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A Visual Proof, a Test, and an Extension of
A Simple Tool for Comparing Competing Estimates

Tommy Wright
U. S. Bureau of the Census

Abstract
A common practice of a national statistical agency (and most scientific investigations) is

to assess its estimate for a particular real-valued characteristic (parameter) by comparing it to
competing estimates from other sources. The nature of the assessment is to explain the differ-
ences. While assessing the quality of energy estimates (e.g., reserves, production, supply, sales,
consumption,...), Tsao and Wright (1983) introduced a simple tool (maximum ratio) and used
it to prove a statement regarding the closeness of a set containing a particular estimate and
competing estimates to the unknown true value of the targeted real-valued parameter. In this
paper, we (1) provide a visual proof of the (Main Result), (2) present a test of unacceptability
for at least one of the competing estimates using the maximum ratio, (3) give an application
assessing the national count from the 2010 U.S. Census, and (4) extend the maximum ratio and
statement to vector-valued parameters. The test can be applied in any situation where several
measurements of the same phenomenon exist and one wants to quantify with certainty how far
away from the truth at least one of the estimates is. Even if all estimates are near each other,
this does not necessarily imply that they are near the unknown true value. The test sends a
signal calling for further investigation when a pre-set standard is exceeded.

Key Words: Accuracy, Maximum Ratio, Test of Unacceptability.

1. INTRODUCTION: COMPARISONS

1.1 The Utility of Comparisions

One basic step toward improving the quality of estimates produced by a national statistical
agency is to identify problem areas that require special attention. Comparisons with competing
estimates from other sources, when possible, can serve to expose existing problems for one or more
data sources.

If θ is some parameter (such as a total or a mean) for a finite population or universe whose true
value is unknown and θ̂ is some estimator (based on a probability sample, a census, a statistical
model, an experiment, a scientific investigation, records, or data from various sources) whose value
is known, the hope is that the difference |θ̂−θ| between θ̂ and θ is small. Assessment of an estimate’s
quality, possibly including sampling frame completeness, can include a study of the extent of such
a difference, even though θ’s true value is unknown. Such assessments can reveal limitations of the
estimate, identify stages of the data collection process or data analysis that need improvement, and
may lead to revelations of inadequacies in the frame (e.g., undercoverage, overcoverage, duplication,
imperfect frame data, etc.) or differences in measurement concepts and definitions.

As Kish and Hess (1958) note, “The estimation of errors (differences) ... generally entails
one of two difficult alternatives. The first calls for a quality check by procedures which are suffi-
ciently better to provide the true value against which the (sample) survey results can be compared
... The alternative procedure calls for a reliable (and comparable) estimate from an outside source.”
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From Tsao and Wright (1983), “... Morgenstern (1963) notes, there are several occasions when
... ‘one is faced with alternative sets of data (estimates) which aim to describe the same phe-
nomenon but which appear quite different; and it is difficult, if not impossible, to discover just
where their difference lies.’ Martin (1981) has pointed out how the comparisons of different data
series produced by federal statistics bureaus can make important contributions to the improve-
ments in one or both data series and that precautions are needed to avoid judgments based solely
on supposition rather than on scientific evidence. Also, Eckler and Pritzker (1951) consider such
external data comparisons as the first step in checking the adequacy of the frame.”

Because there will usually be differences between definitions, target populations, responding
populations, data collection procedures, and estimation procedures, the identification of differences
in the estimates does not necessarily suggest that a particular estimate is inaccurate or that the
other estimates are inaccurate. The value of a comparison lies in its ability to (1) give notice of
changes in the population’s structure occurring over time that may be affecting the estimates, (2)
allow comparisons between different data collection procedures, and perhaps most importantly, (3)
alert a particular agency to the need for further investigations.

1.2 Example Based on Counts and Estimates Associated with the 2010 Census

Let θ be the true total U. S. resident population as of April 1, 2010. The U. S. Census Bureau
produced an official count θ̂1 and three other estimates of θ as follows. Table 1 presents these four
quantities, each aiming to estimate θ as close as possible.

During 2010, a nationwide constitutionally required census was conducted to distribute the 435
seats in the U. S. House of Representatives among the states. The table in the Appendix gives
details of the construction of the 2010 Census count in terms of the various enumeration methods,
which are defined following that table. During the 2010 Census, 300,758,215 persons were enumer-
ated in housing units and 7,987,323 persons were enumerated in group quarters. The official 2010
Census resident population count delivered to the President of the United States on December 21,
2010 was θ̂1 = 308, 745, 538.

The second estimate in Table 1 results primarily from an analysis of administrative records
(e.g., births, deaths, and migration) often presented at a very high level as

Population = {Population Under Age 65 in 2010} + {Population Ages 65 and Over in 2010}

= {B - D + I - E} + {Medicare-based Population}

where B = number of births since 1945; D = number of deaths of persons born since 1945; I =
immigration of persons born since 1945; and E = emigration of persons born since 1945. This de-
mographic analysis (DA) estimate was released by demographers on December 6, 2010 with value
θ̂2 = 308, 475, 000. The demographers actually released a spectrum of DA estimates with varying
underlying migration assumptions:

305,684,000 • 307,415,000 • 308,475,000 • 310,038,000 • 312,713,000 .

The DA estimates were developed without knowledge of the 2010 Census counts.

The third estimate in Table 1 comes from the Census Bureau’s Population Estimates Program
(PEP). This estimate for 2010 is derived by starting with the Census 2000 count and updating it
annually from 2000 to 2010 using administrative records of births, deaths, and migration. This
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third estimate, created without knowledge of the 2010 Census counts, was released by demogra-
phers in February 2011 with value θ̂3 = 308, 450, 484.

