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Statistical Analysis of Noise-Multiplied Data Using Multiple
Imputation

Martin Klein' and Bimal Sinha®

A statistical analysis of data that have been multiplied by randomly drawn noise variables in
order to protect the confidentiality of individual values has recently drawn some attention. If
the distribution generating the noise variables has low to moderate variance, then noise-
multiplied data have been shown to yield accurate inferences in several typical parametric
models under a formal likelihood-based analysis. However, the likelihood-based analysis is
generally complicated due to the nonstandard and often complex nature of the distribution of
the noise-perturbed sample even when the parent distribution is simple. This complexity
places a burden on data users who must either develop the required statistical methods or
implement the methods if already available or have access to specialized software perhaps yet
to be developed. In this article we propose an alternate analysis of noise-multiplied data based
on multiple imputation. Some advantages of this approach are that (1) the data user can
analyze the released data as if it were never perturbed, and (2) the distribution of the noise
variables does not need to be disclosed to the data user.

Key words: Combining rules; confidentiality; rejection sampling; statistical disclosure
limitation; top coded data.

1. Introduction

When survey organizations and statistical agencies such as the U.S. Census Bureau release
microdata to the public, a major concern is the control of disclosure risk, while ensuring
fairly high quality and utility in the released data. Very often some popular statistical
disclosure limitation (SDL) methods such as data swapping, multiple imputation,
top/bottom coding (especially for income data), and perturbations with random noise are
applied before releasing the data. Rubin (1993) proposed the use of the multiple
imputation method to create synthetic microdata which would protect confidentiality by
replacing actual microdata by random draws from a predictive distribution. Since then,
rigorous statistical methods to use synthetic data for drawing valid inferences on relevant
population parameters have been developed and used in many contexts (Little 1993;
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Raghunathan et al. 2003; Reiter 2003, 2005; Reiter and Raghunathan 2007). An and Little
(2007) also suggested multiple imputation methods as an alternative to top coding of
extreme values and proposed two methods of data analysis with examples.

Noise perturbation of original microdata by addition or multiplication has also been
advocated by some statisticians as a possible data confidentiality protection mechanism
(Kim 1986; Kim and Winkler 1995, 2003; Little 1993), and recently there has been a
renewed interest in this topic (Nayak et al. 2011; Sinha et al. 2012). In fact, Klein,
Mathew, and Sinha (2013), hereafter referred to as Klein et al. (2013), developed
likelihood-based data analysis methods under noise multiplication for drawing inference
in several parametric models. They provided a comprehensive comparison of the above
two methods, namely, multiple imputation and noise multiplication. Klein et al. (2013)
commented that while standard and often optimum parametric inference based on the
original data can be easily drawn for simple probability models, such an analysis is far
from being close to optimum or even simple when noise multiplication is used. Hence
their statistical analysis is essentially based on the asymptotic theory, requiring
computational details of maximum likelihood estimation and calculations of the observed
Fisher information matrices. Klein et al. (2013) also developed a similar analysis for top-
coded data, which arise in many instances such as income and profit data, where values
above a certain threshold C are coded and only the number m of values in the data set
above C are reported along with all the original values below C. These authors considered
statistical analysis based on unperturbed (i.e., original) data below C and noise-multiplied
data above C instead of completely ignoring the data above C, and again provided a
comparison with the statistical analysis reported in An and Little (2007), who carried out
the analysis based on multiple imputation of the data above C in combination with the
original values below C. In this article, we use the term mixture data, to refer to a data set
in which values below a cut-off C are unperturbed, and values above C are perturbed via
noise multiplication.

In the context of data analysis under noise perturbation, if the distribution generating the
noise variables has low to moderate variance, then noise-multiplied data are expected to
yield accurate inferences in some commonly used parametric models under a formal
likelihood-based analysis (Klein et al. 2013). However, as noted by Klein et al. (2013), the
likelihood-based analysis is generally complicated due to the nonstandard and often
complex nature of the distribution of the noise-perturbed sample even when the parent
distribution is simple (a striking example is analysis of noise-multiplied data under a
Pareto distribution, typically used for income data, which we hope to address in a future
communication). This complexity places a burden on data users who must either develop
the required statistical methods or implement these methods if already available or have
access to specialized software perhaps yet to be developed. Circumventing this difficulty is
essentially the motivation behind this current research, where we propose an alternate
simpler analysis of noise-multiplied data based on the familiar notion of multiple
imputation. We believe that a proper blend of the two statistical methods as advocated
here, namely, noise perturbation to protect confidentiality and multiple imputation for ease
of subsequent statistical analysis of noise-multiplied data, will prove to be quite useful to
both statistical agencies and data users. Some advantages of this approach are that (1) the
data user can analyze the released data as if it were never perturbed (in conjunction with
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the appropriate multiple imputation combining rules), and (2) the distribution of the noise
variables does not need to be disclosed to the data user.

