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Abstract

This paper expands the estimation theory for both quasi-maximum likelihood estimates (QM-

LEs) and Least Squares estimates (LSEs) for potentially misspecified constrained VAR(p) mod-

els. Our main result is a linear formula for the QMLE of a constrained VAR(p), which generalizes

the Yule-Walker formula for the unconstrained case. We make connections with the known LSE

formula and the determinant of the forecast mean square error matrix, showing that the QMLEs

for a constrained VAR(p) minimize this determinant; however, the QMLEs need not minimize

the component entries of the mean square forecast error matrix, in contrast to the unconstrained

case. An application to computing mean square forecast errors from misspecified models is dis-

cussed, and numerical comparisons of the different methods are presented and explored.
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1 Introduction

An extremely popular vector time series model is the Vector AutoRegression of order p, or VAR(p)

for short. Constraining a particular coefficient to be zero can affect the estimation of this model

considerably, and is an important tool for assessing the impact of related series on short-term

forecasting. This paper expands the estimation theory for both quasi-maximum likelihood estimates

(QMLEs) – i.e., the minimizers of the Whittle likelihood – and Least Squares estimates (LSEs) for

potentially misspecified constrained VAR(p) models. Our main result is a linear formula for the

QMLE of a constrained VAR(p), which generalizes the Yule-Walker formula for the unconstrained

case; then we connect this with the known LSE formula, concluding that the LSEs and QMLEs

retain certain forecasting optimality properties even when the fitted model is misspecified.
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The QMLE for a constrained VAR(p) minimizes the Total Innovation Variance (TIV) – i.e., the

determinant of the forecast mean square error matrix – and the LSE is asymptotically equivalent

to the QMLE (see Lütkepohl (2006) for a precise statement of these classical results). Hence,

these estimates provide the best possible parameters – for the given model – with respect to TIV,

even when the model is misspecified. TIV has a long history as an overall assessment of predictive

capacity (Wilks (1932), Whittle (1953)), and is closely connected to the Kullback-Leibler divergence

between model and truth; this determinant, once it is properly scaled, provides the data dependent

portion of the maximized Gaussian likelihood function. The topic has been treated by many

authors (including Akaike (1969, 1974)), summarized in Taniguchi and Kakizawa (2000); also see

Mäınassara and Francq (2011).

Another feature of the QMLE for unconstrained VAR(p) models is that the resulting fitted

model is always stable1, whereas this need not be true for LSEs. Opinions vary over the desirability

of this trait, as discussed in Lütkepohl (2006). If the true data process is stationary, then ensuring

the stability of our fitted model is desirable. But if there may be co-integration or explosive behavior

present in the data, then using the QMLEs would be misleading – instead we would prefer to use

LSEs.

These results provide some motivation for considering QMLEs for fitting constrained VAR

models; given that the formulas are just as simple and fast as the LSEs, and the properties are quite

similar, practitioners may be interested in computing them. We also note that the same formulas

used to compute QMLEs can be used to determine the pseudo-true values (PTVs) that arise

when a misspecified constrained VAR(p) is fitted (via Whittle estimation or maximum likelihood

estimation (MLE)) to a data process. A PTV is defined informally as that parameter vector (or

vectors, as they may be non-unique) to which estimates converge in probability when the model is

misspecified. Having a quick way to compute PTVs is helpful for simulation studies of the impact

of model misspecification. For example, if one wanted to gauge the Mean Squared Error (MSE) of

forecasting from a misspecified model, the PTVs could be plugged into the forecast filter, and the

resulting forecast errors determined from analytical calculations (we discuss this application later

in the paper).

Since the VAR(p) model is often applied to do forecasting, we also make some connections

between the QMLEs for the constrained VAR(p) and the unconstrained case, where the estimates

are given by the Yule-Walker (YW) formula. Whereas the YW estimates optimize each entry of the

asymptotic one-step ahead forecast MSE matrix, the PTVs in the constrained case only minimize

the determinant of this matrix, namely the TIV – which is a weaker property. This suggests that the

1Formally, the concept of stability states that a stationary solution to the autoregressive equation exists, and

a sufficient condition is the causality criterion discussed in Theorem 11.3.1 of Brockwell and Davis (1991); in this

paper we follow Lütkepohl (2006) in defining stability to mean the causality criterion, namely that the roots of the

determinant of the autoregressive polynomial lie outside the unit circle of the complex plane.
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best we can hope for in the constrained VAR(p) case is to improve forecast MSE in the entangled

sense of TIV; while we may minimize TIV, we may not be minimizing the diagonal entries of the

forecast MSE matrix! This new and somewhat surprising conclusion is explained in the paper.

In order to motivate the difficulties inherent in enforcing stability and parameter constraints, we

consider in Section 2 a bivariate VAR(1) initially, and describe how to fit via MLE to ensure a stable

fit, and how to obtain the various constrained VAR(1) models via MLE. We then present the QMLE

solution based on explicit algebra, which demonstrates some interesting discrepancies between the

unconstrained and constrained cases. Then Section 3 provides the general theory of the QMLE for

constrained VAR models, with connections to the Yule-Walker equations and the implications to

forecasting. These results are compared to known formulas for the LSEs (Lütkepohl, 2006), with

the outcome that we can make the same conclusions about LSEs asymptotically. Section 4 provides

numerical illustrations of the LSE, MLE, and QMLE methods for the bivariate VAR(1), the point

being to demonstrate how forecasting performance diverges between the methods when the model

is misspecified. In this part of the paper we also discuss an application of PTVs to computing

h-step ahead forecast MSE from a mis-specified model. Then Section 5 provides an application of

the LSE and QMLE methods on a revision vintage data set, i.e., data that is revised over time,

resulting in a sequence of vintages.

2 A Motivational Example

We begin by considering a bivariate VAR(1) model, which we wish to estimate such that the

resulting fit is guaranteed to be stable (see Brockwell and Davis (1991) for a treatment of stability

and invertibility for VARMA processes). We first provide a parametrization that facilitates the

MLE approach, and secondly discuss the QMLE approach.

2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimates (MLEs) have the attractive property of being asymptotically nor-

mal and efficient under some constraints on the model parameter space and the data process,

as discussed in Taniguchi and Kakizawa (2000). Consider a bivariate VAR(1) process {Xt} with

Φ(z) = 12−Φz, where 12 is an identity matrix of dimension two, such that Φ(B)Xt = ϵt and {ϵt} is

white noise with covariance matrix Σ. We shall be interested in stable processes, wherein the zeroes

of det(12 −Φz) lie outside the unit circle of the complex plane. Equivalently, all the eigenvalues of

Φ have magnitude strictly less than unity.

Adopting the convention that Γ(h) = E[Xt+hX
′
t] (as in Brockwell and Davis (1991)) with ′

denoting transpose, we obtain

Γ(h) = ΦΓ(h− 1) h ≥ 1, Γ(0) = ΦΓ(0)Φ′ +Σ.
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The parameters are the four entries of Φ, along with the three free entries of Σ; these are related

to Γ(0) via equation (2.1.32) of Lütkepohl (2006):

vecΓ(0) = (14 − Φ⊗ Φ)−1 vecΣ. (1)

So from a knowledge of Φ and Σ, we can compute Γ(h) quickly. Now consider the data written

in vector form as X = [X ′
1, · · · , X ′

n]
′, which is assumed to have mean zero for simplicity. Here n

is the sample size. The covariance matrix of this random vector is denoted ΣX , and has a block

form, with n2 blocks filled by 2 × 2 matrices. The jkth block of ΣX is given by Γ(j − k), noting

that Γ(−h) = Γ′(h). Then the scaled log Gaussian likelihood is (up to an irrelevant constant)

X ′Σ−1
X X + log |ΣX |. (2)

This objective function is simple to evaluate, given any viable candidate Φ. However, we can’t just

use arbitrary real numbers for the entries of Φ, since stability is a necessary condition. The set of

coefficients Φ that guarantees a stable VAR(1) is a complicated four-dimensional manifold, which

we now proceed to discuss.

The four entries of Φ are designated Φ11, Φ12, Φ21, and Φ22, and allowing these to be arbitrary

real numbers describes all of R4; the actual subset of parameters corresponding to all stable VAR(1)

processes will be called the stability manifold. We demonstrate that it is locally homeomorphic to

R4, which is helpful for achieving unconstrained optimization of the likelihood; see Pinheiro and

Bates (1996) for a discussion of the advantages of unconstrained optimization over a parameter set

that is in bijective correspondence with Euclidean space. Two necessary conditions for stability are

that |trΦ| < 2 and that |detΦ| < 1; however, these are not sufficient.

Proposition 1 The stability manifold for the bivariate VAR(1) is given by all matrices Φ such

that

|trΦ| < 1 + detΦ and | detΦ| < 1.

The compact expression in Proposition 1 can be rewritten as the following inequalities:

Φ12Φ21 < (1− Φ11) (1− Φ22)

Φ12Φ21 < (1 + Φ11) (1 + Φ22)

−1 + Φ11Φ22 < Φ12Φ21 < 1 + Φ11Φ22.

The property that parameter spaces are manifolds has practical ramifications for statistical

inference, which we briefly remind the reader about. In frequentist estimation of the model, non-

linear optimization routines are required to find the maximizers of the Gaussian likelihood (or the

minimizers of the Whittle likelihood, if this is preferred). As Pinheiro and Bates (1996) argue

persuasively, it is preferable to use unconstrained optimization routines, which in turn require that
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the parameter set can be written as the image – by some homeomorphism (continuous bijection

with continuous inverse) – of Euclidean space. Optimization then occurs within this pre-image Eu-

clidean space in an unconstrained fashion, and the full scope of the parameter manifold is searched

out by the algorithm – this is guaranteed by the surjectivity of the homeomorphism. For example,

when fitting a simple iid Gaussian model with variance σ2, it is convenient to express the parameter

manifold (0,∞) as the image of R via some convenient homeomorphism φ (e.g., the exponential

function), and perform unconstrained optimization of a “pre-parameter” ϑ which is related to the

desired parameter via σ2 = φ(ϑ). This is a commonly used device.