The fourth estimate results from statistical methods that combine results from a nationwide
probability sample [Census Coverage Measurement (CCM)] with the count from the 2010 Census,
and it provides a measure of the quality of the 2010 Census count. This estimate was constructed
from estimates released on May 22, 2012 with value θ̂4 = 308,709,100 (= 300,667,000 estimated in
housing units + 7,987,323 counted in group quarters + 54,777 counted in the remote Alaska area of
which 54,111 were counted by the remote Alaska enumeration method as noted in the table given
in the Appendix).

Table 1. Four Estimates of θ = the True Total U. S. Resident Population as of April 1, 2010.
Source Count or Estimate
1. Official 2010 Census Resident Population Count θ̂1 = 308,745,538
2. Demographic Analysis (DA) Estimate θ̂2 = 308,475,000
3. Population Estimates Program (PEP) Estimate θ̂3 = 308,450,484
4. Probability Sample [Census Coverage Measurement (CCM)] Estimate θ̂4 = 308,709,100

Table 2 compares state counts from the 2010 Census with state 2010 PEP estimates. As illus-
trated in Table 2, analysts, when making initial comparisons, often will simply display competing
estimates side-by-side and may compute the relative difference between them. Such comparisons
are useful, but they are limited because: (1) they only show that two or more estimates differ, and
(2) they only show the magnitude of the difference relative to a particular estimate.

Do these analyses directly address the issue of accuracy? These comparisons make statements
about how close the estimates are to each other, but rarely, if ever, is any attempt made to say
how close the set of estimates is to the true unknown value of the parameter of interest θ, which is
what we ultimately want to know.

2. THE MAXIMUM RATIO

2.1. Concepts, Definitions, and Main Result

There is a simple and potentially useful tool called the maximum ratio which also gives an
indication of how the collection of estimates stands relative to the unknown true value. That is,
it provides some information about the accuracy of the collection of competing estimates. What
follows provides highlights to the maximum ratio (Tsao and Wright, 1981, 1983).

Given the positive estimates θ̂1, θ̂2, ..., θ̂m of the unknown positive value of the target parameter θ,
we seek to focus on two questions: (1) How does one measure the closeness among the estimates?
(2) Is at least one of the estimates unacceptable as an estimate of θ?

Alternatively to Table 2, ratios might form the basis of the measure of closeness. So

(1) if θ̂1 is a statistical agency’s estimate of primary interest, and if θ̂2, θ̂3, ..., θ̂m are
competing estimates, then

(2) one could compute the ratios
θ̂2

θ̂1

,
θ̂3

θ̂1

, ...,
θ̂m

θ̂1

.

Steps (1) and (2) are appealing because they are simple and easy to explain.

3



Table 2. Comparisons between Preliminary Population Estimates and 2010 Census Counts for the States
as of April 1, 2010. [Source: Population Division (February 2011), U.S. Bureau of the Census, Washington, D.C.]

Geographic Area
2010

Census
Count

2010
PEP

Estimate

2010
Census
Count

-
2010
PEP

Estimate

2010
Census
Count

−
2010
PEP

Estimate

2010
Census
Count

× 100%

Alabama 4779736 4724112 55624 1.2
Alaska 710231 705175 5056 0.7
Arizona 6392017 6654358 -262341 -4.1
Arkansas 2915918 2904540 11378 0.4
California 37253956 37171135 82821 0.2
Colorado 5029196 5075295 -46099 -0.9
Connecticut 3574097 3523925 50172 1.4
Delaware 897934 889722 8212 0.9
District of Columbia 601723 607918 -6195 -1.0
Florida 18801310 18636368 164942 0.9
Georgia 9687653 9884534 -196881 -2.0
Hawaii 1360301 1296885 63416 4.7
Idaho 1567582 1555957 11625 0.7
Illinois 12830632 12931584 -100952 -0.8
Indiana 6483802 6438366 45436 0.7
Iowa 3046355 3019493 26862 0.9
Kansas 2853118 2835125 17993 0.6
Kentucky 4339367 4332584 6783 0.2
Louisiana 4533372 4519356 14016 0.3
Maine 1328361 1313697 14664 1.1
Maryland 5773552 5724856 48696 0.8
Massachusetts 6547629 6621588 -73959 -1.1
Michigan 9883640 9936913 -53273 -0.5
Minnesota 5303925 5283424 20501 0.4
Mississippi 2967297 2957749 9548 0.3
Missouri 5988927 6004372 -15445 -0.3
Montana 989415 978649 10766 1.1
Nebraska 1826341 1807012 19329 1.1
Nevada 2700551 2650677 49874 1.8
New Hampshire 1316470 1323202 -6732 -0.5
New Jersey 8791894 8723152 68742 0.8
New Mexico 2059179 2027191 31988 1.6
New York 19378102 19564202 -186100 -1.0
North Carolina 9535483 9432921 102562 1.1
North Dakota 672591 651787 20804 3.1
Ohio 11536504 11532245 4259 0.0
Oklahoma 3751351 3716212 35139 0.9
Oregon 3831074 3847469 -16395 -0.4
Pennsylvania 12702379 12625433 76946 0.6
Rhode Island 1052567 1056987 -4420 -0.4
South Carolina 4625364 4586078 39286 0.8
South Dakota 814180 817760 -3580 -0.4
Tennessee 6346105 6326403 19702 0.3
Texas 25145561 25101907 43654 0.2
Utah 2763885 2818242 -54357 -2.0
Vermont 625741 622191 3550 0.6
Virginia 8001024 7928720 72304 0.9
Washington 6724540 6727469 -2929 0.0
West Virginia 1852994 1824505 28489 1.5
Wisconsin 5686986 5664218 22768 0.4
Wyoming 563626 546821 16805 3.0

United States 308745538 308450484 295054 0.1
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Now if
θ̂j

θ̂1

≈ 1 for j = 2, 3, ...,m, especially if the m estimates were obtained independently, the

agency might infer that its estimate θ̂1, or indeed all of the estimates are near θ. But there could
be uniform bias as illustrated in Figure 1 where all estimates tend to overestimate the target θ.

