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a b s t r a c t

We study the fitting of time series models via the minimization of a multi-step-ahead
forecast error criterion that is based on the asymptotic average of squared forecast errors.
Our objective function uses frequency domain concepts, but is formulated in the time
domain, and allows the estimation of all linear processes (e.g., ARIMA and component
ARIMA). By using an asymptotic form of the forecast mean squared error, we obtain a well-
defined nonlinear function of the parameters that is proven to be minimized at the true
parameter vectorwhen themodel is correctly specified.Wederive the statistical properties
of the parameter estimates, and study the asymptotic impact of model misspecification
on multi-step-ahead forecasting. The method is illustrated through a forecasting exercise,
applied to several time series.
© 2012 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that fitting models via the minimiza-
tion of one-step-ahead forecasting errors is equivalent
to maximum likelihood estimation of the Gaussian like-
lihood for a stationary time series, and thus provides
efficient parameter estimation for correctly specified
Gaussian time series models; see Hannan and Deistler
(1988), Dahlhaus and Wefelmeyer (1996), and Taniguchi
and Kakizawa (2000). However, in reality, models are
never specified correctly, and thus the maximum like-
lihood estimates converge to so-called ‘‘pseudo-true’’
values under certain regularity conditions, and these
pseudo-true values minimize the Kullback–Leibler (KL)
discrepancy between the specified model spectral density
and the true spectrum. This approach can be viewed as
an attempt to minimize the one-step-ahead forecast error
for a given process, utilizing a certain misspecified model.
Given that the focus for some applications is more on the
forecasting performance at high leads, it is natural to con-
sider the following questions: canwe fit time seriesmodels

∗ Corresponding author.
E-mail address:marc.wildi@zhaw.ch (M. Wildi).

such that the multi-step-ahead forecasting error is mini-
mized? Is there an objective functionwhich is analogous to
KL, and which generalizes it to the multi-step-ahead case?
What are the statistical properties of the resulting param-
eter estimates? This paper provides answers to some of
these questions.

We present a Generalized Kullback–Leibler (GKL)
measure — which is really a multi-step version of KL —
and demonstrate that this measure can be derived directly
from a multi-step-ahead forecasting error criterion. This
GKL can be used to fit linear time series models with
very little programming effort; in this paper we focus
on the univariate ARIMA class1 of models. The resulting
parameter estimates are consistent for the pseudo-true
values (i.e., those that minimize the GKL discrepancy
between model and truth) under standard conditions, and
are also asymptotically normal (consistency results under
quite mild conditions are established by Findley, Pötscher,
& Wei, 2004). When the model is specified correctly, these
estimates are inefficient, i.e., they perform worse than the

1 Although the KL does not depend on unit root factors in the
total autoregressive polynomial (i.e., the differencing polynomial) for
one-step-ahead forecasting, this object participates directly in the GKL
function in the multi-step-ahead case.
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classical one-step-ahead estimates; we discuss the reasons
for this below. However, since GKL is derived from amulti-
step-ahead forecasting error criterion, it is reasonable to
hope that the forecasts generated from such a model (at
that particular lead) will perform better than the classical
forecasts. This reflects an application-driven modeling
philosophy: both the model specification and estimation
should be oriented around a particular objective function
associated with the application. McElroy and Findley
(2010) address the model specification problem from a
multi-step-ahead forecasting perspective, and here we
focus on the model estimation aspect.

The GKL can be used to investigate the behavior of
multi-step pseudo-true values— theminimizers of the dis-
crepancy between the truth and the misspecified model
— and is also the basis for actual parameter estimates
that generalize the (one-step-ahead) quasi-maximum like-
lihood estimates associated with the Whittle likelihood.
We note in passing that Theorem 4.3.1 of Hannan and
Deistler (1988) provides a discussion of the equivalence of
the Gaussian likelihood and the Whittle likelihood when
the model is specified correctly; when misspecified, the
proper reference is Dahlhaus and Wefelmeyer (1996).

Let us briefly discuss the econometric motivations
for considering the multi-step-ahead perspective. Since,
in reality, time series models are always misspecified,
the crucial thing is to find a model that performs well
according to the particular task which is of interest to the
practitioner; using GKL as an objective function means
that the practitioner is interested in a model that forecasts
well at a particular lead time. In econometric business
cycle analysis there is little interest in the mere one-
step-ahead performance of misspecified models, since
the period of a typical cycle is 8 to 40 observations
for quarterly data. A model or collection of models that
can forecast well at a lead of h for 8 ≤ h ≤ 40
is needed here. Another application is in the field of
seasonal adjustment, and, more generally, the area of
real-time signal extraction. All model-based asymmetric
signal extraction filters rely, either implicitly or explicitly,
on long-horizon forecasts generated from the same
misspecified model; see Dagum (1980), Findley, Monsell,
Bell, Otto, and Chen (1998), McElroy (2008a), and Wildi
(2004). Real-time (or concurrent) signal extraction is
discussed by Wildi (2004, 2008), and the nefarious impact
of model mis-specification on both long-term forecasting
performance and signal extraction has been highlighted
by numerous empirical studies. Beyond these obvious
applications, any data analysis that is contingent on long-
run forecasts — such as those that occur in climatology
(e.g., the hot topic of global warming) and demographics
(e.g., forecasting long-term changes in human population)
— should not rely solely upon one-step-ahead forecasting
model fitting criteria.

In light of these important motivations, there has been
substantial prior work done on this topic that deserves
a mention. Cox (1961) describes how multi-step-ahead
forecast filters can be constructed from exponentially
weighted moving averages, by fitting the smoothing
parameter such that the forecast mean squared error is
minimized when the underlying process is autoregressive.

Tiao and Xu (1993) later expanded this work, pointing
out that the exponential weighted moving average is
the forecast filter that arises from multi-step forecasts
from an ARIMA(0, 1, 1)model, where the moving average
parameter is the negative of the exponential smoothing
parameter. Their focus is on estimating the parameters of
the forecast filter such that the multi-step-ahead forecast
mean squared error is minimized. Another treatment of
the topic is that of Gersch and Kitagawa (1983); they
estimate structuralmodels using a heuristic 12-step-ahead
form of the usual Gaussian likelihood, expressed in a state
space form. Their innovative paper illustrates the impact of
a multi-step-ahead model fitting criterion on forecasting
and trend estimation; as expected, the trends resulting
from the 12-step-ahead criterion are much smoother than
those derived from the classical approach. A more recent
contribution is that of Haywood and Tunnicliffe-Wilson
(1997), who provide an explicit formula for the objective
function written in the frequency domain. A limitation
of their formula is that, in general, the variables of the
objective function do not correspond to ARMA parameters,
as the paper essentially fits an unusual parametrization of
moving average models.

There is also a substantial level of interest among
econometricians in multi-step-ahead forecasting arising
from autoregressive and difference autoregressivemodels.
Marcellino, Stock, and Watson (2006) expound a common
approach involving ordinary least squares estimation of
these models, so as to minimize an empirical multi-step-
ahead forecast error. Proietti (2011) expands on this work,
investigating the forecasting performances of these multi-
step-ahead fitted parameters. However, what has been
lacking so far is a coherent general treatment of the subject
that handles difference linear processes, i.e., nonstationary
processes that have a Wold decomposition when suitably
differenced. The main objective of this paper is to
summarize and generalize all of the preceding literature,
expressing the appropriate objective functions compactly
in the frequency domain.

The reason for this recourse to the frequency domain
is for the sake of concision of formulas, as well as
computational efficiency. For example, certain of Tiao and
Xu’s (1993) formulas for the multi-step-ahead forecast
mean square error involve infinite summations, which
would only be calculated via truncation in practice. Using
the frequency domain, exact expressions can be derived,
utilizing the calculus of residues, and thus avoiding
the need to truncate. Well-known Fourier transform
algorithms can be used to compute the asymptotic multi-
step-ahead forecast mean squared errors speedily, and in
turn fit models to data, as well as determine pseudo-true
values.

It is appropriate to outline the limitations of our
approach. We do not consider multivariate time series
models here; although the forecast error filter in this
context is known and could, in principle, be used to
generalize our GKL, its actual implementation has not yet
been solved. However, it seems a fruitful direction for
future work. Secondly, our method only optimizes over
one forecast lead at a time, and simultaneous optimization
over many leads is not considered; a discussion of this
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is provided in Section 2, where we discuss a composite
forecasting rule. Finally, our methods are exposited only
for ARIMA models, where the gradient of the spectral
density with respect to the parameter vector has a
particularly simple form.

This paper provides the development of the asymptotic
forecast mean squared error as a model fitting criterion in
Section 2. A key contribution is the practical formula for its
computation. The statistical properties of this GKL function
and its optima are discussed in Section 3. Our formulation
of the problem provides well-defined objective functions
that are optimized by the true parameters when themodel
is specified correctly; otherwise, the parameter estimates
converge to the GKL pseudo-true values. Section 4 explores
the GKL function through several illustrations, both
analytically and numerically. Then, in Section 5we explore
the discrepancy between the empirical forecast error and
GKL through a chemical time series, and display results
from a forecasting exercise involving housing starts. Here
we takemodels thatmay bemis-specifications for the data,
and fit them according to a variety of forecast lead criteria,
generating the resulting forecasts. The multi-step out-of-
sample forecasts are then computed and compared across
model fitting criteria. Section 6 provides our conclusions,
and the Appendix contains proofs and implementation
notes for ARIMA models.