On the other hand, with Bayesian estimation it is advantageous to elicit priors that have com-

pact support on the closure of the parameter manifold. If this is not the case, then posterior

estimates of the parameters may correspond to non-stable processes; in order to correct the defi-

ciency, some authors have advocated projection or trimming of undesirable draws. This procedure

is computationally inefficient at best. It is more elegant and advantageous to elicit the priors to fit

exactly to the parameter space the modeler wishes to explore. Identification of the homeomorphism

φ that maps Euclidean space to the stability manifold gives a fairly natural method of eliciting

priors: a multivariate standard uncorrelated normal distribution could be placed on the Euclidean

pre-parameter space, and the induced distribution obtained by application of φ is the definition

of the prior on the parameter manifold. In the above example of the iid Gaussian model, where

the homeomorphism is taken to be the exponential function, the prior on σ2 is just the log-normal

distribution.

Returning to our VAR(1) example, some of the parameter manifolds corresponding to con-

strained models are of interest. Sometimes a data set warrants setting certain coefficients of Φ

equal to zero. For example, if Φ21 = 0 then the restrictions reduce to |Φ11| < 1, |Φ22| < 1, and

Φ12 unconstrained. The parameter manifold is a subset of R3, which is a cylinder set with base

given by a square. A similar manifold is obtained for the restriction Φ12 = 0. If one of the diagonal

entries is zero, say Φ11 = 0, then the relevant inequality is

−1 < Φ12Φ21 < 1− |Φ22|.

Thus, for any value of |Φ22| ≥ 0, the parameters Φ12 and Φ21 are restricted to the interior of a

hyperbola given by the above inequality.

In summary, this subsection describes how maximum likelihood estimation or Bayesian estima-

tion of a VAR(1) could be carried out so as to guarantee all parameter estimates belong to the

stability manifold. Important constrained sub-models can be easily set up and estimated. How-

ever, it seems difficult to generalize this particular example to higher order VAR models or higher

variable dimension.

5



2.2 Quasi-Maximum Likelihood Estimation

We consider the same bivariate process {Xt}, and we refer to the first component {X1
t } as the

first series, and the second component {X2
t } will be denoted as the second series. It is shown

later in this paper that the QMLEs minimize the empirical TIV, which for an unconstrained

VAR(1) model (called model A) is given by the determinant of the matrix Ω, defined to be

E[(Xt − ΦXt−1)(Xt − ΦXt−1)
′], or the covariance of the one step ahead forecast errors. This

quantity can be re-expressed as

Ω = Γ(0)− Φ Γ′(1)− Γ(1) Φ′ +Φ Γ(0) Φ′;

this is called the Forecast Error Variance (FEV) matrix (see below for general explication). Here

Γ(0) and Γ(1) are understood to be empirical estimates of covariance matrices, i.e., Γ(h) =

n−1
∑n−h

t=1 Xt+hX
′
t for h ≥ 0. Actually, the same arguments apply verbatim if we seek to deter-

mine the PTVs, when we let the Γ(h) denote the Data Generating Process’ (DGP) autocovariance

instead. But to focus our discussion, we let the Γ(h) be the empirical estimates for now.

The unconstrained VAR(1) is fitted by minimizing |Ω| (the rationale is explained in Section 3

below), and the solution is given by the multivariate Yule-Walker (YW) equations: Φ = Γ(1) Γ−1(0),

as discussed below in generality. But if we wish to fit a constrained VAR(1), the YW solution is

no longer relevant. For example, consider the constraint that Φ12 = 0. The YW estimate for this

entry is given by
Γ22(0) Γ12(1)− Γ12(0) Γ22(1)

Γ22(0) Γ11(0)− Γ12(0) Γ21(0)
.

For any j, k, h, write ρjk(h) = Γjk(h)/Γjk(0). Then we see that the YW estimate satisfies the

desired constraint iff ρ12(1) = ρ22(1), which is a probability zero event.

We now proceed to derive the solution for this constrained model, which we henceforth call

model B. The component functions of model B’s FEV matrix are

Ω11 = Γ11(0)− 2Γ11(1)Φ11 + Γ11(0)Φ
2
11

Ω12 = Γ12(0)− Γ21(1)Φ11 − Γ11(1)Φ21 − Γ12(1)Φ22

+ Γ11(0)Φ11Φ21 + Γ12(0)Φ11Φ22

Ω22 = Γ22(0)− 2Γ21(1)Φ21 − 2Γ22(1)Φ22

+ Γ11(0)Φ
2
21 + 2Γ12(0)Φ21Φ22 + Γ22(0)Φ

2
22.

It is noteworthy that Ω11 only depends on Φ11, and not on Φ21 or Φ22, while Ω22 does not depend on

Φ11 at all. Of course Ω21 = Ω12, because Ω is symmetric by construction. Also |Ω| = Ω11Ω22−Ω2
12.

Noting that there are only three free parameters – namely Φ11, Φ21, and Φ22 – the gradient of |Ω|
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becomes

∂|Ω|
∂Φ11

= 2 (Γ11(0)Φ11 − Γ11(1))Ω22 + 2 (Γ21(1)− Γ11(0)Φ21 − Γ12(0)Φ22)Ω12 (3)

∂|Ω|
∂Φ21

= −2 (Γ21(1)− Γ11(0)Φ21 − Γ12(0)Φ22)Ω11 + 2 (Γ11(1)− Γ11(0)Φ11)Ω12 (4)

∂|Ω|
∂Φ22

= −2 (Γ22(1)− Γ12(0)Φ21 − Γ22(0)Φ22)Ω11 + 2 (Γ12(1)− Γ12(0)Φ11)Ω12. (5)

We set (3), (4), and (5) equal to zero and solve; with Bj for 1 ≤ j ≤ 8 defined in the Appendix,

the eventual solution is

Φ11 = Γ11(1)/Γ11(0)

Φ21 =
B1B2 −B4B6

B1B3 −B5B6

Φ22 =
B1B7 +B6B8

B1B3 −B5B6
.

Plugging back into the component functions of the FEV provides values of Ωjk at the optima. We

obtain

Ω11 = B1

Ω12 = B1
B4B3 −B5B2

B1B3 −B5B6

Ω22 = Γ22(0)− 2Φ22Γ22(1)− Φ2
21Γ11(0) + Φ2

22Γ22(0).

From here, the TIV |Ω| can be easily computed. We also see that Φ11 = ρ11(1) optimizes Ω11,

but Ω22 and Ω12 do not depend upon Φ11. So the optima only minimize the TIV |Ω|, and do

not optimize all of the component functions. This differs from the unconstrained case of model A,

where it can be shown (see treatment below) that the YW solutions optimize not only the TIV,

but each component function of the FEV, namely Ω11, Ω12, and Ω22.

We can now show an interesting connection between the QMLEs for model A and B. The Ω11

entries of each model’s FEV matrix are equal to one another iff model A is actually the same as

model B, i.e., the constraint Φ12 = 0 happens to hold for the YW estimate. The derivation is as

follows: Ω11 (evaluated at the optima) for model B is equal to B1, and for model A is equal to

Γ11(0)− [Γ11(1) Γ12(1)] Γ
−1(0)

[
Γ11(1)

Γ12(1)

]
= B1 − Γ11(0)B

2
6/|Γ(0)|.

Hence the equality of FEVs for the first series holds iff B6 = 0 iff ρ12(1) = ρ22(1) iff Φ12 for the

YW estimate equals zero. This result is actually intuitive: model B is saying that the second series

can not contribute meaningfully to the forecast performance of series one – otherwise Φ12 would

have been allowed to be nonzero. Model A generally will perform better – its FEV is lower by the
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amount Γ11(0)B
2
6/|Γ(0)| over model B – but fails to be an improvement in exactly the case that

Φ12 is estimated to be zero!

The other constrained model of interest is obtained by fixing Φ11 = 0, which says that the first

series should have no impact on the forecast performance of the first series. We call this model C.

With derivations similar to those of model B, the optima are

Φ12 = Γ21(1)/Γ22(0)

Φ21 =
C1C7 + C2C8

C1C4 − C2C6

Φ22 =
C1C3 − C2C5

C1C4 − C2C6
,

where the Cj are defined in the Appendix. Plugging these back into the component functions of

the FEV yields

Ω11 = C1

Ω12 = C1
C4C5 − C3C6

C1C4 − C2C6

Ω22 = Γ22(0)− 2Φ21Γ12(1)− Φ2
22Γ22(0) + Φ2

21Γ11(0).

What if we now compare forecast performance of the first series according to models B and C,

which are non-nested? Each model’s Ω11 values are equal to one another iff

Γ2
11(1)/Γ11(0) = Γ2

21(1)/Γ22(0).

This relationship is more meaningful when we consider the asymptotic forecast performance, so

that the Γ(h) matrices represent the DGP’s autocovariances. If the true underlying process is

indeed a VAR(1), then the above condition is equivalent to

Φ2
11 Γ

2
11(0) + Φ2

12 Γ
2
21(0) + 2Φ11Φ12 Γ11(0) Γ21(0)

Γ11(0)
=

Φ2
21 Γ

2
11(0) + Φ2

22 Γ
2
21(0) + 2Φ21Φ22 Γ11(0) Γ21(0)

Γ22(0)
.

There are many VAR(1) processes that satisfy this, but one example is furnished by letting Φ be

rank one, such that the second column is a multiple of the first, and also imposing that Γ11(0) =

Γ22(0). In this case, the difference of the first and second series will be a moving average process

of order one, and the relationship of each series to the lagged series is exactly the same.