The article is organized as follows. An overview of our proposed approach based on a
general framework of fully noise-multiplied data is given in Section 2. Techniques of
noise imputation from noise-multiplied data, which are essential for the proposed
statistical analysis, are also presented in Section 2. This section also includes different
methods of estimation of variance of the proposed parameter estimates. Section 3 contains
our statistical analysis for mixture data. Details of computations for the normal and
lognormal models are outlined in Section 4. An evaluation and comparison of the results
with those under a formal likelihood-based analysis of noise-multiplied data (Klein et al.
2013) is presented in Section 5 through simulation. It turns out that the inferences obtained
using the methodology of this article are comparable with, and just slightly less accurate
than, those obtained in Klein et al. (2013). Section 6 presents a disclosure risk evaluation
of the proposed method, discusses the benefits of the proposed method in comparison with
synthetic data, and outlines how to extend this approach to multivariate data. Section 7
provides some concluding remarks, and the Appendices A, B and C contain proofs of some
technical results.

2. Methodology for Fully Noise-Multiplied Data

2.1. General Framework

Suppose yi, . . .,y, ~ iid ~ f(y|0), independent of ry,...,r, ~ iid ~ h(r), where
0= (6, .. .,Op)’ is an unknown p X 1 parameter vector, and A(r) is a known density
(free of @) such that h(r) = 0 if » < 0. It is assumed that f( y|0) and h(r) are the densities
of continuous probability distributions. Define z; = y; X r; for i = 1, . . ., n. Let us write
y=01,.. sy r=(, ... ,r,andz= (21, . . ., Zn)-

We note that the joint density of (z;, ;) is

8, ril0) =f (f | 0) hryyr; !,
and the marginal density of z; is

g(zil0) = Jof(iilﬂ)h(w)wldw. (1)

As clearly demonstrated in Klein et al. (2013), standard likelihood-based analysis of the
noise-multiplied sample z in order to draw suitable inference about a scalar quantity
0O = Q(0) can be extremely complicated due to the form of g(z;|0), and the analysis also
must be customized to the noise distribution A(r). Instead, what we propose here is a
procedure to reconstruct the original data y from reported sample z via suitable generation
and division by noise terms, and enough replications of the recovered y data by applying
multiple imputation method. Once this is accomplished, a data user can apply a simple and
standard likelihood procedure to draw inference about Q(6) based on each reconstructed y
data as if it were never perturbed, and finally an application of some known combination
rules would complete the task.
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The advantages of the suggested approach, blending noise multiplication with multiple
imputation, are the following:

1. to protect confidentiality through noise multiplication — satisfying data producer’s
desire,

2. to allow the data user to analyze the data as if it were never perturbed — satisfying
data user’s desire (the complexity of the analysis lies in the generation of the imputed
values of the noise variables; and the burden of this task will fall on the data
producer, not the user), and

3. to allow the data producer to hide information about the underlying noise distribution
from data users.

The basic idea behind our procedure is to set it up as a missing data problem; we define the
complete, observed, and missing data, respectively, as follows:

x.={@,r), -, @1}, Xobs = {21, -+ -3 2Zu}s Xmis = {F1, - . o 1)

Obviously, if the complete data x. were observed, one would simply recover the original

datay; =z;/r;, i =1, ..., n, and proceed with the analysis in a straightforward manner
under the parametric model f(y|@). Treating the noise variables ry, . . ., r, as missing
data, we impute these variables m times to obtain

x0 = {(m,rlm), .. .,(zn,r::(/))}, j=1,...,m. (2)

From x*/) we compute

N () . _ 21 Zn .
y' ) = {y, Do .,y,’;”)} = { IR W} ji=1,...,m. 3)
r n
The statistical agency would then release the m imputed data sets y™, . . . y*™ and

each data set y*(/) would be analyzed as if it were a random sample from f(y|@). Thus,
suppose that n(y) is an estimator of Q(6) based on the unperturbed data y and suppose that
v = v(y) is an estimator of the variance of n(y), also computed based ony. Often n(y) will
be the maximum likelihood estimator (MLE) of Q(), and v(y) will be derived from the
observed Fisher information matrix. One would then compute 7; = n(y*)) and
vj = v(y*), the analogs of 1 and v, obtained from y*/’, and apply a suitable combination
rule to pool the information across the m simulations.

