RESEARCH REPORT SERIES (Statistics #2013-05)

A Visual Proof, a Test, and an Extension of a Simple Tool for Comparing Competing Estimates

Tommy Wright

Center for Statistical Research & Methodology Research and Methodology Directorate U.S. Census Bureau Washington, D.C. 20233

Report Issued: September 10, 2013 Revised and reissued: February 24, 2014

Disclaimer: This report is released to inform interested parties of research and to encourage discussion. The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau.

A Visual Proof, a Test, and an Extension of A Simple Tool for Comparing Competing Estimates

Tommy Wright

U. S. Bureau of the Census

Abstract

A common practice of a national statistical agency (and most scientific investigations) is to assess its estimate for a particular real-valued characteristic (parameter) by comparing it to competing estimates from other sources. The nature of the assessment is to explain the differences. While assessing the quality of energy estimates (e.g., reserves, production, supply, sales, consumption,...), Tsao and Wright (1983) introduced a simple tool (maximum ratio) and used it to prove a statement regarding the closeness of a set containing a particular estimate and competing estimates to the unknown true value of the targeted real-valued parameter. In this paper, we (1) provide a visual proof of the (*Main Result*), (2) present a test of unacceptability for at least one of the competing estimates using the maximum ratio, (3) give an application assessing the national count from the 2010 U.S. Census, and (4) extend the maximum ratio and statement to vector-valued parameters. The test can be applied in any situation where several measurements of the same phenomenon exist and one wants to quantify with certainty how far away from the truth at least one of the estimates is. Even if all estimates are near each other, this does not necessarily imply that they are near the unknown true value. The test sends a signal calling for further investigation when a pre-set standard is exceeded.

Key Words: Accuracy, Maximum Ratio, Test of Unacceptability.

1. INTRODUCTION: COMPARISONS

1.1 The Utility of Comparisions

One basic step toward improving the quality of estimates produced by a national statistical agency is to identify problem areas that require special attention. Comparisons with competing estimates from other sources, when possible, can serve to expose existing problems for one or more data sources.

If θ is some parameter (such as a total or a mean) for a finite population or universe whose true value is unknown and $\hat{\theta}$ is some estimator (based on a probability sample, a census, a statistical model, an experiment, a scientific investigation, records, or data from various sources) whose value is known, the hope is that the difference $|\hat{\theta} - \theta|$ between $\hat{\theta}$ and θ is small. Assessment of an estimate's quality, possibly including sampling frame completeness, can include a study of the extent of such a difference, even though θ 's true value is unknown. Such assessments can reveal limitations of the estimate, identify stages of the data collection process or data analysis that need improvement, and may lead to revelations of inadequacies in the frame (e.g., undercoverage, overcoverage, duplication, imperfect frame data, etc.) or differences in measurement concepts and definitions.

As Kish and Hess (1958) note, "The estimation of errors (differences) ... generally entails one of two difficult alternatives. The first calls for a quality check by procedures which are sufficiently better to provide the *true value* against which the (sample) survey results can be compared ... The alternative procedure calls for a reliable (and comparable) estimate from an outside source."

Disclaimer & Acknowledgments: The views expressed are those of the author and not necessarily those of the U. S. Bureau of the Census. The author is Chief, Center for Statistical Research & Methodology, U. S. Census Bureau and adjunct faculty in the Mathematics & Statistics Department, Georgetown University. The author is grateful to the following for technical reviews of earlier drafts: Patrick Cantwell, Jason Devine, Deborah Griffin, Heather King, Mary Mulry, and Victoria Velkoff. Special thanks to Alisha Armas and Michael Leibert for excellent research assistance.

From Tsao and Wright (1983), "... Morgenstern (1963) notes, there are several occasions when ... 'one is faced with alternative sets of data (estimates) which aim to describe the same phenomenon but which appear quite different; and it is difficult, if not impossible, to discover just where their difference lies.' Martin (1981) has pointed out how the comparisons of different data series produced by federal statistics bureaus can make important contributions to the improvements in one or both data series and that precautions are needed to avoid judgments based solely on supposition rather than on scientific evidence. Also, Eckler and Pritzker (1951) consider such external data comparisons as the first step in checking the adequacy of the frame."

Because there will usually be differences between definitions, target populations, responding populations, data collection procedures, and estimation procedures, the identification of differences in the estimates does not necessarily suggest that a particular estimate is inaccurate or that the other estimates are inaccurate. The value of a comparison lies in its ability to (1) give notice of changes in the population's structure occurring over time that may be affecting the estimates, (2) allow comparisons between different data collection procedures, and perhaps most importantly, (3) alert a particular agency to the need for further investigations.

1.2 Example Based on Counts and Estimates Associated with the 2010 Census

Let θ be the true total U. S. resident population as of April 1, 2010. The U. S. Census Bureau produced an official count $\hat{\theta}_1$ and three other estimates of θ as follows. Table 1 presents these four quantities, each aiming to estimate θ as close as possible.

During 2010, a nationwide constitutionally required census was conducted to distribute the 435 seats in the U. S. House of Representatives among the states. The table in the Appendix gives details of the construction of the 2010 Census count in terms of the various enumeration methods, which are defined following that table. During the 2010 Census, 300,758,215 persons were enumerated in housing units and 7,987,323 persons were enumerated in group quarters. The official 2010 Census resident population count delivered to the President of the United States on December 21, 2010 was $\hat{\theta}_1 = 308,745,538$.

The second estimate in Table 1 results primarily from an analysis of administrative records (e.g., births, deaths, and migration) often presented at a very high level as

Population = $\{Population Under Age 65 in 2010\} + \{Population Ages 65 and Over in 2010\}$

 $= \{B - D + I - E\} + \{Medicare-based Population\}$

where B = number of births since 1945; D = number of deaths of persons born since 1945; I = immigration of persons born since 1945; and E = emigration of persons born since 1945. This demographic analysis (DA) estimate was released by demographers on December 6, 2010 with value $\hat{\theta}_2 = 308,475,000$. The demographers actually released a spectrum of DA estimates with varying underlying migration assumptions:

 $305,684,000 \bullet 307,415,000 \bullet 308,475,000 \bullet 310,038,000 \bullet 312,713,000$.

The DA estimates were developed without knowledge of the 2010 Census counts.

The third estimate in Table 1 comes from the Census Bureau's Population Estimates Program (PEP). This estimate for 2010 is derived by starting with the Census 2000 count and updating it annually from 2000 to 2010 using administrative records of births, deaths, and migration. This

third estimate, created without knowledge of the 2010 Census counts, was released by demographers in February 2011 with value $\hat{\theta}_3 = 308, 450, 484$.

The fourth estimate results from statistical methods that combine results from a nationwide probability sample [Census Coverage Measurement (CCM)] with the count from the 2010 Census, and it provides a measure of the quality of the 2010 Census count. This estimate was constructed from estimates released on May 22, 2012 with value $\hat{\theta}_4 = 308,709,100$ (= 300,667,000 estimated in housing units + 7,987,323 counted in group quarters + 54,777 counted in the remote Alaska area of which 54,111 were counted by the remote Alaska enumeration method as noted in the table given in the Appendix).

Table 1. Four Estimates of θ = the True Total U. S. Resident Population as of April 1, 2010. Source

	Count of Estimate
1. Official 2010 Census Resident Population Count	$\hat{\theta}_1 = 308,745,538$
2. Demographic Analysis (DA) Estimate	$\hat{\theta}_2 = 308,\!475,\!000$
3. Population Estimates Program (PEP) Estimate	$\hat{\theta}_3 = 308,\!450,\!484$
4. Probability Sample [Census Coverage Measurement (CCM)] Estimate	$\hat{\theta}_4 = 308,709,100$

Table 2 compares state counts from the 2010 Census with state 2010 PEP estimates. As illustrated in Table 2, analysts, when making initial comparisons, often will simply display competing estimates side-by-side and may compute the relative difference between them. Such comparisons are useful, but they are limited because: (1) they only show that two or more estimates differ, and (2) they only show the magnitude of the difference relative to a particular estimate.

Do these analyses directly address the issue of accuracy? These comparisons make statements about how close the estimates are to each other, but rarely, if ever, is any attempt made to say how close the set of estimates is to the true unknown value of the parameter of interest θ , which is what we ultimately want to know.

2. THE MAXIMUM RATIO

2.1. Concepts, Definitions, and Main Result

There is a simple and potentially useful tool called the maximum ratio which also gives an indication of how the collection of estimates stands relative to the unknown true value. That is, it provides some information about the accuracy of the collection of competing estimates. What follows provides highlights to the maximum ratio (Tsao and Wright, 1981, 1983).

Given the positive estimates $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_m$ of the unknown positive value of the target parameter θ , we seek to focus on two questions: (1) How does one measure the closeness among the estimates? (2) Is at least one of the estimates unacceptable as an estimate of θ ?

Alternatively to Table 2, ratios might form the basis of the measure of closeness. So

- (1) if $\hat{\theta}_1$ is a statistical agency's estimate of primary interest, and if $\hat{\theta}_2, \hat{\theta}_3, ..., \hat{\theta}_m$ are competing estimates, then
- (2) one could compute the ratios $\frac{\hat{\theta}_2}{\hat{\theta}_1}, \frac{\hat{\theta}_3}{\hat{\theta}_1}, ..., \frac{\hat{\theta}_m}{\hat{\theta}_1}$.

Steps (1) and (2) are appealing because they are simple and easy to explain.