This section has provided simple algebraic formulas for the QMLEs of constrained VAR(1)

models in terms of the sample autocovariances, much like the case of the LSEs. A general formula for

the LSEs is given in Lütkepohl (2006), which we summarize in the next section, making comparisons

with the QMLE case. However, as we increase the dimension and the VAR order, the formulas for

the QMLEs become more complicated, and in fact instead of a direct formula we obtain coupled

linear equations for the VAR parameters and the innovation covariance matrix, just as in the LSE

case.
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3 Theoretical Results

In this section we provide a complete theory of QMLE fitting of constrained VAR models. We

begin with some general results about the QMLE method discussed in Taniguchi and Kakizawa

(2000), showing that it is sufficient to optimize the TIV. Then we specialize to constrained VAR

models, providing an exact solution, and make comparisons to the LSE method.

3.1 General Theory of QMLE

We consider difference stationary processes (which may be non-Gaussian), and generally follow the

treatments of vector time series in Brockwell and Davis (1991), Taniguchi and Kakizawa (2000),

and Lütkepohl (2006). Included in our framework are the popular co-integated VAR and VARIMA

models used by econometricians, as well as structural VARIMA models. The formulas also cover

the case of more unconventional processes that have long-range dependence. For notation we

use an underline for every matrix, which for the most part are m × m. The identity matrix is

denoted by 1m. Also in general capital letters refer to composite objects and lower case letters

refer to components (such as coefficients); Latin letters refer to random variables/vectors, and

Greek letters refer to deterministic quantities (like parameters). Matrix polynomial and power

series functions are defined as A(x) =
∑p

k=0 ajx
j with p < ∞ or p = ∞ as the case may be. We

use B for the backshift operator, which sends a time series back in time: BXt = Xt−1, working

on all components of the vector at once. Then the action of A(B) on Xt is understood by linear

extension. Also we introduce the following convenient notation for any matrix power series A(x):

[A]jℓ(x) =
∑j

k=ℓ akx
k.

Let us suppose that the data can be differenced to stationarity by application of a degree d

differencing polynomial ∆(B); its application to the observed time series {Xt} yields a covariance

stationary time series {Wt}, i.e., ∆(B)Xt = Wt. The operator ∆(B) is referred to as the dif-

ferencing operator, and in general contains both stable and unstable elements that are not easily

separated. As discussed in Lütkepohl (2006), the zeroes of det∆(z) include some on the unit circle

of the complex plane, and the rest outside.

The series {Wt} is assumed to be stationary with mean vector m, and we further suppose that

it is purely non-deterministic. Its lag h autocovariance matrix will be denoted

Γ(h) = E[(Wt+h −m)(Wt −m)′].

The spectral density matrix of {Wt} is denoted by F (λ), and is defined via F (λ) =
∑∞

h=−∞ Γ(h)e−iλh.

Hence we have the relation Γ(h) = (2π)−1 ∫ π
−π F (λ) e

iλh dλ. We further assume that F (λ) has

full rank for each λ, which will ensure that the forecast error covariance matrix, defined below,

is nontrivial; this condition (together with the non-deterministic assumption) also implies that∫ π
−π log detF (λ) dλ > −∞.
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We will consider any model for {Wt} that is invertible, such that a Wold Decomposition (Brock-

well and Davis (1991) or Reinsel (1997)) exists, which means that – when the model is true – we

can write

Wt = m+Ψ(B)At, (6)

where the series {At} is mean zero and uncorrelated (but possibly dependent) over time with

positive definite covariance matrix σ2. Here Ψ(B) is a causal power series with coefficient matrices

ψ
k
. By the invertibility assumption, we mean the assumption that detΨ(z) ̸= 0 for |z| ≤ 1 and∫ π

−π
log det

[
Ψ
(
e−iλ

)
Ψ′

(
eiλ

)]
dλ = 0. (7)

Thus Ψ−1(z) is well-defined for |z| ≤ 1. If our model is correct for the data process, such that

(6) holds exactly, then we can write At = Ψ(B)−1 [Wt −m] , showing that {At} is the linear

innovations process of {Wt}. The filter Ψ (B)−1 is called the innovations filter of {Wt}.
However, in general any model that we propose is mis-specified, so we cannot assume that (6)

holds exactly. Let us consider any causal invertible model, i.e., one with a Wold filter representation

Ψξ(B), such that this Wold filter is parameterized by a vector ξ ∈ Ξ associated with the model

coefficients, while accounting for any coefficient constraints. Invertibility means that detΨξ(z)

is nonzero for |z| ≤ 1 for all ξ ∈ Ξ, where Ξ is assumed to be an open convex set. The filter

Ψξ(B) therefore satisfies (7). In this paper we are principally interested in so-called separable

models, where the parameter ξ does not depend on our parametrization of the innovation variance

σ, the covariance of the putative innovations {At}; for the more general treatment of non-separable

models, see Taniguchi and Kakizawa (2000). By specializing to separable models, we can obtain a

more focused result.

So assume that ξ is parameterized separately from the distinct entries of the model’s innova-

tion covariance matrix. Let ζ denote the vector vecσ, so that σζ refers to our model’s innovation

covariance matrix. We require this matrix to belong to the set S+ of all positive definite matrices.

Then the full vector of parameters can be written as ϑ = [ξ′, ζ ′]′, so that the first set of param-

eters control the Wold filter Ψξ(B), and the second set of parameters parametrize the innovation

covariance matrix σζ . Then the spectral density of this model can be written as

F ϑ (λ) = Ψξ(e
−iλ)σζ Ψ

′
ξ(e

iλ),

and furthermore from (7),
1

2π

∫ π

−π
log detF ϑ(λ) dλ = log detσζ .

This last expression is guaranteed to be positive, since the matrix belongs to S+.

2There cannot be zero eigenvalues in the covariance matrix, as this will interfere with estimation of the model.
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Now because Ψξ(B) is invertible, the one-step ahead forecast filter for the differenced series

{Wt} is well-defined, and is given by B−1[Ψξ]
∞
1
(B)Ψξ(B)−1, as described in McElroy and Mc-

Cracken (2012). The forecast errors when using such a filter are then given by Et = Ψξ(B)−1 (Wt−
m), whose covariance results in the following important matrix:

Ω(ξ) = E
[
EtE

′
t

]
=

1

2π

∫ π

−π
Ψξ(e

−iλ)
−1
F (λ)Ψξ(e

iλ)
†
dλ. (8)

Here † is short for inverse transpose. Note that {Et} may not be exactly a white noise, because

our model is misspecified, or is imperfectly estimated. We label the above matrix as the Forecast

Error Variance (FEV) matrix, denoted by Ω(ξ), the dependence on the parameter ξ being explicit.

Note that the FEV is always positive definite, because of our assumption that F (λ) has full rank

for all λ (this can be weakened to having less than full rank for a set of λs of Lebesgue measure

zero, which allows us to embrace the possibility of co-integration).

It is reasonable to seek models and parameter values ξ such that the FEV is minimized in

an appropriate sense. Because the diagonal entries of the FEV represent forecast mean squared

errors (MSEs), it is plausible to minimize any of these diagonal entries, or perhaps the trace of

Ω(ξ). Another approach would be to minimize the determinant of the FEV, although this quantity

is difficult to interpret in terms of forecast performance. Note that detΩ(ξ) is the TIV defined

earlier, and is related to the Final Prediction Error (FPE) of Akaike (1969), a scaled version

of the determinant of the estimated innovations variance matrix, based upon results of Whittle

(1953). Historically, the work of Akaike (1969) forms the basis for using the FEV determinant

as a fitting criterion for VAR models. Whittle (1953) refers to detΩ(ξ) as the Total Prediction

Variance, adopting terminology from Wilks (1932); we utilize the term Total Innovation Variance

(TIV) instead, to emphasize its connection to the innovations process. There are many articles

that discuss VAR model selection via the FPE criterion of Akaike (1969), and there have been

numerous successful applications in industry and econometrics; see Akaike and Kitagawa (1999)

for additional applications.

We now provide a treatment of the connection of QMLE and TIV minimization for separable

models (they need not be VAR at this point, but rather any separable model with causal invertible

Wold representation), which connects Gaussian maximum likelihood estimation to minimization

of the TIV. The Kullback-Leibler (KL) discrepancy between a true process’ spectrum F and a

putative model spectrum F ϑ is defined via

D (F ϑ, F ) =
1

2π

∫ π

−π
log detF ϑ(λ) + tr

{
F ϑ (λ)

−1 F (λ)
}
dλ.

See Taniguchi and Kakizawa (2000) for more exposition. This formula is also valid when the

multivariate periodogram I(λ) = n−1
∑n

t=1Wte
−iλt

∑n
t=1W

′
te

iλt is substituted for F , yielding

D(F ϑ, I). This quantity is related to −2 times the multivariate Gaussian log likelihood, and is

11



more convenient to work with in empirical applications, since no matrix inversions are required

for its calculation. In fact, empirical estimates based on this criterion have similar asymptotic

properties to Gaussian maximum likelihood estimates.

The definition of a QMLE is a parameter ϑI such that ϑ 7→ D(F ϑ, I) is minimized. The

definition of a PTV is a parameter ϑF such that ϑ 7→ D(F ϑ, F ) is minimized. The general theory

of Taniguchi and Kakizawa (2000) shows that, under suitable conditions on the process and the

model (requiring the uniqueness of ϑF ), that QMLEs are consistent and asymptotically normal

for PTVs, and are also efficient when the model is correctly specified. In this case, the PTVs are

identical with the true parameters of the process: since F ∈ {F ϑ : ϑ ∈ Ξ× S+}, there exists some

ϑ̃ such that F = F
ϑ̃
, and the PTVs are identical with this ϑ̃.

