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A statistical analysis of data that have been multiplied by randomly drawn noise variables in
order to protect the confidentiality of individual values has recently drawn some attention. If
the distribution generating the noise variables has low to moderate variance, then noise-
multiplied data have been shown to yield accurate inferences in several typical parametric
models under a formal likelihood-based analysis. However, the likelihood-based analysis is
generally complicated due to the nonstandard and often complex nature of the distribution of
the noise-perturbed sample even when the parent distribution is simple. This complexity
places a burden on data users who must either develop the required statistical methods or
implement the methods if already available or have access to specialized software perhaps yet
to be developed. In this article we propose an alternate analysis of noise-multiplied data based
on multiple imputation. Some advantages of this approach are that (1) the data user can
analyze the released data as if it were never perturbed, and (2) the distribution of the noise
variables does not need to be disclosed to the data user.

Key words: Combining rules; confidentiality; rejection sampling; statistical disclosure
limitation; top coded data.

1. Introduction

When survey organizations and statistical agencies such as the U.S. Census Bureau release

microdata to the public, a major concern is the control of disclosure risk, while ensuring

fairly high quality and utility in the released data. Very often some popular statistical

disclosure limitation (SDL) methods such as data swapping, multiple imputation,

top/bottom coding (especially for income data), and perturbations with random noise are

applied before releasing the data. Rubin (1993) proposed the use of the multiple

imputation method to create synthetic microdata which would protect confidentiality by

replacing actual microdata by random draws from a predictive distribution. Since then,

rigorous statistical methods to use synthetic data for drawing valid inferences on relevant

population parameters have been developed and used in many contexts (Little 1993;
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Raghunathan et al. 2003; Reiter 2003, 2005; Reiter and Raghunathan 2007). An and Little

(2007) also suggested multiple imputation methods as an alternative to top coding of

extreme values and proposed two methods of data analysis with examples.

Noise perturbation of original microdata by addition or multiplication has also been

advocated by some statisticians as a possible data confidentiality protection mechanism

(Kim 1986; Kim and Winkler 1995, 2003; Little 1993), and recently there has been a

renewed interest in this topic (Nayak et al. 2011; Sinha et al. 2012). In fact, Klein,

Mathew, and Sinha (2013), hereafter referred to as Klein et al. (2013), developed

likelihood-based data analysis methods under noise multiplication for drawing inference

in several parametric models. They provided a comprehensive comparison of the above

two methods, namely, multiple imputation and noise multiplication. Klein et al. (2013)

commented that while standard and often optimum parametric inference based on the

original data can be easily drawn for simple probability models, such an analysis is far

from being close to optimum or even simple when noise multiplication is used. Hence

their statistical analysis is essentially based on the asymptotic theory, requiring

computational details of maximum likelihood estimation and calculations of the observed

Fisher information matrices. Klein et al. (2013) also developed a similar analysis for top-

coded data, which arise in many instances such as income and profit data, where values

above a certain threshold C are coded and only the number m of values in the data set

above C are reported along with all the original values below C. These authors considered

statistical analysis based on unperturbed (i.e., original) data below C and noise-multiplied

data above C instead of completely ignoring the data above C, and again provided a

comparison with the statistical analysis reported in An and Little (2007), who carried out

the analysis based on multiple imputation of the data above C in combination with the

original values below C. In this article, we use the term mixture data, to refer to a data set

in which values below a cut-off C are unperturbed, and values above C are perturbed via

noise multiplication.

In the context of data analysis under noise perturbation, if the distribution generating the

noise variables has low to moderate variance, then noise-multiplied data are expected to

yield accurate inferences in some commonly used parametric models under a formal

likelihood-based analysis (Klein et al. 2013). However, as noted by Klein et al. (2013), the

likelihood-based analysis is generally complicated due to the nonstandard and often

complex nature of the distribution of the noise-perturbed sample even when the parent

distribution is simple (a striking example is analysis of noise-multiplied data under a

Pareto distribution, typically used for income data, which we hope to address in a future

communication). This complexity places a burden on data users who must either develop

the required statistical methods or implement these methods if already available or have

access to specialized software perhaps yet to be developed. Circumventing this difficulty is

essentially the motivation behind this current research, where we propose an alternate

simpler analysis of noise-multiplied data based on the familiar notion of multiple

imputation. We believe that a proper blend of the two statistical methods as advocated

here, namely, noise perturbation to protect confidentiality and multiple imputation for ease

of subsequent statistical analysis of noise-multiplied data, will prove to be quite useful to

both statistical agencies and data users. Some advantages of this approach are that (1) the

data user can analyze the released data as if it were never perturbed (in conjunction with
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the appropriate multiple imputation combining rules), and (2) the distribution of the noise

variables does not need to be disclosed to the data user.

The article is organized as follows. An overview of our proposed approach based on a

general framework of fully noise-multiplied data is given in Section 2. Techniques of

noise imputation from noise-multiplied data, which are essential for the proposed

statistical analysis, are also presented in Section 2. This section also includes different

methods of estimation of variance of the proposed parameter estimates. Section 3 contains

our statistical analysis for mixture data. Details of computations for the normal and

lognormal models are outlined in Section 4. An evaluation and comparison of the results

with those under a formal likelihood-based analysis of noise-multiplied data (Klein et al.

2013) is presented in Section 5 through simulation. It turns out that the inferences obtained

using the methodology of this article are comparable with, and just slightly less accurate

than, those obtained in Klein et al. (2013). Section 6 presents a disclosure risk evaluation

of the proposed method, discusses the benefits of the proposed method in comparison with

synthetic data, and outlines how to extend this approach to multivariate data. Section 7

provides some concluding remarks, and the Appendices A, B and C contain proofs of some

technical results.

2. Methodology for Fully Noise-Multiplied Data

2.1. General Framework

Suppose y1; : : : ; yn , iid , f ð yjuÞ, independent of r1; : : : ; rn , iid , hðrÞ, where
u ¼ ðu1; : : : ; upÞ0 is an unknown p £ 1 parameter vector, and h(r) is a known density

(free of u) such that h(r) ¼ 0 if r , 0. It is assumed that f ( yju) and h(r) are the densities

of continuous probability distributions. Define zi ¼ yi £ ri for i ¼ 1; : : : ; n. Let us write

y ¼ ð y1; : : : ; ynÞ, r ¼ ðr1; : : : ; rnÞ, and z ¼ ðz1; : : : ; znÞ.
We note that the joint density of (zi, ri) is

gðzi; rijuÞ ¼ f
zi

ri
ju� �

hðriÞr21i ;

and the marginal density of zi is

gðzijuÞ ¼
ð1
0

f
zi

v
ju� �

hðvÞv21dv: ð1Þ

As clearly demonstrated in Klein et al. (2013), standard likelihood-based analysis of the

noise-multiplied sample z in order to draw suitable inference about a scalar quantity

Q ¼ Q(u) can be extremely complicated due to the form of g(ziju), and the analysis also
must be customized to the noise distribution h(r). Instead, what we propose here is a

procedure to reconstruct the original data y from reported sample z via suitable generation

and division by noise terms, and enough replications of the recovered y data by applying

multiple imputation method. Once this is accomplished, a data user can apply a simple and

standard likelihood procedure to draw inference about Q(u) based on each reconstructed y

data as if it were never perturbed, and finally an application of some known combination

rules would complete the task.
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The advantages of the suggested approach, blending noise multiplication with multiple

imputation, are the following:

1. to protect confidentiality through noise multiplication – satisfying data producer’s

desire,

2. to allow the data user to analyze the data as if it were never perturbed – satisfying

data user’s desire (the complexity of the analysis lies in the generation of the imputed

values of the noise variables; and the burden of this task will fall on the data

producer, not the user), and

3. to allow the data producer to hide information about the underlying noise distribution

from data users.

The basic idea behind our procedure is to set it up as a missing data problem; we define the

complete, observed, and missing data, respectively, as follows:

xc ¼ {ðz1; r1Þ; : : : ; ðzn; rnÞ}; xobs ¼ {z1; : : : ; zn}; xmis ¼ {r1; : : : ; rn}:

Obviously, if the complete data xc were observed, one would simply recover the original

data yi ¼ zi=ri; i ¼ 1; : : : ; n, and proceed with the analysis in a straightforward manner

under the parametric model f ( yju). Treating the noise variables r1; : : : ; rn as missing

data, we impute these variables m times to obtain

x*ð jÞc ¼ z1; r
*ð jÞ
1

� �
; : : : ; zn; r*

ð jÞ
n

� �n o
; j ¼ 1; : : : ;m: ð2Þ

From x*( j ) we compute

y*ð jÞ ¼ y*
ð jÞ
1 ; : : : ; y*ð jÞn

n o
¼ z1

r*
ð jÞ
1

; : : : ;
zn

r*
ð jÞ

n

( )
; j ¼ 1; : : : ;m: ð3Þ

The statistical agency would then release the m imputed data sets y*ð1Þ; : : : ; y*ðmÞ, and
each data set y*ð jÞ would be analyzed as if it were a random sample from f ( yju). Thus,
suppose that h( y) is an estimator of Q(u) based on the unperturbed data y and suppose that

v ¼ v( y) is an estimator of the variance of h( y), also computed based on y. Often h( y) will

be the maximum likelihood estimator (MLE) of Q(u), and v( y) will be derived from the

observed Fisher information matrix. One would then compute hj ¼ hð y*ð jÞÞ and

vj ¼ vð y*ð jÞÞ, the analogs of h and v, obtained from y*( j ), and apply a suitable combination

rule to pool the information across the m simulations.

At this point two vital pieces of the proposed methodology need to be put together:

(1) imputation of r from z, which would be the responsibility of the statistical agency; and

(2) combination rules for hj and vj from several imputations, which the data user would

apply in order to analyze the released data. We discuss these two crucial points in

Subsections 2.2 and 2.3, respectively.

