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a b s t r a c t

We consider the problem of estimating the variance of the partial sums of a stationary time series that
has either long memory, short memory, negative/intermediate memory, or is the first-difference of such
a process. The rate of growth of this variance depends crucially on the type of memory, and we present
results on the behavior of tapered sums of sample autocovariances in this context when the bandwidth
vanishes asymptotically.We also present asymptotic results for the case that the bandwidth is a fixed pro-
portion of sample size, extending known results to the case of flat-top tapers. We adopt the fixed propor-
tion bandwidth perspective in our empirical section, presenting two methods for estimating the limiting
critical values—both the subsampling method and a plug-in approach. Simulation studies compare the
size and power of both approaches as applied to hypothesis testing for the mean. Both methods perform
well – although the subsampling method appears to be better sized – and provide a viable framework
for conducting inference for the mean. In summary, we supply a unified asymptotic theory that covers all
different types of memory under a single umbrella.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Consider a sample Y = {Y1, Y2, . . . , Yn} from a strictly station-
ary time series with mean EYt = µ, autocovariance function (acf)
γh = Cov(Yt , Yt+h), and integrable spectral density function f (ω)
=


h γhe

−ihω .We are interested in studying the distribution of the
studentized sample mean where the normalization involves the
summation of sample autocovariancesweighted by an arbitrary ta-
per, and when the stochastic process exhibits either short or long
memory or even when the process is overdifferenced. The latter
case is especially tricky – and not well-studied in the literature –
because in this case the studentization is achieved by dividingwith
a quantity that tends to zero. The objective in studentizing/self-
normalizing the mean is the generation of a pivotal asymptotic
distribution that can serve as the basis for the construction of
confidence intervals andhypothesis tests for the unknownmeanµ.

In the case that the autocovariances γh are (absolutely) summ-
able with


h γh > 0, it is well-known – under regularity condi-

tions – that the sample mean Y = n−1 n
t=1 Yt is asymptotically

normal with variance f (0) =


h γh, i.e.,
√
n(Y − µ)

L
H⇒

N(0, f (0)). (Here L
H⇒ denotes weak convergence.) A consistent
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estimate of f (0) is given by

WΛ,M =


|h|≤M

ΛM(h)γh, (1)

whereΛM is an arbitrary taper (described in Section 3), andγh are
the sample autocovariance estimators defined by

γk =
1
n

n−|k|
t=1

(Yt+|k| − Y )(Yt − Y ) for |k| < n. (2)

As usual, M = M(n) is a bandwidth parameter tending to ∞

as n → ∞ but in such a way that M is smaller than n. Define
the bandwidth-fraction to be b = b(n) = M(n)/n. The literature
on such taper-based, ‘‘lag-window’’ spectral estimators is exten-
sive, going back over fifty years; see e.g. Hannan (1970), Brillinger
(1981), Priestley (1981), Rosenblatt (1985), Brockwell and Davis
(1991), and the references therein. Also see Grenander and Rosen-
blatt (1957), Blackman and Tukey (1959), and Percival andWalden
(1993). Much is already known about the classical case where
f (0) is bounded above and bounded away from zero, but also
about the long memory case where f (0) is infinite—see, e.g., Beran
(1994), Robinson (1994), and Palma (2007). Other recent literature
includes Sun (2004), Robinson (2005), and Abadir et al. (2009).
However, little is yet known in the case that f (0) = 0, although
this possibility was brought to the forefront early on by Rosenblatt
(1961). We attempt to remedy this situation in the paper at hand.

http://dx.doi.org/10.1016/j.jeconom.2013.06.002
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The case f (0) = 0 will be referred to henceforth as the supereffi-
cient (SE) case, since it implies Y = µ + oP(n−1/2), i.e., supereffi-
cient estimation of the mean.

The SE case has received little attention in the literature despite
the fact that it is of some importance in applied econometrics. We
illustrate this through a brief discussion of the unit root problem
that arises from over-differencing. Although most economic time
series exhibit obvious trends, much debate rages over whether
processes are stationary or I(1); witness the extensive literature
on unit-root testing, starting with Dickey and Fuller (1979, 1981).
Hamilton (1994) gives an overview; also see Phillips and Perron
(1988) and Parker et al. (2006) and the references therein. It is
commonly felt that an economic time series is rarely I(2), and
yet many such I(2) models are selected by automatic model
identification software, such as X-12-ARIMA and TRAMO-SEATS
(both of which often select the Box–Jenkins airline model, which
is I(2)); see the discussion in Findley et al. (1998), and Maravall
and Caparello (2004).

Over-differencing relates to over-specification of the order of
differencing, i.e., modeling a process as I(1) when it is stationary,
or as I(2)when it is only I(1). Naturally, estimation of parameters
(such as the mean and other regression effects, but also maximum
likelihood estimation of ARMA parameters) is performed on the
differenced series, where the nonstationarity has been removed.
But if the differencing order has been over-specified, then there
will be over-differencing; this results in the spectrum of the dif-
ferenced data being zero at frequency zero. For example, if {Yt}

is stationary with spectral density f but is viewed as I(1), then
the spectrum of the data’s first difference is |1 − e−iλ

|
2f (λ). We

mention in passing that similar issues exist, at least in theory, for
seasonal frequencies, i.e., taking a seasonal difference when the
seasonal component of the time series is actually stationary. In this
case, the zero in the spectrum takes place at the seasonal frequen-
cies corresponding to the angular portions of the zeros of the sea-
sonal differencing operator. Such zeros offer no impediment to the
estimation of the sample mean, but may generate other problems
in model estimation; we do not pursue this point further here.

One approach to this problem is to do a pre-test of a possible
unit root before differencing the data (Dickey and Fuller, 1979).
Also see the treatment in Tanaka (1990, 1996). The power of the
Dickey–Fuller statistic is explored inmany articles, including Lopez
(1997), and the power can be rather small because the statistic is
not

√
n consistent under the alternative. Given that Type II errors

will occur some of the time, we advocate in this paper the use of
robust studentized sample mean estimates, where the robustness
is with respect to the three basic cases for f (0): infinite (longmem-
ory), finite andpositive (shortmemory), or zero (the SE case, distin-
guished in what follows as either negative memory or differential
memory). To that end, we study the finite-sample and asymptotic
distributional properties of studentized sample means, where the
normalization is of the form (1) and the stochastic process satis-
fies some very general conditions. Note thatWΛ,M must mirror the
properties of the variance of the sample mean under the three sce-
narios: for long memory, it must diverge at the appropriate rate;
for short memory it should converge to the same constant; and for
negative/differential memory it should tend to zero at the same
rate. Our work determines what conditions on a taper are needed
in order to ensure such a robustness against different alternative
memory scenarios.

In this paper we focus on the sample mean statistic, because
of its central role in nonparametric estimation of location, but
there are further applications and implications of our results. The
Generalized Method of Moments (see Kiefer and Vogelsang, 2005)
uses the partial sums of some function of the time series in order
to estimate parameters of interest; for example, the average of
squared one-step ahead in-sample forecasts from a given model
provide such a partial sum. Partial sum statistics also are featured
in unit root tests (Parker et al., 2006) and change point tests (Kirch
and Politis, 2011).

Ourmain goal is to develop a practical procedure for conducting
inference for the mean using the studentized sample mean, such
that the methodology is valid when long memory is present. To
address this goal we derive novel results regarding the joint dis-
tributional properties of Y and WΛ,M for various stochastic pro-
cesses and various tapers, distinguishing between the case that the
bandwidth-fraction b is vanishing and the case that it is a constant
proportion. In the former case,we obtain central limit theorems for
the sample mean, while the variance estimate tends in probability
to a constantwhen appropriately normalized (Section 3). Butwhen
the bandwidth-fraction is constant, the variance estimate tends to
a random limit (Section 4). For the SE case these are all novel re-
sults. In Section 2 we give precise definitions of the four types of
memory (LM, SM, NM, and DM), and also discuss some basic prop-
erties, many of which are new. The limit results of Sections 3 and 4
are utilized in Section 5, where the interesting application of test-
ing for the mean is discussed. We propose two methods of esti-
mating limit quantiles, one that utilizes subsampling (Politis et al.,
1999), and one that involves estimation of the memory parameter.
These procedures are evaluated through size and power simula-
tions, covering many stochastic processes, tapers, and bandwidth-
fractions. Section 6 summarizes our findings, and proofs are
gathered in an Appendix.

2. Types of memory

A primal modeling assumption for many economic time series
of interest is that they arise from sampling an I(d) process, where
d is integer. Whereas in time past the differenced process was
modeled via some short memory device, such as an ARMA model,
nowmore complex covariance structures, including long memory,
can be entertained—see Palma (2007) for an overview. So we
suppose that {Xt} is I(D) with D possibly non-integer, and we
difference d times (with d an integer), obtaining Yt = (1 − B)dXt .

If D − d = 0, then {Yt} is short memory—this corresponds to
the classical case alluded to above. If D − d > 0, we obtain a
long memory process, which is stationary when D − d < 1/2.
Note that if we differenced insufficiently such that D − d ≥ 1/2,
then {Yt} would be nonstationary, and this might be detected
by inspection of the sample autocorrelations. Then d could be
incremented through higher integers until D − d falls into the
range corresponding to stationarity. One could also proceed more
rigorously by using unit root tests.

