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Abstract

There are multiple tests of homogeneity of binomial proportions in the statistics literature.

However, when working with sparse data, most test procedures may fail to perform well. In

this article we review nine classical and recent testing procedures, including the standard

Pearson and likelihood ratio tests; exact conditional and unconditional tests; tests based on

moment matching chi-squared approximations; a recently proposed test based on a normal

approximation in an asymptotic framework for sparse data; and a recent test based on higher

order moment corrections using an Edgeworth approximation. For each test we review its

theoretical underpinning, and show how to calculate the P -value. Most of the P -values can

be readily calculated in a statistical computing software package such as R. We compare

type I error probability and power via simulation. As expected, none of the procedures

uniformly outperforms the others in terms of type I error probability and power, but we

can make some recommendations based on our empirical results. In particular, we indicate

scenarios in which certain otherwise reasonable test procedures can perform inadequately.
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1 Introduction

We consider the problem of testing the homogeneity hypothesis for k binomial popula-

tions of possibly unequal sample sizes based on observing one data point on each of the k

populations. That is, our data consist of X1, . . . , Xk which are distributed such that

Xi ∼ Binomial(ni, πi), independently, for i = 1, . . . , k, (1)

where n1, . . . , nk are known, and 0 ≤ π1, . . . , πk ≤ 1 are unknown. The null hypothesis of

homogeneity is to be tested against a general alternative; thus we wish to test

H0 : π1 = · · · = πk ≡ π against H1 : πi �= πj for some i �= j, (2)

where the common value π under H0 is not specified. Throughout, we let α denote the

nominal level of the test, and we let n+ =
∑k

i=1 ni and X+ =
∑k

i=1Xi.

There is an extensive literature on this basic testing problem, especially in the case

of k = 2 (i.e., a 2 × 2 contingency table) where, for instance, Upton (1982) evaluated 22

different tests. Starting with the likelihood ratio and Pearson’s chi-squared tests (Pearson,

1932; Wilks, 1928), various modifications of them have been suggested (Farrington, 1996;

McCullagh, 1985; Paul and Deng, 2013). Some new tests have also been developed, espe-

cially in the case of sparse data situations, (Nass, 1959; Potthoff and Whittinghill, 1966;

Xu, 2011) since the standard tests can perform poorly in sparse data scenarios (Xu, 2011).

Sparse data situations can arise when some of the ni’s are small or when some of the πi’s

are close to zero or one.

The scope of applications of the above testing problem is equally vast. The literature of

statistical meta-analysis (e.g., Hedges and Olkin, 1985; Hartung, Knapp and Sinha, 2008)

dwells upon testing homogeneity of the underlying effect sizes with proportion as a very

important and useful component. The sparse data scenario arises when dealing with rare

outcomes such as a rare disease or death in medical experiments. In a different context,

statistical agencies may be interested in creating and releasing synthetic microdata for pub-

lic use in order to provide useful information to the public while protecting confidentiality

of respondents. In a synthetic data set, some or all of the original data values are replaced

by random draws from an appropriate distribution for the purpose of statistical disclo-

sure control; we refer to Drechsler (2011), Raghunathan, Reiter, and Rubin (2003), Reiter

(2003), and Rubin (1993) for details. Generation of synthetic count data in cross-classified

contingency tables can be based on an ANOVA type log-linear model for cell probabilities

along with a multinomial assumption for the joint distribution of the cell counts. Bhap-

kar and Koch (1968) and Bishop, Fienberg, and Holland (1977) discuss many aspects of

model selections in this context, including choice and interpretation of interaction terms

in these models. While a fully saturated log-linear model provides little flexibility, under
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the independence model, interaction terms are set to zero. This precisely corresponds to

the homogeneity of associated cell probabilities across rows or columns in the contingency

table, and suggests testing of homogeneity of proportions across rows or columns before

using the independence model. The simplest case of homogeneity of binomial proportions

arises when testing for absence of interaction in a k × 2 dimensional contingency table.

The primary focus of this article is to provide a comprehensive comparison by simu-

lation among the available tests in terms of type I error probability and power in sparse

data settings. The outline of the rest of the article is as follows. We review several test

procedures in Section 2. In Section 3 we compare the procedures empirically based on type

I error probability and power, and offer some guidance based on these results. We provide

some concluding remarks in Section 4. The Appendix contains tables that summarize the

simulation results.

2 Test Procedures

In this section we review several procedures for testing the hypotheses (2). We first note

that the likelihood function for (π1, . . . , πk) under the model (1) is

L(π1, . . . , πk;X1, . . . , Xk) =
k∏

i=1

(
ni

Xi

)
πXi
i (1− πi)

ni−Xi , 0 ≤ πi ≤ 1, (3)

and the likelihood function for π under the restriction of the parameter space defined by

the null hypothesis H0 is

L0(π;X1, . . . , Xk) =

[
k∏

i=1

(
ni

Xi

)]
πX+(1− π)n+−X+ , 0 ≤ π ≤ 1. (4)

Thus, under model (1), the maximum likelihood estimator of πi is π̂i = Xi/ni for i =

1, . . . , k, and under the null hypothesis H0, the maximum likelihood estimator of π is π̂ =

X+/n+.