Table 2. Comparisons between Preliminary Population Estimates and 2010) Census Co	unts for the	States
as of April 1, 2010. [Source: Population Division (February 2011), U.S. Bureau of	of the Census,	Washington,	D.C.]
	2010	2010	

2010 2010 2010 2010 Consise PEP						2010	2010	
		2010	2010	2010	2010	Census -	- PEP	
Count Count Estimate Count Estimate Count Count Count Alabama 47291736 4724112 55624 1.2 Alabama 47291736 4724112 55624 1.2 Alaska 710231 705175 5056 0.7 Arkonas 2015018 2004540 11378 0.4 Caltorinia 37253956 37171135 82821 0.2 Colorado 5029096 5075295 -606099 -0.9 Colorado 502905 50172 1.4 Delaware 897934 889722 8212 0.9 District of Columbia 601723 607918 -6195 -1.0 Plorida 180301 12636368 144442 0.9 Georgia 9687632 9884534 -106581 -2.0 Ilaina 6483802 6443866 45436 0.7 Idaba 1567582 177993 0.6 Keansos 2.05 Kaas	Geographic Area	Census	PEP	Census -	- PEP	Count	Estimate	$\times 100\%$
Comm Comm Comm Alabarna 4779736 4724112 55624 12 Alaska 710231 705175 50066 0.7 Arizona 6392017 6654358 -262341 -4.1 Arizona 6392017 6654358 -262341 -4.1 Arizona 6392017 6654358 -262341 -4.1 Colorado 5029196 5075205 -40099 -0.9 Colorado 5029196 5075205 -61055 -1.0 Florida 18897321 889722 8212 0.9 District of Columbia 617532 1555957 11625 0.7 Hawaii 1360301 1296855 63416 4.7 Idabo 1567582 1555957 11625 0.7 Illiaois 1283063 3014939 26862 0.9 Kansas 285118 285125 17993 0.6 Kentucky 4339367 433254 6783 0.2	Geographic mea	Count	Estimate	Count	Count Estimato		010	X 10070
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Count	Loumate	Count	Louinate	Ce	nsus	
Alabama 4779736 4724112 55624 1.2 Ahaska 710231 705175 5056 0.7 Arizona 6392017 6654358 -262341 4.1 Arkamsas 2915918 2904540 11378 0.4 California 37233956 37171135 82821 0.2 Connecticut 3874097 3523925 50172 1.4 Delaware 897334 889722 8212 0.9 District of Columbia 01723 0.07918 -6195 -1.0 Florida 18801310 18636368 164942 0.9 Ofeorgia 968753 9884534 -196881 -2.0 Hawaii 1360301 1298885 63416 4.7 Idaio 1567582 155957 11625 0.7 Idwaii 3130307 433354 10952 -0.8 Indiana 61383062 1233154 100952 -0.8 Indiana 61383067 4332541 67733 0.6 Kentucky 4333372 4519356 14						Co	ount	
Alaska 710231 705175 5056 0.7 Arizona 639017 6654358 -262341 4.1 Arkansas 2915918 2904540 11378 0.4 California 37233066 37171135 82821 0.2 Colorado 5029196 5075295 -16099 0.9 Connecticut 3374097 3523925 50172 .1.4 Delaware 89734 889722 8212 0.9 District of Columbia 601723 607918 -6195 .1.0 Georgia 9687653 9884531 -196881 -2.0 Hawaii 1366308 164142 0.9	Alabama	4779736	4724112		55624			1.2
Arizona 6392017 6654358 -262341 -4.1 Arkansas 2915918 2904540 11378 0.4 California 37253956 37171135 82821 0.2 Colorado 5029196 5075295 -46099 -0.9 Delaware 897334 889722 8212 0.9 District of Columbia 61723 607918 -6195 -1.0 Florida 18850306 164942 0.9 0.6 -2.0 Hawaii 1360301 1296885 63416 4.7 Idaho 1667582 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indian 61433802 6133806 45136 0.7 Illinois 12830632 12931584 -100952 -0.8 Indian 6433802 6133806 45136 0.7 Kentucky 4333372 4519356 14016 0.3 Maine 1282861 1318697 14664 1.1 Maryan	Alaska	710231	705175		5056			0.7
Arkansas 2915918 2904540 11378 0.4 California 37253956 37171135 82821 0.2 Conrado 5029196 5075295 -46099 -0.9 Connecticut 3574097 3223925 50172 1.4 Delaware 897934 880722 8212 0.9 District of Columbia 601723 607918 -61942 0.9 Georgia 9687653 9584534 -196881 -2.0 Hawaii 1360301 1296885 63116 4.7 Idaho 1567582 1555957 11625 0.7 Illinois 12830632 1293154 -100952 -0.8 Indiana 6483802 643356 45436 0.7 Iwaa 3046355 3019493 286862 0.9 Kansas 285118 2835125 17993 0.6 Kansas 133307 14664 1.1 1.1 Maryland 577352 5721856 48096 0.8 Miassachusetts 647629 6004372 -154	Arizona	6392017	6654358		-262341			-4.1
California 37213956 37171135 82821 0.2 Colorado 5029196 5075295 -46099 -0.9 Connecticut 3574097 3523925 50172 1.4 Delaware 897934 880722 8212 0.9 District of Columbia 01723 607183 -6195 -1.0 Florida 18801310 18836368 161942 0.9 Georgia 9687653 9884534 -196881 2.0 Hawaii 1300301 1298885 63416 4.7 Idaho 1657582 1555957 11625 0.7 Imaina 6438902 6433366 44436 0.7 Iowa 304655 3019433 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4339367 4332584 67359 -1.1 Idward 573755 5724856 48696 0.8 Maspian 1533322 5283424 <td< td=""><td>Arkansas</td><td>2915918</td><td>2904540</td><td></td><td>11378</td><td></td><td></td><td>0.4</td></td<>	Arkansas	2915918	2904540		11378			0.4
Colorado 5029196 5075295 -46099 -0.9 Connecticut 3574097 3523925 50172 1.4 District of Columbia 601723 607918 -6195 -1.0 Florida 1880130 18633368 161942 0.9 Georgia 9687653 9884531 -196881 -2.0 Hawaii 1360301 1296885 63416 4.7 Idaho 1567582 12931584 -100952 -0.8 Indiana 6433802 6433366 45436 0.7 Iwa 304635 3019493 28662 0.9 Kanasa 2853118 2835125 17993 0.6 Kentucky 4339367 4332584 6783 0.2 Louisiana 453372 4519356 14016 0.3 Maine 1328361 1313697 14664 1.1 Maryland 577352 5724856 48696 0.8 Minnesota 5303925 5283424	California	37253956	37171135		82821			0.2
Connecticut 357407 3523925 50172 1.4 Delaware 897934 880722 8212 0.9 District of Columbia 601723 607918 -6195 -1.0 Florida 18801310 18636308 164942 0.9 Georgia 9687653 9884534 -196881 -2.0 Hawaii 1360301 1296885 63416 4.7 Idaho 1567582 1555957 11625 0.7 Idinia 6483802 6438366 45436 0.7 Idwa 3046355 3019493 26662 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4339367 4513366 14016 0.3 Maine 1328361 1313697 14664 1.1 Maryland 573755 5724856 48696 0.8 Massachusetts 6547629 6621588 -73959 -1.1 Michigan 988415 978649 <td< td=""><td>Colorado</td><td>5029196</td><td>5075295</td><td></td><td>-46099</td><td></td><td></td><td>-0.9</td></td<>	Colorado	5029196	5075295		-46099			-0.9
Delaware 89734 889722 8212 0.9 District of Columbia 601723 607918 -6195 -1.0 Georgia 9687653 9884534 -196681 -2.0 Jawaii 1360301 1296885 63316 4.7 Idaho 1567582 1555957 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indiana 6483802 6438366 45436 0.7 Kansas 2855118 2835125 17993 0.6 Kansas 285317 14064 1.1 1 Marine 1328361 1313697 14064 1.1 Maryland 5773552 5724856 48696 0.8 Mississippi 2967297 295749 9548 0.3 Mississippi 2967297 295749 1545 -0.3 Mississippi 2967297 295749 1545 -0.3 Mississippi 2967297 295749 <td< td=""><td>Connecticut</td><td>3574097</td><td>3523925</td><td></td><td>50172</td><td></td><td></td><td>1.4</td></td<>	Connecticut	3574097	3523925		50172			1.4
District of Columbia 601733 607918 -6195 -1.0 Florida 18801310 18636368 164942 0.9 Georgia 9687653 9884534 -196881 -2.0 Hawaii 1360301 1296885 63416 4.7 Idaho 1567582 1555957 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indiana 6438302 6438366 45436 0.7 Kansas 2853118 2835125 17993 0.6 Kentucky 4333367 4332584 6783 0.2 Louisiana 4533372 4519356 14016 0.3 Maire 1328361 1313697 14664 1.1 Maryland 577352 5724856 48696 0.8 Massachusetts 6547629 6621588 -73959 -1.1 Michigan 9883640 9936913 -53273 -0.5 Missouri 5988927 6004372 </td <td>Delaware</td> <td>897934</td> <td>889722</td> <td></td> <td>8212</td> <td></td> <td></td> <td>0.9</td>	Delaware	897934	889722		8212			0.9
Florida 18801310 1863638 164942 0.9 Georgia 9687653 9884534 -196881 -2.0 Hawai 1300301 1206885 63416 4.7 Habo 1567582 1555957 11625 0.7 Ilminois 12830632 12931584 -100052 -0.8 Indiana 6483802 6438366 45336 0.7 Iowa 3046355 3019493 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4333367 433254 6783 0.2 Louisiana 4533372 4513356 14016 0.3 Maine 1328361 1318067 14664 1.1 Maryland 5773552 5724856 48696 0.8 Missourit 583640 9936913 -53273 -0.5 Missourit 5988927 6004372 -15445 -0.3 Mostana 988415 978649 10766 <td>District of Columbia</td> <td>601723</td> <td>607918</td> <td></td> <td>-6195</td> <td></td> <td></td> <td>-1.0</td>	District of Columbia	601723	607918		-6195			-1.0
Georgia 9687653 9884534 -196881 -2.0 Hawaii 1360301 1296885 63416 4.7 Idaho 1567582 1255557 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indiana 6433806 6434366 45436 0.7 Iowa 3046355 3019493 26862 0.9 Kansas 2853118 2855125 17993 0.6 Kentucky 4339367 4332564 6783 0.2 Louisiana 453372 4519356 14016 0.3 Maine 1328361 1313697 14664 1.1 Maryland 5773552 5728455 48096 0.8 Missigarip 2907297 2957749 9548 0.3 Missouri 5988927 6004372 -15445 -0.3 Mortana 989415 978649 10766 1.1 New Jersey 8791894 8723152 68742 <td>Florida</td> <td>18801310</td> <td>18636368</td> <td></td> <td>164942</td> <td></td> <td></td> <td>0.9</td>	Florida	18801310	18636368		164942			0.9
Hawaii 1360301 1266885 63416 4.7 Idaho 1567582 1555957 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indiana 6483802 6438366 45436 0.7 Iowa 3046355 3019493 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4333967 435256 14016 0.3 Maine 1328361 1313697 14664 1.1 Maryland 5773552 5724856 48696 0.8 Massachusetts 6547629 6621588 -733959 -1.1 Michigan 9883640 9936913 -53273 -0.5 Mississippi 2967297 2957749 9548 0.3 Mississippi 2967297 2957749 9548 0.3 Mississippi 2967297 2957749 9548 0.3 Mississippi 18067012 19329	Georgia	9687653	9884534		-196881			-2.0
Idaho 1567882 155957 11625 0.7 Illinois 12830632 12931584 -100952 -0.8 Indiana 6483802 6438306 45436 0.7 Iowa 3046355 3019493 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4339367 4332584 6783 0.2 Louisiana 4533372 4519356 14016 0.3 Maine 1328361 1313697 14664 1.1 Maryland 5773552 5724856 48606 0.8 Massachusetts 6547629 66021588 -73959 -1.1 Michigan 9883640 99936913 -53273 -0.5 Minesota 5303925 5283424 20501 0.4 Mississippi 2967297 295749 9548 0.3 Missusippi 2967297 295749 9548 0.3 Mostan \$898927 6004372	Hawaii	1360301	1296885		63416			4.7
Illinois 12830632 12931584 -100952 -0.8 Indiana 6483802 6438366 45436 0.7 Iowa 3046335 3019493 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4339367 4332584 6783 0.2 Louisiana 4533372 4519356 14016 0.3 Marke 1328361 1313097 14664 1.1 Maryland 5773552 5724856 48696 0.8 Massachusetts 6547629 6621588 -73959 -1.1 Michigan 9889460 9396013 -53273 -0.5 Minnesota 5303925 5283424 20501 0.4 Mississippi 2967297 2957749 9548 0.3 Missouri 5988927 6004372 -15445 -0.3 Montana 989415 978649 10766 1.1 Nevada 1270551 22650677	Idaho	1567582	1555957		11625			0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Illinois	12830632	12931584		-100952			-0.8
Iowa 3046355 3019493 26862 0.9 Kansas 2853118 2835125 17993 0.6 Kentucky 4332367 4332584 6783 0.2 Louisiana 4533372 4519356 14016 0.3 Maine 1328361 131697 14664 1.1 Maryland 5773552 5724856 486966 0.8 Massachusetts 6547629 6621588 -73359 -1.1 Michigan 9883640 993613 -53273 -0.5 Minnesota 5303925 5283424 20501 0.4 Missouri 5988927 6004372 -15445 -0.3 Montana 989415 978649 10766 1.1 Nebraska 1826341 1807012 19329 1.1 Nevada 1270051 22650677 49874 1.8 New Hampshire 1316470 1323202 -6732 -0.5 New Jersey 8791894 8723152 66742 0.8 New Maxico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 953483 9432921 102562 1.1 North Carolina 953483 9432921 102562 1.1 North Carolina 3751351 316212 35139 0.9 Oregon 3831074 3847469 -16355 -0.4 Pennsylvania 12702379 12625433 76946 <	Indiana	6483802	6438366		45436			0.7
Kansas28531182835125179930.6Kentucky4339367433258467830.2Louisiana45333724519356140160.3Maine13283611313697146641.1Maryland57735525724856486960.8Massachusetts65476296621588-73959-1.1Michigan98836409936913-53273-0.5Minnesota53039255283424205010.4Mississippi2967297295774995480.3Missouri59889276004372-15445-0.3Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Jersey87918948723152667420.8New Marpshire13164701323202-6732-0.5North Carolina95548394329211025621.1North Dakota672591651787208043.1Ohio11366041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4Pennesylvania1270237912625433769460.6North Carolina46253644586078392860.8South Dakota817860-3580-0.4Pennesylvania1270237912625433769460.6 </td <td>Iowa</td> <td>3046355</td> <td>3019493</td> <td></td> <td>26862</td> <td></td> <td></td> <td>0.9</td>	Iowa	3046355	3019493		26862			0.9