2. Forecasting as model fitting criteria

In this section we formulate a discrepancy measure for
model fitting, which generalizes the KL discrepancy. This
is derived from the asymptotic mean square multi-step-
ahead forecasting error for that model. We utilize γk(f ) for
the lag k autocorrelation function (acf) corresponding to a
given spectral density f —with the convention thatγk(f ) =

(2π)−1
 π
−π

f (λ)eiλk dλ — and its associated Toeplitz co-
variance matrix Γ (f ), whose jkth entry is simply γj−k(f ).
We also use the notation ⟨g⟩ for any function g , with do-
main [−π, π], to denote (2π)−1

 π
−π

g(λ) dλ.
We will speak of time series models in terms of

their spectral densities, since we are primarily concerned
with the second-order behavior of difference stationary
time series. It will be convenient to restrict ourselves to
the ‘‘linear class’’ of spectra L, consisting of integrable
functions f that can be written as f (λ) = |Ψ (e−iλ)|2σ 2 for
some causal power series Ψ (z) =


j≥0 ψjz j (this holds

iff |⟨log f ⟩| < ∞, see Hannan & Deistler, 1988). We will
assume that this is an invertible representation, so that
1/Ψ (z) is well-defined on the unit circle. Here ψ0 = 1,
and σ 2 is the innovation variance of the associated time
series, i.e., σ 2

= exp{⟨log f ⟩}. Then a linear model is some
subset F of L parametrized by a vector θ , and we may
write F = {fθ : θ ∈ Θ} for a parameter space Θ; we
will refer to F as a model.

When σ 2 is a parameter of the model, it does not
depend upon the other components of θ , and we can
order things such that σ 2 is the last component. If there
are r + 1 parameters in total, then θr+1 = σ 2, and we
refer to the first r components by the notation [θ ], which
omits the innovation variance. In this case we say that fθ
is ‘‘separable’’. Clearly, ∇[θ ]σ

2
= 0 for separable models;

if this gradient is nonzero, then σ 2 is not a parameter
of the model, but rather a function of the other model
parameters. Then we have [θ ] = θ , for a total of r
parameters; this case is referred to as a non-separable
model. For example, ARMA models are separable, but
component ARMA models are not. For a separable model,
f[θ ] can be defined via fθ/σ 2, and clearly only depends on
[θ ]. In the non-separable case we use the same definition
of f[θ ], by a convenient abuse of notation.

As was discussed by McElroy and Findley (2010), there
exist simple formulas for the h-step-ahead forecast error
from a given model applied to a semi-infinite sample of a
process. The reason that we choose to base our approach
on semi-infinite predictors, rather than finite sample
predictors (see Newton & Pagano, 1983, for a discussion
of their computation for stationary processes), is that we
obtain a single time-invariant forecast error filter. This is in
contrast to managing a suite of time-varying forecast error
filters, the length of each ofwhich depends upon one’s time
location within the sample; see the Appendix for a brief
treatment of such a fitting criterion, which we will refer to
as ‘‘Least Squares’’ (LS). The net effect of using the semi-
infinite predictors is to create a computationally simpler
objective function that is more tractable for asymptotic
analysis and faster for estimation (there are no matrix
inversions involved). Also, note that we consider the direct
forecasting problem; see Marcellino et al. (2006), Proietti
(2011), and Stock and Watson (1999) for comparisons to
iterative one-step-ahead forecasting filters.

Suppose that our data process {Xt} is differenced to
stationarity with differencing operator δ(B), which has all
its roots on the unit circle, such that the resulting Wt =

δ(B)Xt is mean zero and stationary. Suppose that {Wt}

follows a model fθ ∈ F , so that we can write fθ (λ) =

|Ψ (e−iλ)|2σ 2. Note that each coefficient ψj potentially
depends on each of the first r components of θ . Then the
h-step-ahead forecast error (based on an infinite past) at
time t is equal to

[Ψ /δ]h−1
0 (B)

Ψ (B)
Wt;

see McElroy and Findley (2010) for the derivations, and
Findley et al. (2004) for an alternative formulation. The
square brackets denote the truncation of an infinite power
series to those coefficients with indexes lying between
the lower and upper bounds. In other words, [Ψ /δ]h−1

0 (B)
is given by computing a (nonconvergent) power series
Ψ (B)/δ(B), and taking only the first h terms. We then
designate the rational filter [Ψ /δ]h−1

0 (B)Ψ−1(B) as the h-
step-ahead forecast error filter.

If this forecast error filter is applied to a semi-infinite
sample from {Wt}, then the mean square of the resulting
forecast errors equalsf |[Ψ /δ]h−1

0 (e−i·)|2

|Ψ (e−i·)|2


, (1)

wheref is the true spectral density of the Data Generating
Process (DGP) for the {Wt} series. Observe that this
quantity depends explicitly on δ(B) if and only if h > 1,
which means that the one-step-ahead forecast error does
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not involve the unit root properties of the time series,
whereas themulti-step-ahead forecast error does.McElroy
and Findley (2010) utilize Eq. (1) as the basis of a model
goodness-of-fit diagnostic; it is also related to the popular
statistic of Diebold and Mariano (1995). However, in
this paper we are primarily interested in using it to fit
time series models; in this case, one could substitute the
periodogram I (see below) forf in Eq. (1).

Let us rewrite Eq. (1) as a function of the model
parameters [θ ]. For any f ∈ L and a given δ, define f (h)(λ)
via |[Ψ /δ]h−1

0 (e−iλ)|2 (its dependence on δ is suppressed
in this notation). Then, replacingf in Eq. (1) with a generic
function g , we obtain

J([θ ], g) =


f (h)
[θ ]

f[θ ]
g


. (2)

That is, J([θ ],f ) is the asymptotic mean square h-step-
ahead forecast error arising from model f[θ ]; note that
the model’s innovation variance plays no role in the
forecast error filter. However, J([θ ], I) is an empirical
estimate of the mean squared error, where I(λ) =

n−1
|
n

t=1 Wte−iλt
|
2 is the periodogram computed on

a sample of size n taken from the differenced series
{Wt}. As was discussed by McElroy and Findley (2010),
with derivations from Findley et al. (2004), J([θ ], I)
approximately corresponds to the empirical sum S([θ ]) of
h-step-ahead forecast errors calculated from finite-sample
predictors (see the Appendix for the definition of S([θ ])).

When the model spectrum is separable, one can com-
pute J([θ ], g) for any given g . If it is non-separable, e.g., it
is an unobserved components model, then computing the
Wold coefficients is laborious. For instance, if the model
consists of an ARMA(2,1) cycle plus white noise irregu-
lar (say, using the basic structural models described by
Harvey, 1989), then the parameters readily determine the
spectral density, but its Wold form Ψ must be determined
using spectral factorization techniques. Note that spectral
factorization will produce a moving average where the
leading coefficient need not be unity; this can be factored
into the innovation variance. In this way, Eq. (2) can be
computed, although now ∇[θ ]σ

2
≠ 0. We henceforth as-

sume that J([θ ], g) can be evaluated; this is easy for ARIMA
models, as is explained in the Appendix.

Now consider theminimization of J([θ ],f )with respect
to [θ ]: the optimum [θ ] yields a fitted model f[θ ] with
the smallest possible forecast error within the model
F . Likewise, we can obtain an empirical estimate by
minimizing J([θ ], I). Denote a minimum of J via [θg ],
where g is alternatively I orf , depending on our interest.
Consistency of [θI ] for [θf ]will then follow fromasymptotic
results for linear functionals of the periodogram (see
Section 3 below).

For the purposes of forecasting, a knowledge of [θg ]
is sufficient, because the forecast filter does not depend
on the innovation variance. However, if a knowledge of
the forecast precision is desired, we must also obtain
σ 2. The true innovation variance is denoted by σ 2

=

exp{⟨logf ⟩}, and we can writef = f[θf ]σ 2 whenever the
model is correctly specified. If the model is separable, then

the innovation variance (either true or empirical) can be
computed via

σ 2
g =

J

[θg ], g


J

[θg ], f[θg ]

 . (3)

As usual, take g = f to be the true innovation variance,
and g = I to be our estimate of it. However, if the
model spectrum is non-separable, we would already have
determined σ 2

g during the process of finding the Wold
decomposition of the aggregate spectrum. That is, we
would already know both fθg and f[θg ], whose ratio is
σ 2
g . Thus, Eq. (3) holds for both the separable and non-

separable cases.
It follows that σ 2

I will be consistent forσ 2, as is shown
in Section 3 below. Note that setting g = f in Eq. (3)
provides an interpretation of the pseudo-true value of the
innovation variance, i.e., σ 2f ; namely, it is equal to the

h-step-ahead forecast MSE J([θf ],f ) arising from using
the specified model, divided by the normalization factor
J([θf ], f[θf ]). When h = 1, this latter term equals unity, and
plays no role, but when h > 1 it has an impact. As a result,
we have no reason to expect σ 2f to be increasing in h, even
though the h-step-ahead forecast MSE is indeed typically
increasing in h.