At this point two vital pieces of the proposed methodology need to be put together:
(1) imputation of r from z, which would be the responsibility of the statistical agency; and
(2) combination rules for n; and v; from several imputations, which the data user would
apply in order to analyze the released data. We discuss these two crucial points in
Subsections 2.2 and 2.3, respectively.

2.2.  Imputation of the Noise Variables

In this subsection we describe two procedures that a statistical agency can use to impute r
from z. Following Wang and Robins (1998), we refer to these two methods as the Type A
and Type B imputation procedures.
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Type A Imputation Procedure. Under the Type A procedure, the imputed values of

ry, ...,r, are obtained as draws from a posterior predictive distribution. We place a
noninformative prior distribution p(€) on 6. In principle, sampling from the posterior
predictive distribution of ry, . . ., r, can be done as follows:

1. Draw 0" from the posterior distribution of @ given zj, . . ., z,.

2. Draw rj, . . ., r, from the conditional distribution of ry, . . .,r, given zi, . . ., 2,

and 0= 0"

The above steps are then repeated independently m times to get ("), ... ri0),
j=1,...,m.

Notice that in step (1) above we use the posterior distribution of @ given z;, . . .,z, as
opposed to the posterior distribution of @ given y;, . . ., y,. Such a choice implies that we

do not infuse any additional information into the imputes beyond what is provided by the
noise-multiplied sample z and the knowledge of the noise-generating distribution A(r).
Step (2) above is equivalent to sampling each r; from the conditional distribution of 7;
given z; and @ = @". The pdf of this distribution is

£ @i/l 0)h(ryyry!
[of (@) )]0 h(w)o ™ dw

h(rilz;, 0) = 4)

The sampling required in step (1) can be complicated due to the complex form of the
joint density of zj, . . ., z,. Certainly, in some cases, the sampling required in step (1) can
be performed directly; for instance, if 0 is univariate then we can obtain a direct algorithm
by inversion of the cumulative distribution function (numerically or otherwise). More
generally, the data augmentation algorithm (Little and Rubin 2002; Tanner and Wong
1987) allows us to bypass the direct sampling from the posterior distribution of 0 given
Z1, . . ., 2. Under the data augmentation method, we proceed as follows. Given a value
0 of @ drawn at step 7:

L. Draw 1"V ~ h(rlz;, 00) fori=1, .. . n;

II. Draw 6D ~ p(Bly“*) where y+V = ((z;/r{™"), . . ., (zu/r*D)), and p(Oly)
is the posterior density of @ given the original unperturbed data y (it is the functional
form of p(6|y) which is relevant here).

The above process is run until 7 is large and one must, of course, select an initial value 6’
to start the iterations. The final generations (r{", . . .,7®) and 8% form an approximate

draw from the joint posterior distribution of (ry, . . ., r,) and 6 given (zy, . . .,z,). Thus,
marginally, the final generation (r(lt), ce ”51[)) is an approximate draw from the posterior
predictive distribution of (ry, . . ., r,) given (z1, . . ., Z,). This entire iterative process can

be repeated independently m times to get the multiply imputed values of the noise
variables. The data augmentation algorithm presented here is equivalent to Gibbs
sampling. The goal here is to sample from p(r, 6]z), the joint posterior distribution of (r, 6)
given z. Letting p(r|z, 8) denote the conditional density of r given z and 6, and letting
p(0|z, r) denote the conditional density of @ given z and r, we note that the (r + 1)th step of
a Gibbs sampler would sample from the full conditionals such that »“*D ~ p(r|z, 8©) and
0D ~ p(0|z,r"*), and would continue until convergence. Alternate sampling from
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these two full conditional distributions is equivalent to steps I and II of the data
augmentation algorithm.

Sampling from the posterior distribution p(8ly) in step (II) above will typically be
straightforward, either directly or via an embedded Markov chain Monte Carlo step. Under
the data augmentation algorithm, we still must sample from the conditional density
h(r|z, 0) as defined in (4). The level of complexity here will depend on the form of £( y|6)
and A(r). Usually, sampling from this conditional density will not be too difficult. The
following result provides a general rejection algorithm (Devroye 1986; Robert and Casella
2005) to sample from A(r|z, @) for any continuous f(y|@), when the noise distribution is
Uniform (1 — €, 1 + €), that is, when

1
hiry=—, 1—e=r=1+e, (@)
2€

where 0 < € < 1.