2.1 Standard chi-squared and likelihood ratio tests

Pearson’s chi-squared test (Pearson, 1932) and the usual likelihood ratio test (Wilks, 1928)

are two standard tests of the hypotheses (2); the test statistics are defined, respectively, by

TP ≡ TP (X1, . . . , Xk) =

k∑
i=1

{
(niπ̂i − niπ̂)

2

niπ̂
+

[ni(1− π̂i)− ni(1− π̂)]2

ni(1− π̂)

}

=
k∑

i=1

ni(π̂i − π̂)2

π̂(1− π̂)
, (5)
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TL ≡ TL(X1, . . . , Xk) = −2 log

[
L0(π̂;X1, . . . , Xk)

L(π̂1, . . . , π̂k;X1, . . . , Xk)

]
= 2

k∑
i=1

Xi log

(
π̂i
π̂

)
+ 2

k∑
i=1

(ni −Xi) log

(
1− π̂i
1− π̂

)
. (6)

Pearson’s chi-squared test rejects H0 if TP is large and the likelihood ratio test rejects H0 if

TL is large. Under the null hypothesis, for fixed k and large ni, the asymptotic distributions

of both TP and TL are chi-squared on k−1 degrees of freedom, and their difference converges

in probability to zero (Agresti, 2002). Therefore, letting tP and tL denote the observed

values of TP and TL, respectively, the P -values for Pearson’s chi-squared test and the

likelihood ratio test are Pr{χ2
k−1 ≥ tP } and Pr{χ2

k−1 ≥ tL}, respectively. These tests

are justified by an asymptotic theory in which k is fixed and the ni’s are large; therefore

they may not perform well in sparse data settings with small cell counts (Haberman, 1988;

Mielke, Berry, and Johnston, 2004; Xu, 2011). In fact, when data are sparse, we may not

be able to compute TL as defined in (6) since it is likely that at least one π̂i will equal zero

or one.

Below we review several alternative test procedures that have appeared in the literature.

2.2 Exact tests

In the sparse data setting where the asymptotic framework of the standard chi-squared

and likelihood ratio tests generally does not hold, exact tests provide a natural alternative.

These tests are referred to as exact because they use an exact finite sample distribution

of the test statistic as opposed to an approximation. We refer to Agresti (1992, 2001,

2002) for an in-depth presentation and discussion of exact methods of inference. Here we

will describe a conditional and an unconditional exact procedure for testing (2) using the

Pearson statistic TP defined in (5). Throughout we let tP denote the observed value of TP .

Conditional test. Under the null hypothesis, it readily follows from (4) thatX+ is a sufficient

statistic for π and hence the conditional distribution of X1, . . . , Xk given X+ is free of π.

The probability mass function of this conditional distribution is given by (Agresti, 2002)

pc(x1, . . . , xk |X+) =
(
∏k

i=1 ni!)(X+)!(n+ −X+)!

(n+)!
∏k

i=1[xi!(ni − xi)!]
, for (x1, . . . , xk) ∈ AX+ , (7)

where AX+ = {(a1, . . . , ak) ∈ B :
∑k

j=1 aj = X+}, B = B1 × · · · × Bk, and Bi =

{0, 1, . . . , ni}, i = 1, . . . , k. Then an exact test can be obtained using the P -value defined

by Pr{TP ≥ tP |X+} where this probability is computed with respect to the conditional

probability distribution (7), i.e.,

Pr{TP ≥ tP |X+} =
∑

{(x1,...,xk)∈AX+
:TP (x1,...,xk)≥tP }

pc(x1, . . . , xk |X+). (8)
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When k = 2, this procedure is a two-sided version of Fisher’s exact test. Unless k and the

ni’s are small, the probability (8) is difficult to compute due to the large number of atoms

in the sample space AX+ , but we can approximate it via Monte Carlo (Robert and Casella,

2004). For instance, in R (R Development Core Team, 2011) there is a function called

r2dtable which generates a random sample from the distribution (7) using the algorithm

of Patefield (1981). If (x
(1)
1 , . . . , x

(1)
k ), . . . , (x

(m)
1 , . . . , x

(m)
k ) denote m random vectors drawn

independently from the distribution (7), then a Monte Carlo estimator of (8) is

P̂r{TP ≥ tP |X+} =
1

m

m∑
j=1

I[TP (x
(j)
1 , . . . , x

(j)
k ) ≥ tP ] (9)

where I[A] is the indicator of the event A. Mehta, Patel, and Senchaudhuri (1988) show

that importance sampling can be used to obtain an improved Monte Carlo estimator.

Unconditional test. Under the null hypothesis, the joint distribution of (X1, . . . , Xk) is given

by

pu(x1, . . . , xk |π) =
[

k∏
i=1

(
ni

xi

)]
π
∑k

1 xi(1− π)n+−∑k
1 xi , 0 ≤ π ≤ 1, (10)

which depends on the unknown parameter π. Using TP as the test statistic, an exact

unconditional test can be obtained by defining the P -value as supπ∈[0,1] Pr{Tp ≥ tp} where

the probability is computed with respect to the distribution (10) and thus depends on π,

i.e.,

sup
π∈[0,1]

Pr{Tp ≥ tp} = sup
π∈[0,1]

∑
{(x1,...,xk)∈B:TP (x1,...,xk)≥tP }

pu(x1, . . . , xk |π). (11)

This test was introduced by Barnard (1945, 1947) in the case of k = 2 (later, Barnard [1949]

wrote in favor of Fisher’s exact test over his unconditional test). When either k or the ni’s

are large, the above probability is difficult to compute due to the large number of atoms in

B, and hence the P -value is extremely difficult to compute due to the presence of supπ∈[0,1].

Remark. The question of whether one should use the conditional or unconditional test is

controversial. There is much debate on this issue in the statistical literature, especially for

the case of k = 2, and we refer to Little (1989) for a discussion. The debate generally

involves issues of statistical philosophy that go beyond power and type I error probability

comparisons. But in terms of empirical comparisons, Suissa and Shuster (1985) compared

the type I error probability and power of the conditional and unconditional tests when k = 2,

using the statistic Zu = n1/2(π̂2− π̂1)/[π̂2(1− π̂2)+ π̂1(1− π̂1)]
1/2 for the unconditional test,

and assumed n = n1 = n2 and a one-sided alternative hypothesis. Under these conditions,

Suissa and Shuster (1985) derived a method for computing the unconditional P -value and

found the unconditional test to be more powerful than Fisher’s exact test. Mehta and Hilton

(1993) considered the case of k = 3, and compared the conditional and unconditional tests

5



based on the Pearson statistic TP when n = n1 = n2 = n3. They concluded that while

the unconditional test appeared to hold a power advantage over the conditional test when

k = 2, when k = 3 the power advantage of the unconditional test rapidly diminishes for

moderately large values of the common sample size n.