Over-differencing, whereby D− d < −1/2, would be harder to
guard against. This is because in practice both the appropriately
differenced series and the over-differenced series often have
sample autocorrelations consistent with a stationary hypothesis.
Unit root testing techniques can be employed to guard against this
error, but there is some evidence that they have lower power in
the presence of long memory (Diebold and Rudebusch, 1991). This
discussion, which applies to many time series being examined for
the purposes of forecasting, signal extraction, or other analysis,
indicates how longmemory, short memory, or SEmay arise. When
the order of differencing d is selected correctly (i.e., D − d < 1/2),
then D ∈ (d, d + 1/2) implies that {Yt} will have (stationary)
long memory; if D = d then {Yt} will have short memory. But if
D ∈ [d− 1/2, d), then {Yt} will have negative memory (this is part
of the SE case, and is formally described below). Finally, the data
is over-differenced when D − d < −1/2; this case corresponds to
differential memory (the other portion of the SE case—see below),
and the sample mean has a radically different behavior. So the SE
situation arises either as anti-persistence or fromover-differencing
due to a false acceptance of the unit root hypothesis. Although anti-
persistence may arise naturally in time series, it can also arise at
once when nonstationary longmemory time series are differenced
appropriately.
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We now discuss in detail the different memory scenarios.
Throughout this paper we use the notation An ∼ Bn to denote
An/Bn → 1 as n → ∞. By ShortMemory (SM), we refer to the con-
dition that the autocovariances – recall that γh = Cov(Yt , Yt+h) –
are absolutely summable and their sum f (0) is a nonzero constant.
By Long Memory (LM), we mean that the autocovariances are not
summable, and the partial sums of them, denoted byWn, satisfy

Wn =


|k|≤n

γk = L(n)nβ . (3)

In (3) L is slowly varying at infinity (Embrechts et al., 1997), with a
limit that can be zero, C , or infinity, where C is a positive constant.
Most importantly, β > 0 (and is less than 1). In the SM case (3) ap-
plies with β = 0 and L tending to C =


k γk = f (0). The case that

β = 0but L tends to infinity is also LM (e.g., sayγk = k−1 for k ≥ 1).
We will denote by Negative Memory (NM) the case of an

absolutely summable autocovariance sequence such that (3) holds,
but with β < 0 (though the case that β = 0 and L tends to zero
is also considered to be NM). Some authors have used the term
‘‘intermediate memory’’ for this concept (Brockwell and Davis,
1991). Our nomenclature is due to the negativememory exponent,
and also the result that most of the autocovariances are negative
in this case (see Remark 2 below); the same conditions on L apply
here. When the autocovariances are zero past a certain threshold,
we obtain an example of Differential Memory (DM). For example,
consider an MA(q) data process that is over-differenced; the
resulting autocovariances are identically zero for lags exceeding q,
and


|k|<n γk = 0 for n > q + 1. These definitions encompass

ARFIMAmodels (Hosking, 1981), FEXPmodels (Beran, 1993, 1994),
and fractional Gaussian Noise models, as well as the case of
over-differenced processes. Some authors prefer to parametrize
memory in terms of the rate of explosion of f or 1/f at frequency
zero, but it is more convenient for us to work in the time domain;
see Palma (2007) for an overview.

To distinguish between the LM, SM, NM, andDMmemory cases,
the key determinant in the limit theorems for Sn = nY is the rate
of growth of Vn = Var(Sn), which in turn is related to


|k|≤n γk. In

the rest of this paper we study Sn/
Vn, where Vn is some estimate

of the variance Vn such that
Vn = OP(Sn). Recall that Wn =

|k|≤n γk by definition, which in turn has asymptotic behavior
given by (3) by assumption; then we have the following identity:

Vn =

n−1
k=0

Wk (4)

that is proved using summation by parts. Now for LMprocesses,Wn
diverges, whereas in the SM case Wn tends to a nonzero constant.
The superefficient case (SE) where f (0) = 0 is characterized by
Wn tending to zero; however, we distinguish the case that Wn is
summable (DM case) versus the case that it is not (NM case).

Definition 1. Define the four types of memory as follows:
• (i) LM: Wn has asymptotics given by (3) with either β ∈ (0, 1)

or β = 0 and L is tending to infinity.
• (ii) SM: Wn → C with C > 0.
• (iii) NM: Wn has asymptotics given by (3) with either β < 0 or
β = 0 and L is tending to zero. When β = −1, suppose thatWn
is not summable.

• (iv) DM: Wn is summable.

The condition (3) onWn in case (i) is denoted LM(β), and the same
condition onWn in case (iii) is denoted NM(β).

Remark 1. Note that cases (i), (ii), and (iii) are mutually exclusive,
since case (ii) essentially corresponds to β = 0 in (3) with L
tending to a nonzero constant. When β = −1 in (3), it is possible
for Wn to be either summable or not summable; the former case
belongs to case (iv). If β < −1 in (3), then necessarily this is case
(iv). Proposition 1 below shows that most of the autocovariances
are negative in case (iii), and this justifies the nomenclature
of ‘‘negative memory’’. In case (iv) {Yt} can be represented as
the difference of another stationary process (Proposition 2), and
hence the appellation ‘‘differential memory’’. The case of an over-
differenced series, as discussed above, is always included in case
(iv). BothNMandDMhave f (0) = 0, so both are part of the SE case.

Remark 2. These four cases are mutually exclusive but do not
cover all possibilities, since we can consider a function L in (3)
that is not slowly-varying (e.g., L(n) = 1 + sin(n)). However, the
four cases are exhaustive for processes satisfying (3) with L slowly-
varying and β < 1.

The following representation for slowly-varying functions
(Theorem A3.3 of Embrechts et al., 1997) will be used below: we
can write L in the form

L(n) = c(n) exp
 n

z
η(u)/u du, (5)

with c(n) → c a positive constant, z some fixed positive constant,
andη(u) tending to zero asu → ∞. Note that in (5)we can take the
variable argument of L to be a continuous variable x. The following
result gives the behavior of Vn in each of the four cases described
in Definition 1, and also discusses the implied asymptotic behavior
of γk.

Proposition 1. With Wn and Vn given by (3) and (4) respectively,

Vn ∼
1

β + 1
nWn =

L(n)nβ+1

β + 1
(6)

for cases (i) and (ii), and for β > −1 in case (iii). When β = −1 we
have Vn/(nWn) → ∞ (so in a sense (6) holds true). In case (ii), we let
β = 0 in the formula and L(n) ∼ f (0). In case (iv), Vn →


k≥0 Wk.

If β ≠ 0 in cases (i) and (iii), we also have

γn ∼
β

2
L(n)nβ−1. (7)

In cases (i) and (iii)withβ = 0we have γn ∼ −0.5
 n
n−1[η(u)/u] du

= o(n−1).

This result shows that Vn → ∞ in cases (i), (ii), and (iii), as
long as β > −1. This will facilitate a fairly standard limit theorem
for Y under some additional conditions. Case (iv) produces a very
different sort of limit theorem; these results are discussed in
Section 3.

Remark 3. Note that L(n) must be non-negative for all n larger
than some n0, say; this follows from (6) and the fact that Vn > 0
for all n. Hence, for large n all the γn are negative in the NM case
and positive in the LM case by (7). Essentially, NM is due to heavy
negative correlation and LM to heavy positive correlation; this
justifies the name ‘‘negative memory’’ for the NM case.

Example 1. Let β > 0 with γh = h−β for h ≥ 1 and γ0 chosen
suitably large to guarantee the sequence is positive definite; then
this is the acf of a LM process. If we (temporally) difference the
process, then the resulting acf is 2γh − γh+1 − γh−1, which equals

2h−β
− (h + 1)−β − (h − 1)−β = −β(β + 1) h−(β+2)

+ o(1)

when h ≥ 2. Although this appears at first to be NM (comparing
to (7)), in fact it can be shown that Wn is summable so that the
differenced process is DM (see Proposition 2).

Example 2. Let β < 0 and γh = −hβ−1 for h > 0, and γ0 =

2


h≥1 h
β−1. Then the discrete Fourier transform of {γh} is 2


h≥1

hβ−1(1 − cos λh) for λ ∈ [−π, π], which is always non-negative.
Hence {γh} is the acf of a time series process; by (7) it seems to have
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the form of a NM acf, but we must check the summability of Wn.
Direct calculation shows that

Wn = 2

h>n

hβ−1
= O(nβ).

Thus if β ≥ −1 the process is NM, but otherwise is DM.

In case (ii) there is no result of the form (7), but in case (iv)
the autocovariances have a particular structure if we suppose in
addition that {Yt} is purely non-deterministic. This is discussed in
the proposition below, whose result is similar to Theorem 8.6 of
Bradley (2007).

Proposition 2. Suppose that Wk is summable and {Yt} is purely non-
deterministic with mean µ and acf {γh}. Then there exists a strictly
stationary process {Zt} with autocovariance sequence rk such that
Yt = Zt − Zt−1 +µ and γk = 2rk − rk+1 − rk−1. This decomposition
is not unique. Also Wk = 2(rk − rk+1) and r0 =


k≥0 Wk/2.

Conversely, given any stationary process {Zt} with acf rk tending to
zero, the differenced process Zt − Zt−1 is DM.

Wenote that the process {Zt}might be LM, SMorNM, andmight
even be DM.

Example 3. Let {Zt} be i.i.d. and let Yt = Zt −Zt−1. Then clearly {Yt}

is DM with autocorrelation of −0.5 at lag one and zero at higher
lags. If the innovation variance is unity, then W0 = 2 and Wk = 0
for k ≥ 1; this is clearly a summable sequence.

Example 4. A more interesting example is given as follows: let
Yt =


∞

j=0 ψjϵt−j where {ϵt} is white noise and ψj = (−1)j/jp

for p > 0 and j ≥ 1, withψ0 = −


∞

j=1 ψj (which clearly exists by
the alternating series test). Hence


j ψj = 0, which implies that

k γk = 0. Notice that the variance of Yt only exists if p > 1/2,
since
∞
j=0

ψ2
j = ψ2

0 +

∞
j=1

j−2p
= F 2(1/2, p)+ F(1, 2p),

where F(x, s) is the periodic-zeta function given by F(x, s) =
n≥1 e

2π ixnn−s. The variance of
n

j=0 ψjϵt−j is
n

j=1 j
−2p

+ ψ2
0 ∼

n1−2p, which diverges unless p > 1/2; we assume this henceforth,
as we are not concerned with infinite variance time series in this
paper. As in the proof of Proposition 2, define

θj =

j
k=0

ψk = −

∞
k=j+1

(−1)k

kp
.

The sum of any two consecutive terms of this series, up to a minus
sign, can bewritten as k−p

−(k+1)−p
= ((1+1/k)p−1)/(k+1)−p,

which by Taylor series expansion about zero yields an approxi-
mation of p k−1(k + 1)−p plus terms that decay at order k−2−p.
Thus asymptotically, the sum of consecutive terms in θj is p k−p−1,
plus other terms that decay even faster. So such a sequence is
summable, and we find that θj = O(j−p) as j → ∞. Since p > 1/2,
this sequence is square summable. This implies that the time series
Zt =


j≥0 θjϵt−j is well-defined, i.e., is finite almost surely, since it

has finite variance. Clearly Yt = Zt − Zt−1, and the other assertions
of Proposition 2 apply; in particular, {Yt} is DM.

