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Abstract

A statistical analysis of data that have been multiplied by randomly drawn noise variables in

order to protect the confidentiality of individual values has recently drawn some attention. If the

distribution generating the noise variables has low to moderate variance, then noise multiplied data

have been shown to yield accurate inferences in several typical parametric models under a formal

likelihood based analysis. However, the likelihood based analysis is generally complicated due to

the non-standard and often complex nature of the distribution of the noise perturbed sample even

when the parent distribution is simple. This complexity places a burden on data users who must

either develop the required statistical methods or implement the methods if already available or

have access to specialized software perhaps yet to be developed. In this paper we propose an

alternate analysis of noise multiplied data based on multiple imputation. Some advantages of this

approach are that (1) the data user can analyze the released data as if it were never perturbed,

and (2) the distribution of the noise variables does not need to be disclosed to the data user.
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1 Introduction

When survey organizations and statistical agencies such as the U.S. Census Bureau release mi-

crodata to the public, a major concern is the control of disclosure risk, while ensuring fairly high

quality and utility in the released data. Very often some popular statistical disclosure limitation

(SDL) methods such as data swapping, multiple imputation, top/bottom code (especially for in-

come data), and perturbations with random noise, are applied before releasing the data. Rubin

(1993) proposed the use of the multiple imputation method to create synthetic microdata which

would protect confidentiality by replacing actual microdata by random draws from a predictive

distribution. Since then, rigorous statistical methods to use synthetic data for drawing valid infer-

ences on relevant population parameters have been developed and used in many contexts (Little

1993; Raghunathan, Reiter, Rubin 2003; Reiter 2003, 2005; Reiter, Raghunathan 2007). An and

Little (2007) also suggested multiple imputation methods as an alternative to top coding of extreme

values and proposed two methods of data analysis with examples.

Noise perturbation of original microdata by addition or multiplication has also been advocated

by some statisticians as a possible data confidentiality protection mechanism (Kim 1986; Kim

and Winkler 1995, 2003; Little 1993), and recently there has been a renewed interest in this

topic (Nayak, Sinha, and Zayatz 2011; Sinha, Nayak, Zayatz 2012). In fact, Klein, Mathew, and

Sinha (2012), hereafter referred to as Klein et al. (2012), developed likelihood based data analysis

methods under noise multiplication for drawing inference in several parametric models; and they

provided a comprehensive comparison of the above two methods, namely, multiple imputation

and noise multiplication. Klein et al. (2012) commented that while standard and often optimum

parametric inference based on the original data can be easily drawn for simple probability models,

such an analysis is far from being close to optimum or even simple when noise multiplication

is used. Hence their statistical analysis is essentially based on the asymptotic theory, requiring

computational details of maximum likelihood estimation and calculations of the observed Fisher

information matrices. Klein et al. (2012) also developed similar analysis for top code data which

arise in many instances such as income and profit data, where values above a certain threshold C

are coded and only the number m of values in the data set above C are reported along with all
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the original values below C. These authors considered statistical analysis based on unperturbed

(i.e., original) data below C and noise multiplied data above C instead of completely ignoring the

data above C, and again provided a comparison with the statistical analysis reported in An and

Little (2007) who carried out the analysis based on multiple imputation of the data above C in

combination with the original values below C. In this paper we will refer to both these data setups

as mixture data rather than top code data which is strictly reserved for the case when values above

C are completely ignored.

In the context of data analysis under noise perturbation, if the distribution generating the noise

variables has low to moderate variance, then noise multiplied data are expected to yield accurate

inferences in some commonly used parametric models under a formal likelihood based analysis

(Klein et al. 2012). However, as noted by Klein et al. (2012), the likelihood based analysis is

generally complicated due to the non-standard and often complex nature of the distribution of the

noise perturbed sample even when the parent distribution is simple (a striking example is analysis

of noise multiplied data under a Pareto distribution, typically used for income data, which we hope

to address in a future communication). This complexity places a burden on data users who must

either develop the required statistical methods or implement these methods if already available

or have access to specialized software perhaps yet to be developed. Circumventing this difficulty

is essentially the motivation behind this current research where we propose an alternate simpler

analysis of noise multiplied data based on the familiar notion of multiple imputation. We believe

that a proper blend of the two statistical methods as advocated here, namely, noise perturbation to

protect confidentiality and multiple imputation for ease of subsequent statistical analysis of noise

multiplied data, will prove to be quite useful to both statistical agencies and data users. Some

advantages of this approach are that (1) the data user can analyze the released data as if it were

never perturbed (in conjunction with the appropriate multiple imputation combining rules), and

(2) the distribution of the noise variables does not need to be disclosed to the data user. This

obviously provides an extra layer of confidentiality protection against data intruders!

The paper is organized as follows. An overview of our proposed approach based on a general

framework of fully noise multiplied data is given in Section 2. Techniques of noise imputation from
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noise multiplied data, which are essential for the proposed statistical analysis, are also presented

in Section 2. This section also includes different methods of estimation of variance of the pro-

posed parameter estimates. Section 3 contains our statistical analysis for mixture data. Details of

computations for three common parametric models are outlined in Section 4. An evaluation and

comparison of the results with those under a formal likelihood based analysis of noise multiplied

data (Klein et al. 2012) is presented in Section 5 through simulation. It turns out that the inferences

obtained using the methodology of this paper are comparable with, and just slightly less accurate

than, those obtained in Klein et al. (2012). Section 6 provides some concluding remarks, and the

Appendices A, B and C contain proofs of some technical results.

We end this section with an important observation that a direct application of multiple impu-

tation procedures along the lines of Reiter (2003) based on the induced distribution of the noise

perturbed data, which would naturally provide a highly desirable double privacy protection, is also

possible. However, since such induced distributions are generally complicated in nature, the result-

ing data analysis based on multiple imputations may be involved. We will return to this approach

along with some other relevant issues (see Section 6) in a future communication.

2 Overview of the method for full noise multiplication

In this section we first provide an overview of the proposed data analysis approach in a general

framework, including a crucial method for imputing noise variables from noise multiplied data.

We also describe in details two general methods of variance estimation of the parameter estimates,

those of Rubin (1993) and Wang and Robins (1998).

2.1 General framework

Suppose y1, . . . , yn ∼ iid ∼ f(y|θ), independent of r1, . . . , rn ∼ iid ∼ h(r), where θ = (θ1, . . . , θp)
′

is an unknown p× 1 parameter vector, and h(r) is a known density (free of θ) such that h(r) = 0 if

r < 0. It is assumed that f(y|θ) and h(r) are the densities of continuous probability distributions.

Define zi = yi × ri for i = 1, . . . , n. Let us write y = (y1, . . . , yn), r = (r1, . . . , rn), and z =

(z1, . . . , zn).
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We note that the joint density of (zi, ri) is

g(zi, ri|θ) = f(
zi
ri
|θ)h(ri)r

−1
i ,

and the marginal density of zi is

g(zi|θ) =

∫ ∞
0

f(
zi
ω
|θ)h(ω)ω−1dω. (1)

As clearly demonstrated in Klein et al. (2012), standard likelihood based analysis of the noise

multiplied sample z in order to draw suitable inference about a scalar quantity Q = Q(θ) can

be extremely complicated due to the form of g(zi|θ), and also the analysis must be customized

to the noise distribution h(r). A direct use of the familiar synthetic data method (Raghunathan,

Reiter, and Rubin 2003; Reiter 2003) based on the noise multiplied sample z1, . . . , zn, which would

naturally provide double privacy protection, can also be quite complicated due to the same reason.

Instead what we propose here is a procedure to recover the original data y from reported sample z

via suitable generation and division by noise terms, and enough replications of the recovered y data

by applying multiple imputation method! Once this is accomplished, a data user can apply simple

and standard likelihood procedure to draw inference about Q(θ) based on each reconstructed y

data as if it were never perturbed, and finally an application of some known combination rules

would complete the task.

The advantages of the suggested approach blending noise multiplication with multiple imputa-

tion are the following:

1. to protect confidentiality through noise multiplication - satisfying data producer’s desire;

2. to allow the data user to analyze the data as if it were never perturbed - satisfying data user’s

desire (the complexity of the analysis lies in the generation of the imputed values of the noise

variables; and the burden of this task will fall on the data producer, not the user); and

3. to allow the data producer to hide information about the underlying noise distribution from

data users.
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The basic idea behind our procedure is to set it up as a missing data problem; we define the

complete, observed, and missing data, respectively, as follows:

xc = {(z1, r1), . . . , (zn, rn)}, xobs = {z1, . . . , zn}, xmis = {r1, . . . , rn}.