Proposition 1  Suppose that f{y|0) is a continuous probability density function, and let
us write f(y|0) = c(0)g(y|0) where ¢(0) > 0 is a normalizing constant. Let M =
M(0, €, z) be such that

q(§|0> = Mforallr € [1 — €, ]

where 'y = y(z,€) > 1 — €. Then the following algorithm produces a random variable R
having the density

q((z/r)|O)r~!

hu(rlz, ) = 7 4G/ w)|0w do’

l—e=r=v.

L. Generate U, V as independent Uniform(0, 1) and let W = " /(1 — )V "1
II. Accept R = Wif U = M 'q((z/W)|8), otherwise reject W and return to step (I).

The expected number of iterations of steps (I) and (Il) required to obtain R is

Mllog(y) — log(l — €)]
7 (/0o do

The proof of Proposition 1 appears in Appendix A.

Remark 1. The conditional density of y; given z; and 0 is
fGilOhGi/yy;
Jof (/o) Oh(w)o " do’

SOl OhG:/y)(=yi ")
[5f (@] ) O~ 'do’

if0<z <oo, 0<y <o,

f(yilzi, 0) = (6)

if —o0o<z<0, —o0<y <O.

Drawing r; from the conditional density h(r;|z;, 0°) defined in (4) and setting y; = z;/r} is
equivalent to drawing y; directly from the conditional density f(y;|z;, @) in the sense that
given z; and 0, the variable z;/r; has the density f(yilz;, 67).
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Remark 2. As to the choice of 6 ), one can choose moment-based estimates (Nayak
et al. 2011).

Remark 3. We have tacitly assumed in the above analysis that the posterior distribution
of the parameter 6, given noise-multiplied data z, is proper. In applications, this needs to
be verified on a case by case basis because the posterior propriety under the original datay,
which may routinely hold under many parametric models, may not guarantee the same
under z when an improper prior distribution for 0 is used. We refer to the technical report
Klein and Sinha (2013) for an example. The same remark holds in the case of the posterior
distribution of 0, given the mixture data. We have verified the posterior propriety in our
specific applications for fully noise-multiplied data and mixture data in Appendices B
and C, respectively.

Type B Imputation Procedure. In this procedure there is no Bayesian model
specification. Instead, the unknown parameter 6 is set equal to émle (z), the MLE based on
the noise-multiplied data z, which can often be computed via the EM algorithm (Klein
et al. 2013). The imputed values of the noise variables are then randomly drawn such that

i~ h(rlzi, Oue(@), for i=1,....n. (7
The above sampling is repeated, independently, m times to obtain (rj(j), o9,
j=1,...,m. If h(r) is the uniform density (5), then Proposition 1 can be used to

implement the sampling in (7).

2.3.  Combination Rules for Analyzing the Released Data

We now present methods for analyzing the released datay™", . . ., y*_ Naturally, under
the proposed methodology, analysis of the released data would usually be the
responsibility of the data user. The analysis involves first analyzing each y*/) as if it
were a random sample from f(y|60), and then suitably combining the results across
j=1,...,mto obtain final inference. We first present the combination rules of Rubin
(1987), which should yield valid inferences when the agency uses the Type A method to
impute the noise variables. Rubin’s (1987) combination rules often work well, and are
simple to apply; however, they may not be optimal, and hence we also consider alternative
methods of Wang and Robins (1998).

Rubin’s (1987) Rule for Type A Imputation. We assume here that the released
data (3) are obtained using the Type A imputation procedure. The multiple imputation
estimator of Q is

1 m
n,, — — is 8
= ;:1 M ®)
and the estimator of the variance of 17, is

1
Tm = (1 +_>bm + ‘_)ma (9)
m

where b, = (1/(m — 1))2;”:1(1” — 7m)* and ¥,, = (1/m)Y ", v;. The point estimator
M, and its variance estimator 7,, can now be used along with a normal cut-off
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point to construct a confidence interval for Q. We can also use a ¢ cut-off point
based on setting the degrees of freedom equal to (m — 1)(1 + a,;l)z where
an = (1+m b,/