2.3 Test of Nass (1959)

Nass (1959) considered an adjustment to the standard chi-squared test to improve the

approximation for sparse data. This approach approximates the conditional distribution of

TP givenX+, under the null hypothesis. Under the null hypothesis, the distribution of c×TP

is approximated by a chi-squared density on v degrees of freedom, where c and v are chosen

so that the conditional mean and variance of c × TP match the mean and variance of the

approximating chi-squared distribution. In our setting of independent binomial sampling,

the approximation is defined by c× TP |X+ ∼ χ2
v, where c and v are determined such that

E(c× TP |X+) = v, Var(c× TP |X+) = 2v,

or equivalently,

c = 2E(TP |X+)/Var(TP |X+), v = cE(TP |X+). (12)

Under the null hypothesis, the mean and variance of TP , conditional on X+, were derived

by Haldane (1940) and simplified by Dawson (1954) into the following form:

E(TP |X+) =
(k − 1)n+

n+ − 1
,

Var(TP |X+) =
2n+

n+ − 3
(ρ− σ)(μ− τ) +

n2
+

n+ − 1
στ,

where

ρ =
n+ − 2

n+ − 1
, μ =

(k − 1)(n+ − k)

n+ − 1
, σ =

n+

X+
+ n+

n+−X+
− 4

n+ − 2
, τ =

n+
∑k

i=1 n
−1
i − k2

n+ − 2
.

Thus the P -value of the test is computed as Pr{χ2
v ≥ c tp} with c and v defined by (12).

2.4 Test of Potthoff and Whittinghill (1966)

Potthoff and Whittinghill (1966) derived a test procedure based on the following argument.

First, they suppose that π is known, and the alternative hypothesis specifies the distribution

of X1, . . . , Xk such that

π1, . . . , πk ∼ iid ∼ Beta[πa, (1− π)a],
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and conditionally on (π1, . . . , πk), the variables X1, . . . , Xk are distributed as in (1). Then

a locally most powerful test (locally in the sense that a is such that the variance of the

Beta[πa, (1 − π)a] distribution is small) rejects the null hypothesis for large values of the

statistic

V(π) =

∑n
i=1Xi(Xi − 1)

π
+

∑n
i=1 Yi(Yi − 1)

1− π
,

where Yi = ni −Xi. The distribution of V(π) under the null hypothesis is approximated as

e(π)V(π) + f(π) ∼ χ2
v(π), and the constants e(π), f(π) and v(π) are chosen such that

v(π) = E {e(π)V(π) + f(π)} ,
2v(π) = Var {e(π)V(π) + f(π)} ,
8v(π) = E {e(π)V(π) + f(π)− E[e(π)V(π) + f(π)]}3 ,

i.e., the mean, variance, and third central moment of eV(π)+ f match those of the approx-

imating χ2
v distribution. This results in

e(π) =
N

2γ(π)N +
∑n

i=1 ni(ni − 1)(ni − 2)
,

f(π) = e(π)(e(π)− 1)N,

N =
n∑

i=1

ni(ni − 1), (13)

γ(π) =
1

4π(1− π)
− 1,

v(π) = e(π)2N.

To handle the case of unknown π, Potthoff and Whittinghill (1966) obtained a test by

setting π equal to the value which minimizes V(π); the resulting values of π and V(π) are

πmin =
[
∑n

i=1Xi(Xi − 1)]1/2

[
∑n

i=1Xi(Xi − 1)]1/2 + [
∑n

i=1 Yi(Yi − 1)]1/2
,

V(πmin) =

⎧⎨⎩
[

n∑
i=1

Xi(Xi − 1)

]1/2

+

[
n∑

i=1

Yi(Yi − 1)

]1/2
⎫⎬⎭

2

.

The P -value of the test is thus computed as Pr{χ2
v(πmin)

≥ e(πmin)V(πmin)+f(πmin)}, where
of course, e(πmin)V(πmin) + f(πmin) and v(πmin) are fixed at their observed values in the

probability computation.
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2.5 Adjustment to the Potthoff and Whittinghill (1966) test using the

method of Berger and Boos (1994)

In the context of testing a general composite hypothesis of the form H0 : ψ = ψ0 in the

presence of nuisance parameters θ, Berger and Boos (1994) suggested the following approach

based on maximization of a suitable P -value. Let P (θ) be a P -value based on some test of

H0 for a specified value of θ, and let Cβ be a (1−β) level confidence set for θ under H0. It

is demonstrated in Berger and Boos (1994) that the test which rejects H0 for small values

of

Pβ = sup
θ∈Cβ

P (θ) + β (14)

provides a valid test of H0. An application of this general procedure to the Potthoff and

Whittinghill (1966) test can be formulated as follows. Under the null hypothesis of homo-

geneity of binomial proportions, the common proportion π is a nuisance parameter, and its

(1 − β) level large sample confidence interval based on the entire data can be computed

from the fact that under H0, Pr{−zβ/2 <
√
n+(π̂−π)√
π(1−π)

< zβ/2} ≈ 1 − β for large n+, where

zβ/2 = Φ−1(1−β/2) and Φ(s) =
∫ s
−∞ e−u2/2du/

√
2π. Solving these inequalities for π readily

yields the approximate (1− β) level confidence interval Cβ = {π : π̂L ≤ π ≤ π̂U} where

π̂L =
π̂ +

z2
β/2

2n+
− zβ/2

√
π̂(1−π̂)

n+
+

z2
β/2

4n2
+

1 +
z2
β/2

n+

, π̂U =
π̂ +

z2
β/2

2n+
+ zβ/2

√
π̂(1−π̂)

n+
+

z2
β/2

4n2
+

1 +
z2
β/2

n+

.

