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Abstract

A statistical analysis of data that have been multiplied by randomly drawn noise variables in
order to protect the confidentiality of individual values has recently drawn some attention. If the
distribution generating the noise variables has low to moderate variance, then noise multiplied data
have been shown to yield accurate inferences in several typical parametric models under a formal
likelihood based analysis. However, the likelihood based analysis is generally complicated due to
the non-standard and often complex nature of the distribution of the noise perturbed sample even
when the parent distribution is simple. This complexity places a burden on data users who must
either develop the required statistical methods or implement the methods if already available or
have access to specialized software perhaps yet to be developed. In this paper we propose an
alternate analysis of noise multiplied data based on multiple imputation. Some advantages of this
approach are that (1) the data user can analyze the released data as if it were never perturbed,

and (2) the distribution of the noise variables does not need to be disclosed to the data user.
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1 Introduction

When survey organizations and statistical agencies such as the U.S. Census Bureau release mi-
crodata to the public, a major concern is the control of disclosure risk, while ensuring fairly high
quality and utility in the released data. Very often some popular statistical disclosure limitation
(SDL) methods such as data swapping, multiple imputation, top/bottom code (especially for in-
come data), and perturbations with random noise, are applied before releasing the data. Rubin
(1993) proposed the use of the multiple imputation method to create synthetic microdata which
would protect confidentiality by replacing actual microdata by random draws from a predictive
distribution. Since then, rigorous statistical methods to use synthetic data for drawing valid infer-
ences on relevant population parameters have been developed and used in many contexts (Little
1993; Raghunathan, Reiter, Rubin 2003; Reiter 2003, 2005; Reiter, Raghunathan 2007). An and
Little (2007) also suggested multiple imputation methods as an alternative to top coding of extreme
values and proposed two methods of data analysis with examples.

Noise perturbation of original microdata by addition or multiplication has also been advocated
by some statisticians as a possible data confidentiality protection mechanism (Kim 1986; Kim
and Winkler 1995, 2003; Little 1993), and recently there has been a renewed interest in this
topic (Nayak, Sinha, and Zayatz 2011; Sinha, Nayak, Zayatz 2012). In fact, Klein, Mathew, and
Sinha (2012), hereafter referred to as Klein et al. (2012), developed likelihood based data analysis
methods under noise multiplication for drawing inference in several parametric models; and they
provided a comprehensive comparison of the above two methods, namely, multiple imputation
and noise multiplication. Klein et al. (2012) commented that while standard and often optimum
parametric inference based on the original data can be easily drawn for simple probability models,
such an analysis is far from being close to optimum or even simple when noise multiplication
is used. Hence their statistical analysis is essentially based on the asymptotic theory, requiring
computational details of maximum likelihood estimation and calculations of the observed Fisher
information matrices. Klein et al. (2012) also developed similar analysis for top code data which
arise in many instances such as income and profit data, where values above a certain threshold C

are coded and only the number m of values in the data set above C are reported along with all



the original values below C. These authors considered statistical analysis based on unperturbed
(i.e., original) data below C' and noise multiplied data above C' instead of completely ignoring the
data above C, and again provided a comparison with the statistical analysis reported in An and
Little (2007) who carried out the analysis based on multiple imputation of the data above C' in
combination with the original values below C. In this paper we will refer to both these data setups
as mizrture data rather than top code data which is strictly reserved for the case when values above
C' are completely ignored.

In the context of data analysis under noise perturbation, if the distribution generating the noise
variables has low to moderate variance, then noise multiplied data are expected to yield accurate
inferences in some commonly used parametric models under a formal likelihood based analysis
(Klein et al. 2012). However, as noted by Klein et al. (2012), the likelihood based analysis is
generally complicated due to the non-standard and often complex nature of the distribution of the
noise perturbed sample even when the parent distribution is simple (a striking example is analysis
of noise multiplied data under a Pareto distribution, typically used for income data, which we hope
to address in a future communication). This complexity places a burden on data users who must
either develop the required statistical methods or implement these methods if already available
or have access to specialized software perhaps yet to be developed. Circumventing this difficulty
is essentially the motivation behind this current research where we propose an alternate simpler
analysis of noise multiplied data based on the familiar notion of multiple imputation. We believe
that a proper blend of the two statistical methods as advocated here, namely, noise perturbation to
protect confidentiality and multiple imputation for ease of subsequent statistical analysis of noise
multiplied data, will prove to be quite useful to both statistical agencies and data users. Some
advantages of this approach are that (1) the data user can analyze the released data as if it were
never perturbed (in conjunction with the appropriate multiple imputation combining rules), and
(2) the distribution of the noise variables does not need to be disclosed to the data user. This
obviously provides an extra layer of confidentiality protection against data intruders!

The paper is organized as follows. An overview of our proposed approach based on a general

framework of fully noise multiplied data is given in Section 2. Techniques of noise imputation from



noise multiplied data, which are essential for the proposed statistical analysis, are also presented
in Section 2. This section also includes different methods of estimation of variance of the pro-
posed parameter estimates. Section 3 contains our statistical analysis for mizture data. Details of
computations for three common parametric models are outlined in Section 4. An evaluation and
comparison of the results with those under a formal likelihood based analysis of noise multiplied
data (Klein et al. 2012) is presented in Section 5 through simulation. It turns out that the inferences
obtained using the methodology of this paper are comparable with, and just slightly less accurate
than, those obtained in Klein et al. (2012). Section 6 provides some concluding remarks, and the
Appendices A, B and C contain proofs of some technical results.

We end this section with an important observation that a direct application of multiple impu-
tation procedures along the lines of Reiter (2003) based on the induced distribution of the noise
perturbed data, which would naturally provide a highly desirable double privacy protection, is also
possible. However, since such induced distributions are generally complicated in nature, the result-
ing data analysis based on multiple imputations may be involved. We will return to this approach

along with some other relevant issues (see Section 6) in a future communication.

2 Overview of the method for full noise multiplication

In this section we first provide an overview of the proposed data analysis approach in a general
framework, including a crucial method for imputing noise variables from noise multiplied data.
We also describe in details two general methods of variance estimation of the parameter estimates,

those of Rubin (1993) and Wang and Robins (1998).

2.1 General framework

Suppose yi,...,Yn ~ tid ~ f(y|@), independent of r1,...,r, ~ iid ~ h(r), where 8 = (01, ...,6,)
is an unknown p x 1 parameter vector, and h(r) is a known density (free of ) such that h(r) = 0 if
r < 0. It is assumed that f(y|@) and h(r) are the densities of continuous probability distributions.
Define z; = y; x r; for ¢ = 1,...,n. Let us write y = (y1,...,yn), 7 = (r1,...,7), and z =

(Zla . '7Zn)'



We note that the joint density of (z;,r;) is
2 _
9(z1.7i10) = FCHO(r)r
(2
and the marginal density of z; is

9(z|0) = /OOO f(%’@)h(w)w_ldw_ (1)

As clearly demonstrated in Klein et al. (2012), standard likelihood based analysis of the noise
multiplied sample z in order to draw suitable inference about a scalar quantity @ = Q(0) can
be extremely complicated due to the form of g(z;|@), and also the analysis must be customized
to the noise distribution hA(r). A direct use of the familiar synthetic data method (Raghunathan,
Reiter, and Rubin 2003; Reiter 2003) based on the noise multiplied sample z1, ..., z,, which would
naturally provide double privacy protection, can also be quite complicated due to the same reason.
Instead what we propose here is a procedure to recover the original data y from reported sample z
via suitable generation and division by noise terms, and enough replications of the recovered y data
by applying multiple imputation method! Once this is accomplished, a data user can apply simple
and standard likelihood procedure to draw inference about Q(€) based on each reconstructed y
data as if it were never perturbed, and finally an application of some known combination rules
would complete the task.