Kentucky4339367433258467830.2Louisiana45333724519356140160.3Maine13283611313697146641.1Maryland57735525724856486060.8Massachusetts65476296621588-73959-1.1Michigan98836409936013-53273-0.5Minnesota53039255283424205010.4Mississippi2967297295774995480.3Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Vexico20591792027191319881.6Neth Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4South Carolina42536445800783292860.8South Carolina427035432162.03Texas251456125101907436540.2Utah2763852818242-54357-2.0Utah2763852818242-54357-2.0Utah </td <td>Kansas</td> <td>2853118</td> <td>2835125</td> <td></td> <td>17993</td> <td></td> <td></td> <td>0.6</td>	Kansas	2853118	2835125		17993			0.6
Louisiana45333724519356140160.3Maine13283611313697146641.1Maryland57735525724856486960.8Massachusetts65476296621588-73959-1.1Michigan98836409936913-53273-0.5Minnesota53039255283424205010.4Mississippi2967297295774995480.3Missisouri59889276004372-15445-0.3Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Varko20501792027191319881.6New York1937810219564202-186100-1.0North Dakota672591651787208043.1Ohio11536504115324542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4Pennsylvania1270237912625433769460.6Oklaboma37513513716212351390.9Oregon38310743847469-16395-0.4Pennsylvania1270237912625433769460.6Noth Carolina4625364458607839286	Kentucky	4339367	4332584		6783			0.2
Maine13283611313697146641.1Maryland57735525724856486960.8Massachusetts65476296621588-73959-1.1Michigan98836409936913-53273-0.5Minnesota53039255283424205010.4Mississippi2967297295774995480.3Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Vork1937810219564202-186100-1.0North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohaoma37513513716212351390.9Oregon3810743847469-16395-0.4Pennsylvania1270237912625433769460.6Rhode Island10525671056987-4420-0.4South Carolina4625364458078392860.8South Carolina814180817760-3580-0.4Texas2514556125101907436540.2Utah27638528482-54357-2.0Vermont62574162219135500.6Virginia8000247928720723040	Louisiana	4533372	4519356		14016			0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Maine	1328361	1313697		14664			1.1
Massachusetts 6547629 6621588 -73959 -1.1 Michigan98836409936913 -53273 -0.5 Minnesota 5303925 5283424 20501 0.4 Mississippi 2967297 2957749 9548 0.3 Missouri 5988927 6004372 -15445 -0.3 Montana 989415 978649 10766 1.1 Nebraska 1826341 1807012 19329 1.1 Nevada 2700551 2650677 49874 1.8 New Hampshire 1316470 1323202 -6732 -0.5 New Jersey 8791894 8723152 66742 0.8 New Marco 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 South Carolina 4625364 4586078 39286 0.8 South Carolina 4625364 4586078 39286 0.8 South Carolina 4625364 4586078 39286 0.2 Utah 276385 281242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 <td>Marvland</td> <td>5773552</td> <td>5724856</td> <td></td> <td>48696</td> <td></td> <td></td> <td>0.8</td>	Marvland	5773552	5724856		48696			0.8
Michigan98836409936913 -53273 -0.5 Minnesota53039255283424205010.4Mississippi2967297295774995480.3Missouri59889276004372 -15445 -0.3 Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202 -6732 -0.5 New Jersey87918948723152687420.8New Vacico20591792027191319881.6New York1937810219564202 -186100 -1.0 North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716122351390.9Oregon38310743847469 -16395 -0.4 Pennsylvania1270237912625433769460.6Rhode Island10525671056987 -4420 -0.4 Texas2514556125101907436540.2Utah27638852818242 -54357 -2.0 Utah27638852818242 -54357 -2.0 Utah2763852818242 -54357 -2.0 Utah27638852818242 -54357 -2.0 Utah27638852818	Massachusetts	6547629	6621588		-73959			-1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Michigan	9883640	9936913		-53273			-0.5
Mississippi 2967297 2957749 9548 0.3 Missouri 5988927 6004372 -15445 -0.3 Montana 989415 978649 10766 1.1 Nebraska 1826341 1807012 19329 1.1 Nevada 2700551 2650677 49874 1.8 New Hampshire 1316470 1323202 -6732 -0.5 New Jersey 8791894 8723152 68742 0.8 New Keico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.00 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 458078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Utah 276385 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 <td>Minnesota</td> <td>5303925</td> <td>5283424</td> <td></td> <td>20501</td> <td></td> <td></td> <td>0.4</td>	Minnesota	5303925	5283424		20501			0.4
Missouri 5988927 6004372 -15445 -0.3 Montana 989415 978649 10766 1.1 Nebraska 1826341 1807012 19329 1.1 Nevada 2700551 2650677 49874 1.8 New Hampshire 1316470 1323202 -6732 -0.5 New Jersey 8791894 8723152 68742 0.8 New Mexico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 185294 1824505 28489 <	Mississippi	2967297	2957749		9548			0.3
Montana989415978649107661.1Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Verko20591792027191319881.6New York1937810219564202-186100-1.0North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4Pennsylvania1270237912625433769460.6Rhode Island10526671056987-4420-0.4South Carolina46253644586078392860.8South Carolina462536425101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.0Washington6724506727469-29290.0West Virginia18529941824505284891.5Wisconsin5686965664218227680.4Wyoming563626546821168053.0United States308745538308450482950540.1	Missouri	5988927	6004372		-15445			-0.3
Nebraska18263411807012193291.1Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Mexico20591792027191319881.6New York1937810219564202-186100-1.0North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4Pennsylvania127037912625433769460.6Rode Island1052671056987-4420-0.4South Carolina46253644586078392860.8South Carolina462536425101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Montana	989415	978649		10766			1.1
Nevada27005512650677498741.8New Hampshire13164701323202-6732-0.5New Jersey87918948723152687420.8New Mexico20591792027191319881.6New York1937810219564202-186100-1.0North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469-16395-0.4Pennsylvania1270237912625433769460.6Rhode Island10525671056987-4420-0.4South Carolina46253644586078392860.8South Dakota814180817760-3580-0.4Tenessee63461056326403197020.3Texas2514556125101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin568626546821168053.0United States3084504842950540.1	Nebraska	1826341	1807012		19329			1.1
New Hampshire13164701323202 -6732 -0.5 New Jersey 8791894 8723152 68742 0.8 New Mexico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 568698 564218 22768 0.4 Wyoming 563626 546821 16805 <td>Nevada</td> <td>2700551</td> <td>2650677</td> <td></td> <td>49874</td> <td></td> <td></td> <td>1.8</td>	Nevada	2700551	2650677		49874			1.8
New Jersey 8791894 8723152 68742 0.8 New Mexico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716121 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5666986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 30845084 2	New Hampshire	1316470	1323202		-6732			-0.5
New Mexico 2059179 2027191 31988 1.6 New York 19378102 19564202 -186100 -1.0 North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 672469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	New Jersev	8791894	8723152		68742			0.8
New York1937810219564202 -186100 -1.0 North Carolina953548394329211025621.1North Dakota672591651787208043.1Ohio115365041153224542590.0Oklahoma37513513716212351390.9Oregon38310743847469 -16395 -0.4 Pennsylvania1270237912625433769460.6Rhode Island10525671056987 -4420 -0.4 South Carolina46253644586078392860.8South Dakota814180817760 -3580 -0.4 Tennessee63461056326403197020.3Texas2514556125101907436540.2Utah27638852818242 -54357 -2.0 Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469 -2929 0.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	New Mexico	2059179	2027191		31988			1.6
North Carolina 9535483 9432921 102562 1.1 North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4580078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 672450 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 30874538 308450484 295054 0.1	New York	19378102	19564202		-186100			-1.0
North Dakota 672591 651787 20804 3.1 Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	North Carolina	9535483	9432921		102562			1.1
Ohio 11536504 11532245 4259 0.0 Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	North Dakota	672591	651787		20804			3.1
Oklahoma 3751351 3716212 35139 0.9 Oregon 3831074 3847469 -16395 -0.4 Pennsylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	Ohio	11536504	11532245		4259			0.0
Oregon38310743847469-16395-0.4Pennsylvania1270237912625433769460.6Rhode Island10525671056987-4420-0.4South Carolina46253644586078392860.8South Dakota814180817760-3580-0.4Tennessee634610563264031197020.3Texas2514556125101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Oklahoma	3751351	3716212		35139			0.9
Pensylvania 12702379 12625433 76946 0.6 Rhode Island 1052567 1056987 -4420 -0.4 South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	Oregon	3831074	3847469		-16395			-0.4
Rhode Island10525671056987-4420-0.4South Carolina46253644586078392860.8South Dakota814180817760-3580-0.4Tennessee63461056326403197020.3Texas2514556125101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Pennsylvania	12702379	12625433		76946			0.6
South Carolina 4625364 4586078 39286 0.8 South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	Rhode Island	1052567	1056987		-4420			-0.4
South Dakota 814180 817760 -3580 -0.4 Tennessee 6346105 6326403 19702 0.3 Texas 25145561 25101907 43654 0.2 Utah 2763885 2818242 -54357 -2.0 Vermont 625741 622191 3550 0.6 Virginia 8001024 7928720 72304 0.9 Washington 6724540 6727469 -2929 0.0 West Virginia 1852994 1824505 28489 1.5 Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	South Carolina	4625364	4586078		39286			0.8
Tennessee63461056326403197020.3Texas2514556125101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	South Dakota	814180	817760		-3580			-0.4
Texas2514556125101907436540.2Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Tennessee	6346105	6326403		19702			0.3
Utah27638852818242-54357-2.0Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Texas	25145561	25101907		43654			0.2
Vermont62574162219135500.6Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Utah	2763885	2818242		-54357			-2.0
Virginia80010247928720723040.9Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Vermont	625741	622191		3550			0.6
Washington67245406727469-29290.0West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Virginia	8001024	7928720	72304				0.9
West Virginia18529941824505284891.5Wisconsin56869865664218227680.4Wyoming563626546821168053.0United States3087455383084504842950540.1	Washington	6724540	6727469	-2929				0.0
Wisconsin 5686986 5664218 22768 0.4 Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	West Virginia	1852994	1824505		28489			1.5
Wyoming 563626 546821 16805 3.0 United States 308745538 308450484 295054 0.1	Wisconsin	5686986	5664218		22768			0.4
United States 308745538 308450484 295054 0.1	Wyoming	563626	546821		16805			3.0
	United States	308745538	308450484		295054			0.1