Wang and Robins’s (1998) Rule for Type A Imputation. Once again we assume that
the released data (3) are obtained using the Type A imputation procedure. Let

i=1

denote the MLE of @ computed on the jth imputed data set y*/) under the model f (y|0).
The multiple imputation estimator of 0 is 6, = (1/ m)Z_;.":loj. By Wang and Robins
(1998),

Jn(Bs = 05N, [0, V4], asn— ,

where Vo = I3L + (1/m)I T + (1 /m)J' TN, J = Iid 7' = (I — Iows)I. ', and where 1.
and I, are the p X p matrices defined by

[ ([ (02%0g f(»10) [ (97 1ogg(zl0)
= ()= ((S5507))) o

Let S (yf(j ), éj) denote the p X 1 score vector, with its /th element defined as

o log f(v|0) : .
Slﬂ(yl(j) 0) :g.g)#@yly:y,ﬂ*mﬁ:éf’ = 1, e, Pyl = 1, e ny ] = 17 e,y

and let S:j (y:(j ), éj) denote the p X p matrix whose (I, ')th element is defined as

it o 00,00 y:yf”),ﬂzﬂj’

L'=1,...,p,i=1,...,n,j=1,...,m.

A consistent variance estimator V, is obtained by estimating I, by
= N0 d= - Y s 6 2
c_%Z cjs LJ__;; U(yl ) ])a ( )
and estimating /., by

fovs = an(m— 1)2 Z [ *(') 0 ( f(‘i),éi/) +Si ( (") 0 ) ( (/) 0)}

i=1 j#j'=1

(13)

For any given Q(6), the variance of the multiple imputation estimator Q( éA) is obtained by
applying the familiar 6-method, and Wald-type inferences can be directly applied to obtain
confidence intervals.

Wang and Robins’s (1998) Rule for Type B Imputation. We now assume that the
released data (3) are obtained using the Type B imputation procedure. Let éj be defined
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by (10). The multiple imputation estimator of @ is 05 =1 /m)z;iléj. By Wang and
Robins (1998),

Jn(Bs — )5N,[0, V], as n— oo,
where Vp =11+ (/mI T =1 + (1 /mI "I, — Iows)I. ' with I, and I, defined
in (11). A consistent variance estimator Vg is obtained by estimating /.. using (12) and
estimating I, using (13). For any given Q(6), the variance of the estimator Q(0p) is
obtained by applying the familiar 6-method, and Wald-type inferences can be directly
applied to obtain confidence intervals.

Remark 4. Wang and Robins (1998) provide a comparison between the Type A and
Type B imputation procedures, and compare the corresponding variance estimators with
Rubin’s (1987) variance estimator T,,. Their observation is that the estimators V4 and
Vs are consistent for V, and Vp, respectively; and the Type B estimator 05 will
generally lead to more accurate inferences than éA, because for finite m, Vp <V,
(meaning V4 — Vjp is positive definite). Under the Type A procedure and for finite m,
Rubin’s (1987) variance estimator has a nondegenerate limiting distribution; however,
the asymptotic mean is V), and thus 7, is also an appropriate estimator of variance (in
defining Rubin’s (1987) variance estimator, Wang and Robins (1998) multiply the
quantity b,, by the sample size n to obtain a random variable that is bounded in
probability). The variance estimator 7,, would appear to underestimate the variance if
applied in the Type B procedure because under the Type B procedure, if m = oo, then
T,, has a probability limit that is smaller than the asymptotic variance Vp (when
m=o0, Vo =V =1,!). However, under the Type A procedure, if m = co then T,, is
consistent for the asymptotic variance V4. We refer to Rubin (1987) and Wang and
Robins (1998) for further details.

3. Methodology for Mixture Data

Recall that the term mixture data in our context refers to a data set in which values
below C are unperturbed and values above C are perturbed using noise multiplication.
In this section we discuss the analysis of such data following the procedure outlined
earlier, namely, by (i) suitably recovering the y-values above C via use of
reconstructed noise terms and the noise-multiplied z-values along with or without their
identities (below or above C), and (ii ) providing multiple imputations of such y-values
and methods to appropriately combine the original y-values and reconstructed y-values
to draw inference on Q.