Because QMLEs and MLEs are asymptotically equivalent when the underlying process is Gaus-

sian, PTVs are informative about what parameter estimates are converging to when models are

misspecified; this, along with their asymptotic efficiency under correct model specification – and

their relative ease of computation – motivates interest in QMLEs (and also PTVs). Now the above

formula for KL is general, but in the case of a separable model we have an alternative formula:

D(F ϑ, F ) = log detσζ +
1

2π

∫ π

−π
tr
{
σ−1
ζ Ψξ(e

−iλ)−1 F (λ)Ψ′
ξ(e

iλ)−1
}

= log detσζ + tr
{
σ−1
ζ Ω(ξ)

}
. (9)

This derivation uses (8) and an interchange of integration and trace. In fact, this derivation does

not assume any particular model structure for F , so we can also obtain an alternative formula for

D(F ϑ, I) as log detσζ + tr
{
σ−1
ζ Ω̂(ξ)

}
, where Ω̂(ξ) is an empirical version of the FEV defined via

Ω̂(ξ) =
1

2π

∫ π

−π
Ψξ(e

−iλ)
−1
I(λ)Ψξ(e

iλ)
†
dλ.

We can then determine the PTVs and QMLEs by the same mathematics: by the appropriate

simplification of the derivation of Magnus and Neudecker (1988, p. 317), for any fixed ξ ∈ Ξ the

FEV matrix Ω(ξ) minimizes ζ 7→ D(F ξ,ζ , F ) over all parametrizations such that σζ ∈ S+. This is

appropriate for PTVs; for QMLEs, we have Ω̂(ξ) minimizing ζ 7→ D(F ξ,ζ , I). Recall that the FEV

is in S+ by our full rank assumption on F ; in the case of the QMLEs the empirical FEV can violate

this only in the trivial case that the data equals the zero vector3. Then from (9) we obtain

D
(
Fξ,vecΩ(ξ), F

)
= log detΩ(ξ) +m.

3For any vector a, we have a′Ω̂(ξ)a = (2πn)−1 ∫ π

−π
|a′ Ψ−1(e−iλ)

∑n
t=1 Wte

−iλt|2 dλ, so that the expression equals

zero iff a′ Ψ−1(e−iλ) ·
∑n

t=1 Wte
−iλt = 0 almost everywhere with respect to λ; because both terms in this product

are polynomials in e−iλ, the condition is equivalent to one or the other of them being zero. In the one case that

a′ Ψ−1(e−iλ) = 0, we at once deduce that a is the zero vector; in the other case, we have that the discrete Fourier

Transform
∑n

t=1 Wte
−iλt = 0 for almost every λ, which can only be true if the data is zero-valued.
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This is a concentration of the likelihood, analogously to the procedure with univariate time series,

and relates KL to TIV. If we minimize the above expression with respect to ξ, and then compute

Ω(ξ) for that optimal ξ, then we have produced the PTV ϑ. Of course, the dimensionm is irrelevant

to this problem, as is the presence of the logarithm. Therefore, the PTV ξF , which we assume exists

uniquely in Ξ, satisfies

ξF = argmin
ξ∈Ξ

detΩ(ξ) ζF = vecΩ(ξF ).

Our parameter space should be taken to be a compact convex subset Ω of Ξ×vec (S+) that contains

ϑF = [ξ′F , vec
′Ω(ξF )]

′. In the next section we will demonstrate the existence and uniqueness of such

PTVs for constrained VAR models. The treatment for QMLEs follows identically: the concentrated

empirical KL equals m plus the log determinant of the empirical FEV, and hence

ξI = argmin
ξ∈Ξ

det Ω̂(ξ) ζI = vecΩ(ξI).

In summary, we see that the QMLEs and PTVs for ξ are computed by minimizing the empiri-

cal and theoretical TIVs, respectively, and then plugging these parameters back into the empiri-

cal/theoretical FEV matrix. So whereas the TIV seems to be a non-intuitive quantity in terms of

forecast performance, it is actually the right objective function if we wish to obtain statistically

efficient parameter estimates in the correct model case. Theorem 3.1.2 of Taniguchi and Kakizawa

(2000) gives a central limit theorem for the QMLEs; also see (3.4.25) in Lütkepohl (2006) for the

special case of a VAR model, assuming the model is correctly specified.

3.2 Constrained Versus Unconstrained VAR Models

3.2.1 Properties of the Unconstrained Case: Full Optimization

The previous subsection treated general separable models. We now focus on unconstrained VAR

models as a further special case. Let ϕ be a m × mp dimensional matrix consisting of the con-

catenation of the coefficient matrices of Φ(z) = 1m −
∑p

j=1 ϕjz
j . In terms of the notation of the

previous section, ξ = vecϕ and Ψξ(B) = Φ(B)−1. The invertibility assumption given above then

dictates that Φ(z) must belong to the set zp of matrix polynomials such that the zeroes of det Φ(z)

satisfy |z| > 1.

It will be convenient to introduce a notation for the transposed autocovariance: let R1:p+1,1:p+1

denote a m(p+1) dimensional square matrix, which is block-Toeplitz with jkth block matrix given

by Γ(k − j) = Γ′(j − k). We can partition R1:p+1,1:p+1 into its upper left p× p block Γ(0) and its

lower right mp dimensional block R2:p+1,2:p+1, which is also block-Toeplitz (and equal to R1:p,1:p).
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The remaining portions are denoted R1,2:p+1 and R2:p+1,1. Then it can be shown that

Ω(ξ) = Γ(0)−
p∑

j=1

ϕ
j
Γ(−j)−

p∑
k=1

Γ(k)ϕ′
k
+

p∑
j,k=1

ϕ
j
Γ(k − j)ϕ′

k

= Γ(0)− ϕR2:p+1,1 −R1,2:p+1 ϕ
′ + ϕR1:p,1:p ϕ

′ (10)

Our treatment looks at PTVs, but if we replace the true autocovariances Γ(h) by sample estimates

(the inverse Fourier Transforms of the periodogram I) and write Ω̂(ξ), we can apply the same

mathematics as derived below, and obtain an identical treatment of QMLEs.

Let us first examine the case of an unconstrained VAR(p) model: we show that the PTV is the

solution to the Yule-Walker (YW) equations (a known result), and also that the PTV minimizes

each entry of the FEV matrix, not merely its determinant, the TIV (a new result). Noting that by

definition ξF is a zero of the derivative of the TIV, we compute it via the chain rule:

∂

∂ξℓ
detΩ(ξ) =

∑
r,s

Ω(r,s)(ξ)
∂Ωrs(ξ)

∂ξℓ
.

See Mardia, Kent, and Bibby (1979). Here Ω(r,s) is the co-factor of Ω, while Ωrs is just the r, sth

entry of the FEV matrix. The chain rule tells us that a sufficient condition for the gradient

of the FPE to be zero, is that the gradients of Ωrs are zero. That is, it is sufficient to find a

solution that optimizes all the coefficient functions of the FEV. This is a stronger property than

just minimizing detΩ, since there might be solutions that minimize the FPE but do not minimize

all of the component functions. In the case of a VAR(p) this stronger property holds, which is

remarkable and useful. The following result is a slight elaboration, for the perspective of KL

discrepancy minimization, of the results of Whittle (1963) for case of full rank {Wt}.

Proposition 2 Let {Wt} be stationary and invertible, with full rank spectral density matrix. Then

the PTV ϕ̃ for a fitted VAR(p) satisfies the Yule-Walker equations

p∑
j=1

ϕ̃
j
Γ(k − j) = Γ(k), 1 ≤ k ≤ p, (11)

or ϕ̃ R1:p,1:p = R1,2:p+1. Furthermore, the corresponding polynomial Φ̃(z) ∈ zp and ξF = vec ϕ̃

uniquely minimizes ξ 7→ detΩ(ξ), with the FEV given by (10). The PTV also minimizes ξ 7→ Ωrs(ξ)

for every 1 ≤ r, s ≤ m. The PTV for the FEV is

σζF = Ω(ξF ) = Γ(0)−R1,2:p+1R
−1
1:p,1:pR2:p+1,1. (12)

A parallel result holds for the QMLEs, in the manner described at the beginning of this subsection.

That is, the sample autocovariances are defined for 0 ≤ h ≤ n− 1 by

Γ̂(h) = n−1
n−h∑
t=1

(
Wt+h −W

) (
Wt −W

)′
,
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and Γ̂(−h) = Γ̂′(h); it is easily seen that these quantities are related to the periodogram via

I(λ) =
n−1∑

h=−n+1

Γ̂(h)e−ihλ.

We assume that p ≤ n − 1. Then the QMLEs satisfy the empirical YW equations, obtained by

replacing Γ(h) in (11) by Γ̂(h), and so forth. Convergence of QMLEs to PTVs is guaranteed by

results in Taniguchi and Kakizawa (2000).

3.2.2 Properties of Optimization for Constrained Models

Now let us consider the case where the VAR model has some constraints. For example, we might

consider the special case discussed in Section 2. There we showed explicitly that the YW solution

was different from the QMLE, and that the QMLE does not optimize all the components of the

FEV matrix – it only optimizes the FPE. We next provide an explicit solution for the PTV and

QMLE when elements of ξ are constrained, which is a novel result.

Note that ξ = vecϕ is the full vector of parameters. If some of these are constrained to be zero,

we can write

vecϕ = J ψ + a (13)

for a matrix J that is m2p× r, where r ≤ m2p. The vector ψ consists of all free parameters in ϕ.

Unfortunately, there is no guarantee that the PTVs/QMLEs for such a constrained VAR will result

in a stable model, and we’ve found through numerical experiments that this can indeed occur. The

structure of J is arbitrary (only that its entries are known quantities, and not parameters), so the

case that multiple entries of ϕ are the same can also be entertained by (13).