-s
θ

ŝ
θ2

ŝ
θ3

ŝ
θ1 · · ·

ŝ
θm−1

ŝ
θm

Figure 1. Uniform Positive Bias in All Estimates.

Such an approach, at best, implies a measure of closeness for the m estimates based on θ̂1, but
gives no information about the true value of θ.

Now consider a simple example of two competing estimates (m = 2) of a parameter θ:

-s
θ̂1 = 8

s
θ̂2 = 10

Note that θ̂1 = 8 is 20% of θ̂2 = 10 away from θ̂2; and that θ̂2 = 10 is 25% of θ̂1 = 8 away from θ̂1.

If the desire is to report only one number as a measure of closeness for the two estimates, one
natural (conservative) approach is to use the larger percentage because it gives an upper bound.
Formally, we are led to the following definition (Tsao and Wright, 1981, 1983).

Definition 1: Let θ̂1, θ̂2, ..., θ̂m be comparable estimates of the same parameter θ. The maximum
ratio is given by:

M =
θ̂(m) − θ̂(1)

θ̂(1)

where θ̂(1) = min{θ̂1, ..., θ̂m} and θ̂(m) = max{θ̂1, ..., θ̂m}.

The maximum ratio is a conservative measure of closeness because we divide by θ̂(1). Clearly, small
values of the maximum ratio M imply that the estimates are close to each other. However, a small
value of M for θ̂1, ..., θ̂m does not imply that θ̂1, ..., θ̂m are each close to θ.

Definition 2: Let θ > 0 be the parameter of interest and 0 < α < 1. An estimate θ̂ (> 0) of θ is
considered unacceptable for θ for α if θ̂ < (1 − α)θ or θ̂ > (1 + α)θ. Alternatively, an estimate
θ̂(> 0) of θ is considered unacceptable for θ for α if |θ̂ − θ| > αθ.

-
unacceptable ...

...s
(1− α)θ

s
θ

s
(1 + α)θ

...

... unacceptable

Figure 2. Unacceptable Regions for an Estimate θ̂.

It appears that in order to know if a particular estimate is unacceptable (i.e., too low or too high
relative to θ) for a stated α, we must know the true value of θ, which we will never know. However,
the presence of the competing estimates makes the following result possible. The proof is given in
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Tsao and Wright (1983).

Main Result: If M = M0 for m estimates of a particular parameter θ, then at least one of the
estimates is unacceptable for θ for α if

M0

M0 + 2
> α (1)

where 0 < α < 1 is some stated maximum tolerable error αθ.

While the main result is proved indirectly in Tsao and Wright (1981, 1983), this complete visual
proof is motivated by a geometrical interpretation given in a personal communication Leff (1982).

Before the proof, we begin with some preliminaries. For any given set of estimates {θ̂1, θ̂2, ..., θ̂m},
three possible relations exist between θ and the interval (θ̂(1), θ̂(m)), and they are shown in Figure
3 (a, b, c). (Note that there are actually two versions of (a): the one given which shows θ closer to
θ̂(m) and the one which is not shown would show θ closer to θ̂(1). The argument for the case of (a)
which is not shown is similar to the case which is shown.) The letter E represents the amount of
error for the worst-estimate of θ.

-

(a)
...

...ŝ
θ(1)

-E� s
θ

ŝ
θ(m)

...

...

-

(b)
...

... ŝ
θ(1)

-E�s
θ

ŝ
θ(m)

...

...

-

(c)
...

...ŝ
θ(1)

-E� s
θ

s
θ̂(m)

...

...

Figure 3. Three Possible Cases for the Worst-estimate θ̂ of θ.

Clearly from Figure 4 below, the “best” worst-estimate occurs when the interval (θ̂(1), θ̂(m)) is such
that θ is the midpoint of the interval. In this case, the error associated with θ̂(1) (and θ̂(m)) is
denoted by E∗ and is called the minimum worst-estimate error. When θ is not the midpoint of the
interval (θ̂(1), θ̂(m)), then E > E∗ .

-
...

...ŝ
θ(1)

-E∗� s
θ

...

... -E∗� ŝ
θ(m)

...

...

Figure 4. Illustration of “Best” Worst-estimate and Minimum Worst-estimate Error.

Now to give the proof of the Main Result, we consider two cases.

Case (i): When θ is the midpoint of the interval (θ̂(1), θ̂(m)), then from Figure 4,

E∗ = θ − θ̂(1) =
M0θ̂(1)

2
(2)

which is equivalent to
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M0 =
2(θ − θ̂(1))

θ̂(1)

. (3)

If
M0

M0 + 2
> α, then substituting (3) into

M0

(M0 + 2)
> α leads to θ̂(1) < (1− α)θ and hence θ̂(1) is

unacceptable for θ for α.

Case (ii): When θ is not the midpoint of the interval (θ̂(1), θ̂(m)), the error E of the worst-estimate is
either E = |θ̂(1)−θ| or E = |θ̂(m)−θ| depending upon which case in Figure 3 holds. If E = |θ̂(1)−θ|
(similar for E = |θ̂(m) − θ|), we must have θ > θ̂(1). So, because E > E∗ and using (2),

θ − θ̂(1) >
θ̂(m) − θ̂(1)

2
=

Moθ̂(1)

2
(4)

which is equivalent to

Mo <
2(θ − θ̂(1))

θ̂(1)

. (5)

So if
Mo

Mo + 2
> α, then Mo >

2α

1− α
, which along with (5) leads to

2α

1− α
< Mo <

2(θ − θ̂(1))

θ̂(1)

. (6)

Thus
α

1− α
<

θ − θ̂(1)

θ̂(1)

which implies θ̂(1) < (1− α)θ. Hence θ̂(1) is unacceptable for θ for α.