Let C > 0 denote the prescribed top code so that y-values above C are sensitive
and hence cannot be reported/released. Given y = (yi, .. .,yn), r=(1,...,1),
z=(z1, . ..,2,) Where z; = y; Xr;, we define x = (x1, . . .,x,) and A= (A, ... A)
with A; =I(y; = C) and x; = y; if y; = C, and = z; if y; > C. Inference for 0 will be
based on either (i) {(x1,A;), .. .,(x;,A,)} or (ii) just {xi, .. .,x,}. Under both the
scenarios, which each guarantee that the sensitive y-values are protected, several data sets
of the type (], . . .,y;) will be released along with a data analysis plan. We describe
below the imputation and data analysis plans under both the scenarios.
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Case (i). Here we generate r; from the reported values of (x; A; = 0) and compute
y; = x;/r;. Of course, if A; = 1 then we set y; = y;. Generation of r; is done by sampling
from the conditional distribution h(r;|x;, A; = 0, 0) of r;, given x;, 0, and A; = 0, where

S(i/rd|O)hriyr!

h il iuAizovo =
(rilx ) (x/C) (i) @) | Oh(@)o- e

Xi
for 0 < r; < 14
or i< G (14)

(Klein et al. 2013) Note that the support of the above conditional distribution is such that
ri € (0,(x;/C)), and thus, if A; =0, then y; = (x;/r]) > C. That is, when y; > C, the
privacy-protected data point y; has the desirable property that it will also be greater than C.
When the noise distribution is the uniform density (5), then (14) can be written as

F(xi /0!
min (/O (/) O) 0~ dew

1—€

hy(rilxi, A; = 0, 0) =

15)
. [Xi
forl —e=r = mln{E,l—i—e},

and Proposition 1 provides an algorithm for sampling from the above density (15).

Regarding choice of 0, we can proceed following the Type B method (Section 2) and
use the MLE of 6 (émle) based on the data {(x;,Aq), . . .,(x,,A,)}. This will often be
direct (via EM algorithm) in view of the likelihood function L(0|x, A) reported in Klein
et al. (2013) and reproduced below:

(xi/C)

1-A;
h
L(Blx, 8) = Hf(xllonA“ 7(%10) ™24 ] . (16)
i=1

Alternatively, following Type A method discussed in Section 2, r “-values can also be
obtained as draws from a posterior predictive distribution. We place a noninformative
prior distribution p(0) on @, and sampling from the posterior predictive distribution of
ri, .. .,r, can be done as follows:

1. Draw 0 from the posterior distribution of @ given {(x;,4A,), . . ., (x,,A,)} using the
likelihood L(@|x, A) given above.
2. Draw rf for those i = 1, . . ., n for which A; = 0, from the conditional distribution

(14) of r;, given x;, A; = 0, and 6= 0"

As mentioned in Section 2, the sampling required in step (1) above can be complicated
due to the complex form of the joint density L(0|x, A). The data augmentation algorithm
(Little and Rubin 2002; Tanner and Wong 1987) allows us to bypass the direct sampling
from the posterior distribution of @ given {(x;,Ay), . . ., (x,, Ay}

Under the data augmentation method, given a value 8 of @ drawn at step t:

L. Draw A" ~ h(rlx;, A; = 0,0®) for those i = 1, . . ., n for which A; = 0.
II. Draw @¢*D ~p(0|y(1’+1), o)D) where WY = %, /"D when A; =0, and
yft+1) = x; otherwise. Here p(@|y) stands for the posterior pdf of 0, given the original

data y (only its functional form is used).
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The above process is run until 7 is large and one must, of course, select an initial value ©
to start the iterations.

Case (ii). Here we generate (rf*, Aj) from the reported values of (x, .. .,x,) and
compute y; = (x[/rf*) if A} =0,and y;" = x;, otherwise, i = 1, . . ., n. This is done by
using the conditional distribution g(r, 8lx, ) of r and A, given x and 6. Since
g(r, 8|x, @) = h(r|x, 5, 8 X s(8|x, 0), and the conditional Bernoulli distribution of A,

given x and 6, is readily given by
Y(8=1|x,0) = Pr{A =1|x, 0}
fxl0)I(x < O)

= IC - (17)
fElOI(x < C)+1(x > 0) [/ f((x/r)|@)h(r)r—1dr

(Klein et al. 2013), drawing of (rf*, Af) given x; and @, is carried out by first randomly
selecting Af according to the above Bernoulli distribution, and then randomly choosing
ri*if A} = 0 from the conditional distribution given by (14).