Obviously, if the complete data xc were observed, one would simply recover the original data yi = zi
ri

,

i = 1, . . . , n, and proceed with the analysis in a straightforward manner under the parametric model

f(y|θ). Treating the noise variables r1, . . . , rn as missing data, we impute these variables m times

to obtain

x∗(j)c = {(z1, r
∗(j)
1 ), . . . , (zn, r

∗(j)
n )}, j = 1, . . . ,m. (2)

From x∗(j) we compute

y∗(j) = {y∗(j)1 , . . . , y∗(j)n } = { z1

r
∗(j)
1

, . . . ,
zn

r
∗(j)
n

}, j = 1, . . . ,m. (3)

Each data set y∗(j) is now analyzed as if it were an original sample from f(y|θ). Thus, suppose

that η(y) is an estimator of Q(θ) based on the unperturbed data y and suppose that v = v(y) is

an estimator of the variance of η(y), also computed based on y. Often η(y) will be the maximum

likelihood estimator of Q(θ), and v(y) will be derived from the observed Fisher information matrix.

One would then compute ηj = η(y∗(j)) and vj = v(y∗(j)), the analogs of η and v, obtained from

y∗(j), and apply a suitable combination rule to pool the information across the m simulations.

At this point two vital pieces of proposed data analysis need to be put together: imputation of

r∗ from z and combination rules for ηj and vj from several imputations. We discuss below these

two crucial points.

2.2 Imputation of r from z and Rubin’s (1987) combination rule

The imputed values of r1, . . . , rn here are obtained as draws from a posterior predictive distribution.

We place a noninformative prior distribution p(θ) on θ. In principle, sampling from the posterior

predictive distribution of r1, . . . , rn can be done as follows.
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1. Draw θ∗ from the posterior distribution of θ given z1, . . . , zn.

2. Draw r∗1, . . . , r
∗
n from the conditional distribution of r1, . . . , rn given z1, . . . , zn and θ = θ∗.

The above steps are then repeated independently m times to get (r
∗(j)
1 , . . . , r

∗(j)
n ), j = 1, . . . ,m.

Notice that in step (1) above we use the posterior distribution of θ given z1, . . . , zn as opposed to

the posterior distribution of θ given y1, . . . , yn. Such a choice implies that we do not infuse any

additional information into the imputes beyond what is provided by the noise multiplied sample,

namely, z. Step (2) above is equivalent to sampling each ri from the conditional distribution of ri

given zi and θ = θ∗. The pdf of this distribution is

h(ri|zi,θ) =
f( ziri |θ)h(ri)r

−1
i∫∞

0 f( ziω |θ)h(ω)ω−1dω
. (4)

The sampling required in step (1) can be complicated due to the complex form of the joint

density of z1, . . . , zn. Certainly, in some cases, the sampling required in step (1) can be performed

directly; for instance, if θ is univariate then we can obtain a direct algorithm by inversion of the

cumulative distribution function (numerically or otherwise). More generally, the data augmentation

algorithm (Little and Rubin 2002; Tanner and Wong 1987) allows us to bypass the direct sampling

from the posterior distribution of θ given z1, . . . , zn. Under the data augmentation method, we

proceed as follows. Given a value θ(t) of θ drawn at step t:

I. Draw r
(t+1)
i ∼ h(r|zi,θ(t)) for i = 1, . . . , n;

II. Draw θ(t+1) ∼ p(θ|y(t+1)) where y(t+1) = ( z1

r
(t+1)
1

, . . . , zn

r
(t+1)
n

), and p(θ|y) is the posterior

density of θ given the original unperturbed data y (it is the functional form of p(θ|y) which

is relevant here).

The above process is run until t is large and one must, of course, select an initial value θ(0)

to start the iterations. The final generations (r
(t)
1 , . . . , r

(t)
n ) and θ(t) form an approximate draw

from the joint posterior distribution of (r1, . . . , rn) and θ given (z1, . . . , zn). Thus, marginally, the

final generation (r
(t)
1 , . . . , r

(t)
n ) is an approximate draw from the posterior predictive distribution

of (r1, . . . , rn) given (z1, . . . , zn). This entire iterative process can be repeated independently m
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times to get the multiply imputed values of the noise variables. Note that sampling from the

posterior distribution p(θ|y) in step (II) above will typically be straightforward, either directly or

via appropriate MCMC algorithms. Under the data augmentation algorithm, we still must sample

from the conditional density h(r|z,θ) as defined in (4). The level of complexity here will depend

on the form of f(y|θ) and h(r). Usually, sampling from this conditional density will not be too

difficult. The following result provides a general rejection algorithm (Devroye 1986; Robert and

Casella 2005) to sample from h(r|z,θ) for any continuous f(y|θ), when the noise distribution is

Uniform(1− ε, 1 + ε), i.e., when

h(r) =
1

2ε
, 1− ε ≤ r ≤ 1 + ε, (5)

where 0 < ε < 1.

Proposition 1 Suppose that f(y|θ) is a continuous probability density function, and let us write

f(y|θ) = c(θ)q(y|θ) where c(θ) > 0 is a normalizing constant. Let M ≡M(θ, ε, z) be such that

q(
z

r
|θ) ≤M for all r ∈ [1− ε, γ]

where γ ≡ γ(z, ε) > 1 − ε. Then the following algorithm produces a random variable R having the

density

hU (r|z,θ) =
q( zr |θ)r−1∫ γ

1−ε q(
z
ω |θ)ω−1dω

, 1− ε ≤ r ≤ γ.

(I) Generate U , V as independent Uniform(0, 1) and let W = γV /(1− ε)V−1.

(II) Accept R = W if U ≤M−1q( z
W |θ), otherwise reject W and return to step (I).

The expected number of iterations of steps (I) and (II) required to obtain R is

M [log(γ)− log(1− ε)]∫ γ
1−ε q(

z
ω |θ)ω−1dω

.

The proof of Proposition 1 appears in Appendix A.
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Remark 1. The conditional density of yi given zi and θ is

f(yi|zi,θ) =


f(yi|θ)h(

zi
yi

)y−1
i∫∞

0 f(
zi
ω

)h(ω)ω−1dω
, if 0 < zi <∞, 0 < yi <∞,

f(yi|θ)h(
zi
yi

)(−y−1
i )∫∞

0 f(
zi
ω

)h(ω)ω−1dω
, if −∞ < zi < 0, −∞ < yi < 0.

(6)

Drawing r∗i from the conditional density h(ri|zi,θ∗) defined in (4) and setting y∗i = zi
r∗i

is equivalent

to drawing y∗i directly from the conditional density f(yi|zi,θ∗) in the sense that given zi and θ∗,

the variable zi
r∗i

has the density f(yi|zi,θ∗).

Remark 2. As to the choice of θ(0), one can choose moment-based estimates (Nayak et al. 2011).

Rubin’s (1987) Rule. Based on Rubin’s (1987) combining rules, we obtain the MI estimator of

Q:

η̄m =
1

m

m∑
j=1

ηj , (7)

and the estimator of the variance of η̄m:

Tm = (1 + 1/m)bm + v̄m, (8)

where bm = 1
m−1

∑m
j=1(ηj − η̄m)2 and v̄m = 1

m

∑m
j=1 vj . η̄m and Tm can now be used along with

a normal cut-off point to construct a confidence interval for Q. We can also use a t cut-off point

based on setting the degrees of freedom equal to (m− 1)(1 + a−1
m )2 where am = (1+m−1)bm

v̄m
.

Remark 3. We have tacitly assumed in the above analysis that the posterior distribution of the

parameter θ, given noise multiplied data z, is proper. In applications, this needs to be verified on

a case by case basis because the posterior propriety under the original data y which may routinely

hold under many parametric models may not guarantee the same under z when an improper prior

distribution for θ is used. For example, taking n = 2, when f(y|θ) = 1
θe
− y
θ , θ > 0, y > 0, the

posterior distribution of θ, given y, under the noninformative prior p(θ) ∝ [1
θ ]δ will be proper

whenever 1 + δ > 0. But the same posterior, given z, will be proper only if
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Aδ(z1, z2) =

∫ ∞
0

∫ ∞
0

h(r1)h(r2)dr1dr2

[ z1r1 + z2
r2

]1+δ[r1r2]
(9)

is finite. Taking h(r) = (rβ)βe−rβ

rΓ(β) with E(R) = 1 and Var(R) = 1
β > 0, and z1 = z2, this amounts

to the finiteness of the integral

Iδ =

∫ ∞
0

∫ ∞
0

e−β(r1+r2)rβ+δ−1
1 rβ+δ−1

2 dr1dr2

(r2 + r1)1+δ
. (10)

Upon making the transformation from (r1, r2) to u = r1 + r2 and v = r1
r1+r2

, Iδ simplifies to

Iδ = [

∫ 1

0
vβ+δ−1(1− v)β+δ−1dv]× [

∫ ∞
0

e−uβu2β+δ−2du] (11)

which is not finite when either β + δ ≤ 0 or 2β + δ ≤ 1! One can choose β = 0.5 and δ = 0 or

δ = −0.5 (recall the condition 1 + δ > 0). The same remark holds in the case of the posterior

distribution of θ, given the mixture data. We have verified the posterior propriety in our specific

applications for fully noise multiplied data and mixture data in Appendices B and C, respectively.