Now if $\frac{\hat{\theta}_j}{\hat{\theta}_1} \approx 1$ for j = 2, 3, ..., m, especially if the *m* estimates were obtained independently, the agency might infer that its estimate $\hat{\theta}_1$, or indeed all of the estimates are near θ . But there could be uniform bias as illustrated in Figure 1 where all estimates tend to overestimate the target θ .

$$\hat{\theta}$$
 $\hat{\theta}_2 \ \hat{\theta}_3 \ \hat{\theta}_1 \ \cdots \ \hat{\theta}_{m-1} \hat{\theta}_m$

Figure 1. Uniform Positive Bias in All Estimates.

Such an approach, at best, implies a measure of closeness for the *m* estimates based on $\hat{\theta}_1$, but gives no information about the true value of θ .

Now consider a simple example of two competing estimates (m = 2) of a parameter θ :

$$\hat{\theta}_1 = 8 \qquad \qquad \hat{\theta}_2 = 10$$

Note that $\hat{\theta}_1 = 8$ is 20% of $\hat{\theta}_2 = 10$ away from $\hat{\theta}_2$; and that $\hat{\theta}_2 = 10$ is 25% of $\hat{\theta}_1 = 8$ away from $\hat{\theta}_1$.

If the desire is to report only one number as a measure of closeness for the two estimates, one natural (conservative) approach is to use the larger percentage because it gives an upper bound. Formally, we are led to the following definition (Tsao and Wright, 1981, 1983).

Definition 1: Let $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_m$ be comparable estimates of the same parameter θ . The maximum ratio is given by:

$$M = \frac{\hat{\theta}_{(m)} - \hat{\theta}_{(1)}}{\hat{\theta}_{(1)}}$$

where $\hat{\theta}_{(1)} = \min\{\hat{\theta}_1, ..., \hat{\theta}_m\}$ and $\hat{\theta}_{(m)} = \max\{\hat{\theta}_1, ..., \hat{\theta}_m\}.$

The maximum ratio is a conservative measure of closeness because we divide by $\hat{\theta}_{(1)}$. Clearly, small values of the maximum ratio M imply that the estimates are close to each other. However, a small value of M for $\hat{\theta}_1, ..., \hat{\theta}_m$ does not imply that $\hat{\theta}_1, ..., \hat{\theta}_m$ are each close to θ .

Definition 2: Let $\theta > 0$ be the parameter of interest and $0 < \alpha < 1$. An estimate $\hat{\theta} (> 0)$ of θ is considered unacceptable for θ for α if $\hat{\theta} < (1 - \alpha)\theta$ or $\hat{\theta} > (1 + \alpha)\theta$. Alternatively, an estimate $\hat{\theta}(> 0)$ of θ is considered unacceptable for θ for α if $|\hat{\theta} - \theta| > \alpha\theta$.

Figure 2. Unacceptable Regions for an Estimate $\hat{\theta}$.

It appears that in order to know if a particular estimate is unacceptable (i.e., too low or too high relative to θ) for a stated α , we must know the true value of θ , which we will never know. However, the presence of the competing estimates makes the following result possible. The proof is given in

Tsao and Wright (1983).

Main Result: If $M = M_0$ for m estimates of a particular parameter θ , then at least one of the estimates is unacceptable for θ for α if

$$\frac{M_0}{M_0 + 2} > \alpha \tag{1}$$

where $0 < \alpha < 1$ is some stated maximum tolerable error $\alpha \theta$.

While the main result is proved indirectly in Tsao and Wright (1981, 1983), this complete visual proof is motivated by a geometrical interpretation given in a personal communication Leff (1982).

Before the proof, we begin with some preliminaries. For any given set of estimates $\{\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_m\}$, three possible relations exist between θ and the interval $(\hat{\theta}_{(1)}, \hat{\theta}_{(m)})$, and they are shown in Figure 3 (a, b, c). (Note that there are actually two versions of (a): the one given which shows θ closer to $\hat{\theta}_{(m)}$ and the one which is not shown would show θ closer to $\hat{\theta}_{(1)}$. The argument for the case of (a) which is not shown is similar to the case which is shown.) The letter *E* represents the amount of error for the *worst-estimate* of θ .