Example 5. Suppose that an observed time series {Xt} is an
ARFIMA (0,D, 0) – see Palma (2007) – so that (1 − B)DXt = ϵt
is white noise, where D ∈ [0, 1]. If D = 1 this is just a random
walk, and if D ∈ [0.5, 1) the process is said to have nonstationary
long memory. If D < 0.5 the process is stationary, but with long
memory if D > 0. Of course D = 0 corresponds to short memory
(white noise). If the observed process is differenced once to pro-
duceYt = Xt−Xt−1, it is easy to see that the result is stationarywith
memory parameter β = 2D − 2. That is, if D = 1 we obtain short
memory (white noise); if D ∈ [0.5, 1) we obtain a negative mem-
ory process of parameter β ∈ [−1, 0); if D < 0.5 then we obtain a
process with differential memory. The borderline case D = 0.5 is
interesting: we do not get a differential memory process, since the
original process is nonstationary—instead we get a negative mem-
ory process with β = −1 and nonsummable Wk sequence.

3. Limit theory for the case of vanishing bandwidth-fraction

In the case that b(n) → 0 as n → ∞, we can treat the
asymptotics of Sn and WΛ,M separately (recall that WΛ,M was de-
fined in (1)), because the variance estimate, when appropriately
normalized, always converges to a constant. Let us then consider
the partial sums first; it is necessary to impose some additional
assumptions. Typical assumptions for limit theorems involve ei-
ther moment and mixing conditions, or linearity of the process
involved. Limit theorems have also been derived under the as-
sumption that the given process is a direct function of an under-
lying Gaussian process. It turns out (see discussion below) that
mixing assumptions are not helpful when (3) holds. Instead, one
canmake fairly strong assumptions on the higher order cumulants
of the time series. The kth order cumulant of {Yt} is defined by
ck(u1, u2, . . . , uk−1) = cum(Yt+u1 , Yt+u2 , . . . , Yt+uk−1 , Yt) for any t
and integers u1, . . . , uk−1, where k ≥ 1 (Taniguchi and Kakizawa,
2000). Letting u denote the k − 1-vector of indices, we write ck(u)
for short. Also let ∥ · ∥ denote the sup-norm of a vector, so that

∥u∥<n ck(u) is a short-hand for summing the cumulant over all
indices such that |uj| < n for each j. Given these notations, the
assumptions on our process {Yt} that we will consider are given
below:

• P1. {Yt} is a linear process: Yt =


j ψjϵt−j with {ψj} square
summable and {ϵt} i.i.d. with finite variance. Also, {Yt} is either
(i) LM(β) with β ∈ [0, 1); (ii) SM; or (iii) NM(β) with β ∈

[−1, 0].
• P2. {Yt} is a process that is either (i) LM(β) with β ∈ [0, 1);

(ii) SM; or (iii) NM(β) with β ∈ (−1, 0]. Also assume the kth
order cumulants exist and are summable over its k indices, for
all k ≥ 1. Moreover, when β < 0 we also assume that


∥u∥<n

|ck(u)| = O(nβ).

Remark 4. Yet another type of assumption would require 2 + δ
moments (for some δ > 0) and a mixing assumption. It is known
that the strong mixing condition of Rosenblatt (1956)1is not sat-
isfied by long memory Gaussian processes—Gaussian processes
are strongly mixing iff their spectrum is bounded away from zero
and infinity (Kolmogorov and Rozanov, 1960). If the process is not
Gaussian, it is conceivable that a strong mixing condition could
be satisfied, although no examples of this have been published.
The weak dependence condition of Doukhan and Louhichi (1999)
might be used instead, because in Bardet et al. (2008) it is shown to
be compatiblewith long range dependence. Alongwith a Lindeberg
condition on higher moments of the partial sum, a central limit
theorem can be established utilizing the Bernstein blocks method
described in Rosenblatt (1956) and Doukhan and Louhichi (1999).
Unfortunately, such a result is not compatible with (3) when β ≠

0: examination of Theorem 1 of Rosenblatt (1984) indicates that
the rate of convergence in this type of CLT must be knVpn , where

1 A stationary process {Yt } is strongly mixing (Rosenblatt, 1956) if αk → 0 as
k → ∞ where αk = supA∈F 0

−∞
,B∈F ∞

k
|P(A ∩ B)− P(A)P(B)|, and F m

j is the σ -
algebra generated by {Yk, j ≤ k ≤ m}.
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kn is the number of big blocks and pn is the size of the big blocks,
and moreover n ∼ knpn. This is not a paradox: in order to prove a
CLT, fairly strong assumptions must be placed upon themixing co-
efficients – either they must be strong mixing, or must have rapid
decay rate if they are weak dependence coefficients, etc. – which
then actually precludes the possibility of (3). For this reason, we do
not formulate limit theorems under mixing conditions in this pa-
per; also see the broader discussion in McElroy and Politis (2011).

Each of the above assumptions P1 and P2 provide sufficient
conditions for a limit theorem for Sn, as shown below. Results
under a third condition can be found inMcElroy and Politis (2011).
Note that these cover only cases of LM, SM, and NM; the DM
case must be handled separately in what follows. The β = −1
case is only handled under P1. Note that in the case of P2 with a
Gaussian process, all the cumulant assumptions are automatically
satisfied. In any of these scenarios, the assumptions are typically
unverifiable, or difficult to verify from the data; these should be
viewed as working assumptions.

The following result covers the cases of LM, SM, and NM under
the different conditions P1 and P2. We also establish a result for
the DM process, restricting to purely non-deterministic processes
so that Proposition 2 can be applied.

Theorem 1. Suppose that {Yt} is a strictly stationary process with
finite variance that satisfies (3). If the process satisfies one of P1 or P2,
then Sn−nµ

√
Vn

L
H⇒ B as n → ∞, where B is standard normal. If {Yt} is

purely non-deterministic with summable Wk, and if the process {Zt}
of Proposition 2 is either linear or strong mixing, then Sn−nµ

√
Vn

L
H⇒

(Z∗ − Z0)/
√
2r0 as n → ∞, where Z∗ is a random variable equal

in distribution to Z0, but independent of it.

To utilize Theorem 1 it is important to know Vn, or to estimate
it. In view of (3), the taper-based estimate given byWΛ,M in (1) is a
nonparametric estimate, and can be related to estimation of Vn via
(4) and (6). For example, with an SM processVn = nWΛ,M is often
used as an estimator.

The asymptotic behavior of WΛ,M depends on the type of taper
as well as the type of memory of the process. The tapers that we
consider are very general:ΛM is a piecewise smooth (i.e., piecewise
differentiable), even function on the integers such thatΛM(h) = 0
for |h| ≥ M . LettingUM denote themaximumvalue ofΛM(h) for all
h, we suppose that UM does not grow too fast asM → ∞. Classical
tapers are bounded, in which case UM can be taken constant. The
triangular (Bartlett) kernel, the trapezoidal (Politis and Romano,
1995), and the more general flat-top kernels (Politis, 2001; Politis,
2005) all satisfy these conditions.

Our next main result is that under some conditions the esti-
mator WΛ,M is asymptotic to the deterministic sequence WM as
M → ∞ (recall that M/n → 0, though), which is defined via

WM =


h

ΛM(h)

1 −

|h|
n


γh. (8)

We require the following condition, which parallels Assumption A
of Andrews (1991), to establish our result:

Assumption B. E|Y 4
t | < ∞ and the fourth order cumulant c4 is

absolutely summable.

The above assumption is compatible with the process condi-
tions P1 and P2, for the LM, SM, and NM cases. Assumption B is
also compatiblewith the DM case. As discussed in Andrews (1991),
linear processes with absolutely summable coefficients and finite
fourth moments satisfy Assumption B, even if the process is LM.
As Lemma 1 of Andrews (1991) shows, Assumption B is also im-
plied by a strongmixing plus moments condition. Of course, a long
memory Gaussian process trivially satisfies Assumption B, because
its fourth order cumulants are zero.
Proposition 3. Suppose that {Yt} is a strictly stationary process
satisfying Assumption B, which is either LM, SM, NM, or DM. Also
suppose that b(n) + 1/M(n) → 0 as n → ∞. Then WΛ,M =WM(1 + oP(1)).

Nextwe consider the asymptotics of the deterministic sequenceWM (8), which depends upon the memory assumptions. Together
with Proposition 3, this will show that WΛ,M is asymptotic to
a constant times WM . This constant will be denoted by ζ , and
depends upon β and the taper used. This type of result is pertinent,
as discussed above, to the estimation of Vn. We consider tapers of
the formΛM(h) = Λ(h/M) for a fixed functionΛ(x).We assumeΛ
is an even, piecewise smooth function, that is real-analytic on every
such interval; by Λ̇+(x) for x ≥ 0, we denote the derivative from
the right (and Λ(j)+ (x) for higher order derivatives). An example is
a ‘‘flat-top’’ taper where there exists an interval [0, c] (with c > 0)
for which Λ equals unity—see Politis (2001). Then define ζ = 1
whenΛ is the truncation taper (i.e.,Λ = 1[−1,1]), and otherwise

ζ = −

 1

0
Λ̇+(x)xβ dx. (9)

Then we have the following result.

Theorem 2. Let Λ(x) be an even, piecewise differentiable function
supported on [−1, 1], withΛM(h) = Λ(h/M). Suppose that {Yt} is a
strictly stationary process satisfying Assumption B, which is either LM,
SM, NM, or DM. Also suppose that b(n) + 1/M(n) → 0 as n → ∞.
Then if the process is LM, SM, or NM with β ∈ (−1, 1),WM

WM
→ ζ as M → ∞. (10)

If the process is DM, thenWM ∼ −2 r0 Λ̇+(0)M−1 
1{c=0} + o(1)


.

In the SM case recall that C ∼


k γk, so that (9) with β = 0 yields
ζ = Λ(0); this equals unity as long as Λ(0) = 1, which is com-
monly assumed. Thus WΛ,M ∼ CΛ(0) and Vn ∼ nC can be esti-
mated by nWΛ,M when Λ(0) = 1. In the DM case for non-flat-top
kernels, the overall error is controlled by the first derivative Λ̇+(0).
This is because c = 0; but when c > 0, the rate of decay is even
faster, and is hard to describe in a general result. For example, with
the Bartlett taper Λ̇+(0) = −1, and WM ∼ 2r0M−1. However, for
the Parzen and Trapezoidal tapers Λ̇+(0) = 0. The quantity ζ is
asymptotic to one plus the relative bias (WM − WM)/WM , mea-
suring the asymptotic discrepancy between our variance estimate
WΛ,M and the sequenceWM .We refer to ζ as the quotient bias here-
after. Note that ζ is well-defined, since the derivative of Λ exists
almost everywhere.