Thus, these equations together give us an algorithm:
first minimize Eq. (2) with respect to [θ ], then compute
the minimal σ 2 via Eq. (3). When g = f , this provides us
with the so-called pseudo-true values (which in turn are h-
step generalizations of the classical pseudo-true values of
the KL discrepancy, cf. Taniguchi & Kakizawa, 2000), and
these are equal to the true parameters when the model is
specified correctly. However, when g = I , this method
provides us with parameter estimates ([θI ], σ 2

I ) that are
consistent for the set of pseudo-true values (regardless of
whether the model is correctly or incorrectly specified).

We now make some further connections between
J and the KL discrepancy. It is well-known that the
log Gaussian likelihood for the differenced data {Wt}

is approximately proportional to the Whittle likelihood
(Taniguchi & Kakizawa, 2000), which is simply the KL
discrepancy between the periodogram I and the model fθ .
This KL discrepancy can be computed for any two positive
bounded functions f , g via the formula
KL(f , g) = ⟨log f + g/f ⟩. (4)
If we wish to fit a model to the data, we minimize
KL(fθ , I) with respect to θ , and denote the resulting
estimate by θI . This can be done in two steps when fθ
is separable, since then the KL is rewritten as log σ 2

+

σ−2
⟨I/f[θ ]⟩, so that the optimal σ 2

I equals ⟨I/f[θI ]⟩ (this
requires ∇[θ ]σ

2
= 0). In other words, when the model is

separable, the minimization of KL is equivalent to the two-
step minimization of Eqs. (2) and (3) for h = 1.

The Generalized Kullback–Leibler (GKL) discrepancy is
therefore defined analogously for h ≥ 1:

GKL(h)δ (f , g) = ⟨log f ⟩ + log⟨f (h)⟩ +


g
f f (h)


⟨f (h)⟩

. (5)

Note that this reduces to Eq. (4) when h = 1, since then
f (h) ≡ 1. However, for h > 1 we have the extra log⟨f (h)⟩
term, without which the minimization of Eq. (5) would
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not be equivalent to optimization via Eqs. (2) and (3). This
relationship is described in Proposition 2 of Section 3.

In practice, we can utilize the identities ⟨g⟩ = γ0(g)
and

⟨fI⟩ =
1
n
W ′Γ (f )W

to computeGKL(h)δ (fθ , I), whereW = (W1,W2, . . . ,Wn)
′ is

the available sample. Also, because ⟨log f[θ ]⟩ = 0,weobtain

GKL(h)δ (fθ , I) = log

σ 2γ0(f

(h)
[θ ] )


+

W ′Γ


f (h)
[θ ] /f[θ ]


W

nσ 2γ0(f
(h)
[θ ] )

. (6)

This is quite easy to compute for ARIMA models, for
which the autocovariances are readily obtained (see
the Appendix). In particular, no matrices need to be
inverted (unlike with maximum likelihood estimation).
The computation of multi-step forecasts and forecast error
covariances from a finite past for stationary processes is
discussed by Newton and Pagano (1983); our approach
utilizes semi-infinite forecast error filters instead, thereby
avoiding much of the complexity required for matrix
inversion.

The formula also holds for the non-separable case, but
one must first determine the Wold decomposition for fθ ,
as described above. The pseudo-true values, i.e., the values
to which parameter estimates converge, are given by the
minimizers of GKL(h)δ (fθ ,f ). The statistical properties of the
parameter estimates are covered in Section 3.

Thus, Eq. (6) gives a unifiedmethod for fittingmodels to
time series data W , which generalizes Whittle estimation
from h = 1 to h > 1. If this procedure is repeated
over a range of h, say 1 ≤ h ≤ H for some user-
defined forecast threshold H , we obtain many different
fits of the specified model, with each corresponding
parameter estimateθ (h) yielding the optimal h-step-ahead
(asymptotic) mean square forecast error. Of course, these
parameters will vary widely in practice, since there is no
need for optimality to be achieved over a range of forecast
leads for one single choice of parameters; this is illustrated
in the numerical studies of Section 4. Having multiple
parameter fits of the same model available is useful, since
each fit is optimal with respect to its own h-step-ahead
forecasting objective.2

Hence, a strategy for optimal multi-step-ahead fore-
casting is the following. For each h desired, utilize the fore-
cast filters based on themodel fitted according to theGKL(h)δ
criterion. Over repeated forecasts, in an average sense, this
procedure should prove to be advantageous (this is neces-
sarily so in-sample). We refer to this process as the com-
posite forecasting rule. It is explored further in Section 5
on a real time series.

3. Statistical properties of the estimates

In this section we develop the statistical properties of
GKL. First we present gradient and Hessian expressions

2 The first author thanks Donald Gaver for this insightful perspective.

for the separable and non-separable cases. Optimization
of GKL can then easily be related to the optimization of
the multi-step-ahead forecasting error J . We then state
the consistency and asymptotic normality results for the
parameter estimates under standard regularity conditions.

We begin by studying GKL(h)δ (fθ , g) as a function of
θ , abbreviated as G(θ). It follows from the definition in
Eq. (5) that

G(θ) = log σ 2
+ log⟨f (h)

[θ ] ⟩ +
J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

. (7)

Note that σ 2 may well depend upon [θ ] in the non-
separable case, but this dependency will be suppressed in
the notation. Now Eq. (7) is convenient because it involves
the function J . We begin our treatment by noting that
J([θ ],f ) has a global minimum at [θf ] when the model
is correctly specified; this follows from MSE optimality of
the h-step-ahead forecast filter. In this case,f ∈ F , and
there existsθ such thatf = fθ , so that [θf ] = [θ ] when
the minimum is unique (this is really a property of the
parametrization of the model).

We next state the gradient and Hessian functions of G
for the separable and non-separable cases. In the former
case, ∇ ′

θ =


∇

′

[θ ],
∂

∂σ 2


, whereas in the latter case we have

∇θ = ∇[θ ], since there is no differentiation with respect to
innovation variance (σ 2 is not a parameter).

Proposition 1. For a separable model, the gradient and
Hessian functions of GKL are given by

∇[θ ]G(θ) =
⟨∇[θ ]f

(h)
[θ ] ⟩

⟨f (h)
[θ ] ⟩

+
∇[θ ]J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

−
J([θ ], g)⟨∇[θ ]f

(h)
[θ ] ⟩

σ 2⟨f (h)
[θ ] ⟩2

∂

∂σ 2
G(θ) = σ−2

− σ−4 J([θ ], g)

⟨f (h)
[θ ] ⟩

∇[θ ]∇
′

[θ ]G(θ) =
⟨∇[θ ]∇

′

[θ ]f
(h)
[θ ] ⟩

⟨f (h)
[θ ] ⟩

−
⟨∇[θ ]f

(h)
[θ ] ⟩⟨∇

′

[θ ]f
(h)
[θ ] ⟩

⟨f (h)
[θ ] ⟩2

−
∇[θ ]J([θ ], g)⟨∇ ′

[θ ]f
(h)
[θ ] ⟩ + ⟨∇[θ ]f

(h)
[θ ] ⟩∇

′

[θ ]J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩2

+
∇[θ ]∇

′

[θ ]J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

−
⟨∇[θ ]∇

′

[θ ]f
(h)
[θ ] ⟩J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩2

+ 2
⟨∇[θ ]f

(h)
[θ ] ⟩⟨∇

′

[θ ]f
(h)
[θ ] ⟩J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩3

∂

∂σ 2
∇[θ ]G(θ) = σ−4 J([θ ], g)

⟨∇[θ ]f
(h)
[θ ] ⟩

⟨f (h)
[θ ] ⟩2

− σ−4 ∇[θ ]J([θ ], g)

⟨f (h)
[θ ] ⟩

∂2

∂2σ 2
G(θ) = −σ−4

+ 2σ−6 J([θ ], g)

⟨f (h)
[θ ] ⟩

.
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For a non-separable model, the gradient and Hessian
functions of GKL are given by

∇θG(θ) =


∇θσ

2

σ 2
+

⟨∇θ f
(h)
[θ ] ⟩

⟨f (h)
[θ ] ⟩


1 −

J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩


+

∇θ J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

∇θ∇
′

θG(θ) =


∇θ∇

′

θσ
2

σ 2
−

∇θσ
2
∇

′

θσ
2

σ 4

+
∇θ∇

′

θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩

−
∇θ f

(h)
[θ ] ∇

′

θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩2


·


1 −

J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩



+
J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩


∇θσ

2

σ 2
+

∇θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩



×


∇

′

θσ
2

σ 2
+

∇
′

θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩



−
∇θ J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩


∇

′

θσ
2

σ 2
+

∇
′

θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩



−


∇θσ

2

σ 2
+

∇θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩


∇

′

θ J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

+
∇θ∇

′

θ J([θ ], g)

σ 2⟨f (h)
[θ ] ⟩

.