Figure 3. Three Possible Cases for the Worst-estimate $\hat{\theta}$ of θ .

Clearly from Figure 4 below, the "best" worst-estimate occurs when the interval $(\hat{\theta}_{(1)}, \hat{\theta}_{(m)})$ is such that θ is the midpoint of the interval. In this case, the error associated with $\hat{\theta}_{(1)}$ (and $\hat{\theta}_{(m)}$) is denoted by E^* and is called the minimum worst-estimate error. When θ is not the midpoint of the interval $(\hat{\theta}_{(1)}, \hat{\theta}_{(m)})$, then $E > E^*$.

Figure 4. Illustration of "Best" Worst-estimate and Minimum Worst-estimate Error.

Now to give the proof of the *Main Result*, we consider two cases.

Case (i): When θ is the midpoint of the interval $(\hat{\theta}_{(1)}, \hat{\theta}_{(m)})$, then from Figure 4,

$$E^* = \theta - \hat{\theta}_{(1)} = \frac{M_0 \hat{\theta}_{(1)}}{2}$$
(2)

which is equivalent to

The Main Result implies the following test of unacceptability for at least one of the given estimates.

 $\overline{7}$

$$M_0 = \frac{2(\theta - \hat{\theta}_{(1)})}{\hat{\theta}_{(1)}}.$$
(3)

If $\frac{M_0}{M_0+2} > \alpha$, then substituting (3) into $\frac{M_0}{(M_0+2)} > \alpha$ leads to $\hat{\theta}_{(1)} < (1-\alpha)\theta$ and hence $\hat{\theta}_{(1)}$ is unacceptable for θ for α .

Case (ii): When θ is not the midpoint of the interval $(\hat{\theta}_{(1)}, \hat{\theta}_{(m)})$, the error E of the worst-estimate is either $E = |\hat{\theta}_{(1)} - \theta|$ or $E = |\hat{\theta}_{(m)} - \theta|$ depending upon which case in Figure 3 holds. If $E = |\hat{\theta}_{(1)} - \theta|$ (similar for $E = |\hat{\theta}_{(m)} - \theta|$), we must have $\theta > \hat{\theta}_{(1)}$. So, because $E > E^*$ and using (2),

$$\theta - \hat{\theta}_{(1)} > \frac{\hat{\theta}_{(m)} - \hat{\theta}_{(1)}}{2} = \frac{M_o \hat{\theta}_{(1)}}{2} \tag{4}$$

which is equivalent to

$$M_o < \frac{2(\theta - \hat{\theta}_{(1)})}{\hat{\theta}_{(1)}}.$$
(5)

So if $\frac{M_o}{M_o+2} > \alpha$, then $M_o > \frac{2\alpha}{1-\alpha}$, which along with (5) leads to

$$\frac{2\alpha}{1-\alpha} < M_o < \frac{2(\theta - \hat{\theta}_{(1)})}{\hat{\theta}_{(1)}}.$$
(6)

Thus $\frac{\alpha}{1-\alpha} < \frac{\theta - \hat{\theta}_{(1)}}{\hat{\theta}_{(1)}}$ which implies $\hat{\theta}_{(1)} < (1-\alpha)\theta$. Hence $\hat{\theta}_{(1)}$ is unacceptable for θ for α .

Thus the *Main Result* is shown.

Comment: It should be noted that under Case (i) of the proof, the converse holds. That is, if $\hat{\theta}_{(1)}$ (similarly for $\hat{\theta}_{(m)}$) is unacceptable for θ for α , then from Definition 2,

$$\hat{\theta}_{(1)} < (1 - \alpha)\theta$$

or equivalently

 $\theta - \hat{\theta}_{(1)} > \alpha \theta. \tag{7}$

From (2)

$$\theta = \frac{M_0 + 2}{2}\hat{\theta}_{(1)},$$

and substituting this expression for
$$\theta$$
 into (7) gives (1), i.e.,

$$\frac{M_0}{M_0+2} > \alpha$$

- 1. State an α_0 that denotes a maximum tolerable error $\alpha_0 \theta$ for the collection of estimates.
- 2. Obtain the primary estimate $\hat{\theta}_1$ and a set of competing estimates $\hat{\theta}_2, ..., \hat{\theta}_m$.
- 3. Compute the specific value of the maximum ratio $= M_0 = \frac{\theta_{(m)} \theta_{(1)}}{\hat{\theta}_{(1)}}.$
- 4. Compare α_0 and $\frac{M_0}{M_0+2}$.

(a) If $\frac{M_0}{M_0+2} > \alpha_0$, then at least one of the estimates is unacceptable for θ for α_0 . Further investigation is needed.

(b) If
$$\frac{M_0}{M_0+2} \leq \alpha_0$$
, then we lack sufficient evidence to say that at least one of the estimates is unacceptable for θ for α_0 .

To illustrate the test of unacceptability, we return to the example of Section 1.2 where

 θ = the true Total U. S. Resident Population as of April 1, 2010.

1. Let's take $\alpha_0 = .005$. This means that we can not tolerate an estimate (or count) which is more than say $\frac{1}{2}$ of 1% of the true value of θ away from the true value of θ .

2. The U. S. Census Bureau produced an official count $\hat{\theta}_1$ and three other estimates as noted earlier in Table 1.

3. The maximum ratio is

$$M_0 = \frac{308,745,538 - 308,450,484}{308,450,484} = .000956568.$$

Thus the four estimates are within .096% of each other!

4. Finally, we have $\frac{M_0}{M_0 + 2} = .000478 \le .005 = \alpha_0$. Hence we lack evidence to say that the official 2010 Census Count is unacceptable. The same holds for the other three estimates $\hat{\theta}_2$, $\hat{\theta}_3$, and $\hat{\theta}_4$. Thus with certainty, we lack evidence to declare that any of the four estimates is more than .5% of the true population away from the true population total.

Comment: Rather than state a pre-set maximum tolerable error $\alpha_0 \theta$, one can just compute $\frac{M_0}{M_0 + 2}$. With this approach, any value of α less than $\frac{M_0}{M_0 + 2}$ would cause us to say at least one of the estimates is unacceptable for θ for α . For any value of α greater than or equal to $\frac{M_0}{M_0 + 2}$, we would lack sufficient evidence to make this claim. Table 3 uses the test of unacceptability to compare state level estimates for the April 1, 2010 resident population. For each state, its population count from the 2010 Census is the primary estimate and a competing estimate comes from the Population Estimates Program (PEP).

	2010	2010		11
Geographic Area	Census	PEP	$M_0 \times 100\%$	$\frac{M_0}{M_0}$
	Count	Estimate		$M_0 + 2$
Alabama	4779736	4724112	1.177449%	0.005853
Alaska	710231	705175	0.716985%	0.003572
Arizona	6392017	6654358	4.104197%	0.020108
Arkansas	2915918	2904540	0.391732%	0.001955
California	37253956	37171135	0.222810%	0.001113
Colorado	5029196	5075295	0.916628%	0.004562
Connecticut	3574097	3523925	1.423753%	0.007068
Delaware	897934	889722	0.922985%	0.004594
District of Columbia	601723	607918	1.029543%	0.005121
Florida	18801310	18636368	0.885054%	0.004406
Georgia	9687653	9884534	2.032288%	0.010059
Hawaii	1360301	1296885	4.889871%	0.023866
Idaho	1567582	1555957	0.747129%	0.003722
Illinois	12830632	12931584	0.786805%	0.003919
Indiana	6483802	6438366	0.705707%	0.003516
Iowa	3046355	3019493	0.889620%	0.004428
Kansas	2853118	2835125	0.634646%	0.003163
Kentucky	4339367	4332584	0.156558%	0.000782
Louisiana	4533372	4519356	0.310133%	0.001548
Maine	1328361	1313697	1.116239%	0.005550
Maryland	5773552	5724856	0.850607%	0.004235
Massachusetts	6547629	6621588	1.129554%	0.005616
Michigan	9883640	9936913	0.539002%	0.002688
Minnesota	5303925	5283424	0.388025%	0.001936
Mississippi	2967297	2957749	0.322813%	0.001611
Missouri	5988927	6004372	0.257893%	0.001288
Montana	989415	978649	1.100088%	0.005470
Nebraska	1826341	1807012	1.069666%	0.005320
Nevada	2700551	2650677	1.881557%	0.009320
New Hampshire	1316470	1323202	0.511368%	0.002550
New Jersev	8791894	8723152	0.788041%	0.003925
New Mexico	2059179	2027191	1.577947%	0.007828
New York	19378102	19564202	0.960362%	0.004779
North Carolina	9535483	9432921	1.087277%	0.005407
North Dakota	672591	651787	3 191840%	0.015709
Ohio	11536504	11532245	0.036931%	0.000185
Oklahoma	3751351	3716212	0.945560%	0.004706
Oregon	3831074	3847469	0.427948%	0.002135
Pennsylvania	12702379	12625433	0.609452%	0.003038
Rhode Island	1052567	1056987	0.419926%	0.002095
South Carolina	4625364	4586078	0.856636%	0.002000
South Dakota	814180	817760	0.439706%	0.001200
Tennessee	6346105	6326403	0.311425%	0.002151 0.001555
Texas	25145561	25101907	0.173907%	0.001869
Utah	2763885	2818242	1 966688%	0.009738
Vermont	625741	622101	0.570564%	0.002845
Virginia	8001024	7928720	0.911925%	0.002530
Washington	6724540	6727460	0.043557%	0.004009
West Virginia	185200/	189/505	1.561/65%	0.000210 0.007747
Wisconsin	5686086	566/918	0 401069%	0.001141
Wyoming	563626	546821	3 073218%	0.002000
United States	3087/5538	308/150/8/	0.095657%	0.000478

Table 3. State Comparisons of PEP Estimates and 2010 Census Counts Using M_0

3. MAXIMUM RATIO: EXTENSION TO 2-D PARAMETERS

In this section, we extend the maximum ratio concept and *Main Result* to vector-valued parameters. As an example, consider the vector-valued parameter (θ, ϕ) where θ is the total value of sales by U.S. retail companies for month A and ϕ is the total value of inventories for U.S. retail companies for month A. Another example could be in terms of energy consumed per person living in housing units during month B (θ) and energy consumed per person living in group quarters during month B (ϕ) .