2.2. Imputation of the Noise Variables

In this subsection we describe two procedures that a statistical agency can use to impute r

from z. Following Wang and Robins (1998), we refer to these two methods as the Type A

and Type B imputation procedures.
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Type A Imputation Procedure. Under the Type A procedure, the imputed values of

r1; : : : ; rn are obtained as draws from a posterior predictive distribution. We place a

noninformative prior distribution p(u) on u. In principle, sampling from the posterior

predictive distribution of r1; : : : ; rn can be done as follows:

1. Draw u* from the posterior distribution of u given z1; : : : ; zn.

2. Draw r*1; : : : ; r
*
n from the conditional distribution of r1; : : : ; rn given z1; : : : ; zn

and u ¼ u*.

The above steps are then repeated independently m times to get
�
r*

ð jÞ
1 ; : : : ; r*ð jÞn

�
;

j ¼ 1; : : : ;m.

Notice that in step (1) above we use the posterior distribution of u given z1; : : : ; zn as

opposed to the posterior distribution of u given y1; : : : ; yn. Such a choice implies that we

do not infuse any additional information into the imputes beyond what is provided by the

noise-multiplied sample z and the knowledge of the noise-generating distribution h(r).

Step (2) above is equivalent to sampling each ri from the conditional distribution of ri
given zi and u ¼ u*. The pdf of this distribution is

hðrijzi; uÞ ¼ f ðzi=riÞju
� �

hðriÞr21iÐ1
0
f ðzi=vÞju
� �

hðvÞv21dv
: ð4Þ

The sampling required in step (1) can be complicated due to the complex form of the

joint density of z1; : : : ; zn. Certainly, in some cases, the sampling required in step (1) can

be performed directly; for instance, if u is univariate then we can obtain a direct algorithm

by inversion of the cumulative distribution function (numerically or otherwise). More

generally, the data augmentation algorithm (Little and Rubin 2002; Tanner and Wong

1987) allows us to bypass the direct sampling from the posterior distribution of u given

z1; : : : ; zn. Under the data augmentation method, we proceed as follows. Given a value

u (t) of u drawn at step t:

I. Draw rðtþ1Þi , hðrjzi; uðtÞÞ for i ¼ 1; : : : ; n;

II. Draw uðtþ1Þ , pðujyðtþ1 ÞÞ where yðtþ1Þ ¼ z1=r
ðtþ1Þ
1

� �
; : : : ; zn=r

ðtþ1Þ
n

� �� �
, and p(ujy)

is the posterior density of u given the original unperturbed data y (it is the functional

form of p(ujy) which is relevant here).
The above process is run until t is large and one must, of course, select an initial value u (0)

to start the iterations. The final generations rðtÞ1 ; : : : ; rðtÞn
� �

and u (t) form an approximate

draw from the joint posterior distribution of ðr1; : : : ; rnÞ and u given ðz1; : : : ; znÞ. Thus,
marginally, the final generation rðtÞ1 ; : : : ; r

ðtÞ
n

� �
is an approximate draw from the posterior

predictive distribution of ðr1; : : : ; rnÞ given ðz1; : : : ; znÞ. This entire iterative process can
be repeated independently m times to get the multiply imputed values of the noise

variables. The data augmentation algorithm presented here is equivalent to Gibbs

sampling. The goal here is to sample from p(r, ujz), the joint posterior distribution of (r, u)
given z. Letting p(rjz, u) denote the conditional density of r given z and u, and letting

p(ujz, r) denote the conditional density of u given z and r, we note that the (t þ 1)th step of

a Gibbs sampler would sample from the full conditionals such that r ðtþ1Þ , pðrjz; uðtÞÞ and
uðtþ1Þ , pðujz; rðtþ1ÞÞ, and would continue until convergence. Alternate sampling from
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these two full conditional distributions is equivalent to steps I and II of the data

augmentation algorithm.

Sampling from the posterior distribution p(ujy) in step (II) above will typically be

straightforward, either directly or via an embedded Markov chain Monte Carlo step. Under

the data augmentation algorithm, we still must sample from the conditional density

h(rjz, u) as defined in (4). The level of complexity here will depend on the form of f ( yju)
and h(r). Usually, sampling from this conditional density will not be too difficult. The

following result provides a general rejection algorithm (Devroye 1986; Robert and Casella

2005) to sample from h(rjz, u) for any continuous f ( yju), when the noise distribution is
Uniform (1 2 e, 1 þ e), that is, when

hðrÞ ¼ 1

2e
; 12 e # r # 1þ e ; ð5Þ

where 0 , e , 1.

Proposition 1 Suppose that f( yju) is a continuous probability density function, and let

us write f ð yjuÞ ¼ cðuÞqð yjuÞ where c(u) . 0 is a normalizing constant. Let M ;
Mðu; e ; zÞ be such that

q
z

r
ju� �

# M for all r [ ½12 e ; g	

where g ; gðz; eÞ . 12 e . Then the following algorithm produces a random variable R

having the density

hUðrjz; uÞ ¼ qððz=rÞjuÞr21Ð g
12eqððz=vÞjuÞv21dv

; 12 e # r # g:

I. Generate U, V as independent Uniform(0, 1) and let W ¼ gV=ð12 eÞV21.
II. Accept R ¼ W if U # M21qððz=WÞjuÞ, otherwise reject W and return to step (I).

The expected number of iterations of steps (I) and (II) required to obtain R is

M½logðgÞ2 logð12 eÞ	Ð g
12eqððz=vÞjuÞv21dv

:

The proof of Proposition 1 appears in Appendix A.

Remark 1. The conditional density of yi given zi and u is

f ð yijzi; uÞ ¼

f ð yijuÞhðzi=yiÞy21iÐ1
0
f ððzi=vÞjuÞhðvÞv21dv

; if 0 , zi , 1; 0 , yi , 1;

f ð yijuÞhðzi=yiÞð2y21i ÞÐ1
0
f ððzi=vÞjuÞhðvÞv21dv

; if 21 , zi , 0; 21 , yi , 0:

8>>>>><>>>>>:
ð6Þ

Drawing r*i from the conditional density hðrijzi; u*Þ defined in (4) and setting y*i ¼ zi=r
*
i is

equivalent to drawing y*i directly from the conditional density f ð yijzi; u*Þ in the sense that
given zi and u *, the variable zi=r

*
i has the density f ð yijzi;u*Þ.
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Remark 2. As to the choice of u (0), one can choose moment-based estimates (Nayak

et al. 2011).

Remark 3. We have tacitly assumed in the above analysis that the posterior distribution

of the parameter u, given noise-multiplied data z, is proper. In applications, this needs to

be verified on a case by case basis because the posterior propriety under the original data y,

which may routinely hold under many parametric models, may not guarantee the same

under z when an improper prior distribution for u is used. We refer to the technical report

Klein and Sinha (2013) for an example. The same remark holds in the case of the posterior

distribution of u, given the mixture data. We have verified the posterior propriety in our

specific applications for fully noise-multiplied data and mixture data in Appendices B

and C, respectively.

Type B Imputation Procedure. In this procedure there is no Bayesian model

specification. Instead, the unknown parameter u is set equal to ûmleðzÞ, the MLE based on
the noise-multiplied data z, which can often be computed via the EM algorithm (Klein

et al. 2013). The imputed values of the noise variables are then randomly drawn such that

r*i , h rjzi; ûmleðzÞ
� �

; for i ¼ 1; : : : ; n: ð7Þ
The above sampling is repeated, independently, m times to obtain

�
r*

ð jÞ
1 ; : : : ; r*ð jÞn

�
;

j ¼ 1; : : : ;m. If h(r) is the uniform density (5), then Proposition 1 can be used to

implement the sampling in (7).

2.3. Combination Rules for Analyzing the Released Data

We now present methods for analyzing the released data y*ð1Þ; : : : ; y*ðmÞ. Naturally, under
the proposed methodology, analysis of the released data would usually be the

responsibility of the data user. The analysis involves first analyzing each y*ð jÞ as if it
were a random sample from f ( yju), and then suitably combining the results across

j ¼ 1; : : : ;m to obtain final inference. We first present the combination rules of Rubin

(1987), which should yield valid inferences when the agency uses the Type A method to

impute the noise variables. Rubin’s (1987) combination rules often work well, and are

simple to apply; however, they may not be optimal, and hence we also consider alternative

methods of Wang and Robins (1998).