2.3 Wang and Robins’s (1998) combination rules

Wang and Robins (1998) described variance estimators in the context of two types of multiple

imputation: Type A and Type B. We discuss below these two approaches.

Type A. Here the procedure to generate r∗ and hence y∗ = z
r∗ is the same as just described in the

preceding subsection. However the variance estimators use different formulas as described below.

1. Compute the multiple imputation (MI) estimator of θ: θ̂A = 1
m

∑m
j=1 θ̂j , where θ̂j is the

maximum likelihood estimate (MLE) of θ computed on jth imputed dataset. Recall that

the jth imputed dataset [y
∗(j)
1 , · · · , y∗(j)n ] is obtained by first drawing θ∗j from the posterior

distribution of θ, given z, and then drawing r
∗(j)
i the conditional distribution of ri given zi

and θ = θ∗j , and finally substituting y
∗(j)
i = zi

r
∗(j)
i

.

2. Compute Sij(y
∗(j)
i , θ̂j), the p × 1 score vector, with its `th element as Sij`(y

∗(j)
i , θ̂j) =
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∂ log f(y|θ)
∂θ`

∣∣∣
y=y

∗(j)
i ,θ=θ̂j

, ` = 1, · · · , p, i = 1, · · · , n, j = 1, · · · ,m. Obviously the above quantity

also depends on θ∗j through y
∗(j)
i .

3. Also compute the p× p information matrix S∗ij(y
∗(j)
i , θ̂j) whose (`, `′)th element is computed

as S∗ij``′(y
∗(j)
i , θ̂j) = ∂2 log f(y|θ)

∂θ`∂θ`′

∣∣∣
y=y

∗(j)
i ,θ=θ̂j

, `, `′ = 1, · · · , p, i = 1, · · · , n, j = 1, · · · ,m.

4. By Wang and Robins (1998):
√
n(θ̂A−θ)

L→ Np[0, VA], where VA = I−1
obs + 1

mI
−1
c J+ 1

mJ
′I−1

obsJ

with J = ImisI
−1
c = (Ic−Iobs)I

−1
c , and Ic = E[−((∂

2 log f(y|θ)
∂θ`∂θ`′

))] and Iobs = E[−((∂
2 log g(z|θ)
∂θ`∂θ`′

))].

5. A consistent variance estimator V̂A is obtained by estimating Ic by Îc = 1
m

∑m
j=1 Îc,j with Îc,j

= − 1
n

∑n
i=1 S

∗
ij(y

∗(j)
i , θ̂j) and estimating Iobs by

Îobs =
1

2nm(m− 1)

n∑
i=1

m∑
j 6=j′=1

[Sij(y
∗(j)
i , θ̂j)Sij′(y

∗(j)
i , θ̂j)

′ + Sij′(y
∗(j)
i , θ̂j)Sij(y

∗(j)
i , θ̂j)

′].

6. For any given Q(θ), the variance of the estimator Q(θ̂A) is obtained by applying the familiar

δ-method, and Wald-type inferences can be directly applied to obtain confidence intervals.

Type B. In this procedure there is no Bayesian model specification. Instead, the unknown pa-

rameter θ is set equal to θ̂mle(z), the MLE based on the noise multiplied data z, which is usually

computed via the EM algorithm (Klein et al. 2012). Here are the essential steps.

1. Draw r∗i ∼ h(r|zi, θ̂mle(z)), i = 1, · · · , n.

2. Having obtained r∗i ’s, perform multiple imputation and obtain the MLE on each completed

dataset to get θ̂1, · · · , θ̂m.

3. Compute MI estimate of θ: θ̂B = 1
m

∑m
j=1 θ̂j .

4. Compute Sij(y
∗(j)
i , θ̂j), the p × 1 score vector, with its `th element as Sij`(y

∗(j)
i , θ̂j) =

∂ log f(y|θ)
∂θ`

∣∣∣
y=y

∗(j)
i , θ=θ̂j

, ` = 1, · · · , p, i = 1, · · · , n, j = 1, · · · ,m.

5. Also compute the p× p information matrix S∗ij(y
∗(j)
i , θ̂j) with its (`, `′)th element computed

as S∗ij``′(y
∗(j)
i , θ̂j) = ∂2 log f(y|θ)

∂θ`∂θ`′

∣∣∣
y=y

∗(j)
i , θ=θ̂j

, `, `′ = 1, · · · , p, i = 1, · · · , n, j = 1, · · · ,m.
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6. By Wang and Robins (1998):
√
n(θ̂B − θ)

L→ Np[0, VB], where VB = I−1
obs + 1

mI
−1
c J = I−1

obs +

1
mI
−1
c (Ic − Iobs)I

−1
c .

7. A consistent variance estimator V̂A is obtained by estimating Ic by Îc = 1
m

∑m
j=1 Îc,j with Îc,j

= − 1
n

∑n
i=1 S

∗
ij(y

∗(j)
i , θ̂j), and estimating Iobs by

Îobs =
1

2nm(m− 1)

n∑
i=1

m∑
j 6=j′=1

[Sij(y
∗(j)
i , θ̂j)Sij′(y

∗(j)
i , θ̂j)

′ + Sij′(y
∗(j)
i , θ̂j)Sij(y

∗(j)
i , θ̂j)

′].

8. For any given Q(θ), the variance of the estimator Q(θ̂B) is obtained by applying the familiar

δ-method, and Wald-type inferences can be directly applied to obtain confidence intervals.

Remark 4. Wang and Robins (1998) provide a comparison between the type A and type B

imputation procedures, and compare the corresponding variance estimators with Rubin’s (1987)

variance estimator Tm. Their observation is that the estimators V̂A and V̂B are consistent for VA

and VB, respectively; and the type B estimator θ̂B will generally lead to more accurate inferences

than θ̂A, because for finite m, VB < VA (meaning VA − VB is positive definite). Under the type

A procedure and for finite m, Rubin’s (1987) variance estimator has a nondegenerate limiting

distribution, however, the asymptotic mean is VA, and thus Tm is also an appropriate estimator

of variance (in defining Rubin’s (1987) variance estimator, Wang and Robins (1998) multiply the

quantity bm by the sample size n to obtain a random variable that is bounded in probability).

The variance estimator Tm would appear to underestimate the variance if applied in the type B

procedure because under the type B procedure, if m = ∞, then Tm has a probability limit which

is smaller than the asymptotic variance VB (when m = ∞, VA = VB = I−1
obs). However, under the

type A procedure, if m = ∞ then Tm is consistent for the asymptotic variance VA. We refer to

Rubin (1987) and Wang and Robins (1998) for further details.

3 Analysis of mixture data

Recall that a mixture data in our context consist of unperturbed values below C and a masked

version of values above C, obtained by either an imputation method or by noise multiplication.
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Analysis of mixture data can be carried out in several different ways (An and Little 2007; Klein

et al. 2012). In this section we discuss the analysis of such data following the procedure outlined

earlier, namely, by (i) suitably recovering the top code y-values above C via use of reconstructed

noise terms and the noise multiplied z-values along with or without their identities (below or above

C), and (ii) providing multiple imputations of such top code y-values and methods to appropriately

combine the original y-values and synthetic top code y-values to draw inference on Q.

Let C > 0 denote the prescribed top code so that y-values above C are sensitive, and hence

cannot be reported/released. Given y = (y1, · · · , yn), r = (r1, · · · , rn), z = (z1, · · · , zn) where

zi = yi × ri, we define x = (x1, · · · , xn) and ∆ = (∆1, · · · ,∆n) with ∆i = I(yi ≤ C) and xi = yi

if yi ≤ C, and = zi if yi > C. Inference for θ will be based on either (i) [(x1,∆1), · · · , (xn,∆n)] or

(ii) just (x1, · · · , xn). Under both the scenarios, which each guarantee that the sensitive y-values

are protected, several data sets of the type (y∗1, · · · , y∗n) will be released along with a data analysis

plan. Naturally, in case (i) when information on the indicator variables ∆ is used to generate

y∗-values, data users will know exactly which y-values are original and which y-values have been

noise perturbed and de-perturbed! Of course, this need not happen in case (ii), thus providing more

privacy protection with perhaps less accuracy. Thus the data producer (such as Census Bureau) has

a choice depending upon to what extent information about the released data should be provided

to the data users. We describe below the data analysis plans under both the scenarios.