We note that several other confidence intervals are also available for the binomial proportion;

Cβ as defined above is one of the intervals recommended by Brown, Cai, and DasGupta

(2001).

For a given π, the P -value for the Potthoff and Whittinghill (1966) test described in

Section 2.4 is

P (π) = Pr
{
χ2
v(π) > e(π)V(π) + f(π)

}
≈ Pr

{
N(0, 1) >

e(π)V(π) + f(π)− v(π)

[2v(π)]1/2

}
where the quantities e(π), f(π) and v(π) are defined in (13). The supremum value Pβ

displayed in (14) is now obtained by computing P (π) with the minimum value of Q(π) =
e(π)V(π)+f(π)−v(π)

[2v(π)]1/2
with respect to π ∈ Cβ and adding β. It is easy to verify that Q(π)

simplifies to Q(π) = V(π)−N

[2N ]1/2
, and we compute its minimum subject to π ∈ Cβ . Denoting

this minimum value by Q∗
β and following (14), it follows that the test based on the method

of Berger and Boos (1994) rejects H0 for small values of

Pβ = Pr
{
N(0, 1) > Q∗

β

}
+ β.

Obviously we choose only small values of β in applications.
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2.6 Test of Xu (2011)

Xu (2011) proposed an unconditional test which was motivated as follows. First note that

E[π̂i − π̂]2 =
n+ − ni

nin+
π(1− π), under H0,

and

E

[
π̂i(1− π̂i)

ni − 1

]
=

πi(1− πi)

ni
.

Thus defining

Ui = (π̂i − π̂)2 −
[
n+ − ni

n+

] [
π̂i(1− π̂i)

ni − 1

]
, i = 1, . . . , k,

it follows that E(Ui) = 0 under H0. Xu (2011) shows that

Var(Ui) =
2π2(1− π)2

ni(ni − 1)
+O

(
1

n+

)
,

Cov(Ui, Uj) = O

(
1

n+

)
for i �= j,

and thus proposes the test statistic

TD =

√
k√
2

V

π̂(1− π̂)

where Vi =
√

ni(ni − 1)Ui and V = k−1
∑k

i=1 Vi. Letting tD denote the observed value of

TD, Xu (2011) proposes to compute the P -value of the test as Pr{N(0, 1) ≥ tD}. The P -

value computation is based on a normal approximation under a sparse asymptotic framework

in which k → ∞ while the ni are bounded.

2.7 Test of Paul and Deng (2013)

Extending work of Farrington (1996), Paul and Deng (2013) present a general method for

testing goodness of fit of a generalized linear model to sparse data. As discussed by Paul

and Deng (2013), their method, which is based on an Edgeworth approximation of the

distribution of the modified Pearson χ2 statistic conditional on π̂, can be used to test the

hypotheses (2). The test statistic is the standardized quantity

Z =
X2∗ − E(X2∗ | π̂)
[Var(X2∗ | π̂)]1/2

,
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where X2∗ is the modified Pearson statistic proposed by Farrington (1996). In our setting,

the modified Pearson statistic takes the form:

X2
∗ = X2 − 1− 2π̂

π̂(1− π̂)

k∑
i=1

(π̂i − π̂).

The conditional distribution of the test statistic Z under the null hypothesis is approximated

by the Edgeworth series:

Pr{Z ≥ z | π̂} ≈ 1− Φ(z) + φ(z)
{
(z2 − 1)ρ3(X

2
∗ | π̂)/6 + (z3 − 3z)ρ4(X

2
∗ | π̂)/24

+ (z5 − 10z3 + 15z)ρ23(X
2
∗ | π̂)/72

}
. (15)

As usual, φ(s) = e−s2/2/
√
2π and Φ(s) =

∫ s
−∞ φ(u)du denote the standard normal prob-

ability density and cumulative distribution functions, respectively. The Edgeworth series

involves ρ3(X
2∗ | π̂) and ρ4(X

2∗ | π̂) which are the standardized conditional third and fourth

cumulants of X2∗ , respectively, under the null hypothesis. That is, if κj(X
2∗ | π̂) denotes the

jth cumulant of X2∗ conditional on π̂, then

ρj(X
2
∗ | π̂) =

κj(X
2∗ | π̂)

[κ2(X2∗ | π̂)]j/2
, j = 3, 4, . . . .

Paul and Deng (2013) provide the following approximate expressions for the first four con-

ditional cumulants of X2∗ under the null hypothesis:

κ1(X
2
∗ | π̂) = k

(
1− 1

k
+

1

n+

)
,

κ2(X
2
∗ | π̂) = 2(k − 1)

(
1− 1

k

k∑
i=1

1

ni

)
,

κ3(X
2
∗ | π̂) = 8(k − 1)

[
1− 1

k

k∑
i=1

5ni − 4

n2
i

+
1

2kπ̂(1− π̂)

k∑
i=1

ni − 1

n2
i

]
,

κ4(X
2
∗ | π̂) = 48(k − 1)

k∑
i=1

(
1− 1

ni

)[
n2
i − 17ni + 31

n2
i

+
3ni − 7

n2
i π̂(1− π̂)

+
1

6n2
i π̂

2(1− π̂2)

]

+
12k2(1− 2π̂)2

(
1− 2

k

∑k
i=1

1
ni

)2

π̂(1− π̂)n+
.