The proof follows from calculus, and is omitted. These
expressions are written in terms of J , and its gradient and
Hessian, which can also be expanded further algebraically.
The resulting expressions could be used in the numerical
optimization of GKL, though the implementation would
be quite burdensome: it would require the calculation
of the various derivatives of spectral densities and their
associated inverse Fourier Transforms (FTs). Thus, for
many models, these formulas are of no practical use,
although they do serve the purpose of establishing that the
minimization of GKL coincides with the minimization of
Eq. (2), together with the computation of Eq. (3).

Proposition 2. Suppose that the model is separable. If [θg ]

is a minimum of Eq. (2) and σ 2
g is computed via Eq. (3), then

([θg ], σ
2
g ) is a global minimum of G(θ). Conversely, for any

minimizer θg of G(θ), [θg ] minimizes J([θ ], g). The minimal
value of G is 1 + log J([θg ], g). When the model is non-
separable, the minima of J([θ ], g) are also minimizers of
G(θ).

Thus, GKL really corresponds to themulti-step-ahead fore-
cast error minimization problem. As a practical matter,
minimization of Eq. (2) is more convenient thanminimiza-
tion of GKL, as it involves one parameter fewer (in the
separable case). However, GKL is more convenient as a dis-
crepancy measure between spectra, and for establishing
asymptotic results for parameter estimates.

Proposition 2 can be adapted to data fitting (let g = I)
or the computation of pseudo-true values (let g = f ).

We always assume that the order of integration d has been
specified correctly, and that appropriately differenced data
are passed into the routines.

Recall that when the model is correctly specified, θf
corresponds to the true parameter vector θ , and we
can expect that θI will converge to this value. However,
when the model is misspecified, θI converges to θf under
fairly classical regularity conditions. A first treatment of
consistency has been given by Findley et al. (2004), but
here we extend the result to asymptotic normality under
somemore stringent conditions. Our central limit theorem
shows that multi-step estimation has asymptotic variance
that, in general, is not equal to the inverse of the Fisher
information matrix, when the model is correctly specified.
This implies that the estimates are inefficient, butwhen the
model is misspecified, we can no longer say what types of
estimates have the minimal variance, except on a case by
case basis.

We shall assume that our pseudo-true parameters are
not on the boundary of the parameter set, because the
limit theory is non-standard in this case (cf. Self & Liang,
1987). If the pseudo-true parameter is unique, the Hessian
of GKL should be positive definite at that value, and hence
invertible. The so-called Hosoya-Taniguchi (HT) conditions
(Hosoya & Taniguchi, 1982; Taniguchi & Kakizawa, 2000)
impose sufficient regularity on the process {Wt} to ensure
a central limit theorem; these conditions require that
the process is a causal filter of a higher-order martingale
difference. Finally, we suppose that the fourth order
cumulant function of the process is identically zero, which
says that the process looks Gaussian in terms of the
second and fourth order structure. This condition is not
strictly necessary, but facilitates a simple expression for
the asymptotic variance of the parameter estimates. Let the
Hessian of G(θ)with g =f be denoted H(θ).

Theorem 1. Suppose that θf exists uniquely in the interior
of Θ and that H(θf ) is invertible. Suppose that the process
{Wt} has finite fourth moments, conditions (HT1)–(HT6) of
Taniguchi and Kakizawa (2000, pp. 55–56) hold, and that
the fourth order cumulant function of {Wt} is zero. Then, as
n → ∞,
√
n

θI − θf  L

H⇒ N

0,H−1(θf )V (θf )H−1(θf ) . (8)

Here, the matrix V (θ, f ) is defined via

V (θ) = 2


∇θ

f (h)
[θ ]

fθ ⟨f
(h)
[θ ] ⟩

∇
′

θ

f (h)
[θ ]

fθ ⟨f
(h)
[θ ] ⟩

f 2 .
Remark 1. In order to produce estimated standard errors
for parameter estimates, it is best to proceed as if themodel
was misspecified (since otherwise we will mis-state the
uncertainty); the quantities in H−1VH−1 are computed by
substituting parameter estimates for pseudo-true values,
while plugging in I forf and I2/2 forf 2 (cf. Chiu, 1988;
and McElroy & Holan, 2009). With these substitutions, the
matrices can be computed using quadratic forms in the
data vectorW , as well as its sample autocovariance vector.
Of course, if the exact gradient and Hessian are already
used in the numerical optimization procedure, then these
quantities can be used to find H .
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4. Illustrations

Although in general it is difficult to compute J([θ ], g)
explicitly, it is possible in some special cases. We first
provide several analytical examples involving stationary
and nonstationary DGPs, then consider several numerical
illustrations of the GKL objective functions.

4.1. Analytical derivations of optima

When forecasting stationary processes long-term, the
forecasts tend to revert to the mean independent of the
parameter values (this can also be seen in the large h
behavior of GKL when δ(z) = 1), and as a result the
objective functionwill be flat on themajority of its domain,
i.e., changes in parameter values will have no impact on
the forecasting performance. This situation is dramatically
different in the presence of non-stationarity, because the
large h behavior of GKL then tends to infinity, rather than
a constant. Our results below are computed in terms of a
generic g , which can be taken as either I orf , as the context
dictates.

First consider fitting an AR(1) model, and denote the AR
parameter by φ. Then

f[θ ](λ) = |1 − φz|−2

f (h)
[θ ] (λ) =

h−1
j=0

φjz j

2

J([θ ], g) =
1
2π

 π

−π

g(λ)|1 − φhzh|2 dλ

= (1 + φ2h)γ0(g)− 2φhγh(g).

Thus, the concentrated objective function is equal to γ0(g)
times 1 − ρh(g) + (φ2h

− ρh(g))2. Unless the correlation
is negative and h is even, this is minimized by φg satisfying
φh
g = ρh(g) = γh(g)/γ0(g) (otherwise the minimizer is
φg = 0). When φg = ρ

1/h
h (g), then σ 2

g = γ0(g)(1 −

φ2
g ), and the minimal h-step forecast error is J([θg ], g) =

γ0(g)(1 − ρ2
h (g)). A glance at the formulas for σ 2

g and
J([θg ], g) illustrates a pointmade in Section 2: although the
latter is increasing in h (note thatρ2

h (g) → 0 as h → ∞ for
processes with summable autocovariance functions), the
former need not be, as in the ARMA example below.

Let us further suppose that g is the spectrum of an
AR(1), so that ρh(g) = φh. Then φg = φ, the case of
consistency in the presence of correct model specification.
It is easy to check that σ 2

g equals the innovation variance
of g as well. The minimal forecast error function is
proportional to (1−φ2h)/(1−φ2), an increasing function
in h. If instead g is the periodogram of the above AR(1),
our estimate is the hth root of γh(I)/γ0(I), the lag h
(biased) sample autocorrelation. There is an efficiency loss,
in general, in using this estimate versus just γ1(I)/γ0(I).

Next, suppose that g is the spectrum of an ARMA(1,1) of
the form

f[θ ](λ) =
|1 +ωz|2
|1 −ϕz|2 .

The MA(∞) representation of the process has coefficients
ψj =ϕj−1(ϕ+ω) for j ≥ 1 andψ0 = 1.We then obtain the
autocorrelation sequence (cf. Box & Jenkins, 1976) ρh(g) =ϕh−1(ϕ + ω)(1 + ϕω)(1 + 2ωϕ + ω2)−1. Thus, φg is
equal to either zero, in which case this correlation ρh(g)
is negative and h is even, or ρ1/h

h (g). Therefore, as h →

∞, ρ
1/h
h (g) → ϕ and the MA parameter has no impact

on the minima, which is interesting; this is because the AR
parameter governs the long-term serial correlation. Also,
σ 2
g = σ 2

· (1 − φ2), which shows that the pseudo-true
value of the innovation variance is less than the actual trueσ 2. Moreover,φ is an increasing function of h, so that σ 2

g is
decreasing in h.

Finally, suppose that the process is a gap AR(2) with
spectrum

f[θ ](λ) = |1 −ϕz2|−2.

The autocorrelations are zero at odd lags, and are equal toϕh/2 when the lag h is even. Then, φg equals 0 whenever h
is odd, and equals

√
|ϕ| unlessϕ < 0 and h ≡ 2 mod 4, in

which case φg = 0 as well.
Now suppose that we fit an MA(q) model, which has

spectral density

f[θ ](λ) =

1 +

q
j=1

ωjz j

2

.

The resulting expression for J is generally fairly compli-
cated, but when h > q we have f (h)

[θ ] = f[θ ], so that
J([θ ], g) = γ0(g). Thus, the concentrated objective func-
tion is completely flat with respect to the parameters. This
reflects the fact that an MA(q) model has no serial infor-
mation bywhich to forecast at leads exceeding q. However,
this aspect is no longer relevant when non-stationary dif-
ferencing is present.

In particular, suppose q = 1 and h = 1, so that

J(ω, g) =

γ0(g)+ 2

k≥1
γk(g)(−ω)k

1 − ω2
.

This poses a highly non-linear optimization problem,
unless g has a special form.