Thus the Main Result is shown.

Comment: It should be noted that under Case (i) of the proof, the converse holds. That is, if θ̂(1)

(similarly for θ̂(m)) is unacceptable for θ for α, then from Definition 2,

θ̂(1) < (1− α)θ

or equivalently

θ − θ̂(1) > αθ. (7)

From (2)

θ =
M0 + 2

2
θ̂(1),

and substituting this expression for θ into (7) gives (1), i.e.,

M0

M0 + 2
> α.

2.2. A Test of Unacceptability

The Main Result implies the following test of unacceptability for at least one of the given estimates.
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Test of Unacceptability

1. State an α0 that denotes a maximum tolerable error αoθ for the collection of estimates.

2. Obtain the primary estimate θ̂1 and a set of competing estimates θ̂2, ..., θ̂m.

3. Compute the specific value of the maximum ratio = M0 =
θ̂(m) − θ̂(1)

θ̂(1)

.

4. Compare α0 and
M0

M0 + 2
.

(a) If
M0

M0 + 2
> α0, then at least one of the estimates is unacceptable for θ for

α0. Further investigation is needed.

(b) If
M0

M0 + 2
≤ α0, then we lack sufficient evidence to say that at least one of the

estimates is unacceptable for θ for α0.

To illustrate the test of unacceptability, we return to the example of Section 1.2 where

θ = the true Total U. S. Resident Population as of April 1, 2010.

1. Let’s take α0 = .005. This means that we can not tolerate an estimate (or count) which is more

than say
1
2

of 1% of the true value of θ away from the true value of θ.

2. The U. S. Census Bureau produced an official count θ̂1 and three other estimates as noted earlier
in Table 1.

3. The maximum ratio is

M0 =
308, 745, 538− 308, 450, 484

308, 450, 484
= .000956568.

Thus the four estimates are within .096% of each other!

4. Finally, we have
M0

M0 + 2
= .000478 ≤ .005 = α0. Hence we lack evidence to say that the official

2010 Census Count is unacceptable. The same holds for the other three estimates θ̂2, θ̂3, and θ̂4.
Thus with certainty, we lack evidence to declare that any of the four estimates is more than .5% of
the true population away from the true population total.

Comment: Rather than state a pre-set maximum tolerable error α0θ, one can just compute
M0

M0 + 2
.

With this approach, any value of α less than
M0

M0 + 2
would cause us to say at least one of the

estimates is unacceptable for θ for α. For any value of α greater than or equal to
M0

M0 + 2
, we would

lack sufficient evidence to make this claim.
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Table 3 uses the test of unacceptability to compare state level estimates for the April 1, 2010 resident popu-
lation. For each state, its population count from the 2010 Census is the primary estimate and a competing
estimate comes from the Population Estimates Program (PEP).

Table 3. State Comparisons of PEP Estimates and 2010 Census Counts Using M0

Geographic Area
2010

Census
Count

2010
PEP

Estimate
M0 × 100%

M0

M0 + 2

Alabama 4779736 4724112 1.177449% 0.005853
Alaska 710231 705175 0.716985% 0.003572
Arizona 6392017 6654358 4.104197% 0.020108
Arkansas 2915918 2904540 0.391732% 0.001955
California 37253956 37171135 0.222810% 0.001113
Colorado 5029196 5075295 0.916628% 0.004562
Connecticut 3574097 3523925 1.423753% 0.007068
Delaware 897934 889722 0.922985% 0.004594
District of Columbia 601723 607918 1.029543% 0.005121
Florida 18801310 18636368 0.885054% 0.004406
Georgia 9687653 9884534 2.032288% 0.010059
Hawaii 1360301 1296885 4.889871% 0.023866
Idaho 1567582 1555957 0.747129% 0.003722
Illinois 12830632 12931584 0.786805% 0.003919
Indiana 6483802 6438366 0.705707% 0.003516
Iowa 3046355 3019493 0.889620% 0.004428
Kansas 2853118 2835125 0.634646% 0.003163
Kentucky 4339367 4332584 0.156558% 0.000782
Louisiana 4533372 4519356 0.310133% 0.001548
Maine 1328361 1313697 1.116239% 0.005550
Maryland 5773552 5724856 0.850607% 0.004235
Massachusetts 6547629 6621588 1.129554% 0.005616
Michigan 9883640 9936913 0.539002% 0.002688
Minnesota 5303925 5283424 0.388025% 0.001936
Mississippi 2967297 2957749 0.322813% 0.001611
Missouri 5988927 6004372 0.257893% 0.001288
Montana 989415 978649 1.100088% 0.005470
Nebraska 1826341 1807012 1.069666% 0.005320
Nevada 2700551 2650677 1.881557% 0.009320
New Hampshire 1316470 1323202 0.511368% 0.002550
New Jersey 8791894 8723152 0.788041% 0.003925
New Mexico 2059179 2027191 1.577947% 0.007828
New York 19378102 19564202 0.960362% 0.004779
North Carolina 9535483 9432921 1.087277% 0.005407
North Dakota 672591 651787 3.191840% 0.015709
Ohio 11536504 11532245 0.036931% 0.000185
Oklahoma 3751351 3716212 0.945560% 0.004706
Oregon 3831074 3847469 0.427948% 0.002135
Pennsylvania 12702379 12625433 0.609452% 0.003038
Rhode Island 1052567 1056987 0.419926% 0.002095
South Carolina 4625364 4586078 0.856636% 0.004265
South Dakota 814180 817760 0.439706% 0.002194
Tennessee 6346105 6326403 0.311425% 0.001555
Texas 25145561 25101907 0.173907% 0.000869
Utah 2763885 2818242 1.966688% 0.009738
Vermont 625741 622191 0.570564% 0.002845
Virginia 8001024 7928720 0.911925% 0.004539
Washington 6724540 6727469 0.043557% 0.000218
West Virginia 1852994 1824505 1.561465% 0.007747
Wisconsin 5686986 5664218 0.401962% 0.002006
Wyoming 563626 546821 3.073218% 0.015134

United States 308745538 308450484 0.095657% 0.000478
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3. MAXIMUM RATIO: EXTENSION TO 2-D PARAMETERS

In this section, we extend the maximum ratio concept and Main Result to vector-valued pa-
rameters. As an example, consider the vector-valued parameter (θ, φ) where θ is the total value of
sales by U.S. retail companies for month A and φ is the total value of inventories for U.S. retail
companies for month A. Another example could be in terms of energy consumed per person living
in housing units during month B (θ) and energy consumed per person living in group quarters
during month B (φ).