We next state PTVs and QMLEs for ϕ together with σζ , with each formula being dependent

on the other – similarly to the OLS solution discussed in Lütkepohl (2006). The PTV for ϕ is still

denoted by ϕ̃, but it is computed in terms of the PTV ψ̃, and ξF = vec ϕ̃ = J ψ̃ + a. Likewise,

σ̃ = σζF = Ω(ξF ) by the previous subsection’s general results. Now we can state our result.

Proposition 3 Let {Wt} be stationary and invertible, with full rank spectral density matrix. Then

the PTV (ψ̃, σ̃) for a fitted constrained VAR(p) with constraints of the form (13) satisfies

ψ̃ =
(
J ′ [R1:p,1:p ⊗ σ̃−1

]
J
)−1 {

J ′ [R′
1,2:p+1 ⊗ σ̃−1

]
vec(1m)− J ′ [R1:p,1:p ⊗ σ̃−1

]
a
}

σ̃ = Ω(ξF ) .

Remark 1 The fitted constrained VAR models need not satisfy the Riccati equations, which take

the form Γ(0) = ϕR1:p,1:p ϕ
′ + σ, and hence the resulting fitted VAR model need not correspond

to a stationary process. This phenomenon arises due to taking unconstrained optimization of the

TIV over all ψ ∈ Rr, whereas only some subset of this space, in general, corresponds to stable VAR
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processes. It is interesting that enforcing certain kinds of constraints of the type given by (13)

essentially forces the PTVs into a region of instability. The broader problem of enforcing stability

is not studied in this paper.

Remark 2 In general we cannot substitute the formula for σ̃ into the formula for ψ̃ and simplify,

because the algebra is intractable. In the special case that J is the identity and a = 0 (the

unconstrained case), the formula for ψ̃ simplifies to[
R−1

1:p,1:p ⊗ σ̃
] [
R′

1,2:p+1 ⊗ σ̃−1
]
vec(1m) = vec

(
R1,2:p+1R

−1
1:p,1:p

)
,

which is the YW equation. To solve the coupled system, one could propose initial guesses (such as

the YW solutions) and iteratively solve the formulas on a computer, hoping for contraction towards

the PTV solution pair.

Substituting empirical estimates for the autocovariances, the same mathematics produces for-

mulas for the QMLEs. The empirical counterpart of the asymptotic story is exactly similar. We

denote the parameter estimates by

ψ̂QMLE =
(
J ′

[
R̂1:p,1:p ⊗ σ̂−1

QMLE

]
J
)−1 {

J ′
[
R̂

′
1,2:p+1 ⊗ σ̂−1

QMLE

]
vec(1m)− J ′

[
R̂1:p,1:p ⊗ σ̂−1

QMLE

]
a
}

σ̂QMLE = Ω(ξI) ,

and ξI = vec ϕ̂
QMLE

= J ψ̂QMLE + a. These estimates need not result in a stable fitted model (see

Section 4).

Suppose that the true process is a VAR(p), and we fit a constrained VAR(p) model. Then

the QMLEs and PTVs can be computed iteratively via the formulas of Proposition 3. In the

special case that the true process is a constrained VAR(p) (i.e., the specified model is correct),

then Wt =
∑p

j=1 ϕ̃jWt−j + ϵt and (11) is true. Also, plugging into (10) yields (12), so that

Proposition 2 holds for this case. The formula (12) for the FEV is the same as would be obtained

using the constrained VAR formula, because the unconstrained model reduces to the constrained

model asymptotically. We can use the empirical version of (12) to estimate the FEV consistently,

and substitute into the formula for ψ̂QMLE ; however, these estimates are only consistent for the

true parameters under a correct model hypothesis, and need not tend to the PTVs in the case that

the model is wrong. Also see the discussion of the estimation of the FEV via LSE methodology in

Lütkepohl (2006).

A formula for LSEs for the constrained VAR(p) is given in Lütkepohl (2006), which we translate

into our own notation. Omitting mean effects, we let Z be a pm × (n − p) dimensional matrix,

with columns given by [Zp, Zp+1, · · · , Zn−1] and Zt = [W′
t,W

′
t−1, · · · ,W′

t−p+1]
′. Note that when

p is fairly large, some data is being “thrown away.” Also let W be m× (n− p) dimensional, given

by W = [Wp+1,Wp+2, · · · ,Wn].
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The method requires some plug-in estimate of the innovation variance, which we generically

denote by σ̂; this might be estimated by a separate method, and then plugged in below, as described

in Lütkepohl (2006). The LSE formula for ψ is then

ψ̂LSE =
(
J ′ [Z Z ′ ⊗ σ̂−1

]
J
)−1 {

J ′ [ZW ′ ⊗ σ̂−1
]
vec(1m)− J ′ [ZZ ′ ⊗ σ̂−1

]
a
}
.

If we were to plug in the QMLE for the innovation covariance matrix, the similarities to the

QMLE formula are striking. The above formula can be re-expressed in an equivalent form. Letting

vecϕ̂
LSE

= J ψ̂LSE + a, we find the equivalent expression

J ′ vec
(
σ̂−1

[
ϕ̂
LSE

Z Z ′ −W Z ′
])

= 0.

Now n−1 Z Z ′ ≈ R̂1:p,1:p and n−1W Z ′ ≈ R̂
′
1,2:p+1; the relations would have been exact, except for

some missing terms due to the data that gets thrown away by the LSE method. This approximation

error is OP (1/n), and has no impact on the asymptotic behavior. On the other hand, we can re-

express the QMLEs as

J ′ vec
(
σ̂−1
QMLE

[
ϕ̂
QMLE

R̂1:p,1:p − R̂1,2:p+1

])
= 0.

Notice that the expression in square brackets is identically zero if and only if the QMLE satisfies

the Yule-Walker equations (and when J is the identity – i.e., no constraints in play – the above

equation reduces to (11)).

So, if we use the QMLE for the innovation variance in the LSE approach – or another estimate

that is consistent for the PTV – then the LSEs are approximate solutions to the above QMLE

equation. This tells us that their asymptotic behavior is the same, so that LSEs obey the same

Central Limit Theorem as the QMLEs, indicated in Taniguchi and Kakizawa (2000), even when

the VAR model is misspecified.

4 Numerical Illustrations

4.1 Finite-Sample Results

For constrained bivariate VAR(1) models, the chief fitting methods are MLE, QMLE, or LSE. In

Section 2 we provided explicit formulas for QMLEs in terms of covariances, and here we implement

these procedures together with the LSE method on four bivariate VAR(1) processes described

below. The Φ matrices for the four examples are[
1/2 1/3

1/3 1/2

] [
2/3 0

1 1/3

] [
.95 0

1 1/2

] [
−.25 .5

−1 1.25

]
,

and in each case the innovation variance matrix is the identity. All four processes are stable.
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Recall that model A was the unconstrained bivariate VAR(1), while model B involved the

constraint Φ12 = 0, and model C involved the constraint Φ11 = 0. We investigate fitting models A,

B, and C to each process via QMLE and LSE, noting that model B is a misspecification for the

first and fourth processes, while model C is a misspecification for all four processes. For model A

the PTVs correspond to the true values, but for models B and C they can be quite different due

to mis-specification. The PTVs for Φ, for the four processes respectively, are[
.6739 0

1/3 1/2

] [
2/3 0

1 1/3

] [
.95 0

1 1/2

] [
.4244 0

−1 1.25

]
,

for model B, and for model C are given by[
0 .5942

1/3 1/2

] [
0 .5373

0 .6915

] [
0 .4914

0 .9668

] [
0 .1954

.2443 .7721

]
.

The PTVs for Σ are in all cases equal to 12. These quantities are computed using the formulas of

Section 2.2, but using the true autocovariances instead of the empirical estimates. We see that all

the Φ PTVs are stable (the absolute trace is always less than two) for the first three processes, but

is unstable for model B fitted to the fourth process. However, for model C all PTVs are stable for all

four processes; the double zero for the second and third process with model C is quite interesting.

It is interesting to examine the PTVs in the cases of model B and model C, fitted to the

first process. Although these models are mis-specified, their mis-specification in some sense chiefly

pertains to the forecast performance of the first component of the bi-variate series; actually, their

PTVs for the second component of the bi-variate series are correct! That is, utilizing the mis-

specified models B and C has no impact on the asymptotic forecast performance of the second

component series.

The example given by the fourth process begs the question: how often do unstable PTV fits

arise in practice? We drew a sample of a million bivariate VAR(1) processes by allowing each entry

of Φ to be an independent normal variable, and found that 34% of these processes were stable; of

those, the proportion having stable PTVs arising from fitting model B was only 26%. This indicates

that a high proportion of stable VAR processes may have unstable PTVs when constrained models

are utilized.

We next proceeded to simulate from these four processes, fitting all three models via both QMLE

and LSE methodologies. The results are summarize in Tables 1, 2, 3 and 4. There we present the

mean values of the estimates of Φ, computed over 5000 simulations of the given VAR processes,

with sample sizes of 100, 200, and 400. We also present mean values of the maximum and minimum

absolute eigenvalues of Φ. Only rarely did unstable estimates arise in practice for the first three

processes: this was assessed by computing the proportion of simulations wherein the maximum

eigenvalue exceeded one. This only occurred for the LSE estimates in the case of sample size 100;
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the QMLE method always resulted in stable fits, and the LSE estimates become “increasingly

stable” as sample size was increased. For the fourth process, models A and C produced stable fits

in finite sample, but virtually all the time model B produced an unstable VAR, as expected.

4.2 Gauging Forecast MSE

We now describe an application of the calculation of PTVs. Suppose that we wished to study the

impact of model misspecification on forecast performance, as a function of an underlying process;

see Schorfheide (2005) for motivation and discussion. So we suppose that the true F is known

for the process we are studying, and some misspecified model is fit to the data. McElroy and

McCracken (2012) provides expressions for the multi-step forecast error from a misspecified model;

the forecast error process is

−[∆−1(B)Ψ(B)]
h−1
0 Ψ−1(B) Wt

if we are forecasting h steps ahead. Now the parameter estimates would enter into the coefficients of

Ψ. Asymptotically, these estimates will converge to the PTVs. The variance of the corresponding

error process (where parameter estimates have converged to the PTVs) is given by

1

2π

∫ π

−π
[∆−1(z)Ψ(z)]

h−1
0 Ψ−1(z)F (λ)Ψ†(z) [Ψ′(z)∆†(z)]

h−1

0 dλ.