Case (i). Here we generate r∗i from the reported values of (xi,∆i = 0) and compute y∗i = xi
r∗i

. Of

course, if ∆i = 1 then we set y∗i = yi. Generation of r∗i is done by sampling from the conditional

distribution h(ri|xi,∆i = 0,θ) of ri, given xi, θ, and ∆i = 0, where (Klein et al. 2012)

h(ri|xi,∆i = 0,θ) =
f(xiri |θ)h(ri)

ri∫ xi
C

0 f(xiω |θ)h(ω)
ω dω

, for 0 ≤ ri ≤
xi
C
. (12)

When the noise distribution is the uniform density (5), then (12) becomes

hU (ri|xi,∆i = 0,θ) =
f(xiri |θ)r−1

i∫ min{xi
C
,1+ε}

1−ε f(xiω |θ)ω−1dω
, for 1− ε ≤ ri ≤ min{xi

C
, 1 + ε}, (13)
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and Proposition 1 provides an algorithm for sampling from the above density (13).

Regarding choice of θ, we can proceed following the Type B method (see Section 2) and use

the MLE of θ (θ̂mle) based on the data [(x1,∆1), · · · , (xn,∆n)]. This will often be direct (via

EM algorithm) in view of the likelihood function L(θ|x,∆) reported in Klein et al. (2012) and

reproduced below:

L(θ|x,∆) =
n∏
i=1

[f(xi|θ)]∆i [

∫ xi
C

0
f(
xi
r
|θ)

h(r)

r
dr]1−∆i . (14)

Alternatively, following Type A method discussed in Section 2, r∗-values can also be obtained

as draws from a posterior predictive distribution. We place a noninformative prior distribution p(θ)

on θ, and sampling from the posterior predictive distribution of r1, . . . , rn can be done as follows.

1. Draw θ∗ from the posterior distribution of θ given [(x1,∆1), · · · , (xn,∆n)] using the likelihood

L(θ|x,∆) given above.

2. Draw r∗i for those i = 1, · · · , n for which ∆i = 0, from the conditional distribution (12) of ri,

given xi, ∆i = 0, and θ = θ∗.

As mentioned in Section 2, the sampling required in step (1) above can be complicated due

to the complex form of the joint density L(θ|x,∆). The data augmentation algorithm (Little and

Rubin 2002; Tanner and Wong 1987), allows us to bypass the direct sampling from the posterior

distribution of θ given [(x1,∆1), · · · , (xn,∆n)].

Under the data augmentation method, given a value θ(t) of θ drawn at step t:

I. Draw r
(t+1)
i ∼ h(r|xi,∆i = 0,θ(t)) for those i = 1, · · · , n for which ∆i = 0.

II. Draw θ(t+1) ∼ p(θ|y(t+1)
1 , · · · , y(t+1)

n ) where y
(t+1)
i = xi

r
(t+1)
i

when ∆i = 0, and y
(t+1)
i = xi,

otherwise. Here p(θ|y) stands for the posterior pdf of θ, given the original data y (only its

functional form is used).

The above process is run until t is large and one must, of course, select an initial value θ(0) to start

the iterations.
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Case (ii). Here we generate (r∗∗i ,∆
∗
i ) from the reported values of (x1, · · · , xn) and compute

y∗∗i = xi
r∗∗i

if ∆∗i = 0, and y∗∗i = xi, otherwise, i = 1, · · · , n. This is done by using the conditional

distribution g(r, δ|x,θ) of r and ∆, given x and θ. Since g(r, δ|x,θ) = h(r|x, δ,θ)× ψ(δ|x,θ), and

the conditional Bernoulli distribution of ∆, given x and θ, is readily given by (Klein et al. 2012)

ψ(δ = 1|x,θ) = P [∆ = 1|x,θ] =
f(x|θ)I(x < C)

f(x|θ)I(x < C) + I(x > 0)
∫ x
C

0 f(xr |θ)h(r)
r dr

, (15)

drawing of (r∗∗i ,∆
∗
i ), given xi and θ, is carried out by first randomly selecting ∆∗i according to

the above Bernoulli distribution, and then randomly choosing r∗∗i if ∆∗i = 0 from the conditional

distribution given by (12).

Again, in the above computations, following Type B approach, one can use the MLE of θ (via

EM algorithm) based on the x-data alone whose likelihood is given by (Klein et al. 2012)

L(θ|x) =

n∏
i=1

[f(xi|θ)I(xi < C) + I(xi > 0)

∫ xi
C

0
f(
xi
r
|θ)

h(r)

r
dr]. (16)

Alternatively, one can proceed as in Type A method (sampling r∗∗1 , . . . , r
∗∗
n from the posterior

predictive distribution) by plugging in θ = θ∗ which are random draws from the posterior distri-

bution of θ, given x, based on the above likelihood and choice of prior for θ. As noted in the

previous case, here too a direct sampling of θ, given x, can be complicated, and we can use the

data augmentation algorithm suitably modified following the two steps indicated below.

1. Starting with an initial value of θ and hence θ(t) at step t, draw (r
(t+1)
i ,∆

(t+1)
i ) from

h(r, δ|xi,θ(t)). This of course is accomplished by first drawing ∆
(t+1)
i and then r

(t+1)
i , in

case ∆
(t+1)
i = 0.

2. At step (t+ 1), draw θ(t+1) from the posterior distribution p(θ|y(t+1)
1 , · · · , y(t+1)

n ) of θ, where

y
(t+1)
i = xi if ∆

(t+1)
i = 1, and y

(t+1)
i = xi

r
(t+1)
i

if ∆
(t+1)
i = 0. Here, as before, the functional

form of the standard posterior of θ, given y, is used.

In both case (i) and case (ii), after recovering the multiply imputed complete data y∗(1), . . .,

y∗(m) using the techniques described above, methods of parameter estimation, variance estimation,
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and confidence interval construction are the same as those discussed in Section 2 for fully noise

multiplied data.

4 Details for normal, exponential, and lognormal

4.1 Normal data

We consider the case of a normal population with uniform noise, that is, we take f(y|θ) =

1
σ
√

2π
exp[− 1

2σ2 (y − µ)2], −∞ < y < ∞, and we let h(r) be the uniform density (5). We place

a standard noninformative improper prior on (µ, σ2):

p(µ, σ2) ∝ 1

σ2
, −∞ < µ <∞, 0 < σ2 <∞. (17)

The posterior distribution of (µ, σ2) given y is obtained as p(µ, σ2|y) = p(µ|σ2,y)p(σ2|y) where

(σ2|y) ∼ (n− 1)s2

χ2
n−1

, (µ|σ2,y) ∼ N(ȳ, σ2/n), (18)

with ȳ = 1
n

∑n
i=1 yi and s2 = 1

n−1

∑n
i=1(yi − ȳ)2 (Gelman et al. 2004). The conditional density

h(r|z,θ) as defined in (4) now takes the form

h(r|z,θ) =
exp[− 1

2σ2 (z/r − µ)2]r−1∫ 1+ε
1−ε exp[− 1

2σ2 (z/ω − µ)2]ω−1dω
, 1− ε ≤ r ≤ 1 + ε. (19)

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density of ri

given zi.

Corollary 1 The following algorithm produces a random variable R whose density is (19).

(I) Generate U , V as independent Uniform(0, 1) and let W = (1 + ε)V /(1− ε)V−1.

(II) Accept R = W if U ≤ exp[− 1
2σ2 (z/W − µ)2]/M , otherwise reject W and return to step (I).
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If z > 0 then the constant M is defined as

M ≡M(µ, σ2, ε, z) =


exp[− 1

2σ2 (z/(1 + ε)− µ)2], if µ ≤ z/(1 + ε),

1, if z/(1 + ε) < µ < z/(1− ε),

exp[− 1
2σ2 (z/(1− ε)− µ)2], if µ ≥ z/(1− ε),

and if z < 0 then

M ≡M(µ, σ2, ε, z) =


exp[− 1

2σ2 (z/(1− ε)− µ)2], if µ ≤ z/(1− ε),

1, if z/(1− ε) < µ < z/(1 + ε),

exp[− 1
2σ2 (z/(1 + ε)− µ)2], if µ ≥ z/(1 + ε).