Definition 3: The error in using (θ̂, φ̂) as an estimate of the vector-valued parameter (θ, φ) is the
Euclidean distance between (θ̂, φ̂) and (θ, φ), i.e.,

Error =
√

(θ̂ − θ)2 + (φ̂− φ)2 (8)

Definition 4: An estimate (θ̂, φ̂) of (θ, φ) is considered as unacceptable for (θ, φ) for α where 0 <
α < 1, if the error in using (θ̂, φ̂) as an estimate of the truth (θ, φ) is at least α times the magnitude
of (θ, φ), i.e., if √

(θ̂ − θ)2 + (φ̂− φ)2 > α
√

θ2 + φ2. (9)

Visually, or geometrically, assume a circle centered at (θ, φ) of radius α
√

θ2 + φ2. If the estimate
(θ̂, φ̂) is exterior to and beyond the circle, then (θ̂, φ̂) is unacceptable (Figure 5).

-

6
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√
θ2 + φ2 →

&%
'$t...... α

√
θ2 + φ2�...

(θ, φ)

�
�	

t(θ̂, φ̂)

Figure 5. (θ̂, φ̂) is unacceptable for (θ, φ) for α.

Definition 5: Let (θ̂1, φ̂1), (θ̂2, φ̂2), ..., (θ̂m, φ̂m) be m competing estimates of the same parameter
(θ, φ) where θ > 0 and φ > 0. The maximum ratio that gives a measure of closeness among the
competing estimates is given by

M =

√
(θ̂(m) − θ̂(1))2 + (φ̂(m) − φ̂(1))2√

θ̂2
(1) + φ̂2

(1)

(10)

where θ̂(1) = min{θ̂i}, φ̂(1) = min{φ̂i}, θ̂(m) = max{θ̂i}, and φ̂(m) = max{φ̂i}.
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Example: Assume (θ, φ) = (7, 9) and that three competing estimates are (θ̂1, φ̂1) = (6, 10);
(θ̂2, φ̂2) = (7, 10); and (θ̂3, φ̂3) = (8, 9). See Figure 6.

-

6

(θ, φ)s

7 θ

9

φ

(θ̂(1), φ̂(1))s (θ̂3, φ̂3)s

(θ̂2, φ̂2)s(θ̂1, φ̂1)s (θ̂(3), φ̂(3))s

Figure 6.

Note that (θ̂(1), φ̂(1)) = (6, 9) and (θ̂(3), φ̂(3)) = (8, 10). Furthermore, the distances between
selected vector-valued estimates are as noted in Table 4:

Table 4. Distances Between Selected Vector-valued Estimates
Estimate 1 Estimate 2 Distance

(θ̂1, φ̂1) (θ̂2, φ̂2)
√

(6− 7)2 + (10− 10)2 = 1.

(θ̂1, φ̂1) (θ̂3, φ̂3)
√

(6− 8)2 + (10− 9)2 =
√

5.

(θ̂2, φ̂2) (θ̂3, φ̂3)
√

(7− 8)2 + (10− 9)2 =
√

2.

(θ̂(1), φ̂(1)) (θ̂(3), φ̂(3))
√

(6− 8)2 + (9− 10)2 =
√

5.
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Also the magnitudes of various vectors are

Table 5. Magnitudes of Selected Vector-valued Estimates

Vector Magnitude

(θ̂1, φ̂1)
√

62 + 102 =
√

136

(θ̂2, φ̂2)
√

72 + 102 =
√

149

(θ̂3, φ̂3)
√

82 + 92 =
√

145

(θ̂(1), φ̂(1))
√

62 + 92 =
√

117

Now relative to the magnitude of (θ̂1, φ̂1), the points (θ̂1, φ̂1) and (θ̂2, φ̂2) are within
1√
136

×100% =

8.57% of each other. Similarly, we have

Table 6. Relative Closeness of Selected Vector-valued Estimates

Relative to ... points ... are within ... % of each other.

(θ̂2, φ̂2) (θ̂1, φ̂1) and (θ̂2, φ̂2) 8.19%

(θ̂1, φ̂1) (θ̂1, φ̂1) and (θ̂3, φ̂3) 19.17%

(θ̂3, φ̂3) (θ̂1, φ̂1) and (θ̂3, φ̂3) 18.57%

(θ̂2, φ̂2) (θ̂2, φ̂2) and (θ̂3, φ̂3) 11.59%

(θ̂3, φ̂3) (θ̂2, φ̂2) and (θ̂3, φ̂3) 11.74%

However and relative to the magnitude of (θ̂(1), φ̂(1)), the points (θ̂(1), φ̂(1)) and (θ̂(3), φ̂(3)) are within√
5√

117
× 100% = 20.67% of each other. Note that

M0 × 100% =
√

5√
117

× 100% = 20.67%,

so the maximum ratio is thus a “conservative” measure of closeness among the three points (θ̂1, φ̂1),
(θ̂2, φ̂2), and (θ̂3, φ̂3). Thus we would say that the three estimates are within M0× 100% = 20.67%
of each other.