The advantages of the suggested approach blending noise multiplication with multiple imputa-

tion are the following:

1. to protect confidentiality through noise multiplication - satisfying data producer’s desire;

2. to allow the data user to analyze the data as if it were never perturbed - satisfying data user’s
desire (the complexity of the analysis lies in the generation of the imputed values of the noise

variables; and the burden of this task will fall on the data producer, not the user); and

3. to allow the data producer to hide information about the underlying noise distribution from

data users.



The basic idea behind our procedure is to set it up as a missing data problem; we define the

complete, observed, and missing data, respectively, as follows:

Lo = {(21,7“1), ceey (Znarn)}7 Lobs = {Zlv .. '7ZTL}7 Lmis = {7'1, cee 77nn}'

Obviously, if the complete data x. were observed, one would simply recover the original data y; = i—:,

i =1,...,n, and proceed with the analysis in a straightforward manner under the parametric model
f(y|@). Treating the noise variables rq,...,r, as missing data, we impute these variables m times
to obtain

220 = {21,719, GO}, G =1, m. (2)

n

From z*) we compute

y(j):{yl(])7ayn(])}:{71 "?7}3 ]:17"'7m' (3)

TIU) a T;;(J')

Each data set y*() is now analyzed as if it were an original sample from f (y|@). Thus, suppose
that n(y) is an estimator of (@) based on the unperturbed data y and suppose that v = v(y) is
an estimator of the variance of 7(y), also computed based on y. Often n(y) will be the maximum
likelihood estimator of Q(8), and v(y) will be derived from the observed Fisher information matrix.
One would then compute n; = n(y*¥)) and v; = v(y*V)), the analogs of 7 and v, obtained from
y*@) and apply a suitable combination rule to pool the information across the m simulations.

At this point two vital pieces of proposed data analysis need to be put together: imputation of
r* from z and combination rules for n; and v; from several imputations. We discuss below these

two crucial points.

2.2 Imputation of r from z and Rubin’s (1987) combination rule

The imputed values of 1, . .., 7, here are obtained as draws from a posterior predictive distribution.
We place a noninformative prior distribution p(@) on 6. In principle, sampling from the posterior

predictive distribution of r1,...,r, can be done as follows.



1. Draw 6* from the posterior distribution of 8 given z1,..., 2z,.

2. Draw r7,...,r; from the conditional distribution of ry,...,r, given z1,..., 2, and 6 = 6*.

The above steps are then repeated independently m times to get (rf(j), .. .,r:(j)), j=1,...,m.
Notice that in step (1) above we use the posterior distribution of @ given z1, ..., z, as opposed to
the posterior distribution of 8 given y1,...,y,. Such a choice implies that we do not infuse any
additional information into the imputes beyond what is provided by the noise multiplied sample,
namely, z. Step (2) above is equivalent to sampling each r; from the conditional distribution of 7;
given z; and @ = 6*. The pdf of this distribution is

_ fGe)mr)r!
fooo f(%|0)h(w)w‘1dw'

h(’l”i|2’7;, 0) (4)

The sampling required in step (1) can be complicated due to the complex form of the joint
density of z1,...,z,. Certainly, in some cases, the sampling required in step (1) can be performed
directly; for instance, if 8 is univariate then we can obtain a direct algorithm by inversion of the
cumulative distribution function (numerically or otherwise). More generally, the data augmentation
algorithm (Little and Rubin 2002; Tanner and Wong 1987) allows us to bypass the direct sampling
from the posterior distribution of 6 given z1,...,2,. Under the data augmentation method, we

proceed as follows. Given a value 8(*) of @ drawn at step ¢:
I. Draw rgtﬂ) ~ h(r|z,80) fori=1,...,n;

II. Draw 80H+D ~ p(@lyt)) where yltl) = (ﬁ"“’ﬁ%l))’ and p(@ly) is the posterior
1 n

density of 8 given the original unperturbed data y (it is the functional form of p(8|y) which

is relevant here).

The above process is run until ¢ is large and one must, of course, select an initial value ()

to start the iterations. The final generations (rgt), . ,rg )) and 0) form an approximate draw
from the joint posterior distribution of (ri,...,r,) and @ given (z1,..., z,). Thus, marginally, the
final generation (rgt), . ,r,(f )) is an approximate draw from the posterior predictive distribution

of (ri,...,m,) given (z1,...,2,). This entire iterative process can be repeated independently m



times to get the multiply imputed values of the noise variables. Note that sampling from the
posterior distribution p(@|y) in step (II) above will typically be straightforward, either directly or
via appropriate MCMC algorithms. Under the data augmentation algorithm, we still must sample
from the conditional density h(r|z,0) as defined in (4). The level of complexity here will depend
on the form of f(y|@) and h(r). Usually, sampling from this conditional density will not be too
difficult. The following result provides a general rejection algorithm (Devroye 1986; Robert and
Casella 2005) to sample from h(r|z,0) for any continuous f(y|@), when the noise distribution is

Uniform(1 —€,1 4 ¢€), i.e., when
1
hiry==—, 1—e<r<1+e, (5)

where 0 < e < 1.

Proposition 1 Suppose that f(y|@) is a continuous probability density function, and let us write

f(y|0) = c(0)q(y|@) where c(0) > 0 is a normalizing constant. Let M = M(0, ¢, z) be such that
q(%\@) <M forallr € [1—¢€,7]

where v = y(z,€) > 1 — €. Then the following algorithm produces a random variable R having the

density
q(;|0)r—!
[ a(Z|0)wdw’

hy(r|z,0) = 1l—e<r<n.
(I) Generate U, V as independent Uniform(0,1) and let W =~V /(1 — )V~
(II) Accept R =W if U < M~1q($10), otherwise reject W and return to step ().

The expected number of iterations of steps (I) and (II) required to obtain R is

Mlog(v) —log(1 —€)]
fl L9(310)wtdw

The proof of Proposition 1 appears in Appendix A.



Remark 1. The conditional density of y; given z; and 0 is

P2y
I3 F(E ) h(w)w ldw’
F il (—y; )
fooo f(%)h(w)wfldw’

if0 <z <o0,0<y; < oo,

f(yilzi,0) = (6)

if —oo<z <0, —0c0<y; <O0.