Remark 5. It follows from Proposition 3, Theorem 2, and Propo-
sition 1 – when their respective conditions are satisfied – that in
probability

MWΛ,M ∼ (β + 1)ζ VM (11)

MWΛ,M ∼ −2 r0 Λ̇+(0)

1{c=0} + o(1)


for the cases of LM/SM/NM and DM respectively. Although VM =

Var(SM) is of some interest, we really need to obtain a quantity
asymptotic to Vn. Unfortunately, since b(n) = M(n)/n → 0, we
have VM/Vn → 0 except in the DM case. Sowe cannot normalize Sn
by


MWΛ,M in the LM/SM/NM case, since the normalization rate

is not correct (also there is the matter of the unknown (β + 1)ζ
factor). In the DM case, if we use a non-flat-top taper, we can
indeed utilize Sn (−MWΛ,M/Λ̇+(0))−1/2 since 2r0 =


k≥0 Wk =

V∞; by Theorem 1, this studentized statistic converges to Z∗ − Z0.
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Now ifβ > 0, then ζ can be rewritten asβ
 1
0 Λ(x)x

β−1 dxusing
integration by parts piecewise. In this case, we proceed to calculate
ζ for some commonly used tapers. The simplest flat-top taper is the
trapezoidal taper of Politis and Romano (1995) given by

ΛT ,c(x) =


1 if |x| ≤ c
|x| − 1
c − 1

if c < |x| ≤ 1

0 else

with c ∈ (0, 1]. Then it follows that

ζ T ,c
= −

 1

0
Λ̇T ,c(x)xβ dx =

1 − cβ+1

(1 − c)(1 + β)
.

Also in the DM case, it can be shown rather easily that MWM ∼
2

1−c (r[cM]−rM), which tends to zero at a rate that depends upon the
autocovariance sequence {rk} and the truncation c. The triangular
(Bartlett’s) taper is obtained as the limiting case ofΛT ,c as c → 0;
in this case, ζ Bar

= 1/(β + 1). Interestingly, the factor (1 + β)ζ
appearing in (11) is then unity for any β ∈ (−1, 1). Also since
Λ̇+(0) = −1 for the Bartlett, we have MWΛ,M ∼ VM for all cases,
including DM.

The asymptotic quotient bias ζ is also easily computed for the
Parzen taper, given by

ΛPar(x) =

1 − 6|x|2 + 6|x|3 if |x| ≤ 1/2
2(1 − |x|)2 if 1/2 < |x| ≤ 1
0 if |x| > 1.

Then ζ Par
= (2 − (1/2)β)(3/(β + 3)− 6/(β + 2)+ 3/(β + 1)).

4. Limit theory for the case of fixed bandwidth-fraction

The vanishing bandwidth-fraction results of Theorem 2 and Re-
mark 5 indicate a difficulty with using tapers when LM or NM is
present, because it is difficult to capture the correct rate for all
types of memory. In fact, there is an asymptotic distortion equal
to the quotient bias ζ that depends on the unknown β parameter.
In addition, there is the presence of the slowly-varying function
L. These problems can be resolved by using a fixed bandwidth-
fraction approach, which is described in this section. Because the
results for the DM case are quite different and do not allow for all
of the same statistical methods, we do not pursue this case further
here (though it is treated in McElroy and Politis (2011)).

As in Kiefer and Vogelsang (2005), let the bandwidthM be pro-
portional to sample size n, i.e., M = bn with b ∈ (0, 1]. We stress
that in this section b is a fixed number, and does not depend on n
as in the previous section. LetSi =

i
t=1(Yt − Y ) (so thatSn = 0).

A derivative ofΛ from the left is denoted Λ̇−, whereas the second
derivative is Λ̈. The greatest integer function is denoted by [·]. We
consider tapers from the following family:

{Λ is even and equals unity for |x| ≤ c, c ∈ [0, 1).
Furthermore,Λ is supported on [−1, 1],
is continuous, and is twice continuously differentiable on
(c, 1) ∪ (−1,−c)}. (12)

This assumption is slightly less restrictive than the conditions of
Theorem 2, because we only require two continuous derivatives.
This family of tapers includes the family of ‘‘flat-top’’ kernels of
Politis (2005) where c > 0, as well as the Bartlett kernel (letting
c = 0 and a linear decay of Λ), and other kernels considered in
Kiefer and Vogelsang (2005). The following result was proved in
McElroy and Politis (2012), and is restated here for convenience.

Proposition 4 (McElroy and Politis, 2012). Let Λ be a kernel from
family (12), and let the bandwidth be M = bn. Let b ∈ (0, 1] be a
constant bandwidth-fraction. Then

nWΛ,M =

n
i,j=1

SiSj 2Λ

i − j
M


−Λ


i − j + 1

M


−Λ


i − j − 1

M


= −

2
bn

n−[cbn]
i=1

SiSi+[cbn]


Λ̇+(c)+

1
2bn

Λ̈(c)+ O(n−2)


−

1
b2n2


[cbn]<|i−j|<[bn]

SiSj Λ̈
|i − j|
bn


+ O(n−1)



+
2
bn

n−[bn]
i=1

SiSi+[bn]

Λ̇−(1)+ O(n−1)


.

Remark 6. In case the taper is continuously differentiable at c ,
Λ̇+(c) = 0 and the second derivative becomes dominant in the
first term, which can then be recombined with the second term to
yield

−
1

b2n2


[cbn]≤|i−j|<[bn]

SiSj Λ̈
|i − j|
bn


+ O(n−1)


.

Likewise, if there is no kink at |x| = 1, then Λ̇−(1) = 0 and the
third term vanishes completely.

In order to apply this result, we need functional limit theorems
for the partial sums, sinceSi = Si − i/n Sn. For the LM, SM, and NM
cases such limit theorems can be proved which extend Theorem 1
under more restrictive conditions.

Functional limit theorems are often formulated in the Skorohod
space, denoted D[0, 1]—see Karatzas and Shreve (1991). Because it
is more convenient to prove tightness in C[0, 1], the space of con-
tinuous functions,wewill construct a linearly-interpolatedprocess
for the partial sums, and prove its convergence to Fractional Brow-
nian Motion (FBM), which is defined in Samorodnitsky and Taqqu
(1994). This provides a result of independent interest (Marinucci
and Robinson (2000) work in D[0, 1]), and also facilitates our main
application, given in Theorem 4 below, under fairly simple condi-
tions. One additional stricture, which seems unavoidable, is the re-
quirement for higher moments in the NM case; this is because the
sample paths are less smooth in the NM case than the LM case, so
that the tightness criterion is satisfied only by requiring highermo-
ments. (The same problem affects results in the Skorohod space, as
shown in Marinucci and Robinson (2000).)

So we consider the step function sum process Sn(t) = S[nt],
and its linear interpolant ξn(t) = S[nt] + (nt − [nt])Y[nt]+1. The
step function process is mean-centered at [nt]µ, while the latter is
mean-centered by ntµ; both will be normalized by the sequence√
Vn. It is immediate that Sn ∈ D[0, 1] and ξn ∈ C[0, 1].

Theorem 3. Let κ = 2 ∧ [2/(1 + β)] and suppose that {Yt} is a
strictly stationary process satisfying (3), and with moments of order
κ + δ for some δ > 0. Moreover, suppose that E[|Sn − nµ|

κ+δ
] =

O(V (κ+δ)/2n ). Furthermore, assume that the process satisfies either P1
or P2, with β ∈ (−1, 1). Then as n → ∞

V−1/2
n


ξ[n·] − nµ·

 L
H⇒ B (13)

in the sense that the corresponding probability measures on C[0, 1]
converge weakly. B is a FBM process of parameter β .

Letting Sn(t) = Sn(t) −
[tn]
n Sn and ξn(t) = ξn(t) −

[tn]
n ξn(1),

it follows from Theorem 3 thatS[rn]/
√
Vn converges weakly to the

processB(r) = B(r)−rB(1), which is a Fractional Brownian Bridge
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(FBB). Then putting Proposition 4 and Theorem 3 together – with
the fact that Sn and ξn are equivalent stochastic processes – yields
the following result.

Theorem 4. LetΛ be a kernel from family (12), and let the bandwidth
M = bn. Let b ∈ (0, 1] be a constant bandwidth-fraction. Let
κ = 2 ∧ [2/(1 + β)] and suppose that {Yt} is a strictly stationary
process satisfying (3), and with moments of order κ + δ for some
δ > 0. Moreover, suppose that E[|Sn − nµ|

κ+δ
] = O(V (κ+δ)/2n ).

Furthermore, assume that the process satisfies either P1 or P2 with
β ∈ (−1, 1). Then as n → ∞

Sn − nµ
nWΛ,M

L
H⇒

B(1)
√
Q (b)

, (14)

where (recall that c is defined in (12))

Q (b) = −
2
b
Λ̇+(c)

 1−cb

0

B(r)B(r + cb) dr

−
1
b2


cb<|r−s|<b

B(r)B(s)Λ̈
|r − s|

b


drds

+
2
b
Λ̇−(1)

 1−b

0

B(r)B(r + b) dr. (15)

Remark 7. The first result (14) was derived in a preliminary
calculation in McElroy and Politis (2009), and the distribution (15)
has been tabulated. The joint distribution of B(1) andQ (b)was also
explored in McElroy and Politis (2012) through the device of the
joint Fourier–Laplace Transform.

Unlike the special case studied by Kiefer et al. (2000), the nu-
merator B(1) of (14) is not independent of the denominator Q (b) if
β ≠ 0. To elaborate, Kiefer et al. (2000) considered the case b = 1
and c = 0, the kernel is the Bartlett, and β = 0 (although later
work by Kiefer and Vogelsang (2002, 2005) generalizes to b < 1).
Then Q (1) = 2

 1
0
B2(r) dr , and the authors note that B(1) is inde-

pendent ofB(r). As shown inMcElroy and Politis (2012), this is true
for other kernels as long as β = 0; however, if β ≠ 0, then B(1)
and Q (b) are dependent. Fortunately, it is a simple matter to de-
termine the limiting distribution numerically for any given value
of β , and any choice of taper and bandwidth fraction b.

5. Applications and numerical studies

The preceding two sections give two different perspectives on
the asymptotic behavior of taper-normalized sample means. If we
normalize Sn − nµ by


nWΛ,M , the studentized statistic does not

converge – except in the SM case – when adopting the vanishing
bandwidth-fraction perspective (see Remark 5 above2). However,
(Sn − nµ)/


nWΛ,M converges to a nondegenerate distribution by

Theorem 4when adopting the fixed bandwidth-fraction approach.
Since bandwidth choice is up to the practitioner, it appears that
the fixed bandwidth-fraction viewpoint might be preferable in our
attempt towards a unified treatment of inference for themean that
is valid in all kinds of scenarios.