The expected number of iterations of steps (I) and (II) required to obtain R is

M [log(1 + ε)− log(1− ε)]∫ 1+ε
1−ε exp[− 1

2σ2 (z/ω − µ)2]ω−1dω
.

In the case of mixture data, the conditional density (12) now becomes

h(r|x,∆ = 0,θ) =
exp[− 1

2σ2 (x/r − µ)2]r−1∫ min{ x
C
,1+ε}

1−ε exp[− 1
2σ2 (x/ω − µ)2]ω−1dω

, 1− ε ≤ r ≤ min{ x
C
, 1 + ε}, (20)

and a simple modification of Corollary 1 yields an algorithm to sample from this pdf .

4.2 Exponential data

In this section we consider the case of an exponential population, and thus we let f(y|θ) =

1
θe
−y/θ, 0 ≤ y < ∞. We place the following improper prior on θ: p(θ) ∝ 1, 0 < θ < ∞.

The posterior distribution of θ given y is

p(θ|y) =
(
∑n

i=1 yi)
n−1

Γ(n− 1)
θ−(n−1)−1e−(

∑n
i=1 yi)/θ, 0 < θ <∞,

which has the form of an inverse gamma distribution, i.e., (θ−1|y) ∼ Gamma(n− 1, 1∑n
i=1 yi

).

Customized noise distribution for fully perturbed data. Suppose that the noise distribution
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is given by

h(r) =
δδ+1

Γ(δ + 1)
r−(δ+1)−1e−δ/r, 0 < r <∞, (21)

where δ > 1, and E(R) = 1 and Var(R) = (δ − 1)−1. We note that h(r) is a form of the

inverse gamma distribution such that R ∼ h(r) ⇔ R−1 ∼ Gamma(δ + 1, 1/δ). This choice of

the noise distribution is customized to the exponential distribution in the sense that it permits

closed form evaluation of the integral in (1). The pdf g(z|θ) defined in (1) now takes the form

g(z|θ) = δδ+1(δ+1)
θ( z
θ

+δ)δ+2 , 0 < z <∞, and hence the conditional pdf h(r|z,θ) defined in (4) is now

h(r|z, θ) =
( zθ + δ)δ+2

Γ(δ + 2)
exp[−1

r
(
z

θ
+ δ)]r−(δ+2)−1, 0 < r <∞. (22)

We note that (22) is an inverse gamma density, more specifically, (r−1
i |zi, θ) ∼ Gamma(δ+2, 1

zi
θ

+δ
),

and thus samples from the conditional distribution of ri given zi and θ are easily extracted.

Uniform noise distribution. Suppose that we take the noise distribution to be uniform as

defined in (5). Then the conditional pdf h(r|z,θ) as defined in (4) now has the form

h(r|z, θ) =
exp(− z

rθ )r−1∫ 1+ε
1−ε exp(− z

ωθ )ω−1dω
, 1− ε ≤ r ≤ 1 + ε. (23)

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density.

Corollary 2 The following algorithm produces a random variable R whose density is (23).

(I) Generate U , V as independent Uniform(0, 1) and let W = (1 + ε)V /(1− ε)V−1.

(II) Accept R = W if U ≤ exp(− z
Wθ )/M , otherwise reject W and return to step (I).

The constant M is defined as M ≡ M(θ, ε, z) = exp(− z
θ(1+ε)). The expected number of iterations

of steps (I) and (II) required to obtain R is

M [log(1 + ε)− log(1− ε)]∫ 1+ε
1−ε exp(− z

ωθ )ω−1dω
.
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In the case of mixture data, the conditional density (12) now becomes

h(r|x,∆ = 0,θ) =
exp(− x

rθ )r−1∫ min{ x
C
,1+ε}

1−ε exp(− x
ωθ )ω−1dω

, 1− ε ≤ r ≤ min{ x
C
, 1 + ε}, (24)

and a simple modification of Corollary 2 yields an algorithm to sample from this pdf .

4.3 Lognormal data

We next consider the case of the lognormal population: f(y|θ) = 1
yσ
√

2π
exp[− 1

2σ2 (log y − µ)2], 0 ≤

y <∞. We define a prior distribution on (µ, σ2) as in (17). The posterior distribution of (µ, σ2) is

then given by (18) upon replacing each yi by log(yi).

Customized noise distribution for fully perturbed data. Let us take the noise density as

h(r) =
1

rξ
√

2π
exp[− 1

2ξ2
(log r + ξ2/2)2], 0 < r <∞, (25)

where 0 < ξ <∞, and E(R) = 1 and Var(R) = eξ
2 − 1. We note that h(r) is a lognormal density

such that R ∼ h(r) ⇔ log(R) ∼ N(−ξ2/2, ξ2). It then follows that h(r|z,θ) is also a lognormal

density such that

R ∼ h(r|z,θ)⇔ log(R) ∼ N
{
−ξ

2

2
+

ξ2

σ2 + ξ2
[log(z) +

ξ2

2
− µ],

σ2ξ2

σ2 + ξ2

}
. (26)

Uniform noise distribution. Suppose we take the noise distribution to be uniform as defined in

(5). Then the conditional pdf (4) takes the form

h(r|z,θ) =
exp[− 1

2σ2 (log(z/r)− µ)2]∫ 1+ε
1−ε exp[− 1

2σ2 (log(z/ω)− µ)2]dω
, 1− ε ≤ r ≤ 1 + ε. (27)

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density of ri

given zi.

Corollary 3 The following algorithm produces a random variable R whose density is (27).

(I) Generate U , V as independent Uniform(0, 1) and let W = (1 + ε)V /(1− ε)V−1.
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(II) Accept R = W if U ≤ Wz−1 exp[− 1
2σ2 (log(z/W ) − µ)2]/M , otherwise reject W and return

to step (I).

The constant M is defined as

M ≡M(µ, σ2, ε, z) =


(1 + ε)z−1 exp[− 1

2σ2 (log( z
1+ε)− µ)2], if eµ−σ

2 ≤ z/(1 + ε),

exp[−µ+ σ2

2 ], if z/(1 + ε) < eµ−σ
2
< z/(1− ε),

(1− ε)z−1 exp[− 1
2σ2 (log( z

1−ε)− µ)2], if eµ−σ
2 ≥ z/(1− ε).

The expected number of iterations of steps (I) and (II) required to obtain R is

M [log(1 + ε)− log(1− ε)]∫ 1+ε
1−ε z

−1 exp[− 1
2σ2 (log(z/ω)− µ)2]dω

.

In the case of mixture data, the conditional density (12) now becomes

h(r|x,∆ = 0,θ) =
exp[− 1

2σ2 (log(x/r)− µ)2]∫ min{ x
C
,1+ε}

1−ε exp[− 1
2σ2 (log(x/ω)− µ)2]dω

, 1− ε ≤ r ≤ min{ x
C
, 1 + ε}, (28)

and a simple modification of Corollary 3 yields an algorithm to sample from this pdf .

5 Simulation study

We use simulation to study the finite sample properties of point estimators, variance estimators,

and confidence intervals obtained from noise multiplied data. We consider the cases of normal,

exponential, and lognormal populations in conjunction with uniform and customized noise distri-

butions as far as possible, as outlined in Section 4. One may expect that the simpler method of

data analysis proposed in this paper may lead to less accurate inferences than a formal likelihood

based analysis of fully noise multiplied and mixture data. However, if the inferences derived using

the proposed methodology are not substantially less accurate, then the proposed method may be

preferable, in some cases, because of its simplicity. Thus the primary goals of this section are es-

sentially to (1) compare the proposed methods with the likelihood based method reported in Klein

et al. (2012), and (2) to assess and compare the finite sample performance of Rubin’s (1987) esti-

20



mation methods with those of Wang and Robins (1998) under our settings of fully noise multiplied

and mixture data.

5.1 Fully noise multiplied data

Table 1 provides results for the case of a normal population when the parameter of interest is either

the mean µ or the variance σ2; Table 2 provides results for the case of an exponential population

when the parameter of interest is the mean θ; and Table 3 provides results for the case of a lognormal

population when the parameter of interest is either the mean eµ+σ2/2 or the .95 quantile eµ+1.645σ.

For each distribution we consider samples sizes n = 100 and n = 500, but we only display results for

the former sample size; and the results in each table are based on a simulation with 5000 iterations

and m = 5 imputations of the noise variables generated at each iteration. Each table displays

results for several different methods which are summarized below.

UD: Analysis based on the unperturbed data y.