Drawing 7} from the conditional density h(r;|z;, 8*) defined in (4) and setting y; = =& is equivalent
to drawing y; directly from the conditional density f(y;|z;,0*) in the sense that given z; and 6%,

the variable Zf has the density f(y;|z:, 6%).

k3

Remark 2. As to the choice of 8(9), one can choose moment-based estimates (Nayak et al. 2011).

Rubin’s (1987) Rule. Based on Rubin’s (1987) combining rules, we obtain the MI estimator of
Q:

1 m
Nm = — Z UrE (7)
m 4
7=1
and the estimator of the variance of 7,:
T = (14 1/m)by, + U, (8)

where b,, = ﬁ 27]11(%' — m)? and vy, = % Z;nzl vj. 7m and T, can now be used along with

a normal cut-off point to construct a confidence interval for ). We can also use a ¢ cut-off point

(14+m= by,

based on setting the degrees of freedom equal to (m — 1)(1 4 a.!)? where a,, = o
Remark 3. We have tacitly assumed in the above analysis that the posterior distribution of the
parameter @, given noise multiplied data z, is proper. In applications, this needs to be verified on
a case by case basis because the posterior propriety under the original data y which may routinely
hold under many parametric models may not guarantee the same under z when an improper prior
distribution for @ is used. For example, taking n = 2, when f(y|f) = %e_%, 0 >0, y>0, the

posterior distribution of 6, given y, under the noninformative prior p(f) [%]5 will be proper

whenever 14 § > 0. But the same posterior, given z, will be proper only if



7“1 7'2 d?"ldrz
ZlaZ2 zl 22 1""5[7“17”2] (9)
Tl

7‘2

is finite. Taking h(r) = )P 70 ith E(R) =1 and Var(R) = /13 > 0, and 21 = %2, this amounts

rL(B)
to the finiteness of the integral
T1+T’2 /8+5—1 B+6_1d d
Iy = / / T o (10)
7"2 + 7"1)1+5
Upon making the transformation from (r1,7r2) to u =11 + 72 and v = o +,r , Is simplifies to
1 o]
L= | / P )BT gy | / BB gy (11)
0 0

which is not finite when either 5+ < 0 or 28 + § < 1! One can choose f = 0.5 and § = 0 or
9 = —0.5 (recall the condition 1 + § > 0). The same remark holds in the case of the posterior
distribution of 8, given the mixture data. We have verified the posterior propriety in our specific

applications for fully noise multiplied data and mixture data in Appendices B and C, respectively.

2.3 Wang and Robins’s (1998) combination rules

Wang and Robins (1998) described variance estimators in the context of two types of multiple

imputation: Type A and Type B. We discuss below these two approaches.

Type A. Here the procedure to generate r* and hence y* = -5 is the same as just described in the

preceding subsection. However the variance estimators use different formulas as described below.

1. Compute the multiple imputation (MI) estimator of : 8, = + ) 6;, where 6; is the

maximum likelihood estimate (MLE) of & computed on jth imputed dataset. Recall that

the jth imputed dataset [yi‘(j ), e ,y;(j )] is obtained by first drawing 0; from the posterior

*(7)

distribution of @, given z, and then drawing r;

and 6 = 6%, and finally substituting 37" = 5.

the conditional distribution of r; given z;

2. Compute S;;(y; *(7) .0 i), the p x 1 score vector, with its /th element as Sijg(y;k ‘, i) =

10



01 0 . . . .
% vy 6p,’ L=1,---,p,i=1,---,n,7=1--- m. Obviously the above quantity
*(5)

also depends on 6} through y,
3. Also compute the p x p information matrix S (y;k U ), é]) whose (¢, ¢')th element is computed

«(j) g\ _ 9%log f(y|0 . o
aSSz‘]ZZ/( 0) %gijll) _*(])99 EZ_]_ .,p’/l/_17...7n’.]_]_7...’m‘

4. By Wang and Robins (1998): v/n(64—8) 5 N,[0, V4], where Vg = I3+ L1 17+ Ly 1y
9? lo o 02 log g(=|0
with J = L[, 1 = (Ie—Ions) I 1, and I = B[~ (T2 549))] and Tops = E[-((52522))).

N

5. A consistent variance estimator VA is obtained by estimating I. by fc = % E;”zl I.; with qu

—i5 Sti(y; ) 9, ;) and estimating Iong by

Iobs — 2nm — 1 Z Z 1] *(] é )S ( *() é)/ +Sz]’(y:(j)7 A])Sz](y:(])yé])/]

i=1 j#5'=1

6. For any given (@), the variance of the estimator Q(é A) is obtained by applying the familiar

d-method, and Wald-type inferences can be directly applied to obtain confidence intervals.

Type B. In this procedure there is no Bayesian model specification. Instead, the unknown pa-
rameter @ is set equal to émle(z), the MLE based on the noise multiplied data z, which is usually

computed via the EM algorithm (Klein et al. 2012). Here are the essential steps.
1. Draw r; ~ h(r|zi, Omie(2)), i=1,--- ,n.

2. Having obtained r;’s, perform multiple imputation and obtain the MLE on each completed

dataset to get él, cee O
3. Compute MI estimate of 6: O = 1 > 10
4. Compute Sj;(y, *(9) .0, i), the p x 1 score vector, with its /th element as Sijg(y:(j),éj) =
Olog f(y|60) t=1- pi=1-ni=1--—-.m
00, yzyf(ﬂ,@:éj’ ’ Py ’ y 1y 7 ’ ’ .
5. Also compute the p x p information matrix S (y; U ), é]) with its (¢, ¢')th element computed

) .y — O log o) . .
as Sty ", 05) = T |,y g’ 00 =1, pi=1--,n,j=1,--,m.

11



6. By Wang and Robins (1998): /n(65 — 6) A N[0, V5], where Vi = I;! + Lilg=1; 1y

obs

LI7WIe = L) I

N

7. A consistent variance estimator VA is obtained by estimating I. by fc = % Z;n:1 qu with I

Zz . ( *(7) 9 i), and estimating Iops by

IObS_2nm Y Z Z i Y,07)8i5 (51, 05) + Sip (57, 6,) 8555V, ;).
i=1 j#j'=1

8. For any given (), the variance of the estimator Q(é p) is obtained by applying the familiar

d-method, and Wald-type inferences can be directly applied to obtain confidence intervals.

Remark 4. Wang and Robins (1998) provide a comparison between the type A and type B
imputation procedures, and compare the corresponding variance estimators with Rubin’s (1987)
variance estimator T},. Their observation is that the estimators VA and VB are consistent for Vy
and Vg, respectively; and the type B estimator O will generally lead to more accurate inferences
than 4, because for finite m, Vg < Vy4 (meaning V4 — Vp is positive definite). Under the type
A procedure and for finite m, Rubin’s (1987) variance estimator has a nondegenerate limiting
distribution, however, the asymptotic mean is V4, and thus 7, is also an appropriate estimator
of variance (in defining Rubin’s (1987) variance estimator, Wang and Robins (1998) multiply the
quantity b, by the sample size n to obtain a random variable that is bounded in probability).
The variance estimator T;,, would appear to underestimate the variance if applied in the type B
procedure because under the type B procedure, if m = oo, then T, has a probability limit which
is smaller than the asymptotic variance Vg (when m = oo, V4 = Vg = Obs) However, under the
type A procedure, if m = oo then T, is consistent for the asymptotic variance V4. We refer to

Rubin (1987) and Wang and Robins (1998) for further details.