However, the limit distribution of the studentized samplemean
will generally depend on β . Either one must estimate the nuisance

2 Remark 5 shows that the normalization MWΛ,M fails for the LM/SM/NM cases
under the vanishing bandwidth fraction asymptotics. In the SM case, one can use
nWΛ,M as normalization instead, because then WΛ,M ∼ ζ f (0) and Vn ∼ n f (0), so
that nWΛ,M ∼ ζ Vn (and ζ = Λ(0)−Λ(1), which is typically equal to 1). However,
nWΛ,M still does not work for the LM/NM cases, because nWΛ,M ∼ nζ L(M)Mβ and
Vn ∼ L(n)nβ+1/(β + 1).
parameters – including β – or a nonparametric technique such as
the bootstrap or subsampling (Politis et al., 1999) must be utilized
to get the limit quantiles. The parametric bootstrap is not feasible
here (since nomodel is specified for the data in our context) and the
block bootstrap tends to perform badly when autocorrelation dies
gradually (Lahiri, 2003). However, given that the limit distribution
has been tabulated for some values of β ∈ (−1, 1) and some
popular tapers (cf. McElroy and Politis, 2009), one can utilize a
plug-in estimator of β instead; this is similar in spirit to the
approach advocated in Robinson (2005).

These two techniques are described inmore detail below, along
with statistical justification. A newestimator ofβ , based on the rate
estimation ideas of McElroy and Politis (2007), is also discussed.
Then in the following subsection, both methods are applied to the
study of size and power for testing the null hypothesis thatµ = 0.
We look at Gaussian processes exhibiting LM, SM, or NM, at a
variety of sample sizes and choices of taper.

5.1. Subsampling methodology for obtaining critical values

Firstly, we consider the subsampling method applied to the
statistic Sn/


nWΛ,M , or equivalently, Y/


WΛ,M/n. Letting M =

bn as usual with b fixed and constant, under the assumptions
of Theorem 4 we obtain the nondegenerate limit distribution
B(1)/

√
Q (b) for the LM/SM/NM case. The subsampling distribu-

tion estimator (sde)will be consistent for this limit distribution un-
der a mixing condition, such as weak dependence (see discussion
in Section 3). In Jach et al. (2012) the weak dependence condition
is shown to be sufficient to establish consistency of subsampling
distribution estimators for studentized statistics; Ango-Nze et al.
(2003) was an earlier work on subsampling under weak depen-
dence.

As for the sde itself, we first select a subsampling block size
an, where a is the subsampling-fraction; as usual, this is assumed
to be vanishing, i.e., a = a(n) → 0, though an → ∞. Then
n − an + 1 = (1 − a)n + 1 contiguous overlapping blocks of the
time series are constructed, and the statistics Y andWΛ,bn are eval-
uated on each block. This means a sample mean over an random
variables, and the corresponding tapered variance estimate based
on this subsample, so that the bandwidth is actually abn rather
than bn. As a practical matter, unless b and a are taken fairly large,
the bandwidth abn becomes unmanageably small. The subsampled
statistics can be collected into a set:

Y an,i − Y n
WΛ,abn,i/(an)

for i = 1, . . . , n − an + 1


.

Now taking the order statistics on this collection produces the
quantiles of the sde. Further details of the construction can be
found in Politis et al. (1999), but we here sketch the remaining
theoretical details. First we note a general result that follows from
Theorem 2 and Remark 5: ifM/n → 0 as n → ∞, then

Vn/n2WM/M
→ 0. (16)

This is true for the LM/SM/NM case, since by Proposition 1 the limit
is O([M/n]1−β). Therefore, the probability that the ith subsample
statistic exceeds a given x is

P


√
an

Y an,i − Y n
WΛ,abn,i

> x



= P


San − anµ
anWΛ,abn

− b−1/2 Sn − nµ
√
Vn


Vn/n2

WΛ,abn/(abn)
> x


.
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Using Theorems 1 and 4, as well as Proposition 3 and (16), the sec-
ond term in the probability will tend to zero. Hence

P


San − anµ
anWΛ,abn

> x


→ P


B(1)

√
Q (b)

> x


as n → ∞, noting that an → ∞ by assumption (and b is fixed).
Now, as long as the ith subsample statistic is approximately inde-
pendent to the jth onewhen |i− j| is large –which is implied by the
weak dependence condition – the sde is consistent for the target
limit distribution, and subsampling is valid. Note that we assume
the fixed bandwidth-fraction condition for this result, but end up
utilizing some of the vanishing bandwidth-fraction results, since
the actual bandwidth-fraction for the subsampled tapered variance
estimate is the vanishing quantity ab.

5.2. Plug-in methodology for obtaining critical values

Alternatively, one can use a plug-in approach as in McElroy and
Politis (2012). This plug-in philosophy has an extensive history in
econometrics, as summarized in Robinson (2005). The basic idea of
that paper is to take Theorem 1 together with Eq. (6), and estimate
the rate explicitly via a plug-in estimator of the memory parame-
ter β; cf. (3.13) of Robinson (2005) and the Memory Autocorrela-
tion Consistent (MAC) estimator. Because a vanishing bandwidth
fraction approach is used in the MAC theory, the approach yields
a normal limit as in our Theorem 1. This can be contrasted to the
fixed bandwidth fraction approach, together with a tapered vari-
ance estimate to normalize instead by nβ+1 (as in the MAC case),
which results in amore complicated limit distribution (Theorem4)
that depends on the trueβ . Either approach – that ofMAC or that of
McElroy and Politis (2012) – requires estimation of β , ultimately.
The MAC approach does not allow for slowly-varying functions in
Eq. (3) – these functions would need to be modeled separately –
while the plug-in approach here requires prior calculation of lim-
iting critical values by simulation (see below). So there are some
pros and cons to each approach (this discussion is not exhaustive;
e.g., there are subsampling approaches to rate estimation as well).

Adopting the fixed bandwidth-fraction asymptotics (so assume
b is constant throughout), and assuming that β ∈ (−1, 1), we pro-
ceed to estimate the quantiles of the limit distribution B(1)/

√
Q (b)

via first estimatingβ from the data, and then utilizing xα(β), where
xα(β) is the upper right α quantile of B(1)/

√
Q (b). That is,

P


B(1)
√
Q (b)

> xα(β)


= α.

These quantiles have been tabulated for β ∈ B = {−0.8,−0.6,
−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8}, three values of α, several com-
monly used tapers, and all values of b (via regression)—see the
tables in McElroy and Politis (2009). Since the distribution is con-
tinuous in β , any consistent estimate β can be utilized. Then one
finds the member of B closest to the given β – call this β – and
utilizes xα(β). This will be called the empirical plug-in method.
Clearly, a finer mesh of simulation values for B would improve the
procedure, but wemay yet expect to obtain results superior to just
using β = 0 in ignorance of the truememory. This latter approach,
which essentially assumes that only short memory is present, will
be referred to as the default plug-in method, and will be utilized as
a benchmark for the empirical plug-in method.

Nowmany nonparametric estimators of β can be utilized. Here
we consider the simple estimator proposed in McElroy and Politis
(2012), namely:

β =
logWΛ,bn

log n
. (17)

This is consistent for β under the assumptions common to this
paper.
Table 1
Empirical size for two-sided test with Type I error rate α = 0.05 based on sample
size n = 250, using the Bartlett kernel. In each cell, the first row is for sampling
fraction a = 0.2, the second row for a = 0.1, and the third row for a = 0.04.
Various values of the memory parameter β are considered, as well as block sizes
b = 0.5, 1.

Empirical size for Bartlett taper

Beta
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Bartlett, b = 0.5
a = 0.2 90.6 89.8 83.2 85.3 84.7 82.6 76.8 76.6 66.8
a = 0.1 95.2 92.9 90.5 92.3 89.9 90.9 88.2 84.8 81.2
a = 0.04 100 99.1 98.7 97.1 94.7 96.2 95.0 90.4 81.9

Bartlett, b = 1
a = 0.2 88.6 90.8 87.5 86.0 83.4 81.8 79.2 75.9 67.2
a = 0.1 94.1 93.3 94.0 90.4 87.9 92.8 88.5 87.7 80.6
a = 0.04 97.4 96.5 95.1 93.8 92.0 94.8 95.7 91.1 88.6

Proposition 5. Assume that b ∈ (0, 1] is fixed, as well as the hypo-
theses of Theorem 4. Thenβ defined by (17) converges in probability
to β .

This estimator is similar in spirit to the tail index estimator of
Meerschaert and Scheffler (1998), since it is based upon a conver-
gence rate. The performance ofβ can be poor in finite samplewhen
long memory is present, but it is quite versatile and simple to im-
plement.

5.3. Size and power of methods

We next evaluate the two methodologies – subsampling and
empirical plug-in – through simulations.We adopt the perspective
of testing a null hypothesis ofµ = µ0, since it is easier to evaluate
the finite-sample properties through size and power, as opposed
to the confidence interval perspective. In the simulations we take
µ0 = 0. For each method, we consider values of µ between 0 and
1, with µ = 0 corresponding to the null hypothesis. We compute
the statistic Sn/


nWΛ,bn for a few different values of b, and five

different tapers. The critical values of the limit distribution can be
approximated using either of the two methods described above.
Then we record the proportion of times that the statistic exceeds
these critical values, using a two-sided test. Note that whenµ > 0,
this assessment is interpreted as empirical power, butwhenµ = 0
we obtain the empirical size.

The size of the plug-in approach has been partially addressed
in McElroy and Politis (2009, 2012). However, the subsampling
method’s performance has not been previously studied, so we pro-
vide some additional material regarding its size. Table 1 displays
size results for Type I error rates for a two-sided testwithα = 0.05.
The sampling fraction for the subsampling method was selected at
values a = 0.2, 0.1, 0.04, and the Bartlett taper with bandwidth
fraction b = 0.5 and b = 1 was utilized. The sample size is fixed at
n = 250. Results are for the empirical coverage, and so the target
for the columns is the values 0.95. The results displayed in Table 1
were fairly typical for various tapers, block sizes, values of β , and
differing α—see McElroy and Politis (2011) for full results. Also in-
creasing the sample size improved size slightly.