Finally, with z denoting the observed value of the test statistic Z, the P -value is computed

by evaluating the right hand side of (15) using the expressions above for the cumulants. This

test is designed under a sparse asymptotic framework as mentioned at the end of Section

2.6. The higher order corrections are designed to improve the approximation for moderate

values of k.
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3 Empirical Comparison of the Tests

In Section 2 we introduced nine different tests for the hypotheses (2). In this section we use

simulation to evaluate and compare seven of these tests based on type I error probability

and power. We conducted all simulations using the statistical computing software R (R

Development Core Team, 2011). Below we list the seven tests included in the comparison,

and we give a short name for each test. The short name is used to refer to each test in the

following discussion, and in Tables 1 - 12 which summarize the simulation results.

1. Pearson: Pearson’s chi-squared test presented in Section 2.1.

2. ExactC: Exact conditional test presented in Section 2.2.

3. Nass: Test of Nass (1959) presented in Section 2.3.

4. PW: Test of Potthoff and Whittinghill (1966) presented in Section 2.4.

5. PWBB: Test of Potthoff and Whittinghill (1966) adjusted using the method of Berger

and Boos (1994) as presented in Section 2.5.

6. Xu: Test of Xu (2011) presented in Section 2.6.

7. PD: Test of Paul and Deng (2013) presented in Section 2.7.

We have not included the likelihood ratio test in the comparison because we cannot compute

the likelihood ratio test statistic TL as defined in (6) if at least one π̂i equals zero or one

(which is likely in a sparse data situation). We have not included the exact unconditional

test due to the computational difficulty in calculating the P -value (11) as discussed in

Section 2.2.

In our empirical study we consider twelve different settings where each is of the form:

πi = π0, for i = 1, . . . , k − 1,

πk = π0 + δ.

The values of π0, k, and n1, . . . , nk used in the twelve simulation settings are as follows.

Setting 1. π0 = 0.05, k = 3, n1 = n2 = n3 = 10

Setting 2. π0 = 0.05, k = 3, n1 = n2 = 10, n3 = 60

Setting 3. π0 = 0.05, k = 3, n1 = n2 = 60, n3 = 10

Setting 4. π0 = 0.05, k = 3, n1 = n2 = n3 = 60

Setting 5. π0 = 0.001, k = 8, ni = 20× 2i−1
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Setting 6. π0 = 0.001, k = 8, ni = 20× 28−i

Setting 7. π0 = 0.001, k = 8, n1 = · · · = n8 = 2560

Setting 8. π0 = 0.016, k = 8, ni = 20× 2i−1

Setting 9. π0 = 0.001, k = 40, ni = 20× 2(i−1) mod 8

Setting 10. π0 = 0.001, k = 40, ni = 20× 2(40−i) mod 8

Setting 11. π0 = 0.001, k = 40, n1 = · · · = n40 = 2560

Setting 12. π0 = 0.008, k = 40, ni = 20× 2(i−1) mod 8

For each of the seven tests, we use Monte Carlo simulation to estimate the probability of

rejecting the null hypothesis in each of the settings 1 - 12. These probabilities are computed

for several values of δ; and we report the probabilities for settings 1 - 12 in Tables 1 - 12,

respectively. In all cases, the nominal level of the test is taken as α = 0.05, and 10000

iterations are used to obtain the Monte Carlo estimates of type I error probability and

power. For the ExactC test, in settings 1 and 2 we compute the P -value directly using

(8). In the remaining settings 3 - 12, direct computation of the P -value as defined in (8)

is difficult due to larger values of k and/or the ni’s; therefore, in these settings, we obtain

the P -value using the Monte Carlo estimator (9) with m = 10000 iterations. Notice that in

each table, the first row, which corresponds to δ = 0, gives the probability of type I error for

a particular value of the common π. As we move down the rows of each table δ increases,

and hence we would expect the power to increase because in this way we move further from

the null hypothesis of homogeneity. In any particular iteration of the simulation, if the

observed value of X+ equals 0 or n+, then we do not reject the null hypothesis under any

test. Below is a summary of the findings of the simulation study.

1. In setting 1 where we have sparse data and a very small k, we see that all seven

tests have type I error probability well below α = 0.05. While none of the tests perform

ideally in setting 1, we notice here that the probability of type I error and power of the

three tests ExactC, PW, and PWBB is similar and well below that of the other four tests.

In this setting, the performance of the four tests Pearson, Nass, Xu, and PD is comparable.

2. As expected, we find that the Pearson test exhibits inadequate performance in some

sparse data settings where some of the other tests do perform adequately. Specifically, in

settings 5, 6, 9, 10, and 12, the Pearson test has probability of type I error in the range of

(0.09, 0.20), and hence is well above the nominal level of α = 0.05.

3. In all settings, we find that the PW and PWBB tests have probability of type I

error below the nominal level α = 0.05. In fact, in most of the settings, the probability of

type I error is substantially below the nominal level; hence the test seems to be extremely

conservative. Furthermore, in settings 2, 3, 4, 6, and 10, PW and PWBB tend to have
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extremely low power in comparison to several of the other tests. The test PWBB offers only

a slight improvement over PW; generally PW and PWBB perform quite similarly. In spite

of these drawbacks, it is interesting that in settings 9 and 12 the tests PW and PWBB have

lower type I error probability and tend to have higher power than the other tests.

4. In settings 5 and 6, the PD test exhibits inadequate performance because the type

I error probability is 0.661 and 0.6537, respectively, which obviously is substantially above

the nominal level of α = 0.05. In the settings 2, 3, 9, and 10, we find that PD has type

I error probability of 0.1432, 0.0860, 0.0983, 0.09073, and each is well above the nominal

level. It is interesting to notice that each setting where we have noticed an increased type I

error probability for the PD test is one with unequal ni’s. On the other hand, the PD test

performs adequately in settings 7, 8, 11, and 12; settings 8 and 12 also have unequal ni’s.