For a given set of estimates {(θ̂1, φ̂1), ..., (θ̂m, φ̂m)}, consider the rectangle with vertices (θ̂(1), φ̂(1)),
(θ̂(1), φ̂(m)), (θ̂(m), φ̂(1)), and (θ̂(m), φ̂(m)) as shown in the Figure 7 below with two possibilities for
(θ, φ). In case (a), (θ, φ) is inside the rectangle; and in case (b), (θ, φ) is outside the rectangle.

Definition 6: In either case (a) or (b) of Figure 7, E represents the amount of error for the worst-
estimate of (θ, φ).

Definition 7: Clearly from Figure 8 below, the “best” worst-estimate occurs when (θ̂(1), φ̂(1)) and
(θ̂(m), φ̂(m)) are such that (θ, φ) is the midpoint of the rectangle with vertices as noted below. In
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this case, the error associated with (θ̂(1), φ̂(1)) [also the error for each of the other three vertices] is
denoted by E∗ and is called the minimum worst-estimate error.
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Figure 7. Two Possibilities for (θ, φ).
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Figure 8. E∗, the Minimum Worst-estimate Error.
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Main Result (for 2-D): If M has the particular value M0 for m estimates (θ̂1, φ̂1), (θ̂2, φ̂2), ..., (θ̂m, φ̂m)
of a particular parameter (θ, φ), then at least one of the estimates [(θ̂(1), φ̂(1)); (θ̂(1), φ̂(m)); (θ̂(m), φ̂(1));
(θ̂(m), φ̂(m))] is unacceptable [i.e., more than 100α% of the magnitude of (θ, φ) away from (θ, φ)] for
α if

M0

√√√√ θ̂2
(1) + φ̂2

(1)

(θ̂(1) + θ̂(m))2 + (φ̂(1) + φ̂(m))2
> α. (11)

Proof: Now to give the proof of the Main Result (for 2-D), we consider two cases.

Case (i). When (θ, φ) is the midpoint of the ‘rectangle’ as given in Figure 8:

For the case in Figure 8 and focusing on (θ̂(1), φ̂(1)), similarly for the other three vertices, we
have the minimum worst estimate error is

E∗ =
√

(θ̂(1) − θ)2 + (φ̂(1) − φ)2 =
M0

√
θ̂2
(1) + φ̂2

(1)

2
. (12)

That is, E∗, the minimum worst estimate error, equals half the length of the diagonal.

We also see from Figure 8 that

(θ, φ) = (
θ̂(1) + θ̂(m)

2
,
φ̂(1), φ̂(m)

2
) (13)

because (θ, φ) is the midpoint between the points (θ̂(1), φ̂(1)) and (θ̂(m), φ̂(m)).

Thus if

M0

√√√√ θ̂2
(1) + φ̂2

(1)

(θ̂(1) + θ̂(m))2 + (φ̂(1) + φ̂(m))2
> α,

then

Mo

√
θ2
(1) + φ2

(1) > α
√

(θ̂(1) + θ̂(m))2 + (φ̂(1) + φ̂(m))2

which becomes

Mo

√
θ2
(1) + φ2

(1) > 2α

√
(
θ̂(1) + θ̂(m)

2
)2 + (

φ̂(1) + φ̂(m)

2
)2. (14)

Solving for Mo in (12) and substituting the value for Mo into (14) and substituting the result
from (13) gives

(
2
√

(θ̂(1) − θ)2 + (φ̂(1) − φ)2√
θ̂2
(1) + φ̂2

(1)

)
√

θ2
(1) + φ2

(1) > 2α
√

θ2 + φ2
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which reduces to

√
(θ̂(1) − θ)2 + (φ̂(1) − φ)2 > α

√
θ2 + φ2.

Hence (θ̂(1), φ̂(1)) is unacceptable for (θ, φ) for α.

Conversely, if (θ̂(1), φ̂(1)) is unacceptable for (θ, φ) for α, then

√
(θ̂(1) − θ)2 + (φ̂(1) − φ)2 > α

√
θ2 + φ2

which is equivalent to

(
2
√

(θ̂(1) − θ)2 + (φ̂(1) − φ)2√
θ̂2
(1) + φ̂2

(1)

)
√

θ2
(1) + φ2

(1) > 2α
√

θ2 + φ2 (15)

Using Mo from (12) and the result in (13), (15) becomes

Mo

√
θ2
(1) + φ2

(1) > α
√

(θ̂(1) + θ̂(m))2 + (φ̂(1) + φ̂(m))2

which is equivalent to

M0

√√√√ θ̂2
(1) + φ̂2

(1)

(θ̂(1) + θ̂(m))2 + (φ̂(1) + φ̂(m))2
> α. (16)

Thus we have shown that in Case (i) when (θ, φ) is the midpoint of the rectangle, then the mini-
mum worst estimate error E∗ associated with a ‘best’ worst estimate is unacceptable if and only if
(11) holds.

Case (ii). When (θ, φ) is ‘not’ the midpoint of the ‘rectangle’ as given in Figure 8:

If (θ, φ) is not the midpoint of the rectangle, then the error E of a worst-estimate is one of the
following:

E =
√

(θ̂(1) − θ)2 + (φ̂(1) − φ)2;

E =
√

(θ̂(1) − θ)2 + (φ̂(m) − φ)2;

E =
√

(θ̂(m) − θ)2 + (φ̂(1) − φ)2; or

E =
√

(θ̂(m) − θ)2 + (φ̂(m) − φ)2.

Whatever the case, E ≥ E∗.