For data generation processes we focus on the Gaussian dis-
tribution, and consider simple white noise for the SM case (since
serially correlated processes have been considered in previous lit-
erature, it suffices to take the simple white noise case); we con-
sider four NMprocesseswith β = −0.2,−0.4,−0.6,−0.8, where
the autocovariance function is determined from Example 2 of Sec-
tion 2. Also there are four LMprocesses, withβ = 0.2, 0.4, 0.6, 0.8
and autocovariance function given in Example 1 of Section 2. We
generated 1000 simulations of each specification.
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Fig. 1. Power surfaces by memory parameter β ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6., 0.8} and true mean µ ∈ [0, 1). These power surfaces are for the Bartlett
taper with bandwidth fraction b = 0.5. Panel (a) corresponds to subsampling with sampling fraction a = 0.04; panel (b) corresponds to subsampling with sampling fraction
a = 0.12; panel (c) corresponds to subsampling with sampling fraction a = 0.2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to using the
plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of β .
The power surfaces are organized a bit differently. Again we fo-
cus on one sample size n = 250 and the Type I error rate α = 0.05
(for a two-sided test for the mean, so we use the upper one-sided
critical value at 0.975 from the subsampling distributions and the
tabulated values). Restricting to this α value gives the general be-
havior, and a reasonable sense of the power can be gleaned from
the n = 250 case—higher sample sizes tend to shift the contours
upwards (not dramatically for high β), but the overall shape is
the same. We consider the Bartlett taper with bandwidth fractions
b = 0.5, 1 and the sampling fractions a = 0.04, 0.12, 0.2. These
choices are convenient, as it is always guaranteed that abn is an
integer. The range ofµwas chosen so as to capture the main qual-
itative features of the power surface across all data processes:µ ∈

{j/20}19j=0 proved to yield power close to 50% for the long memory
processes, while being small enough to allow visual discrimination
of cases.

The six methods are placed in Figs. 1 and 2 as sub-panels. Mov-
ing from top left to bottom right, the first three methods corre-
spond to subsampling with various sampling fractions. Then we
have the empirical plug-in method, followed by the default plug-
in (which uses β = 0 critical values throughout) method. The final
panel is an omniscient plug-in, based on knowing the true value of
β (so it is not a practicablemethod, but is helpful for understanding
power). The discrepancy in power between this and the empirical
plug-in method (middle right panels) is mainly due to error in our
estimator of β .

Nowwe discuss these numerical results. The size results for the
SM case are fairly standard, being adequate at sample size n = 250
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Fig. 2. Power surfaces by memory parameter β ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6., 0.8} and true mean µ ∈ [0, 1). These power surfaces are for the Bartlett
taper with bandwidth fraction b = 1. Panel (a) corresponds to subsampling with sampling fraction a = 0.04; panel (b) corresponds to subsampling with sampling fraction
a = 0.12; panel (c) corresponds to subsampling with sampling fraction a = 0.2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to using the
plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of β .
and greater; the higher bandwidth fractions gave slightly better
results. For NM the coverage improved for higher values ofβ , while
the results for the LM case were much worse, with poor coverage
at β = 0.2; higher bandwidths seemed to improve performance
slightly. In summary, if there is NM or SM, then one should use
a small or moderate size bandwidth fraction, such as b = 0.1 or
b = 0.05. If LM is present, a larger bandwidth is preferable.

If a statistic rejects too often under the null hypothesis – as is
seen to happen in the tables for the subsampling methods – then
it is liable to have higher power than otherwise. The fact that all
methods tend to be mis-sized is evident in the surface plots in
Figs. 1 and 2 by examination of the µ = 0 cross-sectional curve
towards the right side of the surface. But as µ increases, the NM
processes generate high power relatively quickly, giving a mesa
shape to the surfaces. For SM andweaker LM, the rise to full power
is slower. An ironic feature is that when µ is quite low, the power
for strong LM is better than for weaker LM, essentially due to the
methods being over-sized. This is seen in the ‘‘ruffle’’ feature of the
curves along the β = 0.8 cross-section.3 Since power approaches
50% for all processes as µ increases to unity, there is the question

3 Some authors prefer to investigate what the power would be were these
statistics to be adjusted to be correctly sized; however, in practice such a procedure
is impossible to implement on real data. We have chosen to display the power that
would occur were a practitioner to utilize any of the methods on real data.
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Table 2
Optimal bandwidth fractions b as a function of taper andmemory parameterβ . Each
row corresponds to either the (upper one-sided) 0.90,0.95, 0.975, or 0.99 quantile.

Optimal Bandwidth fraction

Beta
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Bartlett
0.90 0.02 0.02 0.02 0.02 0.02 0.10 0.14 0.14 0.18
0.95 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.14 0.18
0.975 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.14 0.14
0.99 0.02 0.02 0.02 0.02 0.02 0.04 0.10 0.14 0.14

Trapezoid (0.25)
0.90 0.02 0.02 0.02 0.02 0.02 0.06 0.12 0.14 0.14
0.95 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.12 0.14
0.975 0.02 0.02 0.02 0.02 0.02 0.04 0.08 0.14 0.14
0.99 0.02 0.02 0.02 0.02 0.02 0.04 0.08 0.08 0.10

Trapezoid (0.50)
0.90 0.02 0.02 0.02 0.02 0.02 0.04 0.10 0.12 0.16
0.95 0.02 0.02 0.02 0.02 0.02 0.04 0.10 0.10 0.12
0.975 0.02 0.02 0.02 0.02 0.02 0.04 0.06 0.10 0.12
0.99 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.06 0.06

Parzen
0.90 0.02 0.02 0.02 0.02 0.02 0.12 0.20 0.22 0.28
0.95 0.02 0.02 0.02 0.02 0.02 0.06 0.16 0.20 0.20
0.975 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.22 0.20
0.99 0.02 0.02 0.02 0.02 0.02 0.06 0.08 0.14 0.20

Daniell
0.90 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.16 0.18
0.95 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.16 0.14
0.975 0.02 0.02 0.02 0.02 0.02 0.06 0.10 0.08 0.14
0.99 0.02 0.02 0.02 0.02 0.02 0.04 0.06 0.08 0.10

of how this is meaningful relative to the variation in the process.
All were constructed with γ0 = 1 (an alternative way to normalize
is to set the innovation variances equal, by in each case dividing
through by the square root of the integral of the log spectrum), so
the coefficient of variation is 1/µ for all processes. Primarily, we
view these figures as a way to contrast the power of methods and
tapers.

For a given taper, there is moreover the issue of selecting the
best possible bandwidth fraction. If there is only a minor discrep-
ancy between the truemean and the null mean, then higher power
will be associated with smaller (upper one-sided) critical values.
Leaving aside the issue of size,we canmaximize power in theworst
possible scenario (i.e., where the true mean µ is approximately
equal to the null mean) by finding b such that the quantile is mini-
mized. Table 2 provides such bandwidth fractions for each given ta-
per (we consider the Bartlett, Parzen, Daniell, and two Trapezoidal
tapers), as a function of the true β , for a variety of α values (0.10,
0.05, 0.025, and 0.01). For NM and SM a small bandwidth is best,
but larger bandwidths – between 0.02 and 0.28 – provide better
asymptotic power for the LM case. This result also tends to parallel
the size results, in that large bandwidths should be avoided in the
NM and SM cases, while being more appropriate for the LM case.

6. Discussion

This paper sets out a thorough study of self-normalized mean
estimationwhen longmemory or negativememory is present. The
main statistic of interest is the sample mean of a stationary time
series (appropriately differenced beforehand), normalized by a ta-
pered sum of sample autocovariances. The behavior of autocovari-
ances changes greatly depending onwhether a time series has long
range dependence, anti-persistence, or short memory. This in turn
has a large impact on the convergence rates of samplemean and ta-
pered autocovariances. We provide a unified treatment of the var-
ious types of memory, including the important SuperEfficient (SE)
case, wherein the partial sums are oP(
√
n). The SE scenario is im-

portant, since it can easily arise from over-differencing of a time
series suspected of having trend nonstationarity.

Several novel results on the memory of a time series are pre-
sented, which – together with examples – furnish some intuition
for the qualitative behavior. The properties of Differential Memory
(DM) processes are elucidated, and shown to be distinct from the
behavior of Negative Memory (NM) processes – together, the DM
andNMcases partition the important SE case. But ourmain interest
is in the asymptotics of samplemean and tapered autocovariances,
andwe treat these topics through several theorems. For the asymp-
totic results we consider both the vanishing bandwidth-fraction
case (a more classical approach, going back to Parzen (1957)) and
the fixed bandwidth-fraction case (a more recent approach es-
poused in Kiefer et al. (2000)). We both summarize known results,
and prove new ones, examining two broad classes of data process
that exhibit the various types of memory described herein.

In order to make use of the asymptotic results, it is still neces-
sary to get the critical values of the limiting distributions, which
in the fixed bandwidth-fraction case are functionals of the Frac-
tional Brownian Bridge. We propose two methodologies: subsam-
pling, which avoids explicit estimation of the memory parameter
β but requires selection of a sampling fraction a; and the plug-
in approach, which requires an estimate of β and a look-up table
of critical values (computed ahead of time via simulation) for the
limiting distributions.4 These methods are compared through ex-
tensive finite-sample size and power simulations, which are suc-
cinctly summarized here.5 While power tends to deteriorate with
greater memory, Type II error is comparatively quite small with
anti-persistent processes. There are size problems with the plug-
in method, whereas in contrast the subsampling method tends to
have superior coverage (i.e., empirical size is closer to the nominal
level).

One outstanding problem in the literature on this topic is
the question of bandwidth selection. If one seeks an optimal
bandwidth, it must be selected to minimize a pertinent criterion.
Recent work by Sun et al. (2008) provides an attractive approach
based on examining both type I and type II errors. However, their
paper is focused on the SM case; any attempt to mimic their
procedure makes the bandwidth dependent on β , which then
must be estimated. Also, higher-level assumptions are typically
required for such an analysis, which is atwarwith the fairly generic
assumptions of this paper.

What is really needed in practice is a prescription for applied
statisticians. Choice of taper, bandwidth, and subsampling fraction
are all to be determined by the user, and the optimal combination
of such depends on the unknown data process. Moreover, any such
optimality is typically derived using asymptotic criteria, whose
impact on finite samples is less clear; also see Table 2. However,
some of the lessons from our simulations can be repeated here:
asymptotic critical values varymorewidelywith respect toβwhen
b is low; flat-top tapers and smooth tapers (e.g., the Parzen taper)
perform adequately in terms of size and power, except in the LM
case; size and power can depend substantially on the subsampling
fraction. Note that the subsampling fraction might be selected
using the technique of Bickel and Sakov (2008), as described in Jach
et al. (2012). Or one might utilize the plug-in approach described
in Section 5, which requires simulation of quantiles ahead of time.