5. We note that theoretically, the ExactC test is similar to the Nass test. The difference

between the two tests, as presented in Sections 2.2 and 2.3, is that the ExactC test computes

the P -value directly using the conditional distribution (7), while the Nass test uses (12) to

obtain a scaled chi-squared distribution that approximates (7), and then computes the P -

value with respect to this approximating distribution. Thus, as one would expect, in each

of our simulation settings we find that the ExactC and Nass tests generally yield similar

performance and both maintain their level at or below the nominal α = 0.05. In settings

1 - 4, we find that the probability of type I error is slightly closer to α = 0.05 under the

Nass test in comparison with the ExactC test; and also in these settings the power of the

Nass test is slightly higher than that of the ExactC test. Notice that in settings 1 - 4, k is

quite small, and hence the discrete distribution (7) has a small sample space which makes

it difficult for the test to achieve size α = 0.05. On the other hand, in setting 5 the ExactC

test performs slightly better than the Nass test in terms of both type I error probability and

power. In the remaining settings 6 - 12, the performance of the ExactC and Nass tests is

nearly identical, indicating that Nass’s (1959) chi-squared approximation of (7) works well

in these settings. Generally the performance of the ExactC and Nass tests is adequate in

the settings we considered.

6. We find that the Xu test performs adequately in each of the simulation settings in

terms of both type I error probability and power, though the test tends to be conservative

in some settings (e.g., settings 1 - 6). Even in these settings, the power of the Xu test still

tends to compare favorably (though it is not always the best) with several of the other test

procedures.

7. Since the ExactC, Nass, and Xu tests each tend to perform adequately in the chosen

simulation settings, a comparison of the three tests seems appropriate. We have already

noted that the ExactC and Nass tests are similar to each other. The choice between the Xu

test versus either ExactC or Nass is not so clear, as none dominates the other in power or

type I error probability. For instance, in settings 2, 5, 8, 9, and 12, the Xu test has a power

advantage over both the ExactC and Nass tests; in settings 3, 6, and 10, the ExactC and
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Nass tests have a power advantage over the Xu test; and in settings 4, 7, and 11, the ExactC,

Nass, and Xu tests all perform similarly. To complement these findings, it is interesting to

observe that in settings 2, 5, 8, 9, and 12, one of the populations with the largest ni differs

from the rest; in settings 3, 6, and 10, one of the populations with the smallest ni differs

from the rest; and in settings 4, 7, and 11, all ni’s are equal. These observations may help

to provide some guidance as to when the Xu test is preferable to the ExactC and Nass tests

or vice versa.

4 Concluding Remarks

In this article we have reviewed nine procedures for testing the hypothesis of homogeneity of

k binomial proportions. In Section 2 we presented the justification for each test, and showed

how to calculate each P -value. In Section 3 we used simulation to assess and compare seven

of these tests on the basis of type I error probability and power. Through the simulation

studies, we located sparse data scenarios in which the otherwise reasonable tests Pearson,

PW, PWBB, and PD, performed inadequately. We noted that the ExactC, Nass, and Xu

tests exhibited adequate performance in all simulation settings that we considered, and

we provided some guidance regarding the choice between these three tests in sparse data

situations. As expected, we found the ExactC and Nass tests to be generally similar, but

some distinctions emerged between these two tests and the Xu test.
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Appendix: Tables Summarizing Simulation Results

Table 1: Rejection probabilities in setting 1; π0 = 0.05, k = 3, n1 = n2 = n3 = 10

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0145 0.0014 0.0145 0.0014 0.0014 0.0145 0.0145
0.05 0.0349 0.0054 0.0353 0.0053 0.0054 0.0349 0.0353
0.10 0.0888 0.0237 0.0901 0.0225 0.0237 0.0888 0.0901
0.15 0.1761 0.0622 0.1784 0.0601 0.0622 0.1761 0.1786
0.20 0.2651 0.1218 0.2708 0.1170 0.1218 0.2651 0.2711
0.25 0.3702 0.1982 0.3808 0.1888 0.1982 0.3702 0.3818
0.30 0.4912 0.3042 0.5080 0.2897 0.3041 0.4912 0.5084
0.35 0.5947 0.4136 0.6161 0.3935 0.4133 0.5947 0.6175
0.40 0.6888 0.5289 0.7107 0.5084 0.5286 0.6888 0.7125
0.45 0.7751 0.6436 0.7985 0.6184 0.6430 0.7751 0.8003
0.50 0.8433 0.7466 0.8649 0.7266 0.7465 0.8433 0.8670
0.55 0.8963 0.8252 0.9139 0.8071 0.8249 0.8963 0.9153
0.60 0.9381 0.8932 0.9518 0.8776 0.8931 0.9381 0.9541

Table 2: Rejection probabilities in setting 2; π0 = 0.05, k = 3, n1 = n2 = 10, n3 = 60

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0676 0.0286 0.0452 0.0013 0.0022 0.0183 0.1432
0.05 0.0102 0.0058 0.0097 0.0002 0.0002 0.0093 0.0292
0.10 0.0116 0.0110 0.0119 0.0000 0.0000 0.0671 0.1124
0.15 0.0770 0.0753 0.0806 0.0000 0.0000 0.2164 0.2960
0.20 0.2352 0.2205 0.2549 0.0000 0.0000 0.3959 0.4979
0.25 0.4392 0.3988 0.4820 0.0000 0.0000 0.5877 0.6868
0.30 0.6665 0.6177 0.7039 0.0002 0.0004 0.7643 0.8303
0.35 0.8292 0.8006 0.8472 0.0016 0.0052 0.8770 0.9104
0.40 0.9262 0.9188 0.9372 0.0112 0.0326 0.9495 0.9659
0.45 0.9697 0.9722 0.9755 0.0550 0.1189 0.9797 0.9864
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Table 3: Rejection probabilities in setting 3; π0 = 0.05, k = 3, n1 = n2 = 60, n3 = 10