3 Analysis of mixture data

Recall that a mixture data in our context consist of unperturbed values below C and a masked

version of values above C, obtained by either an imputation method or by noise multiplication.

12



Analysis of mixture data can be carried out in several different ways (An and Little 2007; Klein
et al. 2012). In this section we discuss the analysis of such data following the procedure outlined
earlier, namely, by (i) suitably recovering the top code y-values above C via use of reconstructed
noise terms and the noise multiplied z-values along with or without their identities (below or above
(), and (%) providing multiple imputations of such top code y-values and methods to appropriately

combine the original y-values and synthetic top code y-values to draw inference on Q.

Let C > 0 denote the prescribed top code so that y-values above C are sensitive, and hence
cannot be reported/released. Given y = (y1, -+ ,yn), 7 = (r1,-++,m), 2 = (21, -, 2p) where

zi = y; X 1y, we define @ = (z1, -+ ,z,) and A = (A, -+ ,Ap) with A; = I(y; < C) and z; = y;

if y; < C, and = z; if y; > C. Inference for @ will be based on either (i) [(z1,A1), -, (zn, Ap)] or
(ii) just (z1,---,zy). Under both the scenarios, which each guarantee that the sensitive y-values
are protected, several data sets of the type (yi,--- ,v}) will be released along with a data analysis

plan. Naturally, in case (i) when information on the indicator variables A is used to generate
y*-values, data users will know exactly which y-values are original and which y-values have been
noise perturbed and de-perturbed! Of course, this need not happen in case (ii), thus providing more
privacy protection with perhaps less accuracy. Thus the data producer (such as Census Bureau) has
a choice depending upon to what extent information about the released data should be provided
to the data users. We describe below the data analysis plans under both the scenarios.

Case (i). Here we generate r; from the reported values of (z;, A; = 0) and compute y; = Zi. Of

course, if A; =1 then we set y = y;. Generation of r} is done by sampling from the conditional

distribution h(r;|z;, A; = 0,0) of r;, given x;, 6, and A; = 0, where (Klein et al. 2012)

;) hir2) A
Ilf(”| ) Ti , for OSHS&- (12)
Jo© £(2210) 2

h(ri\xi,Ai = 0,0) = C

When the noise distribution is the uniform density (5), then (12) becomes

f(E0)r; !

minl I (2119)-1dw

hy(rilx;, Ay =0,0) = , for 1—e<r; < min{%, 1+ €}, (13)

13



and Proposition 1 provides an algorithm for sampling from the above density (13).

Regarding choice of 8, we can proceed following the Type B method (see Section 2) and use
the MLE of 6 (0y,.) based on the data [(x1, A1), -, (2n, Ay)]. This will often be direct (via
EM algorithm) in view of the likelihood function L(@|x, A) reported in Klein et al. (2012) and
reproduced below:

L0z, A) = ][f(xi]0)]> ) dr]' =5, (14)

Alternatively, following Type A method discussed in Section 2, r*-values can also be obtained
as draws from a posterior predictive distribution. We place a noninformative prior distribution p(0)

on @, and sampling from the posterior predictive distribution of r1,...,r, can be done as follows.

1. Draw 6* from the posterior distribution of 8 given [(z1, A1), -, (zn, Ay )] using the likelihood

L(6|x, A) given above.

2. Draw r} for those ¢ = 1,--- ,n for which A; = 0, from the conditional distribution (12) of 7;,

given x;, A; =0, and 8 = 6*.

As mentioned in Section 2, the sampling required in step (1) above can be complicated due
to the complex form of the joint density L(f|x, A). The data augmentation algorithm (Little and
Rubin 2002; Tanner and Wong 1987), allows us to bypass the direct sampling from the posterior
distribution of @ given [(x1, A1), -, (Tn, An)].

Under the data augmentation method, given a value 8®) of @ drawn at step ¢:

I. Draw rftﬂ) ~ h(r|z;, Ay = 0,0W) for those i = 1,--- ,n for which A; = 0.
II. Draw 0¢+1) ~ p(@|y§t+1 , ,yﬁfr )) where ygtﬂ) = —ty when A; = 0, and y(tJrl) = x;,
L&

otherwise. Here p(8|y) stands for the posterior pdf of 0, given the original data y (only its

functional form is used).

The above process is run until ¢ is large and one must, of course, select an initial value 8 to start

the iterations.

14



Case (ii). Here we generate (r*, AY) from the reported values of (z1,--- ,xy) and compute

Y = =% if A7 =0, and y;* = x;, otherwise, i = 1,--- ,n. This is done by using the conditional

k3

distribution g(r, d|z,0) of r and A, given z and 6. Since g(r,d|x,0) = h(r|z,d, 0) x ¥ (d|z,0), and

the conditional Bernoulli distribution of A, given x and 0, is readily given by (Klein et al. 2012)

f(@10)I(x < O)
f(@|0)I(x < C)+ I(x > 0) [ £(£]0)" gy

T

$(6 = 1|2,0) = P[A = 1|z,0] = (15)

drawing of (r*, AY), given x; and 0, is carried out by first randomly selecting A} according to
the above Bernoulli distribution, and then randomly choosing r;* if AY = 0 from the conditional
distribution given by (12).

Again, in the above computations, following Type B approach, one can use the MLE of 8 (via

EM algorithm) based on the x-data alone whose likelihood is given by (Klein et al. 2012)

- @ z;, - h(r
£(012) = T[U o) <€)+ 160> 0) [ 520" a (16)
i—1 0 T T
Alternatively, one can proceed as in Type A method (sampling r7*, ..., r** from the posterior

predictive distribution) by plugging in @ = 6* which are random draws from the posterior distri-
bution of 8, given x, based on the above likelihood and choice of prior for 8. As noted in the
previous case, here too a direct sampling of @, given «, can be complicated, and we can use the

data augmentation algorithm suitably modified following the two steps indicated below.

1. Starting with an initial value of @ and hence ) at step ¢, draw (rl(Hl),AZ(.tH)) from
h(r,d|x;,8®). This of course is accomplished by first drawing AEHI) and then rz(tﬂ), in
case AEHI) =0.

2. At step (t+1), draw 8+ from the posterior distribution p(0|y§t+1), E ,yffﬂ)) of 8, where
yzgt“) = x; if AEHI) =1, and y(tH) = i if Al(.tﬂ) = 0. Here, as before, the functional

[ (t+1)
T3

form of the standard posterior of 6, given y, is used.