The ARIMA(0, 1, 1) model was studied by Tiao and Xu
(1993), and can easily be adapted to fit our framework;
write the MA polynomial as 1 − θB and consider an
arbitrary h. Then,

[Ψ /δ]h−1
0 (B) = 1 + (1 − θ)

h−1
j=1

Bj

when h > 1. The full forecast error filter works out to be

[Ψ /δ]h−1
0 (B)

Ψ (B)
=

1 − Bh

1 − B
+

θBh

1 − θB

=

1 + (1 − θ)
h−1
j=1

Bj

1 − θB
.

Note that this filter corresponds to the transfer function of
an ARMA(1, h), and its Wold coefficients have the curious
pattern of being equal to unity up to index h−1, and equal
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to θ k−h+1 at index k when k ≥ h. Then the autocovariance
sequence satisfies

γk(fθ ) =


h − k + θ

1 − θ k

1 − θ
+ θ k

θ2

1 − θ2
k < h

θ k−h+1 1 − θ k

1 − θ
+ θ k

θ2

1 − θ2
k ≥ h.

Then J(θ, g) =


k γk(fθ )γk(g), and substituting our
expressions yields Eq. (2.3) of Tiao and Xu (1993).
Numerical minimization with g = I essentially truncates
the infinite summations to the sample size, because
γk(I) = 0 for |k| ≥ n. It is hard to say anything
about pseudo-true values analytically, as the optimization
problem is highly nonlinear.

Finally, consider the example of an ARIMA(1, 1, 0),
which was fitted for multi-step-ahead forecasting via
ordinary least squares by Marcellino et al. (2006). Denote
the AR polynomial by the usual 1 − φB. Then the forecast
error filter is

[Ψ /δ]h−1
0 (B)

Ψ (B)
=

1 − Bh

1 − B
− φ

1 − φh

1 − φ
Bh.

This corresponds to an MA(h) with all unit entries except
the last coefficient, which is equal to−φ(1−φh)(1−φ)−1;
call this ζ (φ) for short. Then the autocovariances have a
simple structure: γ0(fφ) = h + ζ 2(φ) and γk(fφ) = h −

k + ζ (φ) for k ≤ h, and zero otherwise. Then J(φ, g) will
still be nonlinear in φ, but it is interesting that only a finite
number of autocovariances of g are involved. In particular,

J(φ, g) = γ0(g)[h + ζ 2(φ)]

+ 2
h

k=1

γk(g)[h − k + ζ (φ)].

Taking the derivative with respect to φ provides two
solutions: either ζ̇ (φ) = 0, or we must have ζ (φ) =

−
h

k=1 ρk(g). The first case demands a solution to

0 = 1 + 2φ + 2φ2
+ · · · + hφh−1

and in no way depends on the properties of g . The second
case requires the polynomial equation

φ + φ2
+ · · · + φh

=

h
k=1

ρk(g),

to be solved, which is done trivially by root-finding. Note
thatwhen h = 1we recover the familiarφg = ρ1(g); recall
that the differencing operator has no impact on parameter
estimates when h = 1, so we should just be fitting the
AR(1) to the differenced data, as indicated by the Whittle
likelihood. When h > 1, a different solution is called for;
in this particular case it is very fast to compute.

4.2. Numerical calculation of pseudo-true optima

We look at experimental results by determining
pseudo-true values for a range of DGPs and models.
By examining the resulting concentrated GKL objective
functions and the pseudo-true values, we can get a sense
of how eachmodel is fitted to the respective DGPs.Wewill

consider the Local Level Model (LLM) of Harvey (1989),
which is defined as consisting of a randomwalk trend plus
independent white noise. Such a process can be re-written
as an ARIMA(0, 1, 1), where the MA polynomial is 1 − θB
(with θ ≥ 0), as in the previous subsection. If the signal-
to-noise ratio (SNR) is q > 0, i.e., the innovation variance
of the randomwalk component is qσ 2 and the white noise
variance is σ 2, then it is known that

θ =
q + 2 −


q2 + 4q

2
,

by solving the spectral factorization problem. Note that
as q → 0 we obtain θ → 1, or in other words
the process becomes more like a pure white noise as
the SNR decreases. We also consider the Smooth Trend
Model (STM) of Harvey (1989), which is like the LLM
except with two differencings. Then the aggregate process
is an ARIMA(0, 2, 2), and the coefficients ω1, ω2 of the
MA(2) are complicated functions of the signal-to-noise
ratio (seeMcElroy, 2008b, for a spectral factorization of the
STM).

For our numerical studies, our DGPs are selected from
the following list, where d = 1, 2; we do not consider
d = 0, for the reasons discussed in the previous subsection.
In general, we use the notationΩ(z) = 1+ω1z+ω2z2 and
Φ(z) = 1−φ1z −φ2z2 for the ARMA process with the MA
polynomial Ω and AR polynomial Φ; also, the innovation
variance σ 2

= 1 in all cases.

• D1: d = 1, ω1 = −0.1, ω2 = 0 = φ1 = φ2.
• D2: d = 1, ω1 = −0.8, ω2 = 0 = φ1 = φ2.
• D3: d = 1, ω1 = 0.7, φ1 = 0.2, and ω2 = 0 = φ2.
• D4: d = 1, φ1 = 0.9 cos(π/60), φ2 = −0.81, and
ω1 = ω2 = 0.

• D5: d = 2, φ1 = 0 = φ2, ω1, ω2 corresponding to SNR
= 0.1 in STM.

• D6: d = 2, φ1 = 0 = φ2, ω1, ω2 corresponding to SNR
= 10 in STM.

This provides an interesting collection of DGPs. The first
two processes correspond to the LLM with a high (D1) and
a low (D2) trend-to-noise ratio, respectively. The STM is
explored for different values of the SNR through D5 and
D6. Process D3 follows a mixed ARMA model, while D4
generates a cyclical effect with a period of 60 observations.
Themodels considered are ARIMA(p, d, q)with p = 1, q =

0 (AR), p = 0, q = 1 (MA), and p = 0 = q (WN), with
d = 1, 2 corresponding to the DGP.

This gives 18 combinations of models and DGPs. For the
AR and MA models, the objective function J in Eq. (2) can
be computed, and is displayed in Figs. 1 and 2 for 1 ≤ h ≤

10 as a function of the single parameter (the individual
objective functions are not labeled with regard to h, to
avoid cluttering the picture). In some cases the minima
are fairly obvious and change smoothly with respect to h,
but in other cases the objective functions can be either flat
(resulting in less reliable estimates of the optima) or cris-
crossing (resulting in oscillatory patterns in the optima as
h changes). Tables 1 to 6 summarize the numericalminima,
and also present the pseudo-true innovation variances.
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Table 1
Pseudo-true values for models fitted to DGP D1.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ −0.0998 −0.1118 −0.1098 −0.1098 −0.1098 −0.1098 −0.1098 −0.1098 −0.1098 −0.1098
AR(1) σ 2 1.0001 1.0118 1.0052 1.0035 1.0023 1.0016 1.0010 1.0006 1.0003 1.0000

MA(1) ω −0.0998 −0.0998 −0.0998 −0.0998 −0.0998 −0.0998 −0.0998 −0.0998 −0.0998 −0.0998
MA(1) σ 2 1 0.9998 0.9997 0.9997 0.9997 0.9996 0.9996 0.9996 0.9996 0.9996

WN σ 2 1.010 0.910 0.877 0.860 0.850 0.843 0.839 0.835 0.832 0.830

Table 2
Pseudo-true values for models fitted to DGP D2.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ −0.4870 −0.5010 −0.6347 −0.6068 −0.7066 −0.6707 −0.7525 −0.7146 −0.7824 −0.7465
AR(1) σ 2 1.2498 1.1069 0.7716 0.6979 0.5916 0.5458 0.4943 0.4630 0.4324 0.4099

MA(1) ω −0.8004 −0.8004 −0.8004 −0.8004 −0.8004 −0.8004 −0.8004 −0.8004 −0.8004 −0.8004
MA(1) σ 2 1.0000 1.0002 1.0003 1.0004 1.0006 1.0007 1.0008 1.0009 1.0010 1.0011

WN σ 2 1.6400 0.8400 0.5733 0.4400 0.3600 0.3067 0.2686 0.2400 0.2178 0.200

Table 3
Pseudo-true values for models fitted to DGP D3.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ 0.5788 0.4731 0.4391 0.4271 0.4232 0.4212 0.4212 0.4212 0.4212 0.4212
AR(1) σ 2 1.2242 1.5562 1.6185 1.6239 1.6124 1.6011 1.5871 1.5766 1.5686 1.5623

MA(1) ω 0.7804 0.8164 0.8224 0.8244 0.8244 0.8244 0.8244 0.8244 0.8244 0.8244
MA(1) σ 2 1.0253 1.0959 1.1856 1.2328 1.2612 1.2791 1.2914 1.3004 1.3072 1.3125

WN σ 2 1.8438 2.9125 3.4113 3.6820 3.8479 3.9590 4.0385 4.0981 4.1445 4.1816

Table 4
Pseudo-true values for models fitted to DGP D4.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ 0.4970 0.1178 −0.7385 −0.6068 −0.8663 −0.1896 0.0938 −0.1018 −0.7745 −0.7465
AR(1) σ 2 2.9078 5.1052 8.7612 6.7663 4.1471 2.3597 1.6041 2.6589 5.5698 5.0134

MA(1) ω 0.7964 −0.7385 −0.7565 −0.6926 −0.5469 −0.2934 0.7305 −0.6966 −0.7166 −0.6727
MA(1) σ 2 1.9458 9.0817 9.6785 8.2420 5.4644 2.9958 0.6728 9.8307 10.5664 9.0148

WN σ 2 3.8594 5.7759 5.4789 3.9234 2.4333 1.7826 1.9040 2.2479 2.3479 2.1288

Table 5
Pseudo-true values for models fitted to DGP D5.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ −0.6567 −0.9980 −0.8044 −0.9980 −0.8583 −0.9980 −0.8862 −0.9980 −0.9042 −0.9980
AR(1) σ 2 1.5540 1.4719 0.7471 0.7761 0.5472 0.5735 0.4538 0.4758 0.3991 0.4177

MA(1) ω −0.8543 −0.8144 −0.7924 −0.7804 −0.7725 −0.7665 −0.7625 −0.7585 −0.7545 −0.7525
MA(1) σ 2 1.1997 0.7769 0.6609 0.6185 0.6011 0.5934 0.5916 0.5897 0.5870 0.5886

WN σ 2 2.7263 1.2961 0.8747 0.6704 0.5485 0.4671 0.4086 0.3646 0.3301 0.3024
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Table 6
Pseudo-true values for models fitted to DGP D6.