4 While theMAC approach of Robinson (2005) is also applicable, we omit to study
it here because it is not based upon self-normalization, which is the focus of our
paper.
5 All code and results are available from the first author; see McElroy and Politis

(2011) for full numerical results.
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For any of the methods discussed, neither computer program-
ming nor computation time is burdensome (unless quantiles are
being simulated). Therefore, one can generate results for a multi-
tude of tapers and bandwidths, and include all outcomes as alter-
native explanations of the data. However, if for some reason the
practitioner is unable to produce a spectrum of results, we rec-
ommend utilizing a small bandwidth fraction (say b close to 0.02)
when it is judged that only NM or SM is present, but a bandwidth
fraction closer to 0.1 or 0.2 if LM is suspected. To obtain decent
performance over a range of data processes, either the Parzen or a
trapezoidal taper is recommended.

In summary, we provide a viable framework for conducting
inference for the mean, supplying a unified asymptotic theory
that covers all different types of memory under a single umbrella.
This framework is robust against different memory specifications,
obviating the need to do extensive modeling. Future work should
examine the bandwidth selection problem, using these theoretical
results as groundwork, as well as documenting the empirical
performances of competing methodologies.
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Appendix

Proof of Proposition 1. First consider cases (i), (ii), and (iii) with
β ∈ (−1, 1). By Bingham et al. (1987), a slowly varying func-
tion satisfies, for any δ > 0, |L(k)/L(n)| ≤ C̃(|k/n|δ + |n/k|δ) for
1 ≤ k ≤ n and some constant C̃ > 0. Then by the Dominated
Convergence Theorem

Vn

nWn
= n−1

n−1
k=0

Wk

Wn

= n−1
n−1
k=0

L(k)
L(n)

(k/n)β →

 1

0
xβ dx =

1
β + 1

.

In case (iii) when β = −1, we have Vn/(nWn) ∼


h<n h
−1L(h)/

L(n) → ∞ by Theorem A3.6 of Embrechts et al. (1997). Case (iv)
is immediate from its definition. For (7), in cases (i) and (iii) with
β ∈ [−1, 1) \ {0} we have

γk =
1
2
(Wk − Wk−1)

=
1
2


(L(k)− L(k − 1))kβ


+

1
2


L(k − 1)(kβ − (k − 1)β)


.

Dividing through by L(k)kβ−1/2 yields

2
γk

L(k)kβ−1
= [(1 − L(k − 1)/L(k))k]

+


kL(k − 1)

L(k)
(1 − (1 − 1/k)β)


.

The second expression on the right hand side is asymptotic to β via
Taylor series. The first expression on the right hand side is asymp-
totic to−kg(k), where g(x) =

 x
x−1 η(u)/u du by expanding the ex-

ponential term in the slowly-varying function L. But kg(k) = o(1)
as k → ∞. So when β ≠ 0, the acf is asymptotic to βL(k)kβ−1/2.
But when β = 0 we have instead

γk

L(k)
=

1
2
(1 − L(k − 1)/L(k)) ∼ −gk/2

by the previous analysis, which is o(k−1). �

Proof of Proposition 2. Without loss of generality, suppose that
µ = 0. By theWolddecomposition (see Brockwell andDavis, 1991)
there exists an uncorrelated sequence {ϵt} and square summable
coefficients {ψj} such that Yt =


j≥0 ψjϵt−j. Let σ 2

= Var(ϵt)
be equal to one for simplicity. We have 0 = limk→∞ Wk =

h γh = (


j ψj)
2σ 2, so


j ψj = 0. It follows that 1 − z should

divide Ψ (z) =


j≥0 ψjz j, though we must establish that Θ(z) =

Ψ (z)/(1−z) converges. Extendingψj to be zero if j < 0, we define
θj =

j
k=−∞

ψk for any integer j. Note that θj → 0 as j → ∞

and is zero if j < 0. We will show that the θj sequence is square
summable, so that


j θjϵt−j is finite with probability one; then

this will define Zt , from which Yt = Zt − Zt−1 follows at once.
Note that θj =


k≥0 ψj−k; let θj,m =

m
k=0 ψj−k. Then


j θ

2
j,m =m

i,k=0 γi−k =
m

k=0 Wk for eachm. Then by Fatou’s lemma
j

θ2j ≤ lim
n→∞


j

θ2j,m =


k≥0

Wk < ∞.

This establishes the existence of a series {Zt} with the required
properties. However, the series given by


j θjϵt−j + A, where A

is uncorrelated with the series {ϵt}, also has the requisite proper-
ties, as the temporal differencewill be the same as that of Zt −Zt−1.
Although an additional term of Var(A) is added on to the acf, this
will cancel out in γk = 2rk − rk+1 − rk−1. So the series {Zt} cannot
be determined uniquely.

Next, we note that the formula for Wk follows from summing
the γk via (3); the formula for r0 is obtained by summing the for-
mula for Wk, and using the property of telescoping sums. The as-
sertions of the converse are now immediate. �

Proof of Theorem 1. From Proposition 1 we can utilize (6). Also
without loss of generality we can take µ = 0 in the proof. Let us
first consider that the process satisfies P1, so that Yt =


j ψjϵt−j

for an i.i.d. sequence {ϵt}, and by assumption γ0 ∝


j ψ
2
j exists.

So Theorem 5.2.3 of Taniguchi and Kakizawa (2000) (which is due
to Ibragimov and Linnik (1971, p. 359)) gives the result. Note that
byHosoya (1996), we could relax the independence assumption on
{ϵt} to a type of mixing condition when β = 0.

Next, consider P2. The k-fold cumulant of Sn is

cum (Sn, . . . , Sn)

=

n
tk=1

n
t1=1

· · ·

n
tk−1=1

ck(t1 − tk, t2 − tk, . . . , tk−1 − tk),

which is O(n · nβ∧0)when k > 2. Letting κk,n denote the kth order
cumulant of SnV

−1/2
n , we obtain κk,n = O(n(β+1)∧1

· V−k/2
n ), which

tends to zero as n → ∞ if k > 2. Of course κ1,n = 0 and κ2,n = 1,
and the limit theorem is proved by expanding the characteristic
function of SnV

−1/2
n as in Eq. (2.19) of Hall (1992).

Finally, we turn to theDMcase. Applying Proposition 2,we have
Sn = Zn−Z0. If {Zt} is stronglymixing, let Z̃n be equal in distribution
to Zn for every n, but independent of Z0. ThenE exp{iν(Zn − Z0)} − E exp{iν(Z̃n − Z0)}

 ≤ 16 αn

by Lemma B.0.6 of Politis et al. (1999), which is due to Ibragimov
(1962). Now φZ̃n−Z0

(ν) = φZ (ν) · φZ (−ν) where φ denotes the
characteristic function, and Z has the common distribution of the
{Zt} process.
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If {Zt} is linear, then {ϵt} are i.i.d. in the representation Zt =
j≥0 θjϵt−j, with the convention that θj = 0 if j < 0. Then

Sn =


j

(θn−j − θ−j)ϵj =

n
j=1

θn−jϵj +

j≤0

(θn−j − θ−j)ϵj.

These two terms are independent, and the first is equal in distribu-
tion to

n−1
j=0 θjϵj, which tends in probability (and thus weakly) to

j≥0 θjϵj by Theorem 22.6 of Billingsley (1995). This limit is equal

in distribution to Z , so
n

j=1 θn−jϵj
L

H⇒ Z . For the second term, we

have


j≤0 θn−jϵj
P

−→ 0, since its variance is equal to


j≥n θ
2
j σ

2.
What is left is −


j≤0 θ−jϵj, which is equal to −Z in distribution.

Since the two terms are independent, we have that Sn converges
weakly to the difference of two independent random variables,
each with the distribution of Z . �

Proof of Proposition 3. The expressionγh−γh is unchanged if we
replace Yt by Yt − µ, so without loss of generality suppose that
µ = 0. We begin by decomposingWΛ,M into

WΛ,M = WM + E(1)M + E(2)M (A.1)

E(1)M =


h

ΛM(h)
γh − γ h


E(2)M =


h

ΛM(h)

γ h − γh


.

Here γ k =
1
n

n−|k|
t=1 (Yt − µ)(Yt+k − µ) for k ≥ 0, and recallγk is given by (2). The terms E(1)M and E(2)M are stochastic errors,

whereas WM is deterministic and serves as an approximation to
WM . We will show that the error terms E(1)M and E(2)M of (A.1) satisfy
E(1)M = OP(UM MVnn−2) and E(2)M = OP(UM Mn−ηK(n)) as n → ∞,
where K is slowly-varying and η = 1/2 if β < 1/2 and η = 1 − β
if β ≥ 1/2 (in the LM case); then the statement of the proposition
follows. For each h ≥ 0γh = γh + (γ h − γh)+ (γ̃h − γ h)

=


1 −

h
n


γh +

1
n

n−h
t=1

(YtYt+h − γh)

+ Y

Y − Y 1:n−h − Y h+1:n


,

where Y 1:n−h =
n−h

t=1 Yt/n and Y h+1:n =
n

t=h+1 Yt/n. Let cn =

Vnn−2. Then Y = OP(n−1V−1/2
n ), so the third term above is OP(cn)

uniformly in h (this is true since |h| ≤ M = o(n)). Now cn =

nβ−1L(n) in the LM and NM cases, with β ∈ [−1, 1), but cn = n−1

for the SM case and cn = n−2 for the DM case. Using the UM bound
on ΛM(h), we obtain E(1)M = OP(UM Mcn) as claimed. For the error
term E(2)M , we compute

Var(E(2)M ) ≤ n−2

h,k

ΛM(h)ΛM(k)
n

t,s=1

Cov(YtYt+h, YsYs+k)

≤ n−2

h,k

ΛM(h)ΛM(k)
n

t,s=1


cum(Yt , Yt+h, Ys, Ys+k)

+ γt−sγt−s+h−k + γt−s−kγt+h−s


≤ n−1

h,k

ΛM(h)ΛM(k)

|l|≤n

(1 − |l|/n)

×

cum(Y0, Yh, Yl, Yl+k)+ γlγl−h+k + γl+kγh−l


.