In both case (i) and case (ii), after recovering the multiply imputed complete data y*(), .. |

y*(m) using the techniques described above, methods of parameter estimation, variance estimation,
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and confidence interval construction are the same as those discussed in Section 2 for fully noise

multiplied data.

4 Details for normal, exponential, and lognormal

4.1 Normal data

We consider the case of a normal population with uniform noise, that is, we take f(y|@) =

1

2
oV 2 ]

, —00 < y < oo, and we let h(r) be the uniform density (5). We place

exp[— 52z (y — 1)
a standard noninformative improper prior on (u, 0?):

1
p(u,oj)cx;, —00 < f1 < 00, 0 < 02 < oo (17)

The posterior distribution of (i1, 0?) given y is obtained as p(u, o2|y) = p(u|o?, y)p(c?|y) where

(n—1)s?

o et y) ~ N0 ) (18)

(o?ly) ~

with § = 13 1y and s> = 13" | (y; — §)? (Gelman et al. 2004). The conditional density

h(r|z, @) as defined in (4) now takes the form

h(r|z,0) = — xP— g7 (2/r = )"l d—e<r<l+e (19)
| expl—5,3(2/w — p)?jwtdw

1
ag
We apply Proposition 1 to obtain an algorithm for sampling from this conditional density of 7;

given z;.

Corollary 1 The following algorithm produces a random variable R whose density is (19).
(I) Generate U, V as independent Uniform(0,1) and let W = (1 +¢€)V /(1 —¢)V L.

(II) Accept R=W if U < exp|—5iz(2/W — p)?]/M, otherwise reject W and return to step (I).

16



If z > 0 then the constant M is defined as

eXp[_#(z/(l + 6) - /1’)2]’ Z‘fl’l’ < Z/(l + 6)7
M= M(p,0%€,z) = 1, if2)(1+€) <p<z/(1—e),
expl—goz (2/(1 =€) — n)?], if p=z/(1-c¢),
and if z < 0 then
expl—ggz (2/(1 =€) — n)?], if < z/(1—e),
M = M(u, 0% € 2) = 1, ifz/(1—€) <p<z/(1+e),
exp[—goz (2/(1 +€) — p)?], ifp=z/(1+e).

The expected number of iterations of steps (I) and (II) required to obtain R is

Mlog(1 + €) — log(1 —€)]
1+e
1—e¢

exp|— g2z (2/w — p)?Jwdw

In the case of mixture data, the conditional density (12) now becomes

exp|— g3 (/1 — p)?Jr ™!
min{ &,1+e€}

h(rlx,A=0,0) =
B o oL (e — o)

,1—e§r§min{%,1+e}, (20)

and a simple modification of Corollary 1 yields an algorithm to sample from this pdf.

4.2 Exponential data

In this section we consider the case of an exponential population, and thus we let f(y|0) =
%e_y/e, 0 < y < oco. We place the following improper prior on #: p(f) x 1, 0 < 6 < oo.
The posterior distribution of 8 given vy is

n An—1 "
p(6ly) = (ZF(:nlf)l) g-(n—D-1~(CI /0. 0 < g < oo

which has the form of an inverse gamma distribution, i.e., (~!|y) ~ Gamma(n — 1, an 7 )
i=1 J?

Customized noise distribution for fully perturbed data. Suppose that the noise distribution
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is given by
56+1

_ —(64+1)—1 8 /r
h(r) F(5+1)r e " 0<r < oo, (21)

where § > 1, and E(R) = 1 and Var(R) = (6 — 1)~!. We note that h(r) is a form of the
inverse gamma distribution such that R ~ h(r) & R™! ~ Gamma(d + 1,1/5). This choice of
the noise distribution is customized to the exponential distribution in the sense that it permits
closed form evaluation of the integral in (1). The pdf g(z|@) defined in (1) now takes the form
g(z|0) = S0 g <, < 0o, and hence the conditional pdf h(r|z,0) defined in (4) is now

= 6(§+6)5+27

z 5 6+2
(G +9) Z 4 Nr=CD71 0 < r < 0. (22)

h(r|z,0) = m eXP[—;(e

We note that (22) is an inverse gamma density, more specifically, (r; |z, 6) ~ Gamma( +2, ﬁl+ 5);
0

and thus samples from the conditional distribution of r; given z; and @ are easily extracted.

Uniform noise distribution. Suppose that we take the noise distribution to be uniform as

defined in (5). Then the conditional pdf h(r|z,0) as defined in (4) now has the form

exp(—%)r*1
1+e
1—e

h(r|z,0) = l-e<r<l+e (23)

exp(—wia)w_ldw7

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density.

Corollary 2 The following algorithm produces a random variable R whose density is (23).
(I) Generate U, V as independent Uniform(0,1) and let W = (1+¢)V /(1 —¢)V L.

(1) Accept R =W if U < exp(—y55)/M, otherwise reject W and return to step (1).

The constant M is defined as M = M(0,¢,z) = exp(—ﬁ). The expected number of iterations

of steps (1) and (II) required to obtain R is

MTlog(1 + ¢€) — log(1 — e)]

fj: exp(— ﬁ)w—ldw
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In the case of mixture data, the conditional density (12) now becomes

exp(—55)r~"

min{ &,1+e} z _1
e exp(— 25w ldw

h(rlx,A=10,0) =

,176§r§min{%,1+e}, (24)

and a simple modification of Corollary 2 yields an algorithm to sample from this pdf.

4.3 Lognormal data

We next consider the case of the lognormal population: f(y|@) = yg\l/g exp|—52z (logy — p)?], 0 <
y < co. We define a prior distribution on (i, 0?) as in (17). The posterior distribution of (u,0?) is

then given by (18) upon replacing each y; by log(y;).

Customized noise distribution for fully perturbed data. Let us take the noise density as

1

= Wexp[—%(logr%—@ﬂf], 0<r<oo, (25)

h(r)
where 0 < £ < 00, and E(R) = 1 and Var(R) = ¢£” — 1. We note that h(r) is a lognormal density
such that R ~ h(r) < log(R) ~ N(—£2/2,£2). Tt then follows that h(r|z,0) is also a lognormal

density such that

22
R ~ h(r|z,0) < log(R) ~ N {— + Ui[log(z) + = —yl, o } : (26)

o2+ &2

Uniform noise distribution. Suppose we take the noise distribution to be uniform as defined in

(5). Then the conditional pdf (4) takes the form

exp|— gz (log(2/7) — p)?]

h(r|z,8) =
7}z ) 11:26 exp[— 5,2 (log(2/w) — p)?]dw

Jl—e<r<l+e (27)
We apply Proposition 1 to obtain an algorithm for sampling from this conditional density of ;
given z;.

Corollary 3 The following algorithm produces a random variable R whose density is (27).
(I) Generate U, V as independent Uniform(0,1) and let W = (1 +¢€)V /(1 —€)V 1.
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(II) Accept R=W if U < Wz1 exp[—ﬁ(log(z/W) — )% /M, otherwise reject W and return

to step (I).

