

sample arises from three standard parametric distributions: exponential, nor-

mal and lognormal. Furthermore, our basic framework is quite general, and

can be applied to other parametric models as well. Our simulation results in-

dicate that when a large noise variance providing a high degree of protection

against disclosure is used, inference is typically less accurate but still valid (i.e.,

bias is small, confidence interval coverage probability is maintained at the nom-

inal level, etc.). The results of this article provide guidance regarding the effect

of noise variance on data quality, however the impact of the noise variance

on disclosure risk requires further investigation. It should be noted that the

methodology presented in Section 2 applies to a general noise generating dis-

tribution h(r). Therefore, the statistical agency can choose this distribution in

order to achieve a desired balance between accuracy of inference and protec-

tion against disclosure. For instance, a choice of h(r) that has no mass around

1 would provide a lower bound on the relative distance between each original

and its noise multiplied value. An appealing feature of noise multiplication is its

flexibility; the noise distribution h(r) acts as a tuning mechanism.
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Ŝ
D

C
vg.

R
el.

×
10

3
×

10
3

×
10

3
×

10
3

%
Len.

×
10

3
×

10
3

×
10

3
×

10
3

%
Len.

U
D

257.50
-30.14

255.73
250.42

89.60
1.000

199.30
-19.91

198.30
196.02

91.48
1.000

M
I

283.05
40.68

280.11
293.92

94.14
1.174

211.95
21.45

210.86
216.95

94.24
1.107

N
M

10U
258.02

-30.13
256.25

251.28
89.54

1.003
200.32

-20.09
199.31

196.65
91.34

1.003

N
M

10C
257.82

-29.83
256.09

251.36
89.48

1.004
200.29

-19.97
199.29

196.67
91.32

1.003

N
M

20U
260.03

-31.82
258.07

253.48
89.20

1.012
202.43

-20.00
201.44

198.71
91.46

1.014

N
M

20C
261.97

-31.11
260.12

253.59
89.72

1.013
201.96

-19.44
201.02

198.76
91.58

1.014

N
M

30U
264.21

-32.18
262.25

257.93
89.64

1.030
206.21

-19.50
205.28

202.32
91.58

1.032

N
M

30C
266.40

-30.53
264.65

257.95
89.56

1.030
204.69

-20.33
203.68

201.85
91.56

1.030

N
M

40U
272.10

-32.54
270.14

264.54
89.38

1.056
210.89

-20.43
209.90

207.30
91.52

1.058

N
M

40C
272.07

-30.22
270.38

263.81
89.48

1.053
209.70

-22.07
208.53

205.98
91.48

1.051

N
M

50U
279.67

-32.89
277.73

273.75
90.14

1.093
215.93

-24.10
214.58

213.73
91.60

1.090

N
M

50C
279.85

-34.70
277.69

269.91
89.10

1.078
213.91

-20.04
212.97

212.00
91.88

1.082

N
M

60U
299.21

-34.27
297.24

285.98
88.96

1.142
227.60

-22.26
226.51

223.82
91.62

1.142

N
M

60C
286.55

-32.00
284.76

279.20
89.24

1.115
221.25

-19.18
220.42

218.83
91.76

1.116

N
M

70U
309.44

-42.62
306.50

300.97
89.40

1.202
238.43

-22.68
237.34

237.02
91.52

1.209

N
M

70C
298.14

-35.21
296.06

288.17
89.60

1.151
230.41

-19.67
229.57

226.32
91.50

1.155

N
M

80U
334.66

-49.35
331.00

322.94
88.10

1.290
260.19

-30.19
258.44

253.81
90.72

1.295

N
M

80C
305.85

-40.30
303.19

297.72
89.56

1.189
238.91

-22.74
237.82

234.13
91.32

1.194

N
M

90U
366.82

-52.33
363.06

356.45
88.38

1.423
286.05

-30.25
284.45

280.63
91.30

1.432

N
M

90C
317.95

-35.60
315.95

310.72
89.22

1.241
247.29

-25.57
245.96

242.69
91.48

1.238



Klein et. al. 23
Ta

bl
e

4:
In

fe
re

nc
e

fo
rt

he
lo

g
sc

al
e

va
ria

nc
e
σ

2
ba

se
d

on
fu

lly
m

as
ke

d
L
N

(µ
=

0,
σ

2
=

1)
da

ta

R
es

ul
ts

fo
rn

=
10

0
R

es
ul

ts
fo

rn
=

20
0

R
M

S
E

B
ia

s
S

D
Ŝ
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