Rubin’s (1987) Rule for Type A Imputation. We assume here that the released

data (3) are obtained using the Type A imputation procedure. The multiple imputation

estimator of Q is


hm ¼ 1

m

Xm
j¼1

hj; ð8Þ

and the estimator of the variance of 
hm is

Tm ¼ 1þ 1

m

� �
bm þ 
vm; ð9Þ

where bm ¼ ð1=ðm2 1ÞÞPm
j¼1ðhj 2 
hmÞ2 and 
vm ¼ ð1=mÞPm

j¼1vj. The point estimator


hm and its variance estimator Tm can now be used along with a normal cut-off
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point to construct a confidence interval for Q. We can also use a t cut-off point

based on setting the degrees of freedom equal to ðm2 1Þ 1þ a21m

� �2
where

am ¼ ð1þ m21Þbm=
vm.
Wang and Robins’s (1998) Rule for Type A Imputation. Once again we assume that

the released data (3) are obtained using the Type A imputation procedure. Let

ûj ¼ argmaxu
Yn
i¼1

f
�
y*

ð jÞ
i ju�( )

; j ¼ 1; : : : ;m; ð10Þ

denote the MLE of u computed on the jth imputed data set y*ð jÞ under the model f ( yju).
The multiple imputation estimator of u is ûA ¼ ð1=mÞPm

j¼1ûj. By Wang and Robins

(1998),ffiffiffi
n

p ðûA 2 uÞ L�!Np½0;VA	; as n!1;

where VA ¼ I21obs þ ð1=mÞI21c J þ ð1=mÞJ 0I21obsJ, J ¼ ImisI
21
c ¼ ðIc 2 IobsÞI21c , and where Ic

and Iobs are the p £ p matrices defined by

Ic ¼ E 2
›2log f ð yjuÞ

›ul›ul 0

� �� �� �
and Iobs ¼ E 2

›2 log gðzjuÞ
›ul›ul 0

� �� �� �
: ð11Þ

Let Sij y*
ð jÞ
i ; ûj

� �
denote the p £ 1 score vector, with its lth element defined as

Sijl y*
ð jÞ
i ; ûj

� �
¼ › log f ð yjuÞ

›ul
j
y¼y*

ð j Þ
i

;u¼û j
; l ¼ 1; : : : ; p; i ¼ 1; : : : ; n; j ¼ 1; : : : ;m;

and let S*ij y*
ð jÞ
i ; ûj

� �
denote the p £ p matrix whose ðl; l0Þth element is defined as

S*ijll 0 y*
ð jÞ

i ; ûj

� �
¼ ›2log f ð yjuÞ

›ul›ul 0
j
y¼y*

ð jÞ
i

;u¼û j
;

l; l0 ¼ 1; : : : ; p; i ¼ 1; : : : ; n; j ¼ 1; : : : ;m:

A consistent variance estimator V̂A is obtained by estimating Ic by

Îc ¼ 1

m

Xm
j¼1

Îc;j; Îc;j ¼ 2
1

n

Xn
i¼1

S*ij
�
y*

ð jÞ
i ; ûj

�
; ð12Þ

and estimating Iobs by

Îobs ¼ 1

2nmðm2 1Þ
Xn
i¼1

Xm
j–j 0¼1

Sij
�
y*

ð jÞ
i ; ûj

�
Sij 0

�
y*

ð j 0 Þ
i ; ûj 0

� 0þSij 0
�
y*

ð j 0 Þ
i ; ûj 0

�
Sij
�
y*

ð j Þ
i ; ûj

� 0h i
:

ð13Þ
For any givenQ(u), the variance of the multiple imputation estimatorQðûAÞ is obtained by
applying the familiar d-method, andWald-type inferences can be directly applied to obtain

confidence intervals.

Wang and Robins’s (1998) Rule for Type B Imputation. We now assume that the

released data (3) are obtained using the Type B imputation procedure. Let ûj be defined
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by (10). The multiple imputation estimator of u is ûB ¼ ð1=mÞPm
j¼1ûj. By Wang and

Robins (1998),ffiffiffi
n

p ðûB 2 uÞ L�!Np½0;VB	; as n!1;

where VB ¼ I21obs þ ð1=mÞI21c J ¼ I21obs þ ð1=mÞI21c ðIc 2 IobsÞI21c with Ic and Iobs defined

in (11). A consistent variance estimator V̂B is obtained by estimating Ic using (12) and

estimating Iobs using (13). For any given Q(u), the variance of the estimator QðûBÞ is
obtained by applying the familiar d-method, and Wald-type inferences can be directly

applied to obtain confidence intervals.

Remark 4. Wang and Robins (1998) provide a comparison between the Type A and

Type B imputation procedures, and compare the corresponding variance estimators with

Rubin’s (1987) variance estimator Tm. Their observation is that the estimators V̂A and

V̂B are consistent for VA and VB, respectively; and the Type B estimator ûB will

generally lead to more accurate inferences than ûA, because for finite m, VB , VA

(meaning VA 2 VB is positive definite). Under the Type A procedure and for finite m,

Rubin’s (1987) variance estimator has a nondegenerate limiting distribution; however,

the asymptotic mean is VA, and thus Tm is also an appropriate estimator of variance (in

defining Rubin’s (1987) variance estimator, Wang and Robins (1998) multiply the

quantity bm by the sample size n to obtain a random variable that is bounded in

probability). The variance estimator Tm would appear to underestimate the variance if

applied in the Type B procedure because under the Type B procedure, if m ¼ 1, then
Tm has a probability limit that is smaller than the asymptotic variance VB (when

m ¼ 1, VA ¼ VB ¼ I21obs). However, under the Type A procedure, if m ¼ 1 then Tm is

consistent for the asymptotic variance VA. We refer to Rubin (1987) and Wang and

Robins (1998) for further details.

3. Methodology for Mixture Data

Recall that the term mixture data in our context refers to a data set in which values

below C are unperturbed and values above C are perturbed using noise multiplication.

In this section we discuss the analysis of such data following the procedure outlined

earlier, namely, by (i ) suitably recovering the y-values above C via use of

reconstructed noise terms and the noise-multiplied z-values along with or without their

identities (below or above C), and (ii ) providing multiple imputations of such y-values

and methods to appropriately combine the original y-values and reconstructed y-values

to draw inference on Q.

Let C . 0 denote the prescribed top code so that y-values above C are sensitive

and hence cannot be reported/released. Given y ¼ ð y1; : : : ; ynÞ, r ¼ ðr1; : : : ; rnÞ,
z ¼ ðz1; : : : ; znÞ where zi ¼ yi £ ri, we define x ¼ ðx1; : : : ; xnÞ and D ¼ ðD1; : : : ;DnÞ
with Di ¼ Ið yi # CÞ and xi ¼ yi if yi # C, and ¼ zi if yi . C. Inference for u will be

based on either (i) {ðx1;D1Þ; : : : ; ðxn;DnÞ} or (ii) just {x1; : : : ; xn}. Under both the

scenarios, which each guarantee that the sensitive y-values are protected, several data sets

of the type ðy*1; : : : ; y*nÞ will be released along with a data analysis plan. We describe

below the imputation and data analysis plans under both the scenarios.
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Case (i). Here we generate r*i from the reported values of (xi, Di ¼ 0) and compute

y*i ¼ xi=r
*
i . Of course, if Di ¼ 1 then we set y*i ¼ yi. Generation of r

*
i is done by sampling

from the conditional distribution hðrijxi;Di ¼ 0; uÞ of ri, given xi, u, and Di ¼ 0, where

hðrijxi;Di ¼ 0; uÞ ¼ f ðxi=riÞju
� �

hðriÞr21iÐ ðxi=CÞ
0

f ðxi=v
� �juÞhðvÞv21dv

; for 0 , ri ,
xi

C
ð14Þ

(Klein et al. 2013) Note that the support of the above conditional distribution is such that

r*i [ ð0; ðxi=CÞÞ, and thus, if Di ¼ 0, then y*i ¼
�
xi=r

*
i

�
. C. That is, when yi . C, the

privacy-protected data point y*i has the desirable property that it will also be greater than C.

When the noise distribution is the uniform density (5), then (14) can be written as

hUðrijxi;Di ¼ 0; uÞ ¼ f ððxi=riÞjuÞr21iÐmin {ðxi=CÞ;1þe}
12e f ððxi=vÞjuÞv21dv

;

for 12 e # ri # min
xi

C
; 1þ e

n o
;

ð15Þ

and Proposition 1 provides an algorithm for sampling from the above density (15).

Regarding choice of u, we can proceed following the Type B method (Section 2) and

use the MLE of u ðûmleÞ based on the data {ðx1;D1Þ; : : : ; ðxn;DnÞ}. This will often be
direct (via EM algorithm) in view of the likelihood function L(ujx, D) reported in Klein
et al. (2013) and reproduced below:

Lðujx;DÞ ¼
Yn
i¼1

½ f ðxijuÞ	Di

ððxi=CÞ
0

f
xi

r
ju

� � hðrÞ
r

dr

" #12Di

: ð16Þ

Alternatively, following Type A method discussed in Section 2, r *-values can also be

obtained as draws from a posterior predictive distribution. We place a noninformative

prior distribution p(u) on u, and sampling from the posterior predictive distribution of

r1; : : : ; rn can be done as follows:

1. Draw u * from the posterior distribution of u given {ðx1;D1Þ; : : : ; ðxn;DnÞ} using the
likelihood L(ujx, D) given above.

2. Draw r*i for those i ¼ 1; : : : ; n for which Di ¼ 0, from the conditional distribution

(14) of ri, given xi, Di ¼ 0, and u ¼ u*.

As mentioned in Section 2, the sampling required in step (1) above can be complicated

due to the complex form of the joint density L(ujx, D). The data augmentation algorithm
(Little and Rubin 2002; Tanner and Wong 1987) allows us to bypass the direct sampling

from the posterior distribution of u given {ðx1;D1Þ; : : : ; ðxn;DnÞ}.
Under the data augmentation method, given a value u (t) of u drawn at step t:

I. Draw rðtþ1Þi , hðrjxi;Di ¼ 0; u ðtÞÞ for those i ¼ 1; : : : ; n for which Di ¼ 0.

II. Draw u ðtþ1Þ , p u jyðtþ1Þ1 ; : : : ; yðtþ1Þn

� �
where yðtþ1Þi ¼ xi=r

ðtþ1Þ
i when Di ¼ 0, and

yðtþ1Þi ¼ xi otherwise. Here p(ujy) stands for the posterior pdf of u, given the original
data y (only its functional form is used).
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The above process is run until t is large and one must, of course, select an initial value u (0)

to start the iterations.