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0533 0.0356 0.0433 0.0045 0.0141 0.0352 0.0860
0.05 0.1397 0.1075 0.1236 0.0077 0.0179 0.0901 0.1261
0.10 0.2635 0.2152 0.2413 0.0158 0.0298 0.1785 0.2125
0.15 0.4040 0.3551 0.3840 0.0334 0.0592 0.3025 0.3320
0.20 0.5377 0.4907 0.5199 0.0681 0.1060 0.4274 0.4578
0.25 0.6723 0.6323 0.6575 0.1137 0.1679 0.5753 0.6036
0.30 0.7760 0.7433 0.7654 0.1811 0.2501 0.6894 0.7156
0.35 0.8565 0.8308 0.8463 0.2548 0.3370 0.7839 0.8048
0.40 0.9102 0.8961 0.9057 0.3570 0.4472 0.8657 0.8820
0.45 0.9475 0.9391 0.9450 0.4577 0.5555 0.9194 0.9282

Table 4: Rejection probabilities in setting 4; π0 = 0.05, k = 3, n1 = n2 = n3 = 60

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0414 0.0318 0.0435 0.0110 0.0147 0.0405 0.0611
0.02 0.0651 0.0539 0.0682 0.0243 0.0282 0.0636 0.0893
0.04 0.1284 0.1100 0.1324 0.0566 0.0689 0.1264 0.1618
0.06 0.2306 0.2073 0.2356 0.1282 0.1490 0.2287 0.2735
0.08 0.3659 0.3393 0.3697 0.2306 0.2616 0.3640 0.4111
0.10 0.4946 0.4677 0.4993 0.3470 0.3876 0.4934 0.5466
0.12 0.6357 0.6106 0.6393 0.4814 0.5230 0.6349 0.6798
0.14 0.7400 0.7201 0.7435 0.6117 0.6517 0.7392 0.7800
0.16 0.8306 0.8140 0.8328 0.7196 0.7568 0.8299 0.8609
0.18 0.9001 0.8883 0.9019 0.8171 0.8489 0.8996 0.9197
0.20 0.9451 0.9370 0.9459 0.8871 0.9106 0.9446 0.9578

Table 5: Rejection probabilities in setting 5; π0 = 0.001, k = 8, ni = 20× 2i−1

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.1096 0.0410 0.0359 0.0068 0.0098 0.0211 0.6661
0.001 0.0702 0.0300 0.0286 0.0003 0.0015 0.0236 0.4297
0.002 0.0515 0.0211 0.0194 0.0019 0.0075 0.0949 0.2987
0.003 0.0638 0.0243 0.0221 0.0220 0.0530 0.2434 0.3534
0.004 0.1226 0.0418 0.0328 0.0858 0.1681 0.4499 0.5194
0.005 0.2531 0.0999 0.0760 0.2176 0.3397 0.6532 0.7022
0.006 0.4254 0.2162 0.1720 0.3976 0.5322 0.8017 0.8329
0.007 0.6037 0.3844 0.3207 0.5883 0.7096 0.9004 0.9171
0.008 0.7372 0.5509 0.4886 0.7230 0.8166 0.9496 0.9585
0.009 0.8525 0.7067 0.6526 0.8416 0.9023 0.9773 0.9817
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Table 6: Rejection probabilities in setting 6; π0 = 0.001, k = 8, ni = 20× 28−i

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.1144 0.0482 0.0428 0.0057 0.0068 0.0212 0.6537
0.01 0.2703 0.2143 0.2111 0.0092 0.0112 0.0423 0.6796
0.02 0.4135 0.3680 0.3649 0.0102 0.0127 0.0838 0.7006
0.03 0.5178 0.4768 0.4754 0.0115 0.0171 0.1395 0.7307
0.04 0.6173 0.5837 0.5839 0.0186 0.0259 0.2173 0.7579
0.05 0.6833 0.6564 0.6564 0.0275 0.0372 0.2757 0.7674
0.06 0.7410 0.7185 0.7202 0.0348 0.0476 0.3571 0.7977
0.07 0.7922 0.7750 0.7760 0.0459 0.0662 0.4251 0.8218
0.08 0.8319 0.8163 0.8180 0.0693 0.0907 0.4973 0.8529
0.09 0.8687 0.8574 0.8574 0.0927 0.1241 0.5623 0.8688

Table 7: Rejection probabilities in setting 7; π0 = 0.001, k = 8, n1 = · · · = n8 = 2560

δ Pearson ExactC Nass PW PWBB Xu PD

0.0000 0.0424 0.0420 0.0462 0.0187 0.0281 0.0532 0.0462
0.0005 0.0645 0.0643 0.0687 0.0324 0.0483 0.0776 0.0687
0.0010 0.1348 0.1347 0.1388 0.0788 0.1048 0.1512 0.1388
0.0015 0.2523 0.2549 0.2598 0.1757 0.2123 0.2788 0.2598
0.0020 0.4030 0.4030 0.4098 0.3097 0.3534 0.4289 0.4099
0.0025 0.5555 0.5580 0.5636 0.4612 0.5104 0.5817 0.5639
0.0030 0.6852 0.6851 0.6917 0.5984 0.6438 0.7080 0.6919
0.0035 0.7943 0.7938 0.7988 0.7264 0.7615 0.8104 0.7989
0.0040 0.8673 0.8669 0.8700 0.8166 0.8441 0.8784 0.8703
0.0045 0.9251 0.9250 0.9271 0.8938 0.9102 0.9320 0.9272