Now we have just seen that E∗ is the minimum worst error associated with the ‘best’ worst-
estimate, and it is unacceptable if and only if (11) holds. So if (11) holds, then E∗ is unacceptable
error and because E ≥ E∗, this implies that E is also unacceptable error for at least one of the
vertices of the rectangle for α. Thus at least one of the following is unacceptable for (θ, φ) for α:
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(θ̂(1), φ̂(1)); (θ̂(1), φ̂(m)); (θ̂(m), φ̂(1)); or (θ̂(m), φ̂(m)).

Thus the Main Result (for 2-D) is shown.

4. CONCLUDING REMARKS

4.1. A Standard for Census Assessment: The maximum ratio and the test of unacceptability hold
promise as useful tools for developing a standard against which to assess, at a very high level, the
success or quality of a decennial census relative to the unknown truth when α is appropriately small.

Given
M0

M0 + 2
for θ̂1 the official decennial census count and some competing estimates θ̂2, θ̂3, ..., θ̂m,

for any value of α0 where
M0

M0 + 2
≤ α0, the Census Bureau would lack evidence to say that θ̂1

is unacceptable. For any α0 where
M0

M0 + 2
> α0, at least one of the estimates in the collection

{θ̂1, θ̂2, ..., θ̂m} is unacceptable, and hence further investigation is required.

4.2. Other Official Statistics Applications: The test of unacceptability can be applied in any situ-
ation where there is a collection of competing estimates for the same target parameter. For official
statistics, many potential applications exist. For example, the decennial census provides a national
vacancy rate of housing units which can be compared with similar estimates from sample surveys.
Estimates of energy sales volumes could be compared with estimates of energy consumption and
storage volumes. Estimates of purchases by consumers could be compared with estimates of sales
by businesses. Estimates of food stamp purchases from household sample surveys could be com-
pared to estimates of food stamp funds distributed by the responsible government agency.

4.3. Reproducibility in Science: Sometimes, scientific measurement yields many widely ranging
estimates. One recent case involves global warming. With estimates of the rate at which ice sheets
in Antartica and Greenland have been losing (or gaining) mass ranging from an overall loss of 676
billion tons per year to a gain of 69 billion tons a year, 47 experts from 26 institutions around the
world reviewed data from over 25 studies to arrive at a reconciled estimate (Kerr, 2012; Shepherd,
et al, 2012) by considering the varying conditions under which the different estimates were obtained.
In this case of global warming, the need for further investigation is clear.

More generally, the test of unacceptability can be applied in applications regarding questions
of reproducibility of scientific results. A quick scan of some recent issues of the journal Science
reveals several examples: (1) modern estimates of the number of eukaryotic (non-bacterial) species
on Earth, ranging from 2 million to 100 million (Costello, et al, 2013); (2) different estimates of the
root-mean-square proton charge radius from three methods (Antognini, et al, 2013; and Margolis,
2013); and (3) reference to a range of estimates between 6 and 37 petabecquerels of cesium-137
that was spewed by the March 2011 Fukushima (Japan) nuclear disaster (Normile, 2013).

The results on measuring the size of a proton, actually considering three different radii of the
proton (the Zemach radius, the magnetic radius, and the charge radius), were investigated. We
focus on charge radius (rE) which is the root mean square charge radius given in femtometers (fm).
Three previous estimates of the true unknown value of the charge radius of a proton rE are the
first three estimates given in Table 7.
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Table 7. Four Estimates of the Charge Radius rE of a Proton
Method Estimates of rE

1. Electron-Proton Scattering 0.879 fm
2. Electron-Proton Scattering 0.875 fm
3. Hydrogen Spectroscopy CODATA (2010) 0.8775 fm ≈ 0.878 fm
4. Muonic Hydrogen Spectroscopy 0.84087 fm ≈ 0.841 fm

The fourth estimate in Table 7 is obtained from new methodology and is reported in Antognini,

et al (2013). Note that M0 =
max{rE} −min{rE}

min{rE}
=

.879− .841
.841

= .0452 . Thus the four es-

timates are within 4.52% of each other. Also
M0

M0 + 2
= .0221. So for any α0 < .0221, at least

one of the four estimates is unacceptable and further investigation is required. While the fourth
estimate seems far away from the other three, it may very well be the best of the four due to
improved methodology. While noting that their new estimate of 0.84087 fm is in agreement with
another estimate of rE = 0.84 fm which results from “...a global fit of proton and neutron form
factors based on dispersion relations and the vector-dominance model,” Antognini, et al (2013) and
Margolis(2013) call for further investigations to further explain the differences. [The Zemach radius
(rZ) has estimates of 1.086 fm, 1.045 fm, 1.047 fm, 1.037 fm, and 1.082 fm. Thus M0 = 0.0473 and

M0

M0 + 2
= 0.0231. On the other hand, the magnetic radius (rM ) has estimates of 0.803 ≈ 0.80 fm,

0.867 ≈ 0.87 fm, 0.86 fm, and 0.87 fm. Thus M0 = 0.0875 and
M0

M0 + 2
= 0.0419.]

4.4. A Deterministic Test: Finally, the test of unacceptability is deterministic and not stochastic.
However, setting a value of α0 is similar to setting an α-level of significance as in statistical hypoth-
esis testing. Because the test of unacceptability is not stochastic, no adjustments are needed when
repeating the test of unacceptability to subsets of estimates when determining which groupings
produce unacceptable worst estimate error and which groupings do not. The maximum ratio and
the test of unacceptability are particularly useful when the uncertainty of some of the considered
estimates can not be quantified.
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APPENDIX

Table. Official U.S. Resident Population Counted in the 2010 Census by Enumeration Method
[Source: Jackson, 2013.]