Case (ii). Here we generate r**i ;D*i
� �

from the reported values of ðx1; : : : ; xnÞ and
compute y**i ¼ xi=r

**
i

� �
if D*i ¼ 0, and y**i ¼ xi, otherwise, i ¼ 1; : : : ; n. This is done by

using the conditional distribution g(r, djx, u) of r and D, given x and u. Since

gðr; djx; uÞ ¼ hðrjx; d; uÞ £ c ðdjx; uÞ, and the conditional Bernoulli distribution of D,

given x and u, is readily given by

cðd ¼ 1jx; uÞ ¼ Pr {D ¼ 1jx; u}

¼ f ðxjuÞIðx , CÞ
f ðxjuÞIðx , CÞ þ Iðx . 0ÞÐ x=C

0
f ððx=rÞjuÞhðrÞr21dr

ð17Þ

(Klein et al. 2013), drawing of r**i ;D*i
� �

, given xi and u, is carried out by first randomly

selecting D*i according to the above Bernoulli distribution, and then randomly choosing

r**i if D*i ¼ 0 from the conditional distribution given by (14).

Again, in the above computations, following Type B approach, one can use the MLE of

u (via EM algorithm) based on the x-data alone whose likelihood is given by

LðujxÞ ¼
Yn
i¼1

f ðxijuÞIðxi , CÞ þ Iðxi . 0Þ
ðxi=C
0

f
xi

r
ju

� �
hðrÞr21dr

" #
ð18Þ

(Klein et al. 2013). Alternatively, one can proceed as in Type A method (sampling

r**1 ; : : : ; r**n from the posterior predictive distribution) by plugging in u ¼ u* that are

random draws from the posterior distribution of u, given x, based on the above likelihood

and choice of prior for u. As noted in the previous case, here too a direct sampling of u,

given x, can be complicated, and we can use the data augmentation algorithm suitably

modified following the two steps indicated below.

1. Starting with an initial value of u and hence u (t) at step t, draw rðtþ1Þi ;Dðtþ1Þ
i

� �
hðr; d jxi; u ðtÞÞ. This of course is accomplished by first drawing Dðtþ1Þ

i and then rðtþ1Þi ,

in case Dðtþ1Þ
i ¼ 0.

2. At step (t þ 1), draw u (tþ1) from the posterior distribution p u jyðtþ1Þ1 ; : : : ; yðtþ1Þn

� �
of

u, where yðtþ1Þi ¼ xi if D
ðtþ1Þ
i ¼ 1, and yðtþ1Þi ¼ xi=r

ðtþ1Þ
i if Dðtþ1Þ

i ¼ 0. Here, as before,

the functional form of the standard posterior of u, given y, is used.

In both case (i) and case (ii), after recovering the multiply imputed complete data

y*ð1Þ; : : : ; y*ðmÞ using the techniques described above, methods of parameter estimation,
variance estimation, and confidence interval construction are the same as those discussed

in Section 2 for fully noise-multiplied data. Naturally, in case (i) when information on the

indicator variables D is used to generate y *-values, data users will know exactly which

y-values are original and which y-values have been noise-perturbed and de-perturbed.

Of course, this need not happen in case (ii), thus providing more privacy protection with

perhaps less accuracy. Thus the data producer (such as the Census Bureau) has a choice

depending upon to what extent information about the released data should be provided to

the data users.
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4. Details for Normal and Lognormal Data

In this section we provide some details of the proposed methodology for normal and

lognormal populations. Similar details for the exponential population appear in the

technical report Klein and Sinha (2013).

4.1. Normal Data

We consider the case of a normal population with uniform noise, that is, we

take f ð yjuÞ ¼ ð1=ðs ffiffiffiffiffiffi
2p

p ÞÞ exp ½2ð1=ð2s2ÞÞð y2 mÞ2	; 21 , y , 1, and we let h(r) be
the uniform density (5). We place a standard noninformative improper prior on (m, s 2):

pðm;s2Þ / 1

s2
; 21 , m , 1; 0 , s2 , 1: ð19Þ

The posterior distribution of (m, s 2) given y is obtained as pðm;s2jyÞ ¼ pðmjs2; yÞpðs2jyÞ
where

ðs2jyÞ , ðn2 1Þs2
x2n21

; ðmjs2; yÞ , N 
y;
s2

n

� �
; ð20Þ

with 
y ¼ ð1=nÞPn
i¼1yi and s2 ¼ ð1=ðn2 1ÞÞPn

i¼1ð yi 2 
yÞ2 (Gelman et al. 2003). The

conditional density h(rjz, u) as defined in (4) now takes the form

hðrjz; uÞ ¼ exp ½2ð1=ð2s2ÞÞððz=rÞ2 mÞ2	r21Ð 1þe
12e exp ½2ð1=ð2s2ÞÞððz=vÞ2 mÞ2	v21dv

; 12 e # r # 1þ e : ð21Þ

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density

of ri given zi.

Corollary 1 The following algorithm produces a random variable R whose density is (21).

I. Generate U, V as independent Uniform(0, 1) and let W ¼ ð1þ eÞV=ð12 eÞV21.
II. Accept R ¼ W if U # exp ½ð21=ð2s2ÞÞðz=W 2 mÞ2	=M, otherwise reject W and

return to step (I).

If z . 0 then the constant M is defined as

M ; Mðm;s2; e ; zÞ

¼
exp 2

1

2s2
ðz=ð1þ eÞ2 mÞ2

� �
; if m # z=ð1þ eÞ;

1; if z=ð1þ eÞ , m , z=ð12 eÞ;
exp 2

1

2s2
ðz=ð12 eÞ2 mÞ2

� �
; if m $ z=ð12 eÞ:

8>>>><>>>>:
and if z , 0 then

M ; Mðm;s2; e ; zÞ

¼
exp 2

1

2s2
ðz=ð12 eÞ2 mÞ2

� �
; if m # z=ð12 eÞ;

1; if z=ð12 eÞ , m , z=ð1þ eÞ;
exp 2

1

2s2
ðz=ð1þ eÞ2 mÞ2

� �
; if m $ z=ð1þ eÞ:

8>>>>><>>>>>:
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The expected number of iterations of steps (I) and (II) required to obtain R is

M½ log ð1þ eÞ2 log ð12 eÞ	Ð 1þe
12e exp ½2ð1=ð2s2ÞÞððz=vÞ2 mÞ2	v21dv

:

In the case of mixture data, the conditional density (14) now becomes

hðrjx;D ¼ 0; uÞ ¼ exp ½2ð1=ð2s2ÞÞðx=r 2 mÞ2	r21Ð min {ðx=CÞ;1þe}
12e exp ½2ð1=ð2s2ÞÞðx=v2 mÞ2	v21dv

;

12 e # r # min
x

C
; 1þ e

n o
;

ð22Þ

and a simple modification of Corollary 1 yields an algorithm to sample from this pdf.

4.2. Lognormal Data

We next consider the case of the lognormal population: f ð yjuÞ ¼ ð1=ð ys ffiffiffiffiffiffi
2p

p ÞÞ
exp ½ð21=ð2s2ÞÞð log y2 mÞ2	; 0 # y , 1. We define a prior distribution on (m, s 2) as

in (19). The posterior distribution of (m, s 2) is then given by (20) upon replacing each yi
by log( yi).

Customized noise distribution for fully perturbed data. Let us take the noise

density as:

hðrÞ ¼ 1

rj
ffiffiffiffiffiffi
2p

p exp 2
1

2j2
ð log r þ j2=2Þ2

� �
; 0 , r , 1; ð23Þ

where 0 , j , 1, and E(R) ¼ 1 and VarðRÞ ¼ e j
2

2 1. We note that h(r) is a lognormal

density such that R , hðrÞ , log ðRÞ , Nð2j2=2; j2Þ. It then follows that h(rjz, u) is also
a lognormal density such that

R , hðrjz; uÞ , log ðRÞ , N 2
j2

2
þ j2

s2 þ j2
log ðzÞ þ j2

2
2 m

� �
;

s2j2

s2 þ j2

# $
: ð24Þ

Uniform noise distribution. Suppose we take the noise distribution to be uniform as

defined in (5). Then the conditional pdf (4) takes the form

hðrjz; uÞ ¼ exp ½2ð1=ð2s2ÞÞð log ðz=rÞ2 mÞ2	Ð 1þe
12e exp 2 ð1=ð2s2ÞÞð log ðz=vÞ2 mÞ2dv ; 12 e # r # 1þ e ð25Þ

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density

of ri given zi.

Corollary 2 The following algorithm produces a random variable R whose density

is (25).

I. Generate U, V as independent Uniform(0, 1) and let W ¼ ð1þ eÞV=ð12 eÞV21.
II. Accept R ¼ W if U # Wz21 exp ½2ð1=ð2s2ÞÞð log ðz=WÞ2 mÞ2	=M, otherwise reject

W and return to step (I).
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The constant M is defined as

M;Mðm;s2;e;zÞ

¼

ð1þeÞz21 exp 2
1

2s2
ð logðz=ð1þeÞÞ2mÞ2

� �
; if em2s

2

# z=ð1þeÞ;

exp 2mþs2

2

� �
; if z=ð1þeÞ, em2s

2

, z=ð12eÞ;

ð12eÞz21 exp 2
1

2s2
ð logðz=ð12eÞÞ2mÞ2

� �
; if em2s

2

$ z=ð12eÞ:

8>>>>>>>>><>>>>>>>>>:
The expected number of iterations of steps (I) and (II) required to obtain R is

M½ logð1þeÞ2 logð12eÞ	Ð 1þe
12ez

21 exp½2ð1=ð2s2ÞÞð logðz=vÞ2mÞ2	dv :

In the case of mixture data, the conditional density (14) now becomes

hðrjx;D ¼ 0; uÞ ¼ exp ½2ð1=ð2s2ÞÞð log ðx=rÞ2 mÞ2	Ð min {ðx=CÞ;1þe}
12e exp ½2ð1=ð2s2ÞÞð log ðx=vÞ2 mÞ2	dv

;

12 e # r # min
x

C
; 1þ e

n o
;

ð26Þ

and a simple modification of Corollary 2 yields an algorithm to sample from this pdf.