Table 8: Rejection probabilities in setting 8; π0 = 0.016, k = 8, ni = 20× 2i−1

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0635 0.0489 0.0457 0.0058 0.0101 0.0486 0.0458
0.002 0.0531 0.0428 0.0408 0.0071 0.0129 0.0547 0.0520
0.004 0.0677 0.0537 0.0494 0.0185 0.0312 0.0909 0.0862
0.006 0.1050 0.0837 0.0781 0.0518 0.0765 0.1606 0.1528
0.008 0.1796 0.1503 0.1421 0.1194 0.1657 0.2763 0.2665
0.010 0.2874 0.2490 0.2396 0.2241 0.2910 0.4178 0.4061
0.012 0.4283 0.3849 0.3753 0.3660 0.4435 0.5645 0.5542
0.014 0.5861 0.5389 0.5313 0.5332 0.6142 0.7215 0.7106
0.016 0.7184 0.6784 0.6743 0.6688 0.7421 0.8252 0.8177
0.018 0.8302 0.8011 0.7959 0.7988 0.8540 0.9068 0.9023
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Table 9: Rejection probabilities in setting 9; π0 = 0.001, k = 40, ni = 20× 2(i−1) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.1932 0.0491 0.0531 0.0169 0.0274 0.0411 0.0983
0.001 0.1702 0.0394 0.0413 0.0882 0.1099 0.0658 0.0917
0.002 0.2007 0.0536 0.0532 0.3112 0.3554 0.2026 0.2179
0.003 0.2877 0.0825 0.0826 0.6037 0.6431 0.4403 0.4495
0.004 0.4616 0.1758 0.1730 0.8297 0.8519 0.7001 0.7041
0.005 0.6540 0.3320 0.3270 0.9391 0.9489 0.8651 0.8658
0.006 0.8142 0.5312 0.5251 0.9838 0.9867 0.9500 0.9500
0.007 0.9098 0.7143 0.7107 0.9956 0.9967 0.9844 0.9846
0.008 0.9644 0.8430 0.8397 0.9990 0.9994 0.9959 0.9958
0.009 0.9897 0.9368 0.9357 0.9997 0.9997 0.9988 0.9988

Table 10: Rejection probabilities in setting 10; π0 = 0.001, k = 40, ni = 20× 2(8−i) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.1826 0.0495 0.0524 0.0214 0.0319 0.0411 0.0973
0.01 0.3273 0.1260 0.1330 0.0229 0.0316 0.0588 0.1115
0.02 0.4566 0.2073 0.2162 0.0174 0.0301 0.1013 0.1479
0.03 0.5534 0.2948 0.3068 0.0219 0.0327 0.1673 0.2075
0.04 0.6262 0.3673 0.3764 0.0219 0.0353 0.2326 0.2723
0.05 0.6938 0.4410 0.4526 0.0254 0.0391 0.2992 0.3308
0.06 0.7552 0.5126 0.5204 0.0286 0.0418 0.3717 0.3998
0.07 0.7948 0.5737 0.5842 0.0376 0.0534 0.4412 0.4673
0.08 0.8393 0.6349 0.6430 0.0459 0.0649 0.5100 0.5327
0.09 0.8665 0.6865 0.6948 0.0544 0.0755 0.5672 0.5881
0.10 0.8939 0.7276 0.7346 0.0615 0.0860 0.6241 0.6398
0.11 0.9160 0.7719 0.7791 0.0691 0.0947 0.6823 0.6965
0.12 0.9305 0.8053 0.8112 0.0917 0.1190 0.7230 0.7358
0.13 0.9458 0.8404 0.8464 0.1083 0.1436 0.7681 0.7796
0.14 0.9592 0.8648 0.8671 0.1262 0.1619 0.8032 0.8132
0.15 0.9639 0.8817 0.8858 0.1471 0.1856 0.8328 0.8403

Table 11: Rejection probabilities in setting 11; π0 = 0.001, k = 40, n1 = · · · = n40 = 2560

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0479 0.0456 0.0487 0.0329 0.0420 0.0569 0.0472
0.001 0.0904 0.0865 0.0910 0.0672 0.0801 0.1038 0.0900
0.002 0.2769 0.2712 0.2780 0.2369 0.2604 0.2968 0.2756
0.003 0.5503 0.5440 0.5519 0.5111 0.5335 0.5752 0.5484
0.004 0.7704 0.7664 0.7713 0.7391 0.7573 0.7846 0.7695
0.005 0.9059 0.9043 0.9064 0.8913 0.9002 0.9146 0.9053
0.006 0.9717 0.9715 0.9720 0.9660 0.9701 0.9750 0.9716
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Table 12: Rejection probabilities in setting 12; π0 = 0.008, k = 40, ni = 20× 2(i−1) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0911 0.0495 0.0529 0.0272 0.0395 0.0567 0.0470
0.001 0.0868 0.0464 0.0488 0.0382 0.0512 0.0595 0.0490
0.002 0.0931 0.0481 0.0516 0.0604 0.0783 0.0738 0.0591
0.003 0.1085 0.0617 0.0658 0.1285 0.1562 0.0978 0.0805
0.004 0.1339 0.0734 0.0778 0.2175 0.2541 0.1432 0.1230
0.005 0.1711 0.1047 0.1093 0.3375 0.3824 0.2055 0.1787
0.006 0.2405 0.1544 0.1616 0.4880 0.5304 0.2983 0.2669
0.007 0.3186 0.2142 0.2230 0.6313 0.6707 0.4055 0.3728
0.008 0.4179 0.2899 0.3009 0.7516 0.7824 0.5265 0.4887
0.009 0.5230 0.3929 0.4017 0.8440 0.8685 0.6340 0.6051
0.010 0.6338 0.5137 0.5245 0.9115 0.9259 0.7408 0.7185
0.011 0.7371 0.6272 0.6361 0.9545 0.9646 0.8287 0.8076
0.012 0.8047 0.7089 0.7159 0.9762 0.9820 0.8874 0.8714
0.013 0.8801 0.8114 0.8188 0.9901 0.9927 0.9353 0.9240
0.014 0.9290 0.8766 0.8823 0.9954 0.9965 0.9654 0.9593
0.015 0.9609 0.9260 0.9299 0.9984 0.9986 0.9836 0.9802
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