This matrix depends on the data process in a double fashion: first through F in the center of the

integrand, and again through the PTVs involved in Ψ, which are previously computed as described

in Section 3. As an example, consider the bivariate VAR(1) models A, B, C of the previous sub-

section, fitted to any of the first three true processes described above (we ignore the fourth process,

because the forecasting formulas do not apply to unstable model fits). The h-step ahead forecast

error variance matrix simplifies to

Γ(0)− ϕh
1
Γ(−h)− Γ(h)ϕ′h

1
+ ϕh

1
Γ(0)ϕ′h

1
.

Observe that this is a symmetric matrix, and its minimal value at h = 1 is given by the innovation

variance matrix Σ. Into this formula, we would substitute the appropriate PTVs for ϕ
1
and the

true DGP autocovariances for Γ(h) and Γ(0). The resulting entries of the forecast error variance

matrix are plotted in Figure 1 with 1 ≤ h ≤ 100, with matrix entries for the first diagonal in

Red (Solid), the second diagonal in Green (Dotted-Dashed), and the off-diagonal in Blue (Dashed).

Some of these plots are identical, which occurs when model B is actually correctly specified.

For the first process, going across the top row of Figure 1, we note that model A is correctly

specified, and both diagonal entries of the forecast variance matrix are the same due to symmetry

of Φ. Mis-specification, as shown for models B and C of the top row, has no impact on the second

diagonal (Dotted-Dashed), but increases the first diagonal (Solid) of the MSE matrix for short
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horizons. The reason for this behavior is that the PTVs for models B and C are still correct for

the second component of the bi-variate series, as mentioned above.

For the second process, both models A and B are correctly specified, and hence the MSE plots

are identical. Now there is a large discrepancy in forecast performance between the first component

series (Solid) and the second (Dotted-Dashed). The final panel for model C shows an interesting

feature: forecast performance at low horizons is actually worse than at longer horizons, which can

happen for a mis-specified model. The third process has a similar story, although model C fares

competitively in the long run with the correctly specified models.

5 Data Application

For an empirical application of the constrained VAR methodology, we present an analysis of revised

housing starts data. The choice of this application arises from the a priori consideration that time

series revisions should follow a stable stationary time series model, because revisions tend not to be

easily forecastable. An excellent overview of the source of revisions, as well as an analysis of their

dynamics, is given in Jacobs and van Norden (2011); also see the numerous references therein. The

analysis here is less sophisticated than that of Jacobs and van Norden (2011), which uses somewhat

elaborate state space modeling; our purpose is to offer a realistic application of the methods in

Section 3.2, and we do not claim that our model is ideal for forecasting or understanding vintage

structure.

Given those provisos, we consider the time series of New Residential Construction, published

by the U.S. Census Bureau at http://www.census.gov/construction/nrc/historical_data/

historic_releases.html focusing on Table 3: New Privately-Owned Housing Units Started. We

examine the monthly time series of seasonally unadjusted data, in totals, for the four housing regions

of Northeast, Midwest, South, and West. The data is published in four vintages: a preliminary

release for a given month, followed by two revisions, and then a final vintage. In practice, the

second revision rarely differs at all from the final revision (this is because we are focused on data

revisions; revisions due to seasonal adjustment would involve updates for several years worth of

vintages). We consider the specific months of January 2008 through December 2012, restricting to

those months for which full vintages are available – producing a sample of 57 time points.

For notation, let Y k
t denote data published at time t+k about time period t (focusing on one of

the four geographical regions for the moment). So the first vintage Y 1
t for time period t is actually

published one month later. So {Y k
t : t ∈ Z} represents the kth vintage time series. Consider the

time series {Y 2
t − Y 1

t : t ∈ Z}, {Y 3
t − Y 2

t : t ∈ Z}, and so forth; these represent the revision to

preliminary (i.e., the first vintage), the revision to the second vintage, and so forth. Summing

these time series gives a total revision: the sum of m such series would yield {Y m+1
t − Y 1

t : t ∈ Z},
giving the revision of the first to m + 1th vintage from the preliminary. Of course, the real series
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we can construct do not extend into the infinite past or future, but the constructed data can be

conceptualized as a sample drawn from the above revision vintage series.

Let {Xt} consist of the first, second, and third revision vintage series, and take the dimension

to be m. So Xk
t = Y k+1

t − Y k
t for 1 ≤ k ≤ m. Because the third revision vintage consists mostly of

zeroes, for each of the four regions, we eliminate this vintage revision from analysis, restricting to the

first two; hence m = 2. We analyze each region separately, because once we difference the vintages

all trend, cyclical, and seasonal structure is eliminated, and it is hard to believe that there would be

correlations between regions associated with survey reporting errors. That is, geographical linkages

can only occur through trend, cyclical, or seasonal latent components, and these being removed

from the data, there is no reason to analyze the geographies multivariately.

Now as we move down through the components of {Xt}, we can expect the samples to have

more zero (or small) values, because very little additional revising is occurring. Moreover, empirical

experience suggests that the components of Xt can be cross-correlated, because once a particular

data value is revised in a particular direction – due to editing mistakes, late reporting, etc. – it

often happens that further vintages are revised in the same direction. Whether or not there is

interesting serial correlation is an empirical matter that we explore here.

Due to the construction of the revision vintage series, we expect the dynamics to be stationary;

trends or other nonstationarities would enable a high degree of predictability in revisions, thereby

obviating the need to publish faulty preliminary estimates – a scenario that is not credible. We

therefore focus on stationary models. We apply the VAR methodology of Section 3.2, applying the

QMLE methodology to the data, although LSE could also have been used. We first compute a

sample mean (which is broadly consistent) from the 57 data points, and then fit constrained VAR

models to the mean-centered data. Results from fitting different constrained models are presented

in Table 5, where the constraints defining Models II and III varies by region, as suggested by the

region’s data. Standard errors are computed using (3.4.25) of Lütkepohl (2006) – which states that

the asymptotic variance is Γ(0)−1 ⊗ σ – and are given in parentheses. We can apply a Gaussian

Likelihood Ratio (GLR) test, as defined in Taniguchi and Kakizawa (2000), to discriminate among

nested competitors in each case. For each of the four regional datasets, Model III – which involves

either two or three restrictions of the entries of ϕ
1
– is preferred via the GLR statistic at significance

level .05.

For the forecasting of vintages, we consider the present time to be December 2012, which means

preliminary estimates are available for December 2012, November 2012 and October 2012, while

first revisions are available for November 2012 and October 2012 and secondary revisions for only

October 2012. This means that the secondary revision for November 2012 and December 2012 are

unknown, and the first revision for December 2012 is also unknown. We now describe how these

quantities can be estimated from forecasts of the revision vintage differences. Letting t denote

December 2012, we first aim to estimate Y 3
t−1, or the secondary revision for November 2012. We
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have

Ŷ 3
t−1 = X̂2

t−1 + Y 2
t−1, (14)

which is computed by forecasting the second revision difference one step ahead, and adding the

known Y 2
t−1, which is the second revised value for November 2012. For any of the constrained

VAR(1) models, the h-step ahead forecast is given by adding the mean to the product of Φh with

Xt−2, the last (fully) available value of the revision series.

The next value to estimate is Y 2
t , or the first revision for December 2012. We must forecast

Xt−1 one step ahead, but note that only X1
t−1 is available – we must impute using the previous

estimate (14) to get X2
t−1. So we have

Ŷ 2
t = X̂1

t + Y 1
t , (15)

where in computing the revision forecast from Xt−1, we must first estimate X2
t−1 via Ŷ 3

t−1 − Y 2
t−1,

using (14).

Finally, we need to estimate Y 3
t , or the second revision for December 2012. Now the formula is

Ŷ 3
t = X̂2

t + Ŷ 2
t , (16)

utilizing (15). In this manner the vintage triangle of unknown values can be forecasted and imputed.

However, we cannot obtain estimates of future values at time t+1, unless we model one of the raw

vintage series together with the vintage differences.

The projected values, along with the true values subsequently published, are presented in Table

6. Note that the rows correspond to times t, t−1, and t−2, while the columns are the vintages 1,2,

or 3. Projection is based upon the numbers in the lower triangle, in bold, whereas the estimates

in the upper triangle are in parentheses besides the true publications. In the case of the NE the

forecasted revisions have quite a bit of error, although the data values were somewhat anomalous in

this case. The error is tolerable for the other three regions’ vintage triangle, providing potentially

useful results.

Appendix

A.1 Derivation of Optima for Models B and C.

First consider model B; the derivations for model C are similar in nature. We note that Ω22 times

(4) plus Ω12 times (3) is equal to −2|Ω| times Γ21(1) − Γ11(0)Φ21 − Γ12(0)Φ22, which will also be

zero. By the definition of Ω as FEV, it must be positive definite for all values of Φ, and hence

|Ω| > 0 must always hold. Hence we obtain the condition

Γ21(1)− Γ11(0)Φ21 − Γ12(0)Φ22 = 0. (A.1)
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This relation can be substituted back into (3) and (4), which produces

(Γ11(1)− Γ11(0)Φ11)Ω22 = 0 (Γ11(1)− Γ11(0)Φ11)Ω12 = 0.