5. Simulation Study to Assess Accuracy of Inference

We use simulation to study the finite sample properties of point estimators, variance

estimators, and confidence intervals obtained from noise-multiplied data. We consider the

cases of normal and lognormal populations in conjunction with uniform and customized

noise distributions as far as possible, as outlined in Section 4. The results for the

exponential population are similar to the normal and lognormal, and appear in the

technical report Klein and Sinha (2013). One may expect that the simpler method of data

analysis proposed in this paper may lead to less accurate inferences than a formal

likelihood-based analysis of fully noise-multiplied and mixture data. However, if the

inferences derived using the proposed methodology are not substantially less accurate,

then the proposed method may be preferable, in some cases, because of its simplicity. Thus

the primary goals of this section are essentially to (1) compare the proposed methods

with the likelihood-based method reported in Klein et al. (2013), and (2) to assess and

compare the finite sample performance of Rubin’s (1987) estimation methods with those

of Wang and Robins (1998) under our settings of fully noise-multiplied and mixture data.

Each of the tables discussed below is based on a simulation with 5,000 iterations and

m ¼ 5 imputations of the noise variables generated at each iteration. We choose m ¼ 5

because this is a fairly small number of imputations which may be conveniently used in

practice. In each of the 5,000 iterations, five independent runs of the data augmentation

algorithm, each having 50 iterations, are used to obtain the Type A imputations. Some
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exploratory analysis indicated that 50 iterations of the data augmentation algorithm

provided an adequate approximation in the chosen simulation settings. All results are

obtained using the statistical computing software R (R Development Core Team 2011).

5.1. Fully Noise-Multiplied Data

Table 1 provides results for the case of a normal population when the parameter of interest

is either the mean m or the variance s 2; and Table 2 provides results for the case of a

lognormal population when the parameter of interest is either the mean emþs 2=2 or the .95

quantile emþ1:645s. For each distribution we consider samples sizes n ¼ 100 and n ¼ 500,

but we only display results for the former sample size. Each table displays results for

several different methods which are summarized below.

UD: Analysis based on the unperturbed data y.

NM10UIB: Analysis based on noise-multiplied data with h(r) defined by (5), e ¼ .10,

and using the Type B imputation method and the associated combining rules of

Wang and Robins (1998).

NM10UIA1: Analysis based on noise-multiplied data with h(r) defined by (5), e ¼ .10,

and using the Type A imputation method and Rubin’s (1987) combining rules with

the normal cut-off point for confidence interval construction.

NM10UIA2: Analysis based on noise-multiplied data with h(r) defined by (5), e ¼ .10,

and using the Type A imputation method and Rubin’s (1987) combining rules with

the t cut-off point for confidence interval construction.

NM10UIA3: Analysis based on noise-multiplied data with h(r) defined by (5), e ¼ .10,

and using the Type A imputation method and the associated combining rules of

Wang and Robins (1998).

NM10UL: Analysis based on noise-multiplied data with h(r) defined by (5), e ¼ .10,

and using the formal likelihood based method of analysis of Klein et al. (2013).

NM10CIB, NM10CIA1, NM10CIA2, NM10CIA3, NM10CL: These methods are

defined analogously to the methods above, but h(r) is now the customized noise

distribution (23) (for lognormal data); the parameters d and j appearing in h(r) are

chosen so that if R , h(r), then Var(R) ¼ (e2)/3, the variance of the Uniform

(1 2 e, 1 þ e) distribution with e ¼ 0.10.

The remaining methods appearing in these tables are similar to the corresponding

methods mentioned above after making the appropriate change to the parameter e in

the referenced Uniform(1 2 e, 1 þ e) distribution. For each method and each parameter

of interest, we display the root mean squared error of the estimator (RMSE), bias of

the estimator, standard deviation of the estimator (SD), average over simulation runs of the

estimated standard deviation of the estimator (cSDSD), empirical coverage probability of

the associated confidence interval (Cvg.), and average length (over simulation iterations)

of the corresponding confidence interval relative to the average length of the confidence

interval computed from the unperturbed data (Rel. Len.). In each case the nominal

coverage probability of the confidence interval is 0.95. For computing an estimate of the

standard deviation of an estimator, we simply compute the square root of the appropriate

variance estimator. For computing the estimator h(y) and variance estimator v(y) of
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Subsection 2.2, we use the maximum likelihood estimator and inverse of observed Fisher

information, respectively. All results shown for unperturbed data use Wald-type

inferences based on the maximum likelihood estimator and observed Fisher information.

The following is a summary of the simulation results of Tables 1–2.

1. In terms of RMSE, bias, and SD of point estimators, as well as average confidence

interval length, the proposed methods of analysis are generally only slightly less

accurate than the corresponding likelihood-based analysis.

2. In terms of coverage probability of confidence intervals, the multiple imputation-

based and formal likelihood-based methods of analysis yield similar results.

3. We consider Uniform(1 2 e , 1 þ e) noise distributions with e ¼ 0.1, 0.2, and 0.5,

or equivalent (in terms of variance) customized noise distributions. Generally, for

noise distributions with e ¼ 0.1 and 0.2, the proposed analysis based on the noise-

multiplied data results only in a slight loss of accuracy in comparison with that based

on unperturbed data. When the noise distribution has a larger variance (i.e., when

e ¼ 0.5) we notice that the bias of the resulting estimators generally remains small,

while the SD clearly increases. When the parameter of interest is the mean, the noise-

multiplied data with e ¼ 0.5 still appear to provide inferences with only a slight loss

of accuracy compared with the unperturbed data. In contrast, when the parameter of

interest is the normal variance as in the right-hand panel of Table 1, the loss of

accuracy in terms of SD and hence RMSE appears to be more substantial when e

increases to 0.5. We refer to Klein et al. (2013) for a detailed study of the properties

of noise-multiplied data.

4. We observe very little difference in the bias, SD, and RMSE of estimators derived

under the Type A imputation procedure versus those derived under the Type B

imputation procedure.

5. In each table, the column cSDSD provides the finite sample mean of each of the multiple

imputation standard deviation estimators (square root of variance estimators)

presented in Section 2. Thus we can compare the finite sample bias of Rubin’s (1987)

standard deviation estimator of Subsection 2.2 with that of Wang and Robins’s

(1998) standard deviation estimators of Subsection 2.3 under our setting of noise

multiplication. We find that the mean of both of Wang and Robins’s (1998) standard

deviation estimators is generally larger than the mean of Rubin’s (1987) standard

deviation estimator. From these numerical results it appears that we cannot make any

general statement about which estimators possess the smallest bias, because none of

these estimators uniformly dominates the other in terms of minimization of bias.

With a larger sample size of n ¼ 500 (results not displayed here), we find that all

standard deviation estimators have similar expectation; this statement is especially

true for the normal case. With the sample size of n ¼ 100 we notice in Table 1 that

the mean of Rubin’s (1987) SD estimator is slightly less than the true SD while both

of Wang and Robins’s (1998) estimators have a mean slightly larger than the true SD.

We should point out that this slight negative bias of Rubin’s (1987) SD estimator is

most likely due to the fact that the SD estimator based on the original data is itself

slightly downward-biased. In the lognormal case, for the sample size n ¼ 100 of
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Table 2, we notice that Rubin’s (1987) estimator is nearly unbiased for the true SD

while Wang and Robins’s (1998) estimators tend to overestimate the true SD more

substantially.

6. When the customized noise distribution is available (e.g., exponential and lognormal

cases), the results obtained under the customized noise distribution are quite similar

to those obtained under the equivalent (in terms of variance) uniform noise

distribution.

7. For confidence interval construction based on Rubin’s (1987) variance estimator, the

interval based on the normal cut-off point performs very similarly to the interval

based on the t cut-off point.

8. The data augmentation algorithm, used by the Type A methods to sample from the

posterior predictive distribution of r, given the noise-multiplied data, appears to

provide an adequate approximation.

5.2. Mixture Data

We now study the properties of estimators derived from mixture data as presented in

Section 3. Table 3 provides results for the case of a normal population, and Table 4

provides results for the case of a lognormal population. The parameters of interest in each

case are the same as in the previous subsection, and the top-coding threshold value C is

set equal to the 0.90 quantile of the population. The methods in the rows of Tables 3–4

are as described in the previous subsection, except that each ends with either .i or .ii to

indicate either case (i) or case (ii) of Section 3, respectively. The conclusions here are

generally in line with those of the previous subsection. Below are some additional

findings.

1. Rubin’s (1987) SD estimator in this case tends to exhibit very little bias.

2. Generally we find here that the noise multiplication methods yield quite accurate

inferences, even more so than in the case of full noise multiplication; this finding

is expected since with mixture data only a subset of the original observations are

noise-perturbed.

3. As expected, the inferences derived under the case (i) data scenario (observe (x, D))

are generally more accurate than those derived under the case (ii) data scenario

(observe only x), but for the noise distributions considered, the differences in

accuracy generally are not too substantial.