Definition 3: The error in using $(\hat{\theta}, \hat{\phi})$ as an estimate of the vector-valued parameter (θ, ϕ) is the Euclidean distance between $(\hat{\theta}, \hat{\phi})$ and (θ, ϕ) , i.e.,

$$Error = \sqrt{(\hat{\theta} - \theta)^2 + (\hat{\phi} - \phi)^2} \tag{8}$$

Definition 4: An estimate $(\hat{\theta}, \hat{\phi})$ of (θ, ϕ) is considered as *unacceptable* for (θ, ϕ) for α where $0 < \alpha < 1$, if the error in using $(\hat{\theta}, \hat{\phi})$ as an estimate of the truth (θ, ϕ) is at least α times the magnitude of (θ, ϕ) , i.e., if

$$\sqrt{(\hat{\theta} - \theta)^2 + (\hat{\phi} - \phi)^2} > \alpha \sqrt{\theta^2 + \phi^2}.$$
(9)

Visually, or geometrically, assume a circle centered at (θ, ϕ) of radius $\alpha \sqrt{\theta^2 + \phi^2}$. If the estimate $(\hat{\theta}, \hat{\phi})$ is exterior to and beyond the circle, then $(\hat{\theta}, \hat{\phi})$ is unacceptable (Figure 5).

Figure 5. $(\hat{\theta}, \hat{\phi})$ is unacceptable for (θ, ϕ) for α .

Definition 5: Let $(\hat{\theta}_1, \hat{\phi}_1), (\hat{\theta}_2, \hat{\phi}_2), ..., (\hat{\theta}_m, \hat{\phi}_m)$ be *m* competing estimates of the same parameter (θ, ϕ) where $\theta > 0$ and $\phi > 0$. The maximum ratio that gives a measure of closeness among the competing estimates is given by

$$M = \frac{\sqrt{(\hat{\theta}_{(m)} - \hat{\theta}_{(1)})^2 + (\hat{\phi}_{(m)} - \hat{\phi}_{(1)})^2}}{\sqrt{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}}$$
(10)

where $\hat{\theta}_{(1)} = \min\{\hat{\theta}_i\}, \ \hat{\phi}_{(1)} = \min\{\hat{\phi}_i\}, \ \hat{\theta}_{(m)} = \max\{\hat{\theta}_i\}, \ \text{and} \ \hat{\phi}_{(m)} = \max\{\hat{\phi}_i\}.$

Example: Assume $(\theta, \phi) = (7, 9)$ and that three competing estimates are $(\hat{\theta}_1, \hat{\phi}_1) = (6, 10);$ $(\hat{\theta}_2, \hat{\phi}_2) = (7, 10);$ and $(\hat{\theta}_3, \hat{\phi}_3) = (8, 9).$ See Figure 6.

Figure 6.

Note that $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)}) = (6, 9)$ and $(\hat{\theta}_{(3)}, \hat{\phi}_{(3)}) = (8, 10)$. Furthermore, the distances between selected vector-valued estimates are as noted in Table 4:

 Table 4. Distances Between Selected Vector-valued Estimates

Estimate 1	Estimate 2	Distance
$(\hat{ heta}_1,\hat{\phi}_1)$	$(\hat{ heta}_2,\hat{\phi}_2)$	$\sqrt{(6-7)^2 + (10-10)^2} = 1.$
$(\hat{ heta}_1,\hat{\phi}_1)$	$(\hat{ heta}_3,\hat{\phi}_3)$	$\sqrt{(6-8)^2 + (10-9)^2} = \sqrt{5}.$
$(\hat{ heta}_2,\hat{\phi}_2)$	$(\hat{ heta}_3,\hat{\phi}_3)$	$\sqrt{(7-8)^2 + (10-9)^2} = \sqrt{2}.$
$(\hat{\theta}_{(1)},\hat{\phi}_{(1)})$	$(\hat{ heta}_{(3)},\hat{\phi}_{(3)})$	$\sqrt{(6-8)^2 + (9-10)^2} = \sqrt{5}.$

Also the magnitudes of various vectors are

Vector	Magnitude
$(\hat{ heta}_1,\hat{\phi}_1)$	$\sqrt{6^2 + 10^2} = \sqrt{136}$
$(\hat{ heta}_2,\hat{\phi}_2)$	$\sqrt{7^2 + 10^2} = \sqrt{149}$
$(\hat{ heta}_3,\hat{\phi}_3)$	$\sqrt{8^2 + 9^2} = \sqrt{145}$
$(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$	$\sqrt{6^2 + 9^2} = \sqrt{117}$

 Table 5. Magnitudes of Selected Vector-valued Estimates

Now relative to the magnitude of $(\hat{\theta}_1, \hat{\phi}_1)$, the points $(\hat{\theta}_1, \hat{\phi}_1)$ and $(\hat{\theta}_2, \hat{\phi}_2)$ are within $\frac{1}{\sqrt{136}} \times 100\% = 8.57\%$ of each other. Similarly, we have

Relative to ... points ... are within ... % of each other. $(\hat{\theta}_2, \hat{\phi}_2)$ $(\hat{ heta}_1, \hat{\phi}_1)$ $(\hat{ heta}_2,\hat{\phi}_2)$ 8.19%and $(\hat{ heta}_1,\hat{\phi}_1)$ $(\hat{\theta}_3, \hat{\phi}_3)$ $(\hat{\theta}_1, \hat{\phi}_1)$ 19.17%and $(\hat{ heta}_1, \hat{\phi}_1)$ $(\hat{\theta}_3, \hat{\phi}_3)$ $(\hat{\theta}_3, \hat{\phi}_3)$ 18.57%and $(\hat{\theta}_2, \hat{\phi}_2)$ $(\hat{\theta}_2, \hat{\phi}_2)$ $(\hat{\theta}_3, \hat{\phi}_3)$ and 11.59% $(\hat{\theta}_3, \hat{\phi}_3)$ $(\hat{\theta}_2, \hat{\phi}_2)$ and $(\hat{\theta}_3, \hat{\phi}_3)$ 11.74%

 Table 6. Relative Closeness of Selected Vector-valued Estimates

However and relative to the magnitude of $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$, the points $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ and $(\hat{\theta}_{(3)}, \hat{\phi}_{(3)})$ are within $\frac{\sqrt{5}}{\sqrt{117}} \times 100\% = 20.67\%$ of each other. Note that

$$M_0 \times 100\% = \frac{\sqrt{5}}{\sqrt{117}} \times 100\% = 20.67\%,$$

so the maximum ratio is thus a "conservative" measure of closeness among the three points $(\hat{\theta}_1, \hat{\phi}_1)$, $(\hat{\theta}_2, \hat{\phi}_2)$, and $(\hat{\theta}_3, \hat{\phi}_3)$. Thus we would say that the three estimates are within $M_0 \times 100\% = 20.67\%$ of each other.

For a given set of estimates $\{(\hat{\theta}_1, \hat{\phi}_1), ..., (\hat{\theta}_m, \hat{\phi}_m)\}$, consider the rectangle with vertices $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$, $(\hat{\theta}_{(1)}, \hat{\phi}_{(m)})$, $(\hat{\theta}_{(m)}, \hat{\phi}_{(1)})$, and $(\hat{\theta}_{(m)}, \hat{\phi}_{(m)})$ as shown in the Figure 7 below with two possibilities for (θ, ϕ) . In case (a), (θ, ϕ) is inside the rectangle; and in case (b), (θ, ϕ) is outside the rectangle.

Definition 6: In either case (a) or (b) of Figure 7, E represents the amount of error for the worstestimate of (θ, ϕ) .

Definition 7: Clearly from Figure 8 below, the "best" worst-estimate occurs when $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ and $(\hat{\theta}_{(m)}, \hat{\phi}_{(m)})$ are such that (θ, ϕ) is the midpoint of the rectangle with vertices as noted below. In

this case, the error associated with $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ [also the error for each of the other three vertices] is denoted by E^* and is called the *minimum worst-estimate error*.

Figure 7. Two Possibilities for (θ, ϕ) .

Figure 8. E^* , the Minimum Worst-estimate Error.

Main Result (for 2-D): If M has the particular value M_0 for m estimates $(\hat{\theta}_1, \hat{\phi}_1), (\hat{\theta}_2, \hat{\phi}_2), ..., (\hat{\theta}_m, \hat{\phi}_m)$ of a particular parameter (θ, ϕ) , then at least one of the estimates $[(\hat{\theta}_{(1)}, \hat{\phi}_{(1)}); (\hat{\theta}_{(1)}, \hat{\phi}_{(m)}); (\hat{\theta}_{(m)}, \hat{\phi}_{(1)}); (\hat{\theta}_{(m)}, \hat{\phi}_{(m)}); (\hat{\theta}_{(m)}, \hat{\phi}$

$$M_0 \sqrt{\frac{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}{(\hat{\theta}_{(1)} + \hat{\theta}_{(m)})^2 + (\hat{\phi}_{(1)} + \hat{\phi}_{(m)})^2}} > \alpha.$$
(11)

Proof: Now to give the proof of the Main Result (for 2-D), we consider two cases.