NM10UIB: Analysis based on noise multiplied data with h(r) defined by (5), ε = .10, and using

the type B method of Wang and Robins (1998) described in Section 2.3.

NM10UIA1: Analysis based on noise multiplied data with h(r) defined by (5), ε = .10, and using

the method of Section 2.2 with Rubin’s (1987) variance formula and the normal cut-off point

for confidence interval construction.

NM10UIA2: Analysis based on noise multiplied data with h(r) defined by (5), ε = .10, and using

the method of Section 2.2 with Rubin’s (1987) variance formula and the t cut-off point for

confidence interval construction.

NM10UIA3: Analysis based on noise multiplied data with h(r) defined by (5), ε = .10, and using

the type A method of Wang and Robins (1998) described in Section 2.3.

NM10UL: Analysis based on noise multiplied data with h(r) defined by (5), ε = .10, and using

the formal likelihood based method of analysis of Klein et al. (2012).
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NM10CIB, NM10CIA1, NM10CIA2, NM10CIA3, NM10CL: These methods are defined analo-

gously to the methods above, but h(r) is now the customized noise distribution (21) (expo-

nential data) or (25) (lognormal data); the parameters δ and ξ appearing in h(r) are chosen

so that Var(R) = ε2

3 , the variance of the Uniform(1− ε, 1 + ε) distribution with ε = 0.10.

The remaining methods appearing in these tables are similar to the corresponding methods men-

tioned above after making the appropriate change to the parameter ε in the referenced Uniform(1−

ε, 1 + ε) distribution. For each method and each parameter of interest, we display the root mean

squared error of the estimator (RMSE), bias of the estimator, standard deviation of the estimator

(SD), expected value of the estimated standard deviation of the estimator (ŜD), coverage probabil-

ity of the associated confidence interval (Cvg.), and expected length of the corresponding confidence

interval relative to the expected length of the confidence interval computed from the unperturbed

data (Rel. Len.). In each case the nominal coverage probability of the confidence interval is 0.95.

For computing an estimate of the standard deviation of an estimator, we simply compute the

square root of the appropriate variance estimator. For computing the estimator η(y) and variance

estimator v(y) of Section 2.2, we use the maximum likelihood estimator and inverse of observed

Fisher information, respectively. All results shown for unperturbed data use Wald-type inferences

based on the maximum likelihood estimator and observed Fisher information. The following is a

summary of the simulation results of Tables 1 - 3.

1. In terms of RMSE, bias, and SD of point estimators, as well as expected confidence interval

length, the proposed methods of analysis are generally only slightly less accurate than the

corresponding likelihood based analysis.

2. In terms of coverage probability of confidence intervals, the multiple imputation based and

formal likelihood based methods of analysis yield similar results.

3. We consider Uniform(1− ε, 1 + ε) noise distributions with ε = 0.1, 0.2, and 0.5, or equivalent

(in terms of variance) customized noise distributions. Generally, for noise distributions with

ε = 0.1 and 0.2, the proposed analysis based on the noise multiplied data results only in a

slight loss of accuracy in comparison with that based on unperturbed data. When the noise
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distribution has a larger variance (i.e., when ε = 0.5) we notice that the bias of the resulting

estimators generally remains small, while the SD clearly increases. When the parameter of

interest is the mean, the noise multiplied data with ε = 0.5 still appear to provide inferences

with only a slight loss of accuracy compared with the unperturbed data. In contrast, when

the parameter of interest is the normal variance as in the right-hand panel of Table 1, the loss

of accuracy in terms of SD and hence RMSE appears to be more substantial when ε increases

to 0.5. We refer to Klein et al. (2012) for a detailed study of the properties of noise multiplied

data.

4. We observe very little difference in the bias, SD, and RMSE of estimators derived under the

type A imputation procedure versus those derived under the type B imputation procedure.

5. In each table, the column ŜD provides the finite sample mean of each of the multiple imputa-

tion standard deviation estimators (square root of variance estimators) presented in Section 2.

Thus we can compare the finite sample bias of Rubin’s (1987) standard deviation estimator of

Section 2.2 with that of Wang and Robins’s (1998) standard deviation estimators of Section

2.3, under our setting of noise multiplication. We find that the mean of both of Wang and

Robins’s (1998) standard deviation estimators is generally larger than the mean of Rubin’s

(1987) standard deviation estimator. From these numerical results it appears that we cannot

make any general statement about which estimators possess the smallest bias, because none

of these estimators uniformly dominates the other in terms of minimization of bias. With a

larger sample size of n = 500 (results not displayed here), we find that all standard deviation

estimators have similar expectation; this statement is especially true for the normal and ex-

ponential cases. With the sample size of n = 100 we notice in Tables 1 and 2 that the mean

of Rubin’s (1987) estimator is slightly less than the true SD while both of Wang and Robins

(1998) estimators have mean slightly larger than the true SD. Interestingly, in the lognormal

case, for the sample size n = 100 of Table 3, we notice that Rubin’s (1987) estimator is nearly

unbiased for the true SD while Wang and Robins’s (1998) estimators tend to overestimate

the true SD more substantially.
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6. When the customized noise distribution is available (exponential and lognormal cases), the

results obtained under the customized noise distribution are quite similar to those obtained

under the equivalent (in terms of variance) uniform noise distribution.

7. For confidence interval construction based on Rubin’s (1987) variance estimator, the interval

based on the normal cut-off point performs very similarly to the interval based on the t cut-off

point.

8. The data augmentation algorithm, used by the type A methods to sample from the posterior

predictive distribution of r, given the noise multiplied data, appears to provide an adequate

approximation.

5.2 Mixture data

We now study the properties of estimators derived from mixture data as presented in Section 3.

Table 4 provides results for the case of a normal population, Table 5 provides results for the case of

an exponential population, and Table 6 provides results for the case of a lognormal population. The

parameters of interest in each case are the same as in the previous subsection, and the top-coding

threshold value C is set equal to the 0.90 quantile of the population. The methods in the rows of

Tables 4 - 6 are as described in the previous subsection, except that each ends with either .i or .ii

to indicate either case (i) or case (ii) of Section 3, respectively. The conclusions here are generally

in line with those of the previous subsection. Below are some additional findings.

1. In the case of fully noise perturbed data we noticed a tendency for Rubin’s (1987) standard

deviation estimator to exhibit a slight negative bias. In the case of mixture data we no longer

observe this effect; in fact, Rubin’s (1987) estimator now tends to exhibit very little bias.

2. Generally we find here that the noise multiplication methods yield quite accurate inferences,

even more so than in the case of full noise multiplication; this finding is expected since with

mixture data only a subset of the original observations are noise perturbed.

3. As expected, the inferences derived under the case (i) data scenario (observe (x,∆)) are

generally more accurate than those derived under the case (ii) data scenario (observe only
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x), but for the noise distributions considered, the differences in accuracy generally are not

too substantial.

6 Concluding remarks

There are two primary ways of rigorous data analysis under privacy protection: multiple imputation

and noise perturbation. Klein et al. (2012) show that the likelihood based method of analysis of

noise multiplied data can yield accurate inferences under several standard parametric models and

compare favorably with the standard multiple imputation methods of Reiter (2003) and An and

Little (2007), based on the original data. Since the likelihood of the noise multiplied data is often

complex, one wonders if an alternative simpler and fairly accurate data analysis method can be

developed based on such kind of privacy protected data. With precisely this objective in mind,

we have shown in this paper that a proper application of multiple imputation leads to such an

analysis. In implementing the proposed method under a standard parametric model f(y|θ), the

most complex part is generally simulation from the conditional densities (4) or (12), and this part

would be the responsibility of the data producer, not the data user. We have provided Proposition 1

which gives an exact algorithm to sample from (4) and (12) for general continuous f(y|θ), when h(r)

is the uniform distribution (5). Moreover, we have seen that in the exponential and lognormal cases

under full noise multiplication, if one uses the customized noise distribution, then the conditional

density (4) takes a standard form from which sampling is straightforward. Simulation results based

on sample sizes of 100 and 500 indicate that the multiple imputation based analysis, as developed in

this paper, generally results in only a slight loss of accuracy in comparison to the formal likelihood

based analysis. Our simulation results also indicate that both the Rubin (1987) and Wang and

Robins (1998) combining rules exhibit adequate performance in the selected sample settings.