6. Further Evaluations and Extensions

6.1. Disclosure Risk Evaluation

In this section we report the results of a numerical study designed to give an indication of

the amount of disclosure protection provided by the proposed methodology. To be

specific, we determine how tightly the m draws y*ð1Þi ; : : : ; y*ðmÞi are centered around the

true value yi, and how well the average and median of these m draws approximate the true

value yi. We consider both the fully noise-multiplied data and mixture data scenarios.
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Case of Fully Noise-Multiplied Data. Tables 5 and 6 report the results of the numerical

study for evaluating the disclosure risk in the case of full noise multiplication. In Table 5,

f ( yju) is the lognormal density as in Subsection 4.2 with m ¼ 0, s 2 ¼ 1, and the table

shows, for a few selected yi values, the corresponding zi values, and a summary of the

distribution of the associated values of y*ð1Þi ; : : : ; y*ðmÞi . The z-values are shown for the

cases of the uniform noise density (5) with e ¼ 0.1, 0.2, and 0.5; and the minimum, 1st

quartile, median, mean, 3rd quartile, and maximum of the associated values of

y*ð1Þi ; : : : ; y*ðmÞi are displayed for two cases: m ¼ 5 and m ¼ 5,000. While such a large

value as m ¼ 5,000 may not be used in practice, we consider this large m in order to obtain

an accurate picture of the distribution of released values of y*ð1Þi ; : : : ; y*ðmÞi . Of course for

the case m ¼ 5, the minimum, 1st quartile, median, 3rd quartile, and maximum are simply

the ordered values of y*ð1Þi ; : : : ; y*ð5Þi , respectively. Furthermore, results for both the Type

A and Type B imputation methods for y*-values are shown in the table. Table 6 reports

similar results for lognormal except that instead of uniform, we use the customized noise

distribution for lognormal data as defined in Subsection 4.2, with variances matching those

of the Uniform(1 2 e, 1 þ e) density with e ¼ 0.1, 0.2, and 0.5. The following is a

summary of the results of Tables 5 and 6.

1. As the variation in the noise distribution h(r) increases (i.e., as e increases), the

dispersion in y*ð1Þi ; : : : ; y*ðmÞi also increases. Therefore, as one would expect, the

amount of privacy protection provided by this method increases with the variance of

the noise-generating distribution.

2. Generally, even for large m, one does not recover the original yi by averaging or

computing the median of the imputed copies y*ð1Þi ; : : : ; y*ðmÞi . Usually we find that

the noise-multiplied observation zi is contained between the 1st and 3rd quartiles of

y*ð1Þi ; : : : ; y*ðmÞi , but interestingly, the yi value may not be contained between these

quartiles. In fact, when e is small, the distribution of the y*ð1Þi ; : : : ; y*ðmÞi values tends

to be concentrated around zi and not yi. However, when the noise multiplication

results in a large perturbation as in the bottom row of Table 6 where yi ¼ 18.21 and

zi ¼ 31.32, then we find that the distribution of y*ð1Þi ; : : : ; y*ðmÞi is shifted downward

toward yi, yet still the original value of yi ¼ 18.21 is not contained between the 1st

and 3rd quartiles of y*ð1Þi ; : : : ; y*ðmÞi . This finding gives some indication that the

method does provide some correction of an extreme zi value, while at the same time

does not disclose the original yi value.

3. Comparing the results of the Type A and Type B imputation procedures, we find

them to be quite similar.

4. The results for the uniform and customized noise distributions are similar, although

the uniform noise does tend to give a slightly larger interquartile range of

y*ð1Þi ; : : : ; y*ðmÞi than the customized noise, thus providing perhaps slightly more

privacy protection.

Case of Mixture Data. Table 7 reports the results of the numerical study for evaluating

the disclosure risk in the case of mixture data. The population density f ( yju) is again the
lognormal density as in Subsection 4.2 with m ¼ 0, s 2 ¼ 1, the top-coding threshold is

C ¼ 3.60 which is the 0.90 quantile of the population density (rounded to two decimal

places), and the table shows, for three particular yi values, the corresponding xi value, and
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distribution of the associated values of y*ð1Þi ; : : : ; y*ðmÞi . In this table, the x-values are

shown for the cases of the uniform noise density (5) with e ¼ 0.1, 0.2, and 0.5; and the

minimum, 1st quartile, median, mean, 3rd quartile, and maximum of y*ð1Þi ; : : : ; y*ðmÞi are

displayed for the cases m ¼ 5 and m ¼ 5,000. Results are shown for both cases (i) and

(ii) of Section 3 and for both the Type A and Type B imputation methods. Most of the

findings here are similar to those of the case of full noise multiplication. Below is a

summary of findings from Table 7 which highlights the similarities and differences in

privacy protection between cases (i) and (ii) of Section 3.

1. The first part of the table shows results when the y-value is yi ¼ 5.71, which is, of

course, greater than the top-coding threshold C ¼ 3.60. It happens here that each of

the displayed noise-multiplied values is also larger than C. Therefore, based on each

of the x-values shown, we know with certainty that Di ¼ 0 (that is, the conditional

probability (17) equals 0), and hence the case (ii) method will always impute this

particular Di value correctly. Here, the properties of the replications y
*ð1Þ
i ; : : : ; y*ðmÞi

for both cases (i) and (ii) are similar to each other and similar to those noted for the

full noise multiplication case (replications not centered at yi, dispersion increasing

with e, etc.). Note that the imputations under case (i) may be of slightly higher

quality, since the estimate of u (either posterior draw or MLE) needed to generate the

imputations may be of higher quality when based on case (i) data.

2. The second part of the table shows results when yi ¼ 3.75, which is again greater

than C ¼ 3.60, but each of the displayed x-values happen to fall in the interval

((1 2 e)C, C). When the x-value falls in this interval, the indicator Di cannot be

determined from xi with certainty (that is, the conditional probability (17) does not

equal 0 or 1). Therefore, the case (ii) method will sometimes (with a probability

governed by (17)), impute Di by the value one, and hence release the noise-multiplied

data point as the y*-value. Here it is interesting to look at the e ¼ 0.50 case where

xi ¼ 1.94 because in this case we see a large difference between the results in cases

(i) and (ii). In case (i) we use the information that Di ¼ 0 when generating

imputations, and hence the released y*-values are more similar to the original

y-value. In case (ii) we do not have this knowledge about the true value of Di. Since

the noise-multiplied observation is fairly small, Di is often imputed as 1 in case (ii).

Therefore, under case (ii), the noise-multiplied data point is often directly released in

the replications y*ð1Þi ; : : : ; y*ðmÞi and a user who sees these data would not

immediately know if the value repeated several times in the released y*ð1Þi ; : : : ; y*ðmÞi

was the original yi or its noise perturbed version.

3. The third part of the table shows results with yi ¼ 3.56. In this case, the y-value is

less than the top-coding threshold C ¼ 3.60, while each of the x-values happen to

fall in the interval ((1 2 e)C, C). Therefore, the value of Di cannot be determined

with certainty from xi (the conditional probability (17) does not equal 0 or 1). Thus,

the case (ii) method sometimes imputes Di by 0, and in these cases the released y*

will not be equal to the original y-value, since it will be divided by a random draw

from (14). In this situation, unlike the situation described in item (2) directly above,

the value repeated several times in the replications y*ð1Þi ; : : : ; y*ðmÞi for case (ii) is

the original observation, not its noise-perturbed version. In this case, the case
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(i) method, which uses knowledge of Di ¼ 1, always sets the released y*-value to

the true value of y.

6.2. Comparison with Synthetic Data

The methodology developed in this article is designed to enable statistical agencies to

release privacy-protected data that can be readily analyzed by data users. The methods of

(partially) synthetic data developed in Reiter (2003) are designed for the same purpose,

and hence a comparison of our methodology with that of Reiter (2003) is in order.

A general criticism of noise multiplication is that a proper statistical analysis of noise-

multiplied data is complicated for data users. The results of this article show how to

remedy this criticism by making the analysis as simple (for the data user) as the analysis of

synthetic data (we showed that Rubin’s (1987) combining rules can be used here, and these

rules are only slightly different from those of Reiter (2003)). Since the methodology of this

article gives very similar results to the full likelihood-based analysis of noise-multiplied

data developed in Klein et al. (2013), we believe that the pertinent comparison is that of

synthetic data versus noise multiplication, assuming a valid data analysis is performed in

both cases. Such a comparison, in terms of data quality, is precisely the topic of Klein et al.

(2013). We note that synthetic data certainly has benefits, as it has been thoroughly studied

in recent years, and successfully applied to complex multivariate data sets. At the same

time, the methodology of this article can be extended to multivariate data as outlined in the

subsection below. An advantage of noise multiplication over synthetic data is that noise

multiplication allows the statistical agency to precisely control the quality of the released

data, and also the level of privacy protection, through the choice of h(r). For instance,

when h(r) is the uniform density (5), the extensive numerical results of Klein et al. (2013)

show, for some univariate parametric models, precisely how to select e so that the quality

of inferences are equivalent to, less than, or greater than, the quality of inferences derived

under synthetic data. Indeed, the ability to choose h(r) provides the statistical agency with

a very fine level of control over the data quality and privacy protection, and such an

explicit tuning mechanism is not present in standard synthetic data methodology. Further

privacy guarantees under noise multiplication can be made, for instance, by taking h(r)

to be a density such as

hðrÞ ¼ 1

2ðe 2 jÞ ; if r [ ð12 e ; 12 jÞ< ð1þ j; 1þ eÞ; ð27Þ

where 0 , j , e , 1. Notice that the noise density (27) implies that the noise multiplier

r is always a distance j away from 1, and hence we are guaranteed that the relative distance

between the original observation y and noise-multiplied observation z is jðz2 yÞ=yj . j.

6.3. Extensions for Multivariate Data

So far in this article we assumed that the original data, y1; : : : ; yn, consist of a set of

n independent random variables whose support is a subset R. In this section, we outline

an extension of our methodology to the case of multivariate and fully noise-multiplied

data. In the multivariate case, we assume that the original data consist of y1; : : : ; yn,

a set of n independent k £ 1 dimensional random vectors. Thus we suppose that
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y1; : : : ; yn , iid , f ðyjuÞ, independent of r1; : : : ; rn , iid , hðrÞwhere f ( yju) and h(r)
are densities of continuous probability distributions whose support is a subset of Rk. As

before, u ¼ ðu1; : : : ; upÞ is an unknown p £ 1 parameter vector, and now h(r) is a known

density such that h(r) ¼ 0 if any component of the vector r is less than zero. Writing

yi ¼ ð yi1; : : : ; yikÞ and ri ¼ ðri1; : : : ; rikÞ, the fully noise-multiplied data are now defined

by z1; : : : ; zn where zi ¼ ðzi1; : : : ; zikÞ ¼ ð yi1ri1; ; : : : ; yikrikÞ; i ¼ 1; ; : : : ; n.