Note that if Ω22 = 0, then necessarily |Ω| ≤ 0. So this cannot be. Therefore we must have the

relation

Γ11(1)− Γ11(0)Φ11 = 0. (A.2)

Note then that (A.1) and (A.2) imply both (3) and (4) are zero, and they also imply

Φ11 = Γ11(1)/Γ11(0) (A.3)

Φ22 = Γ21(1)/Γ21(0)− Φ21Γ11(0)/Γ21(0). (A.4)

Substituting these solutions back into the formulas for Ω11 and Ω12, utilizing (A.1), yields

Ω11 = Γ11(0)− Γ2
11(1)/Γ11(0)

Ω12 = Γ12(0)− Γ12(1)Γ21(1)/Γ12(0)− Φ21 (Γ11(1)− Γ12(1)Γ11(0)/Γ21(0)) .

These quantities can now be utilized in (5), along with (A.3) and (A.4) to produce the system

B1 (B2 − Φ21B3) = (B4 − Φ21B5)B6, where the Bj are defined via

B1 = Γ11(0)− Γ2
11(1)/Γ11(0)

B2 = Γ22(1)− Γ22(0)Γ21(1)/Γ21(0)

B3 = Γ12(0)− Γ22(0)Γ11(0)/Γ21(0)

B4 = Γ12(0)− Γ12(1)Γ21(1)/Γ21(0)

B5 = Γ11(1)− Γ12(1)Γ11(0)/Γ21(0)

B6 = Γ12(1)− Γ12(0)Γ11(1)/Γ11(0)

B7 = Γ21(1)− Γ11(0)Γ22(1)/Γ21(0)

B8 = Γ11(0)− Γ21(1)Γ11(1)/Γ21(0).

Solving this system finally yields

Φ21 =
B1B2 −B4B6

B1B3 −B5B6
, (A.5)

which together with (A.3) and (A.4) provides a complete solution. A final formula for Φ22 is given

by

Φ22 =
B1B7 +B6B8

B1B3 −B5B6.
(A.6)
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For model C, we define constants Cj as follows:

C1 = Γ11(0)− Γ2
21(1)/Γ22(0)

C2 = Γ11(1)− Γ21(0)Γ21(1)/Γ22(0)

C3 = Γ12(1)− Γ22(1)Γ11(0)/Γ21(0)

C4 = Γ21(0)− Γ22(0)Γ11(0)/Γ21(0)

C5 = Γ12(0)− Γ22(1)Γ11(1)/Γ21(0)

C6 = Γ21(1)− Γ11(1)Γ22(0)/Γ21(0)

C7 = Γ22(1)− Γ22(0)Γ12(1)/Γ21(0)

C8 = Γ22(0)− Γ22(1)Γ21(1)/Γ21(0).

These values allow us to express the optimizers of model C.

A.2 Proofs of Results

Proof of Proposition 1. The roots of the polynomial 1− Φz are

ζ =
trΦ±

√
tr2Φ− 4 detΦ

2 detΦ
.

These roots are complex conjugate iff (Φ11 − Φ22)
2 < −4Φ12Φ21, in which case the square mag-

nitude of them is equal to 1/detΦ. The condition of conjugacy ensures that detΦ > tr2Φ/4, so

that the determinant is guaranteed to be positive. Hence in this case, stability – which means that

|ζ| > 1 – is equivalent to the condition that detΦ < 1.

Now in the case that detΦ ≤ tr2Φ/4, we obtain two real roots of the polynomial 1 − Φz. In

this case we require ζ2 > 1, which holds iff

2
2

detΦ < tr2Φ− 2 detΦ± trΦ
√

tr2Φ− 4 detΦ.

These two constraints simplify to the equivalent condition that tr2Φ < (1 + detΦ)2. Now putting

both cases together yields the equivalent conditions that |trΦ| < 1 + detΦ and that | detΦ| < 1.

2

Proof of Proposition 2. To show this result requires some notation. For any matrix, we use a

dot in a subscript to denote a free index that is summed over. Let ξℓ correspond to the p, qth entry

of the jth coefficient matrix ϕ
j
, denoted as ξℓ = ϕpq

j
. Then ∂Ωrs

∂ϕpq
j

equals

−δ{r=p}Γqs(j)− δ{s=p}Γqr(j) + δ{r=p} [Γq·(j − 1) Γq·(j − 2) · · · ]
[
ϕ′
]
·s + δ{s=p}ϕr·


Γ·q(1− j)

Γ·q(2− j)
...

 ,
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where δA equals one if the set A is true and is zero otherwise. By collecting terms, this can be

expressed as

ϕR1:p,1:p = R1,2:p+1, (A.7)

i.e., the YW equations. Therefore the unique ϕ satisfying (A.7) is also a critical point of all the

component functions Ωrs, and hence detΩ as well. The formula (11) follows by writing out (A.7).

That the solution corresponds to a polynomial in zp is shown in Whittle (1963). The formula for

the FEV follows by evaluation.

We also need to establish that ϕ̃ satisfying the YW equations is not only a critical point, but a

minimizer of the FPE. Suppose that ϕ is any other parameter matrix with corresponding ξ = vecϕ,

and consider

Φ(B)Wt = Φ̃(B)Wt +

p∑
k=1

(
ϕ
k
− ϕ̃

k

)
Wt−k.

The two summands on the right hand side are uncorrelated with one another due to (11). Then

defining the covariance matrix Σ
ϕ−ϕ̃

= E
{
(Φ− Φ̃)(B)Wt

}{
(Φ− Φ̃)(B)Wt

}′
, it follows that

Ω(ξ) = Ω
ξ̃
+ Σ

ϕ−ϕ̃
. Clearly Σ

ϕ−ϕ̃
≥ 0 and Σ

ϕ−ϕ̃
= 0 would imply (Φ − Φ̃)(B)Wt = 0 with

probability one, in contradiction to the full rank property of the spectral density of {Wt}. There-
fore Σ

ϕ−ϕ̃
	 0 and

∣∣∣Ωξ̃

∣∣∣ < |Ω(ξ)| follows. This shows that the YW solution ϕ̃ minimizes FPE, and

moreover is unique. 2

Proof of Proposition 3. To derive the result we work with the KL directly, given by (9), which

in the case of a VAR(p) takes the form

D(F ϑ, F ) = log detσζ + tr
(
σ−1
ζ Γ(0)

)
− tr

(
σ−1
ζ ΦR1,2:p+1

)
− tr

(
R2:p+1,1Φ

′ σ−1
ζ

)
+ tr

(
σ−1
ζ ΦR1:p,1:pΦ

′
)
.

Now we unpack each of these expressions further:

tr
(
σ−1
ζ ΦR1,2:p+1

)
= [vec(1m)]′

[
R′

1,2:p+1 ⊗ σ−1
ζ

]
[J ψ + a]

tr
(
σ−1
ζ ΦR1:p,1:pΦ

′
)
=

[
a′ + ψ′ J ′] [R1:p,1:p ⊗ σ−1

ζ

]
[J ψ + a] .

It is then evident that KL has a quadratic format, and that the gradient with respect to ψ equals

−2
[
R′

1,2:p+1 ⊗ σ−1
ζ

]
J + 2 J ′

[
R1:p,1:p ⊗ σ−1

ζ

]
[J ψ + a] .

Setting this to zero and solving yields the formula for the PTV, with σ̃ replacing σζ . The formula

for the innovation variance follows from the general treatment of Section 3.1.

Now we demonstrate that this critical point really is a minimizer of KL, adapting the argument

from Proposition 2. From (10), and some algebra, we obtain

Ω(ξ) = Ω(ξ̃) + Σ
ϕ−ϕ̃

+ τ (ϕ− ϕ̃)
′
+ (ϕ− ϕ̃) τ ′ (A.8)
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for any ϕ, where τ = ϕ̃R1:p,1:p −R1,2:p+1. Of course τ = 0 whenever the Yule-Walker equations are

satisfied, but this need not be the case for constrained VAR PTVs. Instead, the PTVs satisfy

J ′ vec
(
σ̃−1

[
ϕ̃ R̃1:p,1:p − R̃1,2:p+1

])
= 0,

which follows from algebraic manipulation of the formula for ψ̃. Multiplying (A.8) by σ̃−1 and

taking the trace, we obtain

tr
(
σ̃−1Ω(ξ̃)

)
= tr

(
σ̃−1Ω(ξ)

)
+ tr

(
σ̃−1Σ

ϕ−ϕ̃

)
.

This is true because by (13)

tr
(
σ̃−1 τ (ϕ− ϕ̃)

′)
=

[
vec(ϕ− ϕ̃)

]′
vec

[
σ̃−1τ

]
= (ξ − ξ̃)

′
J ′vec

[
σ̃−1τ

]
,

which is identically zero for any ξ. Now because σ̃ is positive definite, we see that tr
(
σ̃−1Σ

ϕ−ϕ̃

)
is non-negative, and is nonzero by the full rank assumption unless ψ = ψ̃. Hence tr

(
σ̃−1Ω(ξ̃)

)
>

tr
(
σ̃−1Ω(ξ)

)
, which establishes optimality. 2
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Parameter Estimates

Parameters Models

n=100 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .481 .328 .649 0 0 .574 .487 .331 .654 0 0 .579

.329 .478 .335 .471 .317 .488 .332 .483 .332 .483 .332 .483

Max |ζ| .808 .652 .734 .817 .658 .742

Min |ζ| .157 .467 .245 .159 .481 .258

Prob Unstable 0 0 0 0 0 0

n=200 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .490 .331 .661 0 0 .585 .493 .333 .665 0 0 .587

.332 .489 .336 .485 .326 .494 .334 .492 .334 .492 .334 .492

Max |ζ| .821 .662 .748 .826 .665 .752

Min |ζ| .158 .485 .253 .159 .491 .260

Prob Unstable 0 0 0 0 0 0

n= 400 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .495 .332 .667 0 0 .588 .496 .333 .668 0 0 .589