Again, in the above computations, following Type B approach, one can use the MLE of

0 (via EM algorithm) based on the x-data alone whose likelihood is given by

n xi/C Xi .
Lol =[] |0 < 0 + I > O)JO £ (CH10) ey ~ar

i=1

(18)

(Klein et al. 2013). Alternatively, one can proceed as in Type A method (sampling
ri", .. .,ry from the posterior predictive distribution) by plugging in @ = 0" that are
random draws from the posterior distribution of 6, given x, based on the above likelihood
and choice of prior for 0. As noted in the previous case, here too a direct sampling of 0,
given x, can be complicated, and we can use the data augmentation algorithm suitably
modified following the two steps indicated below.

r§t+1)’A§t+l)

(t+1)

i s

1. Starting with an initial value of @ and hence 6 at step 7, draw (
h(r, 8|x;, ). This of course is accomplished by first drawing AY*" and then r
in case ATV = 0.

2. Atstep ( + 1), draw 8“*" from the posterior distribution p(8[y{*", . . ., y(*D) of
0, where "tV = x; if A"V = 1, and y{"*V = x;/F" TV if AYTD = 0. Here, as before,
the functional form of the standard posterior of 6, given y, is used.

In both case (i) and case (ii), after recovering the multiply imputed complete data
y O y*™ using the techniques described above, methods of parameter estimation,
variance estimation, and confidence interval construction are the same as those discussed
in Section 2 for fully noise-multiplied data. Naturally, in case (i) when information on the
indicator variables A is used to generate y “-values, data users will know exactly which
y-values are original and which y-values have been noise-perturbed and de-perturbed.
Of course, this need not happen in case (ii), thus providing more privacy protection with
perhaps less accuracy. Thus the data producer (such as the Census Bureau) has a choice
depending upon to what extent information about the released data should be provided to
the data users.
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4. Details for Normal and Lognormal Data

In this section we provide some details of the proposed methodology for normal and
lognormal populations. Similar details for the exponential population appear in the
technical report Klein and Sinha (2013).

4.1. Normal Data

We consider the case of a normal population with uniform noise, that is, we
take f(y|0) = (1/(av2m) exp[—(1/Q2a?))(y — w)*], — o0 <y < o0, and we let h(r) be
the uniform density (5). We place a standard noninformative improper prior on (u, o?):

1
p(,o?)oc—, —0<p<o0 <o’ < oo, (19)
o

The posterior distribution of (u, o) given y is obtained as p(u, o2|y) = p(ula?,y)p(oly)
where

-1 2 2
@) ~ P25 ey ~ N<y, ‘T—>7 20)
infl n

with = (1/m)> 7,y and s2 = (1/(n — 1))>_,(y; — )* (Gelman et al. 2003). The
conditional density h(r|z, 0) as defined in (4) now takes the form

exp[—(1/Qo))(z/r) — Wlr”!
LS exp [—(1/Qo2)((z/0) — pHo~do
We apply Proposition 1 to obtain an algorithm for sampling from this conditional density
of r; given z;.

h(rlz, 6) = l—esr=l+e. 1)

Corollary 1 The following algorithm produces a random variable R whose density is (21).

L. Generate U, V as independent Uniform(0, 1) and let W = (1 + €)' /(1 — €)" L.
IL. Accept R=W if U < exp[(—1/Q0>)(z/W — w)?1/M, otherwise reject W and
return to step (I).
If 7 > 0 then the constant M is defined as

M =M, o’ €.2)

1
exp [_T‘Z(Z/(I—FE)_M)Z]a if u=z/(1+e),
NI if5/(1+€) < p<z/(-o),
exp [—m(z/(l—f)—ﬂf]a ifu=z/(1—e.
and if z < 0 then

M = M(p,0°,€,2)

1
eXp [_W(Z/(l_e)_ﬂ’f]a if/J,SZ/(l_E),
), ifz/(1 —e)<pu<z/(1+e),
1
exp [_F(Z/(I-FG)_M)Z], ifp=z/(1+e).
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The expected number of iterations of steps (I) and (II) required to obtain R is
M[log(l +€)— log(l — €)]
T exp[—(1/Qo))(/ @) — o 'de’
In the case of mixture data, the conditional density (14) now becomes

exp[—(1/Q2o*)x/r — w*Ir™"
IO exp [~ (1/Qo)(/0 — wPlo~lde’

h(rlx,A=0,0) =

(22)
1 = 7r< mi { 1+ }
€ = = min €
C’ ’

and a simple modification of Corollary 1 yields an algorithm to sample from this pdf.

4.2. Lognormal Data

We next consider the case of the lognormal population: f(y|@) = (1/ (yo/21))
exp[(—1/Qa?))(logy — w)?], 0 = y < o0. We define a prior distribution on (i, o?) as
in (19). The posterior distribution of (u, o 2) is then given by (20) upon replacing each y;
by log(y).