The joint density of (zi, ri) is

gðzi; rijuÞ ¼ f
zi1

ri1
; : : : ;

zik

rik

����u� �
hðri1; : : : ; rikÞ

Yk
l¼1

r21il

" #
;

the marginal density of zi is

gðzijuÞ ¼
ð1
0

: : :

ð1
0

f
zi1

vi1

; : : : ;
zik

vik

����u� �
hðvi1; : : : ;vikÞ

Yk
l¼1

v21
il

" #
dvi1: : :dvik;

and hence the conditional density of ri given zi is

hðrijzi;uÞ¼
f ððzi1=ri1Þ; : : : ;ðzik=rikÞjuÞhðri1; : : : ;rikÞ

Qk
l¼1r

21
il

h i
Ð1
0
: : :

Ð1
0
f ððzi1=vi1Þ; : : : ;ðzik=vikÞjuÞhðvi1; : : : ;vikÞ

Qk
l¼1v

21
il

h i
dvi1: : :dvik

:

ð28Þ
The complete, observed, and missing data are defined, respectively, as

xc¼ {ðz1;r1Þ; : : : ;ðzn;rnÞ}; xobs¼ {z1; : : : ;zn}; xmis¼ {r1; : : : ;rn}:

The noise vectors r1; : : : ;rn are imputed m times to obtain

x*ð jÞc ¼ z1;r
*ð jÞ
1

� �
; : : : ; zn;r

*ð jÞ
n

� �n o
¼ ðz11; : : : ;z1kÞ; r*

ð jÞ
11 ; : : : ;r*ð jÞ1k

� �
; : : : ;ðzn1; : : : ;znkÞ; r*

ð jÞ
n1 ; : : : ;r*ð jÞnk

� �n o
; j¼ 1; : : : ;m;

and the privacy-protected data are obtained as

y*ð jÞ¼ y*ð jÞ1 ; : : : ;y*ð jÞn

n o
¼ y*

ð jÞ
11 ; : : : ;y*ð jÞ1k

� �
; : : : ; y*

ð jÞ
n1 ; : : : ;y*ð jÞnk

� �n o

¼ z11

r*
ð jÞ
11

; : : : ;
z1k

r*
ð jÞ
1k

� !
; : : : ;

zn1

r*
ð jÞ

n1

; : : : ;
znk

r*
ð jÞ

nk

� !( )
; j¼ 1; : : : ;k:

ð29Þ

The methods of Subsection 2.2 can be used to impute the noise vectors, and the methods of

Subsection 2.3 can be used to analyze the privacy-protected data given in (29).

Conceptually, the methods of Subsections 2.2 and 2.3 can be readily applied to

multivariate data. For instance, a data user wishing to draw inference about the correlation

between yi1 and yi2would setQðuÞ¼Corrð yi1;yi2juÞ, and apply methods of Subsection 2.3.
For the statistical agency generating the imputations, there is perhaps one extension

needed in applying the methods of Subsection 2.2, because when generating the

imputations (either Type A or Type B), instead of sampling from the univariate
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conditional density (4), we must now sample from the k-dimensional multivariate

conditional density (28). In the univariate case we used Proposition 1 to extract samples

from (4) when one takes the noise-generating density to be (5). In the multivariate case, a

generalization of Proposition 1 can be used to sample random vectors from (28), when the

noise-generating distribution is the following k-dimensional uniform density (which is a

straightforward generalization of (5)):

hðr1; : : : ;rkÞ¼ 1

2k
Qk

l¼1el
; forðr1; : : : ;rkÞ[ ½12e1;1þe1	£ · · ·£ ½12ek;1þek	; ð30Þ

where 0 , e1, : : : ,ek , 1. The generalization of Proposition 1 is stated below as

Proposition 2; the proof is similar to that of Proposition 1 and hence is omitted.

Proposition 2 Suppose that f(yju) is a continuous probability density function of a

k-dimensional distribution, and let us write f ðyjuÞ ¼ cðuÞqðyjuÞ where c(u) . 0 is a

normalizing constant. Let M ; Mðu; e1; : : : ; ek; zÞ be such that

q
z1

r1
; : : : ;

zk

rk

����u� �
# M for all ðr1; : : : ; rkÞ

[ ½12 e1; 1þ e1	 £ · · · £ ½12 ek; 1þ ek	:
Then the following algorithm produces a random vector ðR1; : : : ;RkÞ having the density

hUðr1; : : : ; rkjz1; : : : ; zk; uÞ

¼
qððz1=r1Þ; : : : ; ðzk=rkÞjuÞ

Qk
l¼1r

21
l

h i
Ð 1þek
12ek

· · ·
Ð 1þe1
1þe1qððz1=v1Þ; : : : ; ðzk=vkÞjuÞ

Qk
l¼1v21

l

h i
dv1: : :dvk

;

for ðr1; : : : ; rkÞ [ ½12 e1; 1þ e1	 £ · · · £ ½12 ek; 1þ ek	:

I. Generate U, V1; : : : ;Vk as independent Uniform (0, 1) and let W l ¼ ð1þ e lÞV l=

ð12 e lÞV l21 for l ¼ 1; : : : ; k.

II. Accept ðR1; : : : ;RkÞ ¼ ðW1; : : : ;WkÞ if U # M21qððz1=W1Þ; : : : ; ðzk=WkÞjuÞ,
otherwise reject the vector ðW1; : : : ;WkÞ and return to step (I).

The expected number of iterations of steps (I) and (II) required to obtain ðR1; : : : ;RkÞ is

M
Qk

l¼1 log
1þ e l
12 e l

� �
Ð 1þek
12ek

· · ·
Ð 1þe1
12e1

qððz1=v1Þ; : : : ; ðzk=vkÞjuÞ
Qk

l¼1v21
l

h i
dv1 : : : dvk

:

Remark 5. In this section we briefly outlined the multivariate extension for the case of

fully noise-multiplied data; that is, where y1; : : : ; yn , iid , Y and each component of Y

requires protection from disclosure. We note that the methodology outlined in this section

allows one to use different levels of privacy protection for each component of Y through

the choice of e1; : : : ; ek in (30). Other scenarios are certainly possible; for instance, it
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may be that Y ¼ ðY1; Y2; Y3Þ where the variable Y1 must always be protected, Y2 requires
protection only if it exceeds a fixed threshold C . 0, and Y3 does not require any

protection. We intend to address such issues in a future communication.

7. Concluding Remarks

There are perhaps two rigorous ways of producing privacy-protected data: multiple

imputation and noise perturbation. Klein et al. (2013) show that the likelihood-based

method of analysis of noise-multiplied data can yield accurate inferences under several

standard parametric models and compare favorably with the standard multiple imputation-

based analysis methods of Reiter (2003) and An and Little (2007). Since the likelihood of

the noise-multiplied data is often complex, one wonders if an alternative simpler and fairly

accurate data analysis method can be developed based on such kind of privacy-protected

data. With precisely this objective in mind, we have shown in this article that a proper

application of multiple imputation leads to such an analysis. In implementing the proposed

method under a standard parametric model f ( yju), the most complex part is generally
simulation from the conditional densities (4) or (14), and this part would be the

responsibility of the data producer, not the data user. We have provided Proposition 1

which gives an exact algorithm to sample from (4) and (14) for general continuous f ( yju),
when h(r) is the uniform distribution (5). Moreover, we have seen that in the lognormal

case under full noise multiplication, if one uses the customized noise distribution, then the

conditional density (4) takes a standard form from which sampling is straightforward.

Simulation results based on sample sizes of 100 and 500 indicate that the multiple

imputation-based analysis, as developed in this article, generally results in only a slight

loss of accuracy in comparison to the formal likelihood-based analysis. Our simulation

results also indicate that both the Rubin (1987) and Wang and Robins (1998) combining

rules exhibit adequate performance in the selected sample settings. We have also reported

some additional numerical results for evaluating the amount of privacy protection offered

by the method. These results showed that one does not recover the original observation

simply by averaging the multiply imputed copies of the original value.

In conclusion, we observe that, from a data user’s perspective, our method does require

a knowledge of the underlying parametric model of the original y-data so that efficient

model-based estimates can be used to analyze the reconstructed y *-values. In this article

we assumed that the model used by the agency to multiply impute the original data,

namely f ( yju), is the same model adopted by the data user to analyze the released data.
However, in practice this may not be the case (see Meng 1994 and Robins and Wang 2000

for a discussion of possible consequences of model misspecification). In any event,

modeling by data users, if necessary, will be based on the released y *-values, and not on

the noise-multiplied z-values. It is expected that the sampling behaviors of y-values and

y *-values would be similar. This is in the same spirit as in the case of synthetic data usage

where a data user will either be informed about the original model or try to build up a

reasonable model based on the released synthetic data. We should also point out that in

practice, most data sets have a complex multivariate structure. We briefly outlined how

our methodology can be extended to multivariate data. In a future communication we

intend to investigate the robustness of the multiple imputation-based analysis to
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discrepancies between the imputation and analysis models, and to further develop the

multivariate extensions of the proposed method.