Minima

Models Leads
1 2 3 4 5 6 7 8 9 10

AR(1) φ −0.2495 −0.2495 −0.2435 −0.2395 −0.2375 −0.2375 −0.2355 −0.2355 −0.2355 −0.2355
AR(1) σ 2 1.0003 0.9999 0.9955 0.9961 0.9975 1.0006 1.0003 1.0021 1.0037 1.0049

MA(1) ω −0.2335 −0.2056 −0.1956 −0.1916 −0.1896 −0.1876 −0.1856 −0.1836 −0.1836 −0.1836
MA(1) σ 2 1.0044 0.9660 0.9655 0.9693 0.9732 0.9752 0.9756 0.9750 0.9774 0.9795

WN σ 2 1.0670 0.8536 0.7907 0.7602 0.7420 0.7299 0.7212 0.7146 0.7094 0.7053

Firstly, DGP D1 (Table 1) shows the MA(1) parameter
equal to truth (up to numerical error), as this model is cor-
rectly specified; however, the misspecified ARIMA(1, 1, 0)
model exhibits an h-step pseudo-true value for φ that
varies slightly for small values of h and then stabilizes as h
increases. The first two panels of Fig. 1 confirm this behav-
ior. More or less the same behavior is evident for DGP D2
in Table 2, with only the true parameter value having been
changed. The fact that the innovation variance for the WN
fit decreases as h increases should cause no confusion, in
light of the comments made previously about the proper
interpretation of this parameter.

For DGP D3we see that the fitted parameters also seem
to stabilize for increasing values of h (Table 3), and the
objective functions for this case (bottom row of Fig. 1)
look qualitatively quite similar to those for D2 and D1.
DGP D4 is much more interesting, with the objective
functions overlapping one another for different values of
h (top row of Fig. 2). As a result, the pseudo-true values
for the AR and MA parameters change quite a bit, and
seem not to stabilize in h (Table 4). This is no surprise,
given the strong spectral peak in the data process that is
captured badly by the grossly misspecified models. As h
increases, a different snap-shot of this cyclical process is
obtained, and the h-step-ahead forecast error is optimized
accordingly.

Finally, we have DGPs D5 and D6 (Tables 5 and 6),
which exhibit distinct behavior in the objective functions
from the other cases (middle and bottom rows of Fig. 2).
Unfortunately, portions of these likelihoods (especially
in the AR model case) are extremely flat, resulting
in numerical imprecisions in the optima shown. The
ARIMA(0,2,1) performs slightly better, since, in a sense,
it is less badly misspecified, the true model being an
ARIMA(0, 2, 2). Also, the increased SNR in D6 makes the
trend in the STM more dominant, which presumably
facilitates forecasting (compared to a noisier process), and
this may be the reason that the optima are better behaved.

5. Empirical results

We first study a time series of chemical data from an
in-sample forecasting perspective, in order to show the
correspondence between GKL and LS. We then examine
housing starts, and demonstrate the superior long-term
forecasting performance of the 12-step GKL over the
conventional MLE.

5.1. Chemical data

We consider chemical process concentration readings
(Chem for short).3 The sample has 197 observations.
This series was studied by McElroy and Findley (2010),
who argued that an ARIMA(0, 1, 1) model was the most
appropriate of several contenders, according tomulti-step-
ahead forecasting criteria (based on parameter estimates
obtained using MLEs). The same model was identified for
the series by Box and Jenkins (1976), and was also studied
by Tiao and Xu (1993). Fitting Chem using GKL(h)δ yields the
MA(1) polynomials 1−0.698B, 1−0.798B, and 1−0.841B
for h = 1, 2, 3 respectively.

We noted earlier (Section 2) that the GKL objective
function given in Eq. (2) is an asymptotic form of the
forecast mean squared error. In contrast, the LS method
is based on empirical forecasts generated from a finite
sample of data. As was discussed by McElroy and Findley
(2010), J([θ ], I) differs from the empirical forecast mean
squared error S([θ ])byOP(n−1/2), wheren is the number of
h-step-ahead forecasts. We also fitted the ARIMA(0, 1, 1)
model using the LS method, to see whether there were
any substantial discrepancies in the parameter estimates.
We obtained the MA(1) polynomials 1 − 0.694B, 1 −

0.773B, and 1 − 0.809B for h = 1, 2, 3 respectively,
with values of the objective function given by 0.101, 0.114,
and 0.121. In contrast, the GKL objective function had
minimum values of 0.102, 0.115, and 0.124, respectively;
it was also substantially faster to compute.

If we generate forecasts of Chem using a moving
window of sub-samples, and average the squared forecast
errors, the resulting behavior shouldmimic that of S (and J)
as the window size increases. In particular, let us consider
the forecast h steps ahead, for h = 1, 2, 3, from a sample
consisting of time indices t = 1, 2, . . . , 197 − n − h + s,
repeated for s = 1, 2, . . . , n. Moreover, let us generate
these forecasts from each of the three GKL and LS objective
functions, for h = 1, 2, 3. Then, thewithin-sample forecast
errors are calculated, squared, and averaged over s. The
results can be summarized in a 3 × 3 table, where the
row j corresponds to the GKL(j) or LS(j) parameter used, and
column k corresponds to the forecast horizon. Note that
the diagonal entries of the forecast errormatrix correspond
to forecasts generated from the composite forecasting
procedure described in the last paragraph of Section 2.

3 Available from http://www.stat.wisc.edu/∼reinsel/bjr-data/index.
html.
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Fig. 1. The left panels display the function J for the ARmodel, while the right panels display the function J for the MAmodel. The upper panels correspond
to DGP D1, the middle panels to DGP D2, and the lower panels to DGP D3. Overlaid objective functions correspond to h-step-ahead forecast MSEs, for
1 ≤ h ≤ 10. Higher curves correspond to greater values of h.

Referring to this forecast error matrix via F(n), we can
expect the column minima to occur on the diagonals, as
n → ∞. That is, min{j} Fjk(n) = Fkk(n) for each k = 1, 2, 3,
for large values of n.

This is heuristic, because as we increase n we reduce
the length of the filters used to generate forecasts;
nevertheless, Table 7 displays the pattern of F(n) for n =

50, 75, 100, 125, 150, and the expected property holds
starting at n = 125 (for GKL, and to a limited extent
for LS as well). The 2-step GKL does well for 3-step-ahead

forecasting for smaller values of n, presumably due to the
close values (−0.798 and −0.841) of their respective MA
parameters.

5.2. Housing starts

Here we study the series of ‘‘Total new privately owned
housing units started’’ in the U.S., from 1959 to 2004.
We omit the period of the Great Recession and some
antecedent years for illustrative purposes (no model fitted
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Fig. 2. The left panels display the function J for the ARmodel, while the right panels display the function J for the MAmodel. The upper panels correspond
to DGP D4, the middle panels to DGP D5, and the lower panels to DGP D6. Overlaid objective functions correspond to h-step-ahead forecast MSEs, for
1 ≤ h ≤ 10. Higher curves correspond to greater values of h.

to the pre-recession period has a reasonable forecasting
performance during the slump). The series was adjusted
for outliers and other regression effects by X-12-ARIMA,
and the log-transformed data were fitted by an airline
model using GKL and LS for h = 1, 12. In order to perform
an out-of-sample forecasting exercise, we only fit to the
first 40 years of data. The parameter estimates are given
in Table 8, along with the values of the objective function.
There were some differences between the LS and GKL
estimates in this case. While the h = 1 GKL parameters

were 0.279 (nonseasonalMA) and 0.827 (seasonalMA), the
LS parameters were 0.284 and 0.936. The minimum values
of the objective functions were 0.00814 (GKL) and 0.00793
(LS); however, whereas a single evaluation required 86 s
for LS, the time was less than a second for GKL. For h =

12, the GKL parameters were 0.157 (nonseasonal MA)
and 0.906 (seasonal MA), while the LS parameters were
0.176 and 0.999. The minimum values of the objective
functions were 0.06147 (GKL) and 0.05864 (LS), and a
single evaluation required 83 s for LS, versus less than
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Table 7
Empirical mean square forecast error grids F(n) by window size n = 50, 75, 100, 125, 150, for the Chem series, utilizing GKL(j)δ and LS(j) optima j = 1, 2, 3
(by row) and forecast horizons k = 1, 2, 3 (by column). Values in bold denote the lowest values in each column, for each n. On the left are results for using
GKL, and on the right are results for using LS.