In conclusion, we observe that, from a data user’s perspective, our method does require a

complete knowledge of the underlying parametric model of the original data so that efficient model

based estimates can be used while using the (reconstructed) y-values. In the absence of such a

knowledge, likely misspecification of the population model may lead to incorrect conclusions (Robins
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and Wang 2000). We also wonder if reporting both z-values (one observed set) and reconstructed

y-values (multiple sets) would lead to an enhanced inference! It would also be beneficial to develop

appropriate data analysis methods based on a direct application of multiple imputation on the noise

multiplied data itself, thus providing double privacy protection. Lastly, it seems that, as a general

principle, some sort of homogeneity tests should be carried out across the multiply imputed data

sets before they are routinely combined. We will address these issues in a future communication.

Appendix A

Proof of Proposition 1. This is a rejection sampling algorithm where the target density hU (r|z,θ)

is proportional to starget(r) = q( zr |θ)r−1, 1− ε ≤ r ≤ γ, and the instrumental density is sinstr(r) =

r−1

log(γ)−log(1−ε) , 1− ε ≤ r ≤ γ. To fill in the details, first note that since f(y|θ) is continuous in y, it

follows that q( zr |θ) is continuous as a function of r, on the interval [1− ε, γ], and thus the bounding

constant M exists. Then we see that

starget(r)

sinstr(r)
= [log(γ)− log(1− ε)]q(z

r
|θ) ≤ [log(γ)− log(1− ε)]M, (29)

for all r ∈ [1 − ε, γ]. Note that the cumulative distribution function corresponding to sinstr(r)

is Sinstr(r) = log(r)−log(1−ε)
log(γ)−log(1−ε) , 1 − ε ≤ r ≤ γ, and the inverse of this distribution function is

S−1
instr(u) = γu

(1−ε)u−1 , 0 ≤ u ≤ 1. Thus, by the inversion method (Devroye 1986), step (I) is

equivalent to independently drawing U ∼ Uniform(0, 1) and W from the density sinstr(r). Since

M−1starget(W )
[log(γ)−log(1−ε)]sinstr(W ) =

q( z
W
|θ)

M , step (II) is equivalent to accepting V if U ≤ M−1starget(W )
[log(γ)−log(1−ε)]sinstr(W ) ,

which is the usual rejection step based on the bound in (29). Finally, we use the well known fact

that the expected number of iterations of the rejection algorithm is equal to the bounding constant

in (29) times the normalizing constant for starget(r), i.e., [log(γ)−log(1−ε)]M∫ γ
1−ε q(

z
ω
|θ)ω−1dω

.

Appendix B

Here we provide proofs of the posterior propriety of θ, given the fully noise multiplied data z, for

exponential, normal and lognormal distributions.
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Exponential distribution. Here g(z|θ) =
∫

1
θe
− z
rθ
h(r)
r dr. When the noise distribution is uniform

over [1− ε, 1 + ε], since e−
z
rθ is monotone decreasing in z, the joint pdf of z can be bounded above

by K(θ)−ne
−
nz(1)
(1+ε)θ for some K > 0, which is integrable under a flat or noninformative prior for θ.

Under the customized prior for θ, in the pdf of Z, namely g(z|θ) ∝ 1
θ [ zθ + δ]−(δ+2), replacing any z

by z(1), the joint pdf of z is dominated by 1
θn [

z(1)

θ + δ]−n(δ+2) which is readily seen to be integrable

under a flat or noninformative prior for θ.

Normal distribution. Here g(z|θ) ∝ 1
σ

∫
e−

( zr−µ)2

2σ2 h(r)
r dr. Writing down the joint pdf of z1, · · · , zn,

it is obvious that upon integrating out µ with respect to (wrt) the Lebesgue measure and σ wrt

the flat or noninformative prior, we end up with the expression U(z) given by

U(z) =

∫
· · ·
∫

[
n∑
i=1

z2
i

r2
i

−
(
∑n

i=1
zi
ri

)2

n
]−n−δ

h(r1) · · ·h(rn)

r1 · · · rn
dr1 · · · drn

where δ ≥ 0. To prove that U(z) is finite for any given z, note that [
∑n

i=1
z2
i

r2
i
−

(
∑n
i=1

zi
ri

)2

n ] =

1
2

∑n
i,j=1( ziri −

zj
rj

)2 ≥ 1
2 [ z1r1 −

z2
r2

]2 for any pair (z1, z2; r1, r2). Assume without any loss of generality

that z1 > z2, and note that [ z1r1 −
z2
r2

]2 = [ z1z2 −
r1
r2

]2 × z2
2r
−2
1 . Then under the condition

∫
r

h(r)

r
dr = K1 <∞,

∫
r1≤r2

r
2(n+δ)−1
1 r−1

2 h(r1)h(r2)dr1dr2 = K2 <∞, (30)

U(z) is bounded above by

U(z) ≤ 2n+δKn−2
1 [

z1

z2
− 1]−2(n+δ)[

∫
r1≤r2

r
2(n+δ)−1
1 r−1

2 h(r1)h(r2)dr1dr2] <∞.

In particular, when R ∼ Uniform(1− ε, 1 + ε), the above condition is trivially satisfied!

Lognormal distribution. Here g(z|θ) ∝ 1
zσ

∫
e−

(log( zr )−µ)2

2σ2 h(r)dr. Writing down the joint density

of z1, · · · , zn, and putting u = log( zr ), it is obvious that upon integrating out µ wrt the Lebesgue
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measure and σ wrt the flat or noninformative prior, we end up with the expression U(z) given by

U(z) =

∫
r1

· · ·
∫
rn

[

n∑
i=1

(ui − ū)2]−2(n+δ)h(r1) · · ·h(rn)dr1 · · · drn

where δ ≥ 0. To prove that U(z) is finite for any given z, note as in the normal case that when

z1 > z2 (without any loss of generality),

[
n∑
i=1

(ui− ū)2] =
1

2

n∑
i,j=1

(ui− uj)2 ≥ 1

2
(u1− u2)2 =

1

2
[log(

z1

z2
)− log(

r1

r2
)]2 ≥ 1

2
[log(

z1

z2
)]2 for r1 < r2.

Hence U(z) is always finite since
∫
r1<r2

h(r1)h(r2)dr1dr2 <∞.

Appendix C

Here we provide proofs of the posterior propriety of θ, given the mixture data, for exponential,

normal and lognormal distributions. We consider two cases depending on the nature of mixture

data that will be released.

Case (i): Nature of data [(x1,∆1), · · · , (xn,∆n)].

Exponential distribution. From (14), the likelihood function in this case is given by

L(θ|data) ∝ θ−ne−
∑n
i=1

xi∆i
θ

n∏
i=1

[

∫ xi
C

0
e−

xi
rθ
h(r)

r
dr]1−∆i

Under a uniform noise distribution, the term
∫ xi
C

0 e−
xi
rθ
h(r)
r dr is bounded above by 1

2ε×
∫ 1+ε

1−ε e
−xi
rθ
dr
r ≤

Kεe
− xi
θ(1+ε) where Kε > 0 is a constant. Hence, apart from a finite constant, L(θ|data) is bounded

above by

L(θ|data) ≤ θ−n × e−
[
∑n
i=1 xi∆i+(1+ε)−1 ∑n

i=1 xi(1−∆i)]

θ

which is integrable with respect to flat or noninformative prior for θ, irrespective of any configuration

of the given data!

28



Normal distribution. Given the data [(x1,∆1), · · · , (xn,∆n)], let I1 = {i : ∆i = 1} and I0 = {i :

∆i = 0}. Then the normal likelihood L(θ|data), apart from a constant, can be expressed as

L(θ|data) ∝ σ−n[e
−

∑
i∈I1

(xi−µ)2

2σ2 ][
∏
i∈I0

∫ xi
C

0
e−

(
xi
ri
−µ)2

2σ2
h(ri)

ri
I(xi > 0)dri].

It is then obvious that upon integrating out µ wrt the Lebesgue measure and σ wrt the flat or

noninformative prior, we end up with the expression U(data) given by

U(data) =
∏
i∈I0

∫ xi
C

0
I(xi > 0)[

∑
i∈I1

x2
i +

∑
i∈I0

x2
i

r2
i

−
(
∑

i∈I1 xi +
∑

i∈I0
xi
ri

)2

n
]−n−δ

h(ri)

ri
dri.

Writing vi = xi
ri

for i ∈ I0, the expression Ψ(data) =
∑

i∈I1 x
2
i +

∑
i∈I0

x2
i

r2
i
−

(
∑
i∈I1

xi+
∑
i∈I0

xi
ri

)2

n is

readily simplified as [S2
1 + S2

0 + rs(x̄1 − x̄0)2](r+ s)−1 where r and s are the cardinalities of I1 and

I0, respectively, and (x̄1, S
2
1) and (x̄0, S

2
0) are the sample means and variances of the data in the

two subgroups I1 and I0, respectively.