The constant M 1is defined as

(1+€)z~ " exp[—g5z (log(157) — 1)?], if et~ <z/(1+),
M = M(u,0° € 2) = expl—p + 51, ifz/(14+¢€) <et " < z/(1—¢),
(1 =€)z~ " exp[ g5z (log(7%) — 1)?], if el > z/(1—e).

The expected number of iterations of steps (I) and (II) required to obtain R is

Mlog(1 + €) —log(1 — €)]

11 2 expl— 5k (log(2/w) — 1) dw

In the case of mixture data, the conditional density (12) now becomes

exp|—gpz (log(z/1) — 11)?]
min{ &,1+e} o

h(rlx,A=0,0) =
. xp|— 5oz (log(/w) — p)?]dw

,1—e§r§min{%,1+e}, (28)
and a simple modification of Corollary 3 yields an algorithm to sample from this pdf.

5 Simulation study

We use simulation to study the finite sample properties of point estimators, variance estimators,
and confidence intervals obtained from noise multiplied data. We consider the cases of normal,
exponential, and lognormal populations in conjunction with uniform and customized noise distri-
butions as far as possible, as outlined in Section 4. One may expect that the simpler method of
data analysis proposed in this paper may lead to less accurate inferences than a formal likelihood
based analysis of fully noise multiplied and mixture data. However, if the inferences derived using
the proposed methodology are not substantially less accurate, then the proposed method may be
preferable, in some cases, because of its simplicity. Thus the primary goals of this section are es-
sentially to (1) compare the proposed methods with the likelihood based method reported in Klein

et al. (2012), and (2) to assess and compare the finite sample performance of Rubin’s (1987) esti-
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mation methods with those of Wang and Robins (1998) under our settings of fully noise multiplied

and mixture data.

5.1 Fully noise multiplied data

Table 1 provides results for the case of a normal population when the parameter of interest is either
the mean p or the variance o?; Table 2 provides results for the case of an exponential population
when the parameter of interest is the mean 8; and Table 3 provides results for the case of a lognormal
population when the parameter of interest is either the mean et /2 or the .95 quantile e#+1:6457
For each distribution we consider samples sizes n = 100 and n = 500, but we only display results for
the former sample size; and the results in each table are based on a simulation with 5000 iterations
and m = 5 imputations of the noise variables generated at each iteration. Each table displays

results for several different methods which are summarized below.

UD: Analysis based on the unperturbed data y.

NM10UIB: Analysis based on noise multiplied data with h(r) defined by (5), € = .10, and using
the type B method of Wang and Robins (1998) described in Section 2.3.

NM10UIA1: Analysis based on noise multiplied data with A(r) defined by (5), € = .10, and using
the method of Section 2.2 with Rubin’s (1987) variance formula and the normal cut-off point

for confidence interval construction.

NM10UIA2: Analysis based on noise multiplied data with A(r) defined by (5), e = .10, and using
the method of Section 2.2 with Rubin’s (1987) variance formula and the ¢ cut-off point for

confidence interval construction.

NM10UTA3: Analysis based on noise multiplied data with h(r) defined by (5), e = .10, and using
the type A method of Wang and Robins (1998) described in Section 2.3.

NMI10UL: Analysis based on noise multiplied data with h(r) defined by (5), e = .10, and using

the formal likelihood based method of analysis of Klein et al. (2012).
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NM10CIB, NM10CIA1, NM10CIA2, NM10CIA3, NM10CL: These methods are defined analo-
gously to the methods above, but h(r) is now the customized noise distribution (21) (expo-
nential data) or (25) (lognormal data); the parameters ¢ and & appearing in h(r) are chosen

so that Var(R) = %, the variance of the Uniform(1 — €, 1 + €) distribution with e = 0.10.

The remaining methods appearing in these tables are similar to the corresponding methods men-
tioned above after making the appropriate change to the parameter € in the referenced Uniform(1 —
€,1 + €) distribution. For each method and each parameter of interest, we display the root mean
squared error of the estimator (RMSE), bias of the estimator, standard deviation of the estimator
(SD), expected value of the estimated standard deviation of the estimator (S/]\)), coverage probabil-
ity of the associated confidence interval (Cvg.), and expected length of the corresponding confidence
interval relative to the expected length of the confidence interval computed from the unperturbed
data (Rel. Len.). In each case the nominal coverage probability of the confidence interval is 0.95.
For computing an estimate of the standard deviation of an estimator, we simply compute the
square root of the appropriate variance estimator. For computing the estimator n(y) and variance
estimator v(y) of Section 2.2, we use the maximum likelihood estimator and inverse of observed
Fisher information, respectively. All results shown for unperturbed data use Wald-type inferences
based on the maximum likelihood estimator and observed Fisher information. The following is a

summary of the simulation results of Tables 1 - 3.

1. In terms of RMSE, bias, and SD of point estimators, as well as expected confidence interval
length, the proposed methods of analysis are generally only slightly less accurate than the

corresponding likelihood based analysis.

2. In terms of coverage probability of confidence intervals, the multiple imputation based and

formal likelihood based methods of analysis yield similar results.

3. We consider Uniform(1 — €, 1+ €) noise distributions with e = 0.1, 0.2, and 0.5, or equivalent
(in terms of variance) customized noise distributions. Generally, for noise distributions with
e = 0.1 and 0.2, the proposed analysis based on the noise multiplied data results only in a

slight loss of accuracy in comparison with that based on unperturbed data. When the noise
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distribution has a larger variance (i.e., when € = 0.5) we notice that the bias of the resulting
estimators generally remains small, while the SD clearly increases. When the parameter of
interest is the mean, the noise multiplied data with ¢ = 0.5 still appear to provide inferences
with only a slight loss of accuracy compared with the unperturbed data. In contrast, when
the parameter of interest is the normal variance as in the right-hand panel of Table 1, the loss
of accuracy in terms of SD and hence RMSE appears to be more substantial when € increases
to 0.5. We refer to Klein et al. (2012) for a detailed study of the properties of noise multiplied

data.

. We observe very little difference in the bias, SD, and RMSE of estimators derived under the

type A imputation procedure versus those derived under the type B imputation procedure.

. In each table, the column SD provides the finite sample mean of each of the multiple imputa-
tion standard deviation estimators (square root of variance estimators) presented in Section 2.
Thus we can compare the finite sample bias of Rubin’s (1987) standard deviation estimator of
Section 2.2 with that of Wang and Robins’s (1998) standard deviation estimators of Section
2.3, under our setting of noise multiplication. We find that the mean of both of Wang and
Robins’s (1998) standard deviation estimators is generally larger than the mean of Rubin’s
(1987) standard deviation estimator. From these numerical results it appears that we cannot
make any general statement about which estimators possess the smallest bias, because none
of these estimators uniformly dominates the other in terms of minimization of bias. With a
larger sample size of n = 500 (results not displayed here), we find that all standard deviation
estimators have similar expectation; this statement is especially true for the normal and ex-
ponential cases. With the sample size of n = 100 we notice in Tables 1 and 2 that the mean
of Rubin’s (1987) estimator is slightly less than the true SD while both of Wang and Robins
(1998) estimators have mean slightly larger than the true SD. Interestingly, in the lognormal
case, for the sample size n = 100 of Table 3, we notice that Rubin’s (1987) estimator is nearly
unbiased for the true SD while Wang and Robins’s (1998) estimators tend to overestimate

the true SD more substantially.
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6. When the customized noise distribution is available (exponential and lognormal cases), the
results obtained under the customized noise distribution are quite similar to those obtained

under the equivalent (in terms of variance) uniform noise distribution.