.332 .494 .334 .492 .328 .497 .333 .496 .333 .496 .333 .496

Max |ζ| .826 .667 .753 .828 .668 .755

Min |ζ| .163 .492 .256 .163 .496 .259

Prob Unstable 0 0 0 0 0 0

Table 1: Model fitting results for sample sizes 100, 200, 400 from the VAR(1) with Φ11 = 1/2,
Φ12 = 1/3, Φ21 = 1/3, Φ22 = 1/2, and Σ = 12. Models A, B, C are used, corresponding to
unconstrained VAR(1), a VAR(1) with Φ12 = 0, and a VAR(1) with Φ11 = 0 respectively. Mean
values for parameter estimates are reported for Φ, as well as the maximal and minimal absolute
eigenvalues. Unless both of these are less than one, the fit is unstable, and the proportion of
unstable fits is reported.
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Parameter Estimates

Parameters Models

n=100 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .647 -.003 .647 0 0 .530 .654 -.003 .654 0 0 .230

.997 .324 .997 .324 -.031 .685 1.007 .328 1.007 .328 1.007 .328

Max |ζ| .642 .648 .646 .649 .654 .665

Min |ζ| .350 .324 .111 .354 .328 .338

Prob Unstable 0 0 0 0 0 0

n=200 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .658 -.002 .657 0 0 .534 .661 -.002 .661 0 0 .234

.998 .329 .998 .329 -.015 .688 1.002 .331 1.002 .331 1.002 .331

Max |ζ| .643 .657 .668 .646 .661 .674

Min |ζ| .353 .329 .071 .355 .331 .343

Prob Unstable 0 0 0 0 0 0

n= 400 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .662 -.001 .661 0 0 .536 .664 -.001 .663 0 0 .236

.999 .331 .999 .331 -.009 .689 1.001 .332 1.001 .332 1.001 .332

Max |ζ| .646 .661 .679 .647 .663 .678

Min |ζ| .351 .331 .049 .352 .332 .346

Prob Unstable 0 0 0 0 0 0

Table 2: Model fitting results for sample sizes 100, 200, 400 from the VAR(1) with Φ11 = 2/3,
Φ12 = 0, Φ21 = 1, Φ22 = 1/3, and Σ = 12. Models A, B, C are used, corresponding to unconstrained
VAR(1), a VAR(1) with Φ12 = 0, and a VAR(1) with Φ11 = 0 respectively. Mean values for
parameter estimates are reported for Φ, as well as the maximal and minimal absolute eigenvalues.
Unless both of these are less than one, the fit is unstable, and the proportion of unstable fits is
reported.
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Parameter Estimates

Parameters Models

n=100 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .925 -.003 .922 0 0 .483 .934 -.002 .932 0 0 .425

1.000 .488 1.000 .488 -.260 1.063 1.009 .495 1.009 .495 1.009 .495

Max |ζ| .913 .922 .926 .923 .932 .946

Min |ζ| .501 .488 .149 .506 .495 .451

Prob Unstable 0 0 0 .0030 .0014 .0044

n=200 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .938 -.002 .936 0 0 .487 .942 -.001 .941 0 0 .434

1.000 .494 .999 .495 -.159 1.029 1.004 .498 1.004 .498 1.004 .498

Max |ζ| .932 .936 .946 .937 .941 .954

Min |ζ| .501 .495 .095 .503 .498 .456

Prob Unstable 0 0 0 0 0 0

n= 400 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ .945 -.001 .943 0 0 .490 .947 -.001 .946 0 0 .439

1.000 .497 1.000 .497 -.095 1.006 1.002 .499 1.002 .499 1.002 .499

Max |ζ| .942 .943 .957 .944 .946 .958

Min |ζ| .500 .497 .059 .501 .499 .459

Prob Unstable 0 0 0 0 0 0

Table 3: Model fitting results for sample sizes 100, 200, 400 from the VAR(1) with Φ11 = .95,
Φ12 = 0, Φ21 = 1, Φ22 = 1/2, and Σ = 12. Models A, B, C are used, corresponding to unconstrained
VAR(1), a VAR(1) with Φ12 = 0, and a VAR(1) with Φ11 = 0 respectively. Mean values for
parameter estimates are reported for Φ, as well as the maximal and minimal absolute eigenvalues.
Unless both of these are less than one, the fit is unstable, and the proportion of unstable fits is
reported.
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Parameter Estimates

Parameters Models

n=100 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ -.257 .504 .409 0 0 .183 -.260 .509 .413 0 0 .408

-.989 1.231 -.947 1.199 .243 .753 -.999 1.243 -.999 1.243 -.999 1.243

Max |ζ| .707 1.199 .808 .714 1.243 .687

Min |ζ| .278 .409 .055 .281 .413 .598

Prob Unstable 0 98.76 % 0 0 100.00 % 0

n=200 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ -.251 .501 .419 0 0 .189 -.253 .504 .421 0 0 .406

-.994 1.240 -.973 1.224 .244 .763 -.999 1.247 -.999 1.247 -.999 1.247

Max |ζ| .722 1.224 .819 .726 1.247 .671

Min |ζ| .269 .418 .056 .271 .421 .608

Prob Unstable 0 100.00 % 0 0 100.00 % 0

n= 400 qmle Model A qmle Model B qmle Model C ols Model A ols Model B ols Model C

Φ -.251 .500 .422 0 0 .193 -.251 .502 .423 0 0 .405

-.997 1.246 -.985 1.237 .243 .768 -1.000 1.249 -1.000 1.249 -1.000 1.249

Max |ζ| .737 1.237 .825 .739 1.249 .659

Min |ζ| .258 .422 .057 .259 .423 .616

Prob Unstable 0 100.00 % 0 0 100.00 % 0

Table 4: Model fitting results for sample sizes 100, 200, 400 from the VAR(1) with Φ11 = −1/4,
Φ12 = 1/2, Φ21 = −1, Φ22 = 5/4, and Σ = 12. Models A, B, C are used, corresponding to
unconstrained VAR(1), a VAR(1) with Φ12 = 0, and a VAR(1) with Φ11 = 0 respectively. Mean
values for parameter estimates are reported for Φ, as well as the maximal and minimal absolute
eigenvalues. Unless both of these are less than one, the fit is unstable, and the proportion of
unstable fits is reported.
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Parameter Estimates

Parameters Models

NE qmle Model I qmle Model II qmle Model III

Φ .025 (.132) .152 (.192) 0 .153 (.192) 0 .153 (.192)

.023 (.082) .422 (.120) .023 (.082) .422 (.120) 0 .423 (.120)

Σ .335 -.005 .335 -.005 .335 -.005

-.005 .131 -.005 .131 -.005 .131

log detΣ -3.1292 -3.1285 -3.1271

MW qmle Model I qmle Model II qmle Model III

Φ .145 (.135) -.096 (.213) .165 (.131) -.088 (.213) .179 (.126) 0

.049 (.084) .263 (.132) 0 .243 (.128) 0 .230 (.125)

Σ .328 -.051 .328 -.051 .329 -.051

-.051 .126 -.051 .127 -.051 .127

log detΣ -3.2484 -3.2423 -3.2393

S qmle Model I qmle Model II qmle Model III

Φ .070 (.132) -.075 (.198) .074 (.132) -.075 (.198) 0 0

-.036 (.086) .222 (.129) 0 .219 (.129) 0 .222 (.129)

Σ .770 .036 .770 .036 .776 .034

.036 .327 .036 .328 .034 .328

log detΣ -1.3838 -1.3809 -1.3732

W qmle Model I qmle Model II qmle Model III

Φ .172 (.131) .172 (.286) .173 (.131) .155 (.284) .169 (.130) .155 (.283)

.013 (.061) .062 (.133) .017 (.061) 0 0 0

Σ .432 .026 .432 .026 .432 .026

.026 .094 .026 .094 .026 .094

log detΣ -3.2210 -3.2172 -3.2158

Table 5: Fitted constrained VAR(1) models to revision vintage data for NE, MW, S, and W
housing starts. In each case, Model I is fully unconstrained, whereas Model II and Model III
represent different constrained models, wherein some entries of ϕ

1
are constrained to be zero. In

each case, Model III cannot be rejected according to the GLR statistic.
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Forecasts

Dates Vintages

NE Preliminary First Revision Second Revision

Dec 2012 5.8 8.0 (5.853) 7.9 (5.876)

Nov 2012 5.7 5.4 5.1 (5.445)

Oct 2012 6.6 7.0 7.1

MW Preliminary First Revision Second Revision

Dec 2012 11.6 11.2 (11.690) 11.0 (11.747)

Nov 2012 12.5 12.4 12.1 (12.484)

Oct 2012 15.3 14.8 15.0

S Preliminary First Revision Second Revision

Dec 2012 31.1 30.4 (31.360) 30.6 (31.467)

Nov 2012 34.0 33.3 33.0 (33.242)

Oct 2012 36.9 38.1 37.3

W Preliminary First Revision Second Revision

Dec 2012 12.9 12.9 (12.813) 13.6 (12.882)

Nov 2012 12.3 12.2 11.9 (12.268)

Oct 2012 19.1 17.3 17.7

Table 6: Data and forecasts of the vintage triangle, using Model III of Table 5 for revision vintage
data of NE, MW, S, and W housing starts. Data available as of Jan 2013 publication date is in
bold, while unknown values are in normal font, with their forecasts in parentheses.
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Figure 1: Asymptotic forecast MSE as a function of forecast horizon. In each panel, the entries
of the FEV matrix are plotted, with the first diagonal entry in Red (Solid), the second diagonal
entry in Green (Dotted-Dashed), and the off-diagonal in Blue (Dashed). The first row of panels
corresponds to Process 1 of Section 4.1, while the second row of panels corresponds to Process 2
and the third row to Process 3. The first column of panels corresponds to Model A of Section 2,
while the second column of panels corresponds to Model B and the third column to Model C.
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