Enumeration Method Number of Persons

1. IN HOUSING UNITS

Self-administered Questionnaires
Mailout/Mailback 193,345,244
Update/Leave 13,610,355
Form Fulfillment 312,463
Be Counted Forms 303,041

Interviewer-administered Questionnaires
Nonresponse Follow-up 66,785,373
Vacant Delete Check 4,665,512
Nonresponse Follow-up Residual 728,374
Update Enumerate 1,947,532
Remote Update Enumerate 5,967
Remote Alaska 54,112
Coverage Follow-up 17,326,236
Telephone Questionnaire Assistance 104,489
Enumeration of Transitory Locations 190,627
Nonresponse Follow-up Reinterview 157,410
Update Enumerate Reinterview 6,465

Imputation Cases and UHE Moves with an Unknown Operation Origin 1,215,015

2. IN GROUP QUARTERS

Subtotal for Group Quarters 7,987,323

TOTAL RESIDENT POPULATION (April 1, 2010) 308,745,538

Glossary of 2010 Census Enumeration Methods (Jackson, 2013)

Mailout/Mailback: A 2010 Census questionnaire was mailed to a housing unit, and the housing unit
completed the questionnaire and mailed it back.
Update/Leave: A 2010 Census field operation where a lister (of addresses) leaves a questionnaire at the
housing unit for the people living at the housing unit to complete and mail back to the Census Bureau.
Form Fulfillment: A person calls Telephone Questionnaire Assistance and requests that a 2010 Census
questionnaire be mailed to his or her address. The Form Fulfillment questionnaire was available in the
following languages: English, Spanish, Chinese, Korean, Russian, and Vietnamese.
Be Counted: A person picked up, completed and sent back a 2010 Census Be Counted Questionnaire from
a Questionnaire Assistance Center or Be Counted location. The Be Counted questionnaire was available in
the following languages: English, Spanish, Chinese, Korean, Russian, and Vietnamese.
Nonresponse Follow-up: A person did not complete a mailback questionnaire and was interviewed by a
Census enumerator.
Vacant Delete Check: A follow-up interview for housing units found to be non-seasonally vacant and
nonexistent in Nonresponse Follow-up. Additionally, if a person mailed back a blank 2010 Census mailback
questionnaire or if a housing unit was in the supplemental enumeration universe delivery, they were inter-
viewed for the first time in the Vacant Delete Check operation. The supplemental enumeration universe
includes housing units that were not known in time to be included in the initial enumeration universe. They
include housing units that were added from operations like New Construction and Local Update of Census
Address Appeals. Housing units in the supplemental universe were mailed questionnaires in the Late Add
Mailout.
Nonresponse Follow-up Residual: If a Nonresponse Follow-up enumerator was unable to determine how
many people lived in a housing unit, that housing unit was reinterviewed in the Nonresponse Follow-up
Residual operation. Additionally, if a person mailed back a blank 2010 Census mailback questionnaire and
was not included in the Vacant Delete Check operation, they were followed up with in the Nonresponse
Follow-up Residual operation.
Update Enumerate: A Census Bureau enumerator canvassed and interviewed housing units located on
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Native American reservations and areas that had a large amount of seasonally occupied housing units.
Remote Update Enumerate: A Census Bureau enumerator canvassed and interviewed housing units
located in rural Maine and rural Alaska.
Remote Alaska: A Census Bureau enumerator canvassed and interviewed housing units located in ex-
tremely remote locations in Alaska. The operation was started in January and conducted in three waves.
Coverage Follow-up: A follow-up interview with respondents that were identified as having potential
overcoverage or undercoverage on their mailback or Nonresponse Follow-up questionnaire.
Telephone Questionnaire Assistance: A person completed his or her 2010 Census questionnaire over
the phone with an interviewer at a call center.
Enumeration of Transitory Locations: People who lived in transitory locations such as boat docks,
hotels, and trailer parks and were interviewed by Census Bureau enumerators.
Reinterview: A quality control follow-up interview with respondents from Nonresponse Follow-up and
Update Enumerate. The only reinterview questionnaires included in the final 2010 Census counts are those
that replaced production questionnaires due to the production enumerator falsifying data or not following
procedures correctly.
Group Quarters: A group quarters is a place where people live or stay that is normally owned or managed
by an entity or organization providing housing or services for the residents. These services may include
custodial or medical care as well as other types of assistance, and residency is commonly restricted to those
receiving these services. People living in group quatrers are usually not related to one another. Group
quarters include such places as college residence halls, residential treatment centers, skilled nursing facilities,
group homes, military barracks, correctional facilities, workers’ dormitories, and facilities for people experi-
encing homelessness. People in quarters are interviewed during the Group Quarters Enumeration operation.
UHE (Usual Household Elsewhere) Moves: A housing unit that is occupied by people that completed
either a Be Counted Questionnaire or Group Quarters questionnaire and indicated that they stayed at an-
other address.
Late Add Mailout: There were housing units identified too late to be included in the original 2010 Census
mailout. These units were part of the supplemental enumeration universe. There was a separate mailout
to these units, and they were assigned a Processing Identifier for the process instead of a Census Identifier.
The Processing Identifier identifies housing units that were added to the initial enumeration universe.
Unlinked Continuation Forms: The 2010 Census questionnaires used by enumerators only include enough
space to have information for up to five people living at the housing unit. If more than five people lived at
a housing unit, a continuation form was used. The continuation forms were then linked to the parent form.
However, not all continuation forms were able to be linked. An unlinked continuation form indicates that
there was no parent form captured for this unit.
Imputation: The assignment of values by the Census Bureau when information is missing or inconsistent.
Imputation relies on the tendency of households of the same size within a small geographic area to be similar
in most characteristics.
Status Imputation: The Census Bureau did not know if the address was a housing unit or another struc-
ture. A value of existing or nonexistent was assigned to the housing unit.
Occupancy Imputation: The Census Bureau knew that the housing unit existed but its status was not
known. A value of occupied or vacant was assigned to the housing unit.
Household Size Imputation: The Census Bureau knew that a housing unit was occupied but did not
know how many people lived in the unit. The number of people living in that unit was assigned to it.
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