7. For confidence interval construction based on Rubin’s (1987) variance estimator, the interval
based on the normal cut-off point performs very similarly to the interval based on the ¢ cut-off

point.

8. The data augmentation algorithm, used by the type A methods to sample from the posterior
predictive distribution of 7, given the noise multiplied data, appears to provide an adequate

approximation.

5.2 Mixture data

We now study the properties of estimators derived from mixture data as presented in Section 3.
Table 4 provides results for the case of a normal population, Table 5 provides results for the case of
an exponential population, and Table 6 provides results for the case of a lognormal population. The
parameters of interest in each case are the same as in the previous subsection, and the top-coding
threshold value C' is set equal to the 0.90 quantile of the population. The methods in the rows of
Tables 4 - 6 are as described in the previous subsection, except that each ends with either .i or .ii
to indicate either case (i) or case (ii) of Section 3, respectively. The conclusions here are generally

in line with those of the previous subsection. Below are some additional findings.

1. In the case of fully noise perturbed data we noticed a tendency for Rubin’s (1987) standard
deviation estimator to exhibit a slight negative bias. In the case of mixture data we no longer

observe this effect; in fact, Rubin’s (1987) estimator now tends to exhibit very little bias.

2. Generally we find here that the noise multiplication methods yield quite accurate inferences,
even more so than in the case of full noise multiplication; this finding is expected since with

mixture data only a subset of the original observations are noise perturbed.

3. As expected, the inferences derived under the case (i) data scenario (observe (x,A)) are

generally more accurate than those derived under the case (ii) data scenario (observe only
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x), but for the noise distributions considered, the differences in accuracy generally are not

too substantial.

6 Concluding remarks

There are two primary ways of rigorous data analysis under privacy protection: multiple imputation
and noise perturbation. Klein et al. (2012) show that the likelihood based method of analysis of
noise multiplied data can yield accurate inferences under several standard parametric models and
compare favorably with the standard multiple imputation methods of Reiter (2003) and An and
Little (2007), based on the original data. Since the likelihood of the noise multiplied data is often
complex, one wonders if an alternative simpler and fairly accurate data analysis method can be
developed based on such kind of privacy protected data. With precisely this objective in mind,
we have shown in this paper that a proper application of multiple imputation leads to such an
analysis. In implementing the proposed method under a standard parametric model f(y|@), the
most complex part is generally simulation from the conditional densities (4) or (12), and this part
would be the responsibility of the data producer, not the data user. We have provided Proposition 1
which gives an exact algorithm to sample from (4) and (12) for general continuous f(y|@), when h(r)
is the uniform distribution (5). Moreover, we have seen that in the exponential and lognormal cases
under full noise multiplication, if one uses the customized noise distribution, then the conditional
density (4) takes a standard form from which sampling is straightforward. Simulation results based
on sample sizes of 100 and 500 indicate that the multiple imputation based analysis, as developed in
this paper, generally results in only a slight loss of accuracy in comparison to the formal likelihood
based analysis. Our simulation results also indicate that both the Rubin (1987) and Wang and

Robins (1998) combining rules exhibit adequate performance in the selected sample settings.

In conclusion, we observe that, from a data user’s perspective, our method does require a
complete knowledge of the underlying parametric model of the original data so that efficient model
based estimates can be used while using the (reconstructed) y-values. In the absence of such a

knowledge, likely misspecification of the population model may lead to incorrect conclusions (Robins
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and Wang 2000). We also wonder if reporting both z-values (one observed set) and reconstructed
y-values (multiple sets) would lead to an enhanced inference! It would also be beneficial to develop
appropriate data analysis methods based on a direct application of multiple imputation on the noise
multiplied data itself, thus providing double privacy protection. Lastly, it seems that, as a general
principle, some sort of homogeneity tests should be carried out across the multiply imputed data

sets before they are routinely combined. We will address these issues in a future communication.

Appendix A

Proof of Proposition 1. This is a rejection sampling algorithm where the target density hy (7|2, 0)

is proportional to starget () = q(§|0)r_1, 1 — e <r <+, and the instrumental density is Sinst: () =

r—1 1
Tog(7)—Tog(1—¢)

follows that g(Z|@) is continuous as a function of r, on the interval [1 — ¢, 7], and thus the bounding

— e <r <~. To fill in the details, first note that since f(y|@) is continuous in y, it

constant M exists. Then we see that

<(>) = [log(y) ~log(1 — e)}a( 1) < [log(~) — log(1 — M. (29)

for all » € [1 — €,7]. Note that the cumulative distribution function corresponding to Sinstr ()

log(r)—log(1—¢)
log(y)—log(1—€)’

(u) = #, 0 < uw < 1. Thus, by the inversion method (Devroye 1986), step (I) is

is Sipstr(r) = 1—¢€¢ < r < ~, and the inverse of this distribution function is

St

instr

equivalent to independently drawing U ~ Uniform(0,1) and W from the density Sinst:(7). Since

M_lstarget(w) _ q(%|9) M_lstarget(W)
[log(y)—log(1=€)]sinstx (W) — M > [log(y)—log(1=€)]sinstr (W) ?

which is the usual rejection step based on the bound in (29). Finally, we use the well known fact

step (II) is equivalent to accepting V if U <

that the expected number of iterations of the rejection algorithm is equal to the bounding constant

in (29) times the normalizing constant for s¢arget(7), i.€., [E%Z;Z%iggifl)jlf.

Appendix B

Here we provide proofs of the posterior propriety of 8, given the fully noise multiplied data z, for

exponential, normal and lognormal distributions.

26



z

Exponential distribution. Here g(z|0) = f e rg M) dr When the noise distribution is uniform
over [1 — €, 1+ €], since e~ is monotone decreasing in z, the joint pdf of z can be bounded above
by K ((9)_716_(7111751)9 for some K > 0, which is integrable under a flat or noninformative prior for 6.
Under the customized prior for 0, in the pdf of Z, namely g(z|6) x %[% + 6]~ 0+2) replacing any z
by z(1), the joint pdf of z is dominated by 9%[2%) + 6]7™(9+2) which is readily seen to be integrable

under a flat or noninformative prior for 6.