F(n) from GKL F(n) from LS
Fit lead Forecast lead Fit lead Forecast lead

n = 50 1 2 3 n = 50 1 2 3

1 0.09832 0.13084 0.14282 1 0.09828 0.13119 0.14335
2 0.09974 0.12207 0.12997 2 0.09928 0.12417 0.13300
3 0.10094 0.11896 0.12540 3 0.09997 0.12123 0.12875

n = 75 1 2 3 n = 75 1 2 3

1 0.08627 0.11267 0.12505 1 0.08615 0.11281 0.12530
2 0.09018 0.10961 0.11919 2 0.08901 0.11026 0.12057
3 0.09266 0.10886 0.11711 3 0.09073 0.10938 0.11863

n = 100 1 2 3 n = 100 1 2 3

1 0.08673 0.10831 0.12017 1 0.08668 0.10847 0.12044
2 0.08882 0.10472 0.11365 2 0.08814 0.10553 0.11523
3 0.09035 0.10357 0.11110 3 0.08915 0.10441 0.11300

n = 125 1 2 3 n = 125 1 2 3

1 0.08527 0.10725 0.12125 1 0.08516 0.10733 0.12145
2 0.08934 0.10621 0.11717 2 0.08802 0.10624 0.11798
3 0.09232 0.10675 0.11632 3 0.08998 0.10626 0.11689

n = 150 1 2 3 n = 150 1 2 3

1 0.09537 0.11315 0.12473 1 0.09534 0.11326 0.12494
2 0.09764 0.11150 0.12081 2 0.09675 0.11163 0.12151
3 0.09996 0.11198 0.12026 3 0.09811 0.11153 0.12059

Table 8
Results for the fitting of the housing starts data via using a one-step and a twelve-step GKL criterion, using the first 20, 30, or 40 years of data. Values for
the GKL minimum are given, along with parameter estimates for the fitted airline model, and the average of squared forecast errors based on forecasting
until 2004.

GKL one-step GKL 12-step
20 years 30 years 40 years 20 years 30 years 40 years

GKL minimum 0.00893 0.00910 0.008137 0.06881 0.07427 0.061470
Nonseasonal MA 0.273 0.252 0.279 0.032 0.116 0.157
Seasonal MA 0.661 0.814 0.827 0.948 0.909 0.906
Forecast error 0.44170 0.01279 0.00316 0.07550 0.01186 0.00266

a second for GKL. Although these discrepancies are of
some interest, in the rest of our discussion we focus on
the GKL estimates. The key point is that the seasonal MA
parameter is larger for h = 12, implying a more stable
form of seasonality. When generating forecasts 5 years
ahead, the empirical mean square forecast error over this
period for h = 12 GKL is 84% of the result from the
h = 1 GKL. See Table 8 and Fig. 3. We repeat the analysis
with different amounts of data withheld in order to see a
longer span of forecasts. Parameter estimates from using
the first 20 or 30 years of data are given in Table 8, with a
dramatic reduction in forecast error in the former case (see
Fig. 3); in this case, the discrepancies between seasonal
MA parameter estimates are the greatest. It seems that the
1-step GKL forecasts use an older trajectory of the data,
perhaps due to an increased dependence upon the past,
merited by a more chaotic seasonal pattern; the 12-step
GKL forecasts seem to utilize a more nascent trajectory,
consistent with presuming a more stable seasonal pattern.
Generalizing these observations, it seems that a seasonal
MA parameter which is closer to unity generates more
‘‘conservative’’ forecasts that are based on the very recent

past, whereas a smaller seasonal MA parameter put a
greater weight on the distant past observations. In the
extreme case that a seasonalMA parameter is equal to one,
the airlinemodel reduces to an ARIMA(0, 1, 1)with a fixed
seasonal regressor, which is no longer I(2), betokening
a much less ambitious forecast pattern. For long-term
performance, the housing starts data seem to prefer this
conservative approach, and the performance gains can be
substantial.

6. Conclusion

Classical model-based approaches typically emphasize
a short-term one-step-ahead forecasting perspective for
estimating unknown model parameters. This procedure
could be justified by assuming that the ‘‘true’’ model has
been identified or that it is known to the analyst a pri-
ori. In contrast, we have emphasized the importance of
inferences based on multi-step-ahead forecasting perfor-
mances in the practically more relevant context of mis-
specified models. For this purpose, we have proposed a
generalization of the well-known Kullback–Leibler dis-
crepancy, and have derived an asymptotic distribution
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Fig. 3. Housing starts, along with forecasts from 40 years out (top),
30 years out (middle), and 20 years out (bottom). Forecasts are generated
from an airline model fitted using either the 1-step GKL or the 12-step
GKL.

theory for estimates that converge to ‘‘pseudo-true’’ val-
ues, expanding the consistency results of Findley et al.
(2004) to central limit theorems. In contrast to earlier ap-
proaches (e.g., Tiao & Xu, 1993; or Haywood & Tunnicliffe-
Wilson, 1997), our development is fairly general, covering
all difference-stationary processes with a causal Wold de-
composition.

We have illustrated the appeal of our approach by de-
riving closed-form solutions for a selection of simple pro-
cesses, such as the popular ARIMA(1, 1, 0) model used in
econometric forecasting. We then compared the perfor-
mances of classical (one-step-ahead) and generalized (h-
step-ahead) estimates in a controlled experimental design
based on a selection of both simulated and practical time
series. Our empirical findings confirm the asymptotic the-
ory, i.e., that the smallest forecast errors for a given fore-
cast lead arise from the corresponding criterion function
for that lead (cf. the discussion of the Chem series in Sec-
tion 5.1). We find evidence in the housing starts that unit
root over-specification (i.e., specifying a differencing oper-
ator of too high an order) can bemitigated, to some extent,
by longer-term forecasting criteria.

In this paper we have focused on univariate multi-
step-ahead forecasting over one forecast lead at a time.
In terms of future work, we are interested in address-
ing more complex forecasting problems, such as simulta-
neous optimization over many leads or real-time signal
extraction (computation of concurrent trend or seasonal-
adjustment filters) in univariate and multivariate frame-
works. The real-time signal extraction problem can be
parsed as an attempt to minimize revisions, which in turn
depends on the forecast performance at a variety of leads.
There is already substantial interest in the minimization
of revisions at statistical agencies (such as the U.S. Cen-
sus Bureau and the Australian Bureau of Statistics), and de-
signing a model-fitting criterion to minimize the revision
variance seems appealing. Such a procedure would have
ramifications for official seasonal adjustment procedures
such as X-12-ARIMA4 and TRAMO-SEATS.5 We expect the
frequency-domain approach underlying GKL to offer some
promising perspectives on these future topics.
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Appendix

A.1. The least squares criterion

Here,wedevelop themathematics for theminimization
of the h-step-ahead forecast MSE with respect to given
parameters, based upon finite-sample predictors. This is
referred to here as the least squares (LS) method, in
contrast to the GKL approach of Section 2, which relies on
semi-infinite predictors. The LS method is popular when
the fitted model is an AR(p), because then parameter
estimates can be obtained simply via regression (ordinary
least squares). However, the forecast formulas are a bit
more complicated for the general ARIMA(p, d, q), and we
develop our treatment for difference stationary processes.

Let X1:n denote our data sample, consisting of observa-
tions up to time n, and the matrix version of δ(B) is∆n, an
n × n dimensional matrix given by δ(Ln), where Ln is a lag
matrix. That is, the jkth entry of Ln is one if j = k + 1 and
zero otherwise, so that

∆n = δ(Ln) =

d
k=0

δkLkn.

This matrix differences all but the first d entries of X1:n to
be stationary {Wt}, and is always invertible. Consider the
covariance matrices computed from fθ with dimensions
indicated by subscripts, denoted Σ1:m,1:p for an m × p
matrix corresponding to the covariance ofW1:m withW1:p.
Then the estimate of present and future values given X1:n
is

X1:n+h = ∆−1
n+h


1d 0
0 Σ1:n+h−d,1:n−dΣ

−1
1:n−d,1:n−d


×∆n X1:n.

Here 1d denotes a d-dimensional identity matrix. The final
entry produces the forecast h steps ahead:

εn =Xn+h|1:n = [0, . . . , 0, 1]X1:n+h.

These formulas are derived in Eq. (11) ofMcElroy (2008a),6
and require the assumption that the first d values X1:d are
uncorrelated with {Wt}. Now the forecast error εn is a
function of the model parameters, and does not depend on
the innovation variance. Hence, we can write εn([θ ]). The
average sum of squares of such forecast errors is then

S([θ ]) =
1

N − h − d

N−h
n=d+1

ε2n([θ ]),

which, by definition, is the h-step-ahead LS criterion. Here,
N is the total number of observations available.