Case (i). When (θ, ϕ) is the midpoint of the 'rectangle' as given in Figure 8:

For the case in Figure 8 and focusing on $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$, similarly for the other three vertices, we have the minimum worst estimate error is

$$E^* = \sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2} = \frac{M_0 \sqrt{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}}{2}.$$
(12)

That is, E^* , the minimum worst estimate error, equals half the length of the diagonal.

We also see from Figure 8 that

$$(\theta, \phi) = \left(\frac{\hat{\theta}_{(1)} + \hat{\theta}_{(m)}}{2}, \frac{\hat{\phi}_{(1)}, \hat{\phi}_{(m)}}{2}\right)$$
(13)

because (θ, ϕ) is the midpoint between the points $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ and $(\hat{\theta}_{(m)}, \hat{\phi}_{(m)})$.

Thus if

$$M_0 \sqrt{\frac{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}{(\hat{\theta}_{(1)} + \hat{\theta}_{(m)})^2 + (\hat{\phi}_{(1)} + \hat{\phi}_{(m)})^2}} > \alpha,$$

then

$$M_o \sqrt{\theta_{(1)}^2 + \phi_{(1)}^2} > \alpha \sqrt{(\hat{\theta}_{(1)} + \hat{\theta}_{(m)})^2 + (\hat{\phi}_{(1)} + \hat{\phi}_{(m)})^2}$$

which becomes

$$M_o \sqrt{\theta_{(1)}^2 + \phi_{(1)}^2} > 2\alpha \sqrt{\left(\frac{\hat{\theta}_{(1)} + \hat{\theta}_{(m)}}{2}\right)^2 + \left(\frac{\hat{\phi}_{(1)} + \hat{\phi}_{(m)}}{2}\right)^2}.$$
(14)

Solving for M_o in (12) and substituting the value for M_o into (14) and substituting the result from (13) gives

$$(\frac{2\sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2}}{\sqrt{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}})\sqrt{\theta_{(1)}^2 + \phi_{(1)}^2} > 2\alpha\sqrt{\theta^2 + \phi^2}$$

which reduces to

$$\sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2} > \alpha \sqrt{\theta^2 + \phi^2}.$$

Hence $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ is unacceptable for (θ, ϕ) for α .

Conversely, if $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)})$ is unacceptable for (θ, ϕ) for α , then

$$\sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2} > \alpha \sqrt{\theta^2 + \phi^2}$$

which is equivalent to

$$\left(\frac{2\sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2}}{\sqrt{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}}\right)\sqrt{\theta_{(1)}^2 + \phi_{(1)}^2} > 2\alpha\sqrt{\theta^2 + \phi^2}$$
(15)

Using M_o from (12) and the result in (13), (15) becomes

$$M_o \sqrt{\theta_{(1)}^2 + \phi_{(1)}^2} > \alpha \sqrt{(\hat{\theta}_{(1)} + \hat{\theta}_{(m)})^2 + (\hat{\phi}_{(1)} + \hat{\phi}_{(m)})^2}$$

which is equivalent to

$$M_0 \sqrt{\frac{\hat{\theta}_{(1)}^2 + \hat{\phi}_{(1)}^2}{(\hat{\theta}_{(1)} + \hat{\theta}_{(m)})^2 + (\hat{\phi}_{(1)} + \hat{\phi}_{(m)})^2}} > \alpha.$$
(16)

Thus we have shown that in *Case* (i) when (θ, ϕ) is the midpoint of the rectangle, then the minimum worst estimate error E^* associated with a 'best' worst estimate is unacceptable if and only if (11) holds.

Case (ii). When (θ, ϕ) is 'not' the midpoint of the 'rectangle' as given in Figure 8:

If (θ, ϕ) is not the midpoint of the rectangle, then the error E of a worst-estimate is one of the following:

$$\begin{split} E &= \sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2};\\ E &= \sqrt{(\hat{\theta}_{(1)} - \theta)^2 + (\hat{\phi}_{(m)} - \phi)^2};\\ E &= \sqrt{(\hat{\theta}_{(m)} - \theta)^2 + (\hat{\phi}_{(1)} - \phi)^2};\\ Or &= \sqrt{(\hat{\theta}_{(m)} - \theta)^2 + (\hat{\phi}_{(m)} - \phi)^2}. \end{split}$$

Whatever the case, $E \ge E^*$.

Now we have just seen that E^* is the minimum worst error associated with the 'best' worstestimate, and it is unacceptable if and only if (11) holds. So if (11) holds, then E^* is unacceptable error and because $E \ge E^*$, this implies that E is also unacceptable error for at least one of the vertices of the rectangle for α . Thus at least one of the following is unacceptable for (θ, ϕ) for α : $(\hat{\theta}_{(1)}, \hat{\phi}_{(1)}); (\hat{\theta}_{(1)}, \hat{\phi}_{(m)}); (\hat{\theta}_{(m)}, \hat{\phi}_{(1)}); \text{ or } (\hat{\theta}_{(m)}, \hat{\phi}_{(m)}).$

Thus the Main Result (for 2-D) is shown.

4. CONCLUDING REMARKS

4.1. A Standard for Census Assessment: The maximum ratio and the test of unacceptability hold promise as useful tools for developing a standard against which to assess, at a very high level, the success or quality of a decennial census relative to the unknown truth when α is appropriately small. Given $\frac{M_0}{M_0+2}$ for $\hat{\theta}_1$ the official decennial census count and some competing estimates $\hat{\theta}_2, \hat{\theta}_3, ..., \hat{\theta}_m$, for any value of α_0 where $\frac{M_0}{M_0+2} \leq \alpha_0$, the Census Bureau would lack evidence to say that $\hat{\theta}_1$ is unacceptable. For any α_0 where $\frac{M_0}{M_0+2} > \alpha_0$, at least one of the estimates in the collection $\{\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_m\}$ is unacceptable, and hence further investigation is required.

4.2. Other Official Statistics Applications: The test of unacceptability can be applied in any situation where there is a collection of competing estimates for the same target parameter. For official statistics, many potential applications exist. For example, the decennial census provides a national vacancy rate of housing units which can be compared with similar estimates from sample surveys. Estimates of energy sales volumes could be compared with estimates of energy consumption and storage volumes. Estimates of purchases by consumers could be compared with estimates of sales by businesses. Estimates of food stamp purchases from household sample surveys could be compared to estimates of food stamp funds distributed by the responsible government agency.

4.3. Reproducibility in Science: Sometimes, scientific measurement yields many widely ranging estimates. One recent case involves global warming. With estimates of the rate at which ice sheets in Antartica and Greenland have been losing (or gaining) mass ranging from an overall loss of 676 billion tons per year to a gain of 69 billion tons a year, 47 experts from 26 institutions around the world reviewed data from over 25 studies to arrive at a reconciled estimate (Kerr, 2012; Shepherd, et al, 2012) by considering the varying conditions under which the different estimates were obtained. In this case of global warming, the need for further investigation is clear.

More generally, the test of unacceptability can be applied in applications regarding questions of reproducibility of scientific results. A quick scan of some recent issues of the journal *Science* reveals several examples: (1) modern estimates of the number of eukaryotic (non-bacterial) species on Earth, ranging from 2 million to 100 million (Costello, et al, 2013); (2) different estimates of the root-mean-square proton charge radius from three methods (Antognini, et al, 2013; and Margolis, 2013); and (3) reference to a range of estimates between 6 and 37 petabecquerels of cesium-137 that was spewed by the March 2011 Fukushima (Japan) nuclear disaster (Normile, 2013).

The results on measuring the size of a proton, actually considering three different radii of the proton (the Zemach radius, the magnetic radius, and the charge radius), were investigated. We focus on charge radius (r_E) which is the root mean square charge radius given in femtometers (fm). Three previous estimates of the true unknown value of the charge radius of a proton r_E are the first three estimates given in Table 7.

Table 7. Four Estimates of the Charge Radius r_E of a Proton

Method	Estimates of r_E
1. Electron-Proton Scattering	0.879 fm
2. Electron-Proton Scattering	0.875 fm
3. Hydrogen Spectroscopy CODATA (2010)	$0.8775~\mathrm{fm}\approx 0.878~\mathrm{fm}$
4. Muonic Hydrogen Spectroscopy	$0.84087~{\rm fm}\approx 0.841~{\rm fm}$

The fourth estimate in Table 7 is obtained from new methodology and is reported in Antognini, et al (2013). Note that $M_0 = \frac{max\{r_E\} - min\{r_E\}}{min\{r_E\}} = \frac{.879 - .841}{.841} = .0452$. Thus the four estimates are within 4.52% of each other. Also $\frac{M_0}{M_0 + 2} = .0221$. So for any $\alpha_0 < .0221$, at least one of the four estimates is unacceptable and further investigation is required. While the four the stimate seems far away from the other three, it may very well be the best of the four due to improved methodology. While noting that their new estimate of 0.84087 fm is in agreement with another estimate of $r_E = 0.84$ fm which results from "...a global fit of proton and neutron form factors based on dispersion relations and the vector-dominance model," Antognini, et al (2013) and Margolis(2013) call for further investigations to further explain the differences. [The Zemach radius (r_Z) has estimates of 1.086 fm, 1.045 fm, 1.047 fm, 1.037 fm, and 1.082 fm. Thus $M_0 = 0.0473$ and $\frac{M_0}{M_0 + 2} = 0.0231$. On the other hand, the magnetic radius (r_M) has estimates of 0.803 ≈ 0.80 fm, 0.867 ≈ 0.87 fm, 0.86 fm, and 0.87 fm. Thus $M_0 = 0.0875$ and $\frac{M_0}{M_0 + 2} = 0.0419$.]

4.4. A Deterministic Test: Finally, the test of unacceptability is deterministic and not stochastic. However, setting a value of α_0 is similar to setting an α -level of significance as in statistical hypothesis testing. Because the test of unacceptability is not stochastic, no adjustments are needed when repeating the test of unacceptability to subsets of estimates when determining which groupings produce unacceptable worst estimate error and which groupings do not. The maximum ratio and the test of unacceptability are particularly useful when the uncertainty of some of the considered estimates can not be quantified.