The inequality used here only concerns |h| terms, which is negligi-
ble with respect to n. The sum of the cumulant function is bounded
using Assumption B, resulting in an overall bounds of U2

M/n. For
the sum over γlγl−h+k, we can use the Cauchy–Schwarz inequal-
ity to obtain the bound O(M2U2

Mnξ−1K(n)), where K is a slowly-
varying function and nξK(n) represents the order of


|l|≤n γ

2
l ;

using Proposition 1 we have ξ = 0 if β < 1/2 (as this results
in a square summable sequence) or ξ = 2β − 1 if β > 1/2. When
β = 1/2 and L(n) ≡ 1, we take ξ = 0 and K(n) = log n. The anal-
ysis of the sum over γl+kγh−l yields a similar order. Taking square
roots, we learn that E(2)M = OP(MUMn−ηK 1/2(n)) as asserted. �

Proof of Theorem 2. First note that we can remove the term (1−

|h|/n) since M/n → 0. The case of the truncation filter is trivial.
Case (iv) is treated differently, so we first consider cases (i), (ii),
and (iii). We proceed to break the sum over h up according to the
intervals of smoothness for Λ. The first such interval is [−c, c],
which corresponds to the flat-top interval; if there is no flat-top
region, then c = 0. In general, consider an interval (r, s] such that
the restriction ofΛ is continuously differentiable there. Then
[rM]<|h|≤[sM]

Λ


h
M


γh

= Λ


[sM]

M


W[sM] −Λ


[rM]

M


W[rM]

+

[sM]−1
h=[rM]


Λ


h
M


−Λ


h + 1
M


Wh (A.2)

via summation by parts. The first two terms on the right hand side
will cancel with other like terms for the other intervals, leaving the
last term on the right hand side. The terms in the square brackets
consist of values of Λ restricted to (r, s], excepting only the first
term h = [rM]; however, sinceΛ([rM]/M)−Λ(([rM]+ 1)/M) u
−M−1Λ̇+(r) by continuity, the first term’s analysis is the same as
the others. In general,Λ(h/M)−Λ(h+ 1/M) = −Λ̇(h/M)M−1

+

O(M−2). The case of r > 0 for an interval (r, s] has a different
analysis from the r = 0 case, which we consider later. So long as
r > 0, we have h → ∞ asM → ∞ in the above summation. Thus
in case (ii), Wh → W∞ and this convergence occurs uniformly in
h ∈ (rM, sM) as M → ∞. Using the boundedness of Λ̇(x) and the
limit of a Cesaro sum, we obtain a limit of −W∞

 s
r Λ̇(x) dx. The

argument can be extended to cases (i) and (iii) as follows:
[sM]−1
h=[rM]


Λ

 h
M


−Λ

 h+1
M


Wh

CMβL(M)

=

[sM]−1
h=[rM]


Λ


h
M


−Λ


h + 1
M


(h/M)β


Whh−β/CL(M)


,

and the expression in square brackets equals one plus error tending
to zero asM → ∞, uniformly in h ∈ ([rM], [sM]]. This is because Wh

ChβL(M)
− 1

 ≤

 Wh

ChβL(h)
− 1

 +

 Wh

ChβL(h)


L(h)
L(M)

− 1
 .

The first term tends to zero uniformly in h asM → ∞. For the sec-
ond, we have L(h)/L(M) → 1 uniformly in h as M → ∞ as well,
which is seen by using the representation (5). Note that these ar-
guments hold for β = 0. Using the boundedness of xβ for x ∈ (r, s]
and r > 0, we obtain a limit of −

 s
r Λ̇(x)x

β dx as M → ∞. This
argument works for any β ∈ (−1, 1).

The first interval must be treated differently—unless it is flat-
top, i.e., c > 0, in which case it is trivially given by W[cM], which
cancels with boundary term in the next intervals. More generally,
the first interval has the form


0≤|h|≤[sM]

Λ(h/M)γh, which tends
toΛ(0)W∞ in case (ii). Otherwise in cases (i) and (iii) we have
[sM]
|h|=0

Λ


h
M


γh = Λ(0)W[sM] + 2

[sM]
h=1


Λ


h
M


−Λ(0)


γh.
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Note that β > −1 by assumption. The expression in brackets can
be expanded in the Taylor series


j≥1Λ

(j)(0)hjM−j/j!. Noting thatM
h=1 h

jγh is divergent and asymptotic toβM jWM/2(β+j) (proved
by l’Hopital’s rule and (7)) for any j ≥ 1, we can interchange sum-
mations to obtain

W[sM] + βW[sM]


j≥1

Λ(j)(0)
sj

β + j

∼ WM


sβ + β

 s

0
(Λ(x)− 1)xβ−1 dx


after some algebra. Now piecing all intervals together, taking into
account cancellations and integration by parts, we arrive at (10).

Now we turn to case (iv). Letting the partition 0 = s0 < s1 <
· · · sT < sT+1 = 1 denote the points of non-differentiability in Λ,
we can write
[sM]
|h|=0

Λ


h
M


γh =

T
j=0

[sj+1M]−1
h=[sjM]


Λ


h
M


−Λ


h + 1
M


Wh.

The first term is identically zero for a flat-top kernel; otherwise
when c = 0, we can use a Taylor series expansion at h/M again.
Since {Wh} is a summable sequence, we can apply the Dominated
Convergence Theorem and obtain 2r0 times the Taylor series at
zero, as stated in the theorem. As for the other intervals, note that[sj+1M]−1

h=[sjM]
Wh = 2(r[sjM] − r[sj+1M]) is tending to zero as M → ∞,

since j ≥ 1. Thus these other terms decay even faster than the
first term. Hence for flat-top tapers, the rate of convergence is
o(M−1). �

Proof of Theorem 3. The proof proceeds by first showing that the
finite-dimensional distributions of ξn converge to those of FBM.
Then we show tightness. We will now show that Sn and ξn are
asymptotically equivalent processes, i.e., any linear combination
over any set of times of their difference tends to zero in probability.
Because ξn(t)− Sn(t) = (nt − [nt])Y[nt]+1, clearly for every ϵ > 0
and any collection of times t1, . . . , tk and constants α1, . . . , αk (for
any k ≥ 1),

P

 k
j=1

αj

ξn(tj)− Sn(tj)


V−1/2
n

 > ϵ


→ 0

as n → ∞. This follows from (6). Hence it suffices to show that the
finite-dimensional distributions of Sn converge to those of FBM.We
may as well assume µ = 0 henceforth. We proceed to show this
for the cases of P1 and P2 in turn.

For the linear case P1, we note that historically Davydov (1970)
and Gorodetskii (1977) provide a proof of the result requiring
highermoments.Marinucci and Robinson (2000) relax the require-
ment to 2 + δ moments for some δ > 0. We will adapt the ar-
gument used in Theorem 5.2.3 of Taniguchi and Kakizawa (2000).
The linear representation allows us to write Yt =


j ϵjψt−j as in

the proof of Theorem 1. We have
m

j=1 αjS[rjn] =


j ϵjbj,n, with

bj,n =
m

i=1 αi
[rin]

t=1 ψt−j. Sincem < ∞, the same types of bounds
used in the proof of Theorem 5.2.3 of Taniguchi and Kakizawa
(2000) still apply. Hence

m
j=1 αjS[rjn] is asymptotically standard

normal when normalized by the square root of


j b
2
j,nσ

2, which
by algebra equals the variance of

m
j=1 αjS[rjn]. Expanding this ex-

pression yields

m
i1,i2=1

αi1αi2

[ri1n]
t1=1

[ri2n]
t2=1

γt1−t2

=

m
i1=1

α2
i1

[ri1n]
t1,t2=1

γt1−t2 + 2

i1<i2

αi1αi2

[ri1n]
t1=1

[ri2n]
t2=1

γt1−t2
=

m
i1=1

α2
i1V[ri1n]

+


i1<i2

αi1αi2

×


V[ri1n]

+ V[ri2n]
− V[(ri2−ri1 )n]


. (A.3)

This final breakdown of the variance is true for any variance of a
sum, and is generic. Dividing (A.3) through by Vn gives the asymp-
totic expression

∼

m
i1=1

α2
i1 r

β+1
i1

+


i1<i2

αi1αi2


rβ+1
i1

+ rβ+1
i2

− (ri2 − ri1)
β+1


,

which is the same as the variance of
m

i=1 αiB(ri). In other words
the limit of V−1/2

n
m

j=1 αjS[rjn] has the same distribution as
m

i=1
αiB(ri).

For the P2 case the kth order cumulant of
m

i=1 αiS[rin] can be
expanded into a k-fold sum
m

i1=1

m
i2=1

· · ·

m
ik=1

αi1αi2 · · ·αik cum

Zi1 , Zi2 , . . . , Zik


,

where Zij =
[rij+1n]

t=[rijn]+1 Yt . The same overall bounds can then be
obtained as in the proof of Theorem 1, showing that all higher or-
der cumulants with k > 2 of the normalized sumwill tend to zero.
Again (A.3) shows that the variance converges to the variance of
FBM, and so the result follows.

Finally, we establish tightness. The criterion we use is given by
Problem 4.11 of Karatzas and Shreve (1991), which is appropriate
for C[0, 1]. Letting γ = (κ + δ)/2, and taking any times s < t and
any n,

E

| (ξn(t)− ntµ)− (ξn(s)− nsµ) |2γ V−γ

n


= V−γ

n E

  [nt]
j=[ns]+1

Yj + (nt − [nt])Y[nt]+1

− (ns − [ns])Y[ns]+1 − nµ(t − s)


2γ


∼ V−γ

n E

|S[nt]−[ns] − ([nt] − [ns])µ|

2γ 
= V−γ

n O(V γ
[n(t−s)]) = O((t − s)(β+1)γ )

by Proposition 1. Because γ > 1/(β+1), tightness is assured. This
completes the proof. �

Proof of Theorem 4. We wish to apply Theorem 3, which is in
terms of ξn(t), to the result of Proposition 4, which is in terms of
Sn(t). We can do this because ξn(t) = Sn(t)+ (nt − [nt])Y[nt]+1, so
that (ξn(t) − ntµ)/

√
Vn is asymptotically equivalent to (Sn(t) −

[nt]µ)/
√
Vn. Then all linear or quadratic integral expressions of

such processes will also be asymptotically the same. So note thatSi = S[rn] − rSn with r = i/n, and recognize the summations in the
expression for WΛ,M in Proposition 4 as Riemann sums; the result
now follows at once from Theorem 3. �

Proof of Proposition 5. By Theorem 4 we know that Qn :=

nWΛ,bn/Vn
L

H⇒ Q (b), and by Proposition 1 we have Vn/n ∼

nβCL(n)/(β + 1) in the LM/SM/NM case. Thus it follows that (17)
satisfies

β ∼ β +
logQn

log n
+

log (CL(n)/(β + 1))
log n

.

Since Qn = OP(1) and log L(n)/ log n → 0 for slowly-varying func-
tions L, the estimator will be consistent. �
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