Normal distribution. Here g(z|6) o & = [e” i )dr Writing down the joint pdf of z1,- -, zp,
it is obvious that upon integrating out p with respect to (wrt) the Lebesgue measure and o wrt
the flat or noninformative prior, we end up with the expression U(z) given by

22 n 2i)2
Doic1 ) s h(r1) - h(ry,
// %_ L b)) b

n ri--Th

2 noZi)2
where § > 0. To prove that U(z) is finite for any given z, note that [> 1 Z—’Q - M] =

n

5 D i1 (B — ﬁ)Q > %[% — %]2 for any pair (21, 22;71,72). Assume without any loss of generality
that z1 > 22, and note that [Z — %]2 =[Z - TQ]Z x z2r7 2. Then under the condition
h(r _
/ ( )dr = K; < o0, r%(nM) 1r2_1h(r1)h(rg)dr1dr2 = Ky < o0, (30)
r T r1<rg

U(z) is bounded above by

U(z) < 2"+5K{L*2[% — 1]_2(”+5) [/ 3 (n+5) L *1h(r1)h(r2)dr1dr2] < 00.
r1<ro

In particular, when R ~ Uniform(1 — ¢, 1 + €), the above condition is trivially satisfied!
)2

(log(%

Lognormal distribution. Here g(z f e 202 h(r)dr. Writing down the joint density

of z1,-++ , zp, and putting u = log(f), it is obvious that upon integrating out u wrt the Lebesgue
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measure and o wrt the flat or noninformative prior, we end up with the expression U(z) given by

U) = [ oo [ 13 s = 020 () - hr)dry - dr

nog=1

where § > 0. To prove that U(z) is finite for any given z, note as in the normal case that when

21 > z9 (without any loss of generality),

n n

S =) = 5 3 ) > (o ) = o) ~log (") >

Z1 ™ 1
zZ2 2

[1og(§)]2 for v, < 9.

2

N |

i=1 ij=1

Hence U(z) is always finite since [ h(r1)h(re)dridra < oco.

1<rz

Appendix C

Here we provide proofs of the posterior propriety of 6, given the mixture data, for exponential,
normal and lognormal distributions. We consider two cases depending on the nature of mixture

data that will be released.

Case (i): Nature of data [(z1, A1), -, (Tn, Ap)].

Exponential distribution. From (14), the likelihood function in this case is given by

no zA L %Z z; h(r
L(@\data) x 0 e Die1 gt H[/ e~ b ( )dr]l_Ai
0 r
i=1
Under a uniform noise distribution, the term [, ] @dr is bounded above by & x llj; - % <

Kee 70+ where K, > 0 is a constant. Hence, apart from a finite constant, L(f|data) is bounded

above by

CER g w A (e TS 2 (1-4)]
[

L(f|data) < 67" x e

which is integrable with respect to flat or noninformative prior for 6, irrespective of any configuration

of the given data!
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Normal distribution. Given the data [(z1, A1), -+, (xn, Ap)],let 1 ={i: A; =1} and [y = {i :

A; = 0}. Then the normal likelihood L(@|data), apart from a constant, can be expressed as

(z;—w)? *—H)2 .
L(O|data) x o "[e” Lien Ju H/ (TZ)I(;ri > 0)dr;].

s
i€lp ¢

It is then obvious that upon integrating out u wrt the Lebesgue measure and o wrt the flat or

noninformative prior, we end up with the expression U(data) given by

z Ii+ 7 50%‘2 h )
U(data) H/ I(x; > 0) Zx —I—Z el ZGIO r’) 7" 0 (r)dn

n T
i€l i€l ’LEIO

. Ziy2
:v? (Zie[l $1+ZieIO TZ)

Writing v; = It for i € Iy, the expression W(data) = ;. z? + Dicly P is

n
readily simplified as [S? + S3 + rs(Z1 — Zo)?](r + s) 7! where r and s are the cardinalities of I; and
Iy, respectively, and (z1,5%) and (Zo, S2) are the sample means and variances of the data in the
two subgroups I; and Iy, respectively.

When I; is nonempty, an obvious lower bound of \If(data) is Ts—i,, and if [; is empty, ¥(data) =
S2/n. In the first case, U(data) is finite whenever [,% o h(r) ——~dr < oo fori € Iy. In the second case, we
proceed as in the fully noise perturbed case for normal and conclude that U(data) is finite under

the conditions stated in (30) except that the bounds of r; in the integrals are replaced by %. In

particular, for uniform noise distribution, the conditions trivially hold.

Lognormal distribution. Proceeding as in the normal case with u = log(), and breaking up the
sum in the exponent into two parts corresponding to I1 and Iy, we get the finiteness of corresponding

U(data) under noninformative priors of ;1 and o when the noise distribution is uniform.

Case (ii): Nature of data (x1,---zp).

Exponential distribution. From (16), the likelihood function in this case is given by

L(6|data) = 0" [ [le™ ¥ I(x; < C) +/c e M) g
0

r
i=1 v
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Now, for each i, the first term within [] is bounded above by e~ and the second term by
e_%wc(xi) where o (x;) = fo% %;i)dri since % > C. Define ¥¢ = max(¢o(z1),- - ,¥o(xy,)), and
assume that the noise distribution h(r) satisfies: 1o < co. Then it is easy to check that L(6|data)
is bounded above by [max(l,wc)]H*”e_%Zyzlmin(mi’C) which is integrable wrt # under a flat or
noninformative prior.

Normal distribution. Upon carefully examining the joint pdf of the data x, given by (16), let

us split the entire data into three mutually exclusive sets:
11:{i2$i<0}, Igz{i:0<xi<0}, I3:{i:$i>C}.

It is now clear from standard computations under the normal distribution that whenever I; is non-
empty, the posterior of (i, o) under a flat or noninformative prior of (u,o) will be proper. This
is because the rest of the joint pdf arising out of I» and I3 can be bounded under a uniform noise
distribution or even under a general h(.) under very mild conditions, and the retained part under
I, will lead to propriety of the posterior. Likewise, if I7 is empty but I3 is non-empty, we can easily
bound the terms in I3, and proceed as in the fully noise perturbed case for data in I3 and show
that the posterior is proper. Lastly, assume that the entire data fall in I, resulting in the joint pdf

L(f|data € I3) as a product of terms of the type

Tq

dr < /0 o)L + )

z(1)

h(rs)

i

h(rs)

T

f(xil0)+ [ f(—10) Jdr;

0 &
where z(1) = min(z;). Let us now carefully check the product of the above integrands under the
normal distribution, which will be first integrated wrt (u, o) under a flat or noninformative prior,
and later wrt the noise variables which we take to be iid uniform. Obviously this product will be
a sum of mixed terms of the following two types which are relevant to check the propriety of the
resultant posterior:

1 z;
Ufnefﬁ[zieh (Iifﬂ)2+2ieJ2 (Tz*#)Q}
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where J; and Jy form a partition of (1,---,n). It is now immediate that the terms of the first
type (standard normal theory without any noise perturbation) will lead to a proper posterior of
(4, 0). Likewise, from our previous computations under fully noise perturbed case, it follows that
the terms of the second type will also lead to propriety of the posterior of ;4 and ¢ under a uniform

noise distribution.

Lognormal distribution. Proceeding as in the normal case above by replacing T by u = log(7),
we get the posterior propriety of p and o under flat or noninformative priors when the noise is

uniform. We omit the details.
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