When I1 is nonempty, an obvious lower bound of Ψ(data) is
S2

1
r+s , and if I1 is empty, Ψ(data) =

S2
0/n. In the first case, U(data) is finite whenever

∫ xi
C

0
h(r)
r dr <∞ for i ∈ I0. In the second case, we

proceed as in the fully noise perturbed case for normal and conclude that U(data) is finite under

the conditions stated in (30) except that the bounds of ri in the integrals are replaced by xi
C . In

particular, for uniform noise distribution, the conditions trivially hold.

Lognormal distribution. Proceeding as in the normal case with u = log(xr ), and breaking up the

sum in the exponent into two parts corresponding to I1 and I0, we get the finiteness of corresponding

U(data) under noninformative priors of µ and σ when the noise distribution is uniform.

Case (ii): Nature of data (x1, · · ·xn).

Exponential distribution. From (16), the likelihood function in this case is given by

L(θ|data) = θ−n
n∏
i=1

[e−
xi
θ I(xi < C) +

∫ xi
C

0
e
− xi
θri
h(ri)

ri
dri].
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Now, for each i, the first term within [.] is bounded above by e−
xi
θ and the second term by

e−
C
θ ψC(xi) where ψC(xi) =

∫ xi
C

0
h(ri)
ri
dri since xi

ri
> C. Define ψC = max(ψC(x1), · · · , ψC(xn)), and

assume that the noise distribution h(r) satisfies: ψC <∞. Then it is easy to check that L(θ|data)

is bounded above by [max(1, ψC)]θ−ne−
2
θ

∑n
i=1 min(xi,C) which is integrable wrt θ under a flat or

noninformative prior.

Normal distribution. Upon carefully examining the joint pdf of the data x, given by (16), let

us split the entire data into three mutually exclusive sets:

I1 = {i : xi < 0}, I2 = {i : 0 < xi < C}, I3 = {i : xi > C}.

It is now clear from standard computations under the normal distribution that whenever I1 is non-

empty, the posterior of (µ, σ) under a flat or noninformative prior of (µ, σ) will be proper. This

is because the rest of the joint pdf arising out of I2 and I3 can be bounded under a uniform noise

distribution or even under a general h(.) under very mild conditions, and the retained part under

I1 will lead to propriety of the posterior. Likewise, if I1 is empty but I3 is non-empty, we can easily

bound the terms in I2, and proceed as in the fully noise perturbed case for data in I3 and show

that the posterior is proper. Lastly, assume that the entire data fall in I2, resulting in the joint pdf

L(θ|data ∈ I2) as a product of terms of the type

f(xi|θ) +

∫ xi
C

0
f(
xi
ri
|θ)

h(ri)

ri
dri <

∫ xi
C

0
[f(xi|θ)

C

x(1)
+ f(

xi
ri
|θ)

h(ri)

ri
]dri

where x(1) = min(xi). Let us now carefully check the product of the above integrands under the

normal distribution, which will be first integrated wrt (µ, σ) under a flat or noninformative prior,

and later wrt the noise variables which we take to be iid uniform. Obviously this product will be

a sum of mixed terms of the following two types which are relevant to check the propriety of the

resultant posterior:

σ−ne
− 1

2σ2 [
∑
i∈J1

(xi−µ)2+
∑
i∈J2

(
xi
ri
−µ)2]
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where J1 and J2 form a partition of (1, · · · , n). It is now immediate that the terms of the first

type (standard normal theory without any noise perturbation) will lead to a proper posterior of

(µ, σ). Likewise, from our previous computations under fully noise perturbed case, it follows that

the terms of the second type will also lead to propriety of the posterior of µ and σ under a uniform

noise distribution.

Lognormal distribution. Proceeding as in the normal case above by replacing x
r by u = log(xr ),

we get the posterior propriety of µ and σ under flat or noninformative priors when the noise is

uniform. We omit the details.
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Ŝ

D
C

v
g.

R
el

.
×

10
3
×

10
3

×
10

3
×

10
3

%
L

en
.

U
D

10
0.

69
0.

84
10

0.
70

10
0.

08
94

.4
0

1.
00

00

N
M

10
U

IB
10

1.
20

0.
95

10
1.

20
10

2.
72

94
.1

2
1.

02
63

N
M

10
U

IA
1

10
1.

16
1.

06
10

1.
17

10
0.

50
94

.4
8

1.
00

41
N

M
10

U
IA

2
10

1.
16

1.
06

10
1.

17
10

0.
50

94
.6

2
1.

00
89

N
M

10
U

IA
3

10
1.

16
1.

06
10

1.
17

10
3.

10
94

.4
6

1.
03

01
N

M
10

U
L

10
1.

15
0.

97
10

1.
16

10
0.

43
94

.4
0

1.
00

34
N

M
10

C
IB

10
0.

93
0.

90
10

0.
93

10
2.

72
94

.4
8

1.
02

63
N

M
10

C
IA

1
10

0.
82

0.
90

10
0.

83
10

0.
49

94
.3

0
1.

00
40

N
M

10
C

IA
2

10
0.

82
0.

90
10

0.
83

10
0.

49
94

.3
8

1.
00

81
N

M
10

C
IA

3
10

0.
82

0.
90

10
0.

83
10

3.
10

94
.5

6
1.

03
01

N
M

10
C

L
10

0.
78

0.
91

10
0.

79
10

0.
42

94
.3

4
1.

00
34

N
M

20
U

IB
10

2.
19

1.
12

10
2.

20
10

3.
84

94
.6

6
1.

03
76

N
M

20
U

IA
1

10
2.

25
1.

27
10

2.
25

10
1.

69
94

.5
6

1.
01

60
N

M
20

U
IA

2
10

2.
25

1.
27

10
2.

25
10

1.
69

95
.1

2
1.

03
51

N
M

20
U

IA
3

10
2.

25
1.

27
10

2.
25

10
4.

22
94

.7
4

1.
04

13
N

M
20

U
L

10
1.

95
0.

92
10

1.
95

10
1.

38
94

.4
4

1.
01

30
N

M
20

C
IB

10
2.

20
0.

98
10

2.
21

10
3.

91
94

.3
6

1.
03

82
N

M
20

C
IA

1
10

2.
11

1.
15

10
2.

12
10

1.
67

94
.3

0
1.

01
58

N
M

20
C

IA
2

10
2.

11
1.

15
10

2.
12

10
1.

67
94

.6
6

1.
03

17
N

M
20

C
IA

3
10

2.
11

1.
15

10
2.

12
10

4.
24

94
.4

6
1.

04
15

N
M

20
C

L
10

1.
82

0.
94

10
1.

83
10

1.
37

94
.4

2
1.

01
29

N
M

50
U

IB
10

9.
22

2.
05

10
9.

21
11

1.
05

94
.3

8
1.

10
95

N
M

50
U

IA
1

10
9.

92
4.

02
10

9.
86

10
9.

23
94

.4
0

1.
09

14
N

M
50

U
IA

2
10

9.
92

4.
02

10
9.

86
10

9.
23

96
.0

4
1.

20
50

N
M

50
U

IA
3

10
9.

92
4.

02
10

9.
86

11
1.

73
94

.4
6

1.
11

64
N

M
50

U
L

10
8.

02
2.

05
10

8.
01

10
7.

61
94

.4
4

1.
07

52
N

M
50

C
IB

10
9.

08
1.

99
10

9.
07

11
0.

14
94

.3
6

1.
10

04
N

M
50

C
IA

1
10

9.
73

3.
24

10
9.

69
10

8.
40

94
.2

6
1.

08
30

N
M

50
C

IA
2

10
9.

73
3.

24
10

9.
69

10
8.

40
95

.7
2

1.
17

07
N

M
50

C
IA

3
10

9.
73

3.
24

10
9.

69
11

0.
73

94
.4

2
1.

10
64

N
M

50
C

L
10

8.
08

2.
02

10
8.

08
10

7.
07

94
.1

8
1.

06
98

34



T
ab

le
3
:

In
fe

re
n

ce
u

n
d

er
fu

ll
y

p
er

tu
rb

ed
L
N

(µ
=

0,
σ

2
=

1)
d

at
a

w
it

h
n

=
10

0

P
a
ra

m
et

er
o
f

in
te

re
st

is
th

e
m

ea
n
eµ

+
σ

2
/
2

P
ar

am
et

er
of

in
te

re
st

is
th

e
.9

5
q
u

an
ti

le
eµ

+
1
.6

4
5
σ

R
M

S
E

B
ia

s
S

D
Ŝ
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