Appendix A

Proof of Proposition 1. This is a rejection sampling algorithm where the target density

hU(rjz,u) is proportional to stargetðrÞ ¼ qððz=rÞjuÞr21; 12 e # r # g, and the instru-

mental density is sinstrðrÞ ¼ r21=ð log ðgÞ2 log ð12 eÞÞ; 12 e # r # g. To fill in the

details, first note that since f ( yju) is continuous in y, it follows that qððz=rÞjuÞ is continuous
as a function of r, on the interval ½12 e ; g	, and thus the bounding constantM exists. Then

we see that

stargetðrÞ
sinstrðrÞ ¼ ½ log ðgÞ2 log ð12 eÞ	q z

r
ju

� �
# ½ log ðgÞ2 log ð12 eÞ	M; ð31Þ

for all r [ ½12 e ; g	. Note that the cumulative distribution function corresponding to
sinstr(r) is SinstrðrÞ ¼ ð log ðrÞ2 log ð12 eÞÞ=ð log ðgÞ2 log ð12 eÞÞ; 12 e # r # g,

and the inverse of this distribution function is S21
instrðuÞ ¼ gu=ð12 eÞu21; 0 # u # 1.

Thus, by the inversion method (Devroye 1986), step (I) is equivalent to inde-

pendently drawing U , Uniform(0,1) and W from the density sinstr(r). Since

M21stargetðWÞ=ð½ log ðgÞ2 log ð12 eÞ	sinstrðWÞÞ ¼ qðz=wjuÞ=M, step (II) is equivalent

to accepting W if U # M21stargetðWÞ=ð½ log ðgÞ2 log ð12 eÞ	sinstrðWÞÞ, which is the

usual rejection step based on the bound in (31). Finally, we use the well-known fact

that the expected number of iterations of the rejection algorithm is equal to the

bounding constant in (31) times the normalizing constant for starget(r), i.e.,

½ log ðgÞ2 log ð12 eÞ	M=½Ð g
12eqððz=vÞjuÞv21dv	.

Appendix B

Here we provide proofs of the posterior propriety of u, given the fully noise-multiplied

data z, for normal and lognormal distributions.

Normal distribution. Here gðzjuÞ / ð1=sÞ Ð exp½2ððz=rÞ2 mÞ2=ð2s2Þ	ðhðrÞ=rÞdr. Writ-

ing down the joint pdf of z1; : : : ; zn, it is obvious that upon integrating out m with respect

to (wrt) the Lebesgue measure and s wrt the flat or noninformative prior, we end up with

the expression U(z) given by

UðzÞ ¼
ð
· · ·

ð Xn
i¼1

z2i
r2i

2

Xn

i¼1ðzi=riÞ
� �2

n

264
375
2n2d

hðr1Þ: : : hðrnÞ
r1: : : rn

dr1: : : drn

where d $ 0. To prove that U(z) is finite for any given z, note that

Xn

i¼1
z2i
r2i

2

Xn

i¼1ðzi=riÞ2
n

" #
¼ 1

2

Xn

i; j¼1
zi

ri
2

zj

rj

� �2

$
1

2

z1

r1
2

z2

r2

� �2
for any pair ðz1; z2; r1; r2Þ, Assume without any loss of generality that z1 . z2, and note that
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½ðz1=r1Þ2 ðz2=r2Þ	2 ¼ ½ðz1=z2Þ2 ðr1=r2Þ	2 £ z22r
22
1 . Then under the conditionð

r

hðrÞ
r

dr ¼ K1 , 1;

ð
r1#r2

r2ðnþdÞ211 r212 hðr1Þhðr2Þdr1dr2 ¼ K2 , 1; ð32Þ

U(z) is bounded above by

UðzÞ # 2nþdKn22
1

z1

z2
2 1

� �22ðnþdÞ ð
r1#r2

r2ðnþdÞ211 r212 hðr1Þhðr2Þdr1dr2
� �

, 1:

In particular, when R, Uniform(1 2 e, 1 þ e), the above condition is trivially satisfied!

Lognormal distribution. Here gðzjuÞ / ð1=zsÞ Ð exp½2ð log ðz=rÞ2 mÞ2=ð2s2Þ	hðrÞdr:
Writing down the joint density of z1; : : : ; zn, and putting u ¼ log ðz=rÞ, it is obvious that
upon integrating out m wrt the Lebesgue measure and s wrt the flat or noninformative

prior, we end up with the expression U(z) given by

UðzÞ ¼
r1

ð
· · ·

rn

ð Xn
i¼1

ðui 2 
uÞ2
" #22ðnþdÞ

hðr1Þ · · · hðrnÞdr1 · · · drn

where d $ 0: To prove that U(z) is finite for any given z, note as in the normal case that

when z1 . z2 (without any loss of generality),Xn
i¼1

ðui 2 
uÞ2
" #

¼ 1

2

Xn
i; j¼1

ðui 2 ujÞ2 $ 1

2
ðu1 2 u2Þ2 ¼ 1

2
log

z1

z2

� �
2 log

r1

r2

� �� �2

$
1

2
log

z1

z2

� �� �2
for r1 , r2. Hence U(z) is always finite, since

Ð
r1,r2

hðr1Þhðr2Þdr1dr2 , 1.

Appendix C

Here we provide proofs of the posterior propriety of u, given the mixture data, for normal

and lognormal distributions. We consider two cases depending on the nature of mixture

data that will be released.

Case (i): Nature of data {ðx1;D1Þ; · · ·; ðxn;DnÞ}.
Normal distribution. Given the data {ðx1;D1Þ; : : : ; ðxn;DnÞ}, let I1 ¼ {i : Di ¼ 1} and

I0 ¼ {i : Di ¼ 0}. Then the normal likelihood L(u jdata), apart from a constant, can be

expressed as

LðujdataÞ / s2n exp 2
i[I1

X ðxi 2 mÞ2
2s2

0@ 1A24 35

£
i[I0

Yððxi=cÞ
0

exp 2
ððxi=riÞ2 mÞ2

2s2

� �
hðriÞ
ri

Iðxi . 0Þdri
24 35:
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It is then obvious that upon integrating out m wrt the Lebesgue measure and s wrt the flat

or noninformative prior, we end up with the expression U (data) given by

UðdataÞ ¼
i[I0

Yððxi=cÞ
0

Iðxi . 0Þ
i[I1

X
x2i þ

i[I0

Xx2i
r2i

2

X
i[I1

xi þ
X
i[I0

ðxi=riÞ
� !2

n

2666664

3777775
2n2d

hðriÞ
ri

dri:

Writing vi ¼ xi=ri for i[ I0, the expression CðdataÞ ¼P
i[I1

x2i þ
P

i[I0
x2i =r

2
i

2
P

i[I1
xi þ

P
i[I0

ðxi=riÞ
� �2

=n is readily simplified as ½S21þ S20þ rsð
x12 
x0Þ2	ðrþ sÞ21
where r and s are the cardinalities of I1 and I0, respectively, and 
x1;S

2
1

� �
and 
x0;S

2
0

� �
are

the sample means and variances of the data in the two subgroups I1 and I0, respectively.

When I1 is nonempty, an obvious lower bound of CðdataÞ is S21=ðr þ sÞ, and if I1 is
empty, CðdataÞ ¼ S20=n. In the first case, U(data) is finite whenever

Ð ðxi=cÞ
0

ðhðrÞ=rÞdr , 1
for i [ I0. In the second case, we proceed as in the fully noise-perturbed case for normal

and conclude that U (data) is finite under the conditions stated in (32) except that the

bounds of ri in the integrals are replaced by xi=C. In particular, for uniform noise

distribution, the conditions trivially hold.

Lognormal distribution. Proceeding as in the normal case with u ¼ log ðx=rÞ, and
breaking up the sum in the exponent into two parts corresponding to I1 and I0, we get the

finiteness of correspondingU(data) under noninformative priors of m and swhen the noise

distribution is uniform.

Case (ii): Nature of data ðx1; : : : ; xnÞ.
Normal distribution. Upon carefully examining the joint pdf of the data x, given by (18),

let us split the entire data into three mutually exclusive sets:

I1 ¼ {i : xi , 0}; I2 ¼ {i : 0 , xi , C}; I3 ¼ {i : xi . C}:

It is now clear from standard computations under the normal distribution that whenever I1
is non-empty, the posterior of (m, s) under a flat or noninformative prior of (m, s) will be

proper. This is because the rest of the joint pdf arising out of I2 and I3 can be bounded under

a uniform noise distribution or even under a general h(.) under very mild conditions, and

the retained part under I1 will lead to propriety of the posterior. Likewise, if I1 is empty

but I3 is non-empty, we can easily bound the terms in I2, and proceed as in the fully noise-

perturbed case for data in I3 and show that the posterior is proper. Lastly, assume that

the entire data fall in I2, resulting in the joint pdf Lðujdata [ I2Þ as a product of terms
of the type

f ðxijuÞ þ
ððxi=cÞ
0

f
xi

ri
ju

� �
hðriÞ
ri

dri ,

ððxi=cÞ
0

f ðxijuÞ C

xð1Þ
þ f

xi

ri
ju

� �
hðriÞ
ri

� �
dri

where xð1Þ ¼ min ðxiÞ. Let us now carefully check the product of the above integrands

under the normal distribution, which will be first integrated wrt (m, s) under a flat or

noninformative prior, and later wrt the noise variables which we take to be iid uniform.

Obviously this product will be a sum of mixed terms of the following two types which are
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relevant to check the propriety of the resultant posterior:

s2nexp 2
1

2s2
i[J1

X
ðxi 2 mÞ2 þ

i[J2

X xi

ri
2 m

� �2
0@ 1A24 35

where J1 and J2 form a partition of {1, : : : , n}. It is now immediate that the terms of the

first type (standard normal theory without any noise perturbation) will lead to a proper

posterior of (m,s). Likewise, from our previous computations under the fully noise-

perturbed case, it follows that the terms of the second type will also lead to propriety of the

posterior of m and s under a uniform noise distribution.

Lognormal distribution. Proceeding as in the normal case above by replacing x=r by

u ¼ log ðx=rÞ, we get the posterior propriety of m and s under flat or noninformative priors
when the noise is uniform. We omit the details.
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