This LS criterion is more expensive to compute than
the GKL criterion function J([θ ], I), requiring a loop over
roughly N calculations, each of which requires matrix
inversion. Although the formula can be greatly simplified
and the algorithm quickened accordingly for certain
models, such as the AR(p), in general repeated calculations

6 Note an error in the final matrix on the right in the expression for D;
the block matrices of the upper block row should be interchanged.

must be made. (Newton & Pagano, 1983, give helpful
results for stationary processes, and there are tricks for
the fast calculation of ∆−1

n+h.) In contrast, GKL involves
no matrix inversion, because of the use of semi-infinite
predictors. Now the finite sample predictors tend to be
approximated well by semi-infinite predictors, even for
very small sample sizes, and in practice the performance
of J([θ ], I) is quite close to that of S([θ ]), as Section 5
demonstrates. Also, J([θ ], I) ismuch easier to analyze from
a theoretical and numerical perspective than S([θ ]).

A.2. Proofs

Proof of Proposition 2. Plugging [θ ] = [θg ] and σ 2
= σ 2

g
from Eq. (3) into the gradient formulas in the separable
case of Proposition 1 shows that θg is a critical point
of GKL, since ∇[θ ]J([θ ], g) evaluated at [θ ] = [θg ]
equals zero. Plugging into the Hessian formula yields (after
simplification):

∇[θ ]∇
′

[θ ]G(θ)|θ=θg =
∇[θ ]∇

′

[θ ]J([θ ], g)|θ=θg
J([θg ], g)

+
⟨∇[θ ]f

(h)
[θ ] ⟩⟨∇

′

[θ ]f
(h)
[θ ] ⟩J([θ ], g)

⟨f (h)
[θ ] ⟩2


θ=θg

∂

∂σ 2
∇[θ ]G(θ)|θ=θg =

∇[θ ]


f (h)
[θ ] |θ=θg

J([θg ], g)

∂2

∂2σ 2
G(θ)|θ=θg = σ−4

g .

This fills out a matrix H(θg), partitioned as
σ 4
g c c ′

+ B c
c ′ σ−4

g


,

for c = ∇[θ ]


f (h)
[θ ] |θ=θg /J([θg ], g) and B equal to the

Hessian of J([θ ], g) evaluated at [θg ], divided by J([θg ], g).
Then consider any vector a partitioned into the first r
components [a] and the final component b:

a′H(θg)a =

bσ−2

g + σ 2
g [a]′c

2
+ [a]′B[a],

by completing the square. Now, since the Hessian of J is
positive definite at [θg ] by assumption, and J([θg ], g) >
0, we conclude that H(θg) is positive definite. For the
converse, suppose that θg minimizes G(θ). Then, by the
gradient expression in Proposition 1, Eq. (3) must hold,
and in turn we must have ∇[θ ]J([θ ], g) equal to zero at
[θ ] = [θg ].

Next, suppose that the model is non-separable. Recall
that ∇θ is the same thing as ∇[θ ]. The expression for the
gradient of G(θ) in Proposition 1 shows that when σ 2

g
satisfies Eq. (3) and [θg ] is a critical point of J([θ ], g), then
θg is a critical point of G(θ). Plugging into the Hessian
expression yields

∇θσ
2

σ 2
+

∇θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩


∇

′

θσ
2

σ 2
+

∇
′

θ f
(h)
[θ ]

⟨f (h)
[θ ] ⟩



+
∇θ∇

′

θ J([θ ], g)
J([θg ], g)


θ=θg

,

which is positive definite. This completes the proof. �
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Proof of Theorem 1. Note that θg is a zero ofG(θ)with the
function g , so we can do a Taylor series expansion of the
gradient at θI and θf . This yields the asymptotic expression
(cf. Taniguchi & Kakizawa, 2000)

√
n

θI − θf  = oP(1)− H−1(θf ) √

n


rθf

I −f  ,

where rθ = ∇θ f
(h)
[θ ] f

−1
θ ⟨f (h)

[θ ] ⟩
−1. Our assumptions allow us

to apply Lemma 3.1.1 of Taniguchi and Kakizawa (2000)
to the right hand expression above, and the stated central
limit theorem is obtained. �

A.3. Implementation for ARIMA models

In order to compute parameter estimates and pseudo-
true values for a fitted ARIMA model, it is necessary to set
up an optimization algorithm carefully. In the case that the
DGP is a known ARIMA process and one seeks to obtain
pseudo-true values, the integrand of J in Eq. (2) can always
be written as the spectral density of a composite ARMA
process, with its AR and MA factors being determined by
both the DGP and the fitted model. An exact formula for
the integral is given as follows.

Say that the AR polynomial of degree p has the form
Πj(1−ζ−1

j z)rj for roots ζj ofmultiplicity rj. Similarly, let the
MA polynomial of degree q have the formΠℓ(1 − ξ−1

ℓ z)sℓ
for roots ξℓ of multiplicity sℓ. Then the variance of the
ARMA spectrum is

1
2π i


C

Πℓ(1 − ξ−1
ℓ z)sℓ(z − ξ−1

ℓ )sℓ

Πj(1 − ζ−1
j z)rj(z − ζ−1

j )rj
zp−q−1 dz,

where C denotes the unit circle of the complex plane. The
poles at ζj have multiplicity rj, and the pole at zero has
multiplicity q+1−pwhen this is positive.When q+1−p >
0, the variance simplifies to

j

∂ rj−1

∂zrj−1

×


Πℓ(1 − ξ−1

ℓ z)sℓ(z − ξ−1
ℓ )sℓzp−q−1(−ζj)

rj

Πk≠j(1 − ζ−1
k z)rk(z − ζ−1

k )rk(z − ζ−1
j )

 
z=ζj

+
∂q−p

∂zq−p


Πℓ(1 − ξ−1

ℓ z)sℓ(z − ξ−1
ℓ )sℓ

Πj(1 − ζ−1
j z)rj(z − ζ−1

j )rj

 
z=0
.

In practice, this formula does not provide the fastest
method of computation except in special cases. We
now describe a method that works for both parameter
estimation and the calculation of pseudo-true values. Let
Ψ (B) = Ω(B)/Φ(B), where Ω(z) = 1 + ω1z + · · · +

ωqzq and Φ(z) = 1 − φ1z − · · · − φpzp with r =

p + q. First, the data should be differenced using δ(B).
The main computational issue is the calculation of the
autocovariances in Eq. (6); this is detailed in the following
algorithm. The user fixes a given forecast lead h ≥ 1.

1. Given: current value of θ .
2. Compute the first h coefficients of the moving average

representation of Ω(B)/(Φ(B)δ(B)) (e.g., in R use
the function ARMAtoMA); the resulting polynomial is
[Ω/(Φδ)]h−1

0 (B).

3. Compute the autocovariances of f (h)
[θ ] (λ) = |[Ω/(Φ

δ)]h−1
0 (e−iλ)|2 and f (h)

[θ ] (λ)/f[θ ](λ), which both have
the form of ARMA spectral densities (e.g., in R use
ARMAacf ).

4. Form the Toeplitz matrix and plug into Eq. (6).
5. Search for the next value of θ using BFGS or any other

numerical recipe.

Explicit formulas for the quantity in step 2 are given
by McElroy and Findley (2010). Our implementation is
written in R, and utilizes the ARMAtoMA routine. Although
one could find the autocovariances of f (h)

[θ ] (λ)/f[θ ](λ)
directly through the ARMAacf routine, one still needs
the integral of f (h)

[θ ] (λ), which is the sum of the square
of the coefficients of its moving average representation.
Moreover, finding the MA representation first happens
to be more numerically stable. Also note that in step
3 the R routine ARMAacf has the defect of computing
autocorrelations rather than autocovariances. We have
adapted the routine to our own ARMAacvf, which rectifies
this deficiency.

When mapping ARMA parameter values into the
objective function, it is important to have an invertible
representation. In particular, the roots of both the AR
and MA polynomials must lie outside the unit circle. To
achieve this, we utilize our routine flipIt, which computes
the roots, flips those lying on or inside the unit circle
(by taking the reciprocal of the magnitude), compensates
the innovation variance (scale factor) appropriately, and
passes the new polynomials back to the objective function.
Step 4 is implemented using the toeplitz routine in R.

Step 5 requires a choice of optimizer. The R routine
optim is reliable and versatile, as one can specify several
different techniques. The implicit bound on the polynomial
roots is handled automatically through the flipIt routine,
so only the innovation variance needs to be constrained,
and this is handled most naturally through optimizing
over log σ 2 instead, which can take any real number as
its value. Then, a conjugate gradient method such as BFGS
(Golub & Van Loan, 1996) can be used to compute the
gradient andHessian via a numerical approximation; some
routines allow for the use of an exact gradient and Hessian.
While the formulas in Section 4 allow one to calculate
these exact quantities in principle, the programming effort
is considerable and it is not clear whether there is any
advantage to be gained, since the resulting formulas
depend on multiple calls to ARMAacvf and the like.
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