5. REFERENCES

- Antognini, A., et al. (2013). "Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen," *Science*, 339, 417-420.

- Cantwell, P. (2012). "2010 Census Coverage Measurement Estimation Report: Summary of Estimates of Coverage for Persons in the United States," *DSSD 2010 Census Coverage Measurement Memorandum Series* # 2010-G-01, U. S. Census Bureau, Washington, D.C.

- Census Bureau Releases Estimates of Undercount and Overcount in the 2010 Census (5/22/2012), U. S. Census Bureau Press Release, Washington, D.C.

- Costello, M., May, R., and Stork, N. (2013). "Can We Name Earth's Species Before They Go Extinct?," *Science*, 339, 413-416.

- Eckler, A. R. and Pritzker, L. (1951). "Measuring the Accuracy of Enumerative Surveys," Bulletin of the International Statistical Institute, Part 4, 33, 7-24.

- Jackson, G. (2013). "The Number of Housing Units and People Counted in the 2010 Census by Operation," DSSD 2020 Decennial Census R&T Memorandum Series # R-01, U. S. Census Bureau, Washington, D.C.

- Kerr, R. (2012). "Experts Agree Global Warming Is Melting the World Rapidly," Science, 338, 1138.

- Kish, L. and Hess, I. (1958). "On Noncoverage of Sample Dwellings," *Journal of the American Statistical Association*, 53, 509-524.

- Leff, H. S. (1982). "Personal Correspondence," Institute for Energy Analysis, Oak Ridge Associated Universities, Oak Ridge, TN.

- Margolis, H. (2013). "How Big Is the Proton?," Science, 339, 405-406.

- Martin, M. E. (1981). "Statistical Practice in Bureaucracies," Journal of the American Statistical Association, 76, 1-8.

- Morgenstern, O. (1963). On the Accuracy of Economic Observations, Princeton, NJ: Princeton University Press.

- Mule, V. T. (2012). "U. S. Census Coverage Measurement Survey Results," *Proceedings of the Joint Statistical Meetings*, American Statistical Association, Alexandria, VA, 3425-3439.

- Normile, D. (2013). "Cooling a Hot Zone," Science, 339, 1028-1029.

- Shepherd, A., et al (2012). "A Reconciled Estimate of Ice-Sheet Mass Balance," Science, 338, 1183-1189.

- The Development and Sensitivity Analysis of the 2010 Demographic Analysis Estimates (11/29/2010), Population Division, U. S. Census Bureau, Washington, D.C.

- Tsao, H. and Wright, T. (December 1981). "A Note on a Simple Tool for the Comparison of Several Estimates of the Same Parameter," *Oak Ridge National Laboratory/TM-7973*, Oak Ridge, TN.

- Tsao, H. and Wright, T. (1983). "On the Maximum Ratio: A Tool for Assisting Inaccuracy Assessment," *The American Statistician*, 37:4, 339-342.

- U. S. Census Bureau Announces 2010 Census Population Counts; Apportionment Counts Delivered to President (12/21/2010), U. S. Census Bureau Press Release, Washington, D.C.

- Wright, T. and Cobb, G. (2005). "Counting and Apportionment: Foundations of America's Democracy," in *Statistics: A Guide to the Unknown (4th ed.)*, eds. R. Peck, G. Casella, G. Cobb, R. Hoerl, D. Nolan, R. Starbuck, and H. Stern, Pacific Grove, CA: Duxbury Press, 35-67.

APPENDIX

Table.	Official	U.S.	Resident	Population	Counted in	the	2010	Census	by	Enumeration	Method
				[Source	ce: Jackson	, 201	3.				

Enumeration Method	Number of Persons
1. IN HOUSING UNITS	
Self-administered Questionnaires	
Mailout/Mailback	$193,\!345,\!244$
Update/Leave	$13,\!610,\!355$
Form Fulfillment	312,463
Be Counted Forms	$303,\!041$
Interviewer-administered Questionnaires	
Nonresponse Follow-up	66,785,373
Vacant Delete Check	$4,\!665,\!512$
Nonresponse Follow-up Residual	728,374
Update Enumerate	1,947,532
Remote Update Enumerate	5,967
Remote Alaska	54,112
Coverage Follow-up	17,326,236
Telephone Questionnaire Assistance	104,489
Enumeration of Transitory Locations	190,627
Nonresponse Follow-up Reinterview	157,410
Update Enumerate Reinterview	6,465
Imputation Cases and UHE Moves with an Unknown Operation Origin	$1,\!215,\!015$
2. IN GROUP QUARTERS	
Subtotal for Group Quarters	7,987,323
TOTAL RESIDENT POPULATION (April 1, 2010)	$308,\!745,\!538$

Glossary of 2010 Census Enumeration Methods (Jackson, 2013)

Mailout/Mailback: A 2010 Census questionnaire was mailed to a housing unit, and the housing unit completed the questionnaire and mailed it back.

Update/Leave: A 2010 Census field operation where a lister (of addresses) leaves a questionnaire at the housing unit for the people living at the housing unit to complete and mail back to the Census Bureau.

Form Fulfillment: A person calls Telephone Questionnaire Assistance and requests that a 2010 Census questionnaire be mailed to his or her address. The Form Fulfillment questionnaire was available in the following languages: English, Spanish, Chinese, Korean, Russian, and Vietnamese.

Be Counted: A person picked up, completed and sent back a 2010 Census Be Counted Questionnaire from a Questionnaire Assistance Center or Be Counted location. The Be Counted questionnaire was available in the following languages: English, Spanish, Chinese, Korean, Russian, and Vietnamese.

Nonresponse Follow-up: A person did not complete a mailback questionnaire and was interviewed by a Census enumerator.

Vacant Delete Check: A follow-up interview for housing units found to be non-seasonally vacant and nonexistent in Nonresponse Follow-up. Additionally, if a person mailed back a blank 2010 Census mailback questionnaire or if a housing unit was in the supplemental enumeration universe delivery, they were interviewed for the first time in the Vacant Delete Check operation. The supplemental enumeration universe includes housing units that were not known in time to be included in the initial enumeration universe. They include housing units that were added from operations like New Construction and Local Update of Census Address Appeals. Housing units in the supplemental universe were mailed questionnaires in the Late Add Mailout.

Nonresponse Follow-up Residual: If a Nonresponse Follow-up enumerator was unable to determine how many people lived in a housing unit, that housing unit was reinterviewed in the Nonresponse Follow-up Residual operation. Additionally, if a person mailed back a blank 2010 Census mailback questionnaire and was not included in the Vacant Delete Check operation, they were followed up with in the Nonresponse Follow-up Residual operation.

Update Enumerate: A Census Bureau enumerator canvassed and interviewed housing units located on

Native American reservations and areas that had a large amount of seasonally occupied housing units.

Remote Update Enumerate: A Census Bureau enumerator canvassed and interviewed housing units located in rural Maine and rural Alaska.

Remote Alaska: A Census Bureau enumerator canvassed and interviewed housing units located in extremely remote locations in Alaska. The operation was started in January and conducted in three waves.

Coverage Follow-up: A follow-up interview with respondents that were identified as having potential overcoverage or undercoverage on their mailback or Nonresponse Follow-up questionnaire.

Telephone Questionnaire Assistance: A person completed his or her 2010 Census questionnaire over the phone with an interviewer at a call center.

Enumeration of Transitory Locations: People who lived in transitory locations such as boat docks, hotels, and trailer parks and were interviewed by Census Bureau enumerators.

Reinterview: A quality control follow-up interview with respondents from Nonresponse Follow-up and Update Enumerate. The only reinterview questionnaires included in the final 2010 Census counts are those that replaced production questionnaires due to the production enumerator falsifying data or not following procedures correctly.

Group Quarters: A group quarters is a place where people live or stay that is normally owned or managed by an entity or organization providing housing or services for the residents. These services may include custodial or medical care as well as other types of assistance, and residency is commonly restricted to those receiving these services. People living in group quarters are usually not related to one another. Group quarters include such places as college residence halls, residential treatment centers, skilled nursing facilities, group homes, military barracks, correctional facilities, workers' dormitories, and facilities for people experiencing homelessness. People in quarters are interviewed during the Group Quarters Enumeration operation. **UHE (Usual Household Elsewhere) Moves:** A housing unit that is occupied by people that completed either a Be Counted Questionnaire or Group Quarters questionnaire and indicated that they stayed at another address.

Late Add Mailout: There were housing units identified too late to be included in the original 2010 Census mailout. These units were part of the supplemental enumeration universe. There was a separate mailout to these units, and they were assigned a Processing Identifier for the process instead of a Census Identifier. The Processing Identifier identifies housing units that were added to the initial enumeration universe.

Unlinked Continuation Forms: The 2010 Census questionnaires used by enumerators only include enough space to have information for up to five people living at the housing unit. If more than five people lived at a housing unit, a continuation form was used. The continuation forms were then linked to the parent form. However, not all continuation forms were able to be linked. An unlinked continuation form indicates that there was no parent form captured for this unit.

Imputation: The assignment of values by the Census Bureau when information is missing or inconsistent. Imputation relies on the tendency of households of the same size within a small geographic area to be similar in most characteristics.

Status Imputation: The Census Bureau did not know if the address was a housing unit or another structure. A value of existing or nonexistent was assigned to the housing unit.

Occupancy Imputation: The Census Bureau knew that the housing unit existed but its status was not known. A value of occupied or vacant was assigned to the housing unit.

Household Size Imputation: The Census Bureau knew that a housing unit was occupied but did not know how many people lived in the unit. The number of people living in that unit was assigned to it.