Customized noise distribution for fully perturbed data. Let us take the noise
density as:

h(r) = exp {—%@rz(logr+§2/2)2},0<r<oo, (23)

1
ré2ar
where 0 < ¢ < o0, and E(R) = 1 and Var(R) = e — 1. We note that h(r) is a lognormal
density such that R ~ h(r) < log (R) ~ N(—£%/2, £). It then follows that h(r|z, €) is also
a lognormal density such that

§2 52 52 0.252
R ~ h(r|z, 0) < log(R) ~ N{—? e {log(z)—F?— ;L], 0274'52} 24)

Uniform noise distribution. Suppose we take the noise distribution to be uniform as
defined in (5). Then the conditional pdf (4) takes the form

exp[—(1/2a?))(log (z/r) — w)?]
e exp — (1/Qa)(log (/@) — widw’

We apply Proposition 1 to obtain an algorithm for sampling from this conditional density
of r; given z;.

h(rlz, 0) = l—e=sr=1+e¢€ (25)

Corollary 2 The following algorithm produces a random variable R whose density
is (25).

I. Generate U, V as independent Uniform(0, 1) and let W = (1 + e)V/(l —e)V L
II. AcceptR=WifU = Wz 'exp[—(1/(202))(log (z/W) — w)*1/M, otherwise reject
W and return to step (I).
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The constant M is defined as

M=M(p,07,€,2)

1+ 6z exp —%ﬂ(log(Z/(lJre))—M)Z} ffer= =z/(1+e),

21

—{ o |-t ifz/(1+e)<er " <z/(1—e),

o 2
(1—e)z 'exp —ﬁ(log(z/(l—@)—u)z} ifelt 7 =z/(1—e).

The expected number of iterations of steps (I) and (II) required to obtain R is
M[log(1+€)— log(l —€)]
e Texp[—(1/Q?)(log(e/w) — P ldw’

In the case of mixture data, the conditional density (14) now becomes

exp[—(1/Q2a?))(log (x/r) — w)*]
min(/ON oxp [—(1/202))(log (x/@) — w)*ldw’

h(rlx,A=0,0) =
(26)

X
l—e=r=mi {—,1 },
€ r min C + €

and a simple modification of Corollary 2 yields an algorithm to sample from this pdf.

5. Simulation Study to Assess Accuracy of Inference

We use simulation to study the finite sample properties of point estimators, variance
estimators, and confidence intervals obtained from noise-multiplied data. We consider the
cases of normal and lognormal populations in conjunction with uniform and customized
noise distributions as far as possible, as outlined in Section 4. The results for the
exponential population are similar to the normal and lognormal, and appear in the
technical report Klein and Sinha (2013). One may expect that the simpler method of data
analysis proposed in this paper may lead to less accurate inferences than a formal
likelihood-based analysis of fully noise-multiplied and mixture data. However, if the
inferences derived using the proposed methodology are not substantially less accurate,
then the proposed method may be preferable, in some cases, because of its simplicity. Thus
the primary goals of this section are essentially to (1) compare the proposed methods
with the likelihood-based method reported in Klein et al. (2013), and (2) to assess and
compare the finite sample performance of Rubin’s (1987) estimation methods with those
of Wang and Robins (1998) under our settings of fully noise-multiplied and mixture data.

Each of the tables discussed below is based on a simulation with 5,000 iterations and
m = 5 imputations of the noise variables generated at each iteration. We choose m = 5
because this is a fairly small number of imputations which may be conveniently used in
practice. In each of the 5,000 iterations, five independent runs of the data augmentation
algorithm, each having 50 iterations, are used to obtain the Type A imputations. Some
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exploratory analysis indicated that 50 iterations of the data augmentation algorithm
provided an adequate approximation in the chosen simulation settings. All results are
obtained using the statistical computing software R (R Development Core Team 2011).

5.1.  Fully Noise-Multiplied Data

Table 1 provides results for the case of a normal population when the parameter of interest
is either the mean w or the variance o%; and Table 2 provides results for the case of a
lognormal population when the parameter of interest is either the mean e #+0?/2 or the .95
quantile e **+1437_ For each distribution we consider samples sizes n = 100 and n = 500,
but we only display results for the former sample size. Each table displays results for
several different methods which are summarized below.

UD: Analysis based on the unperturbed data y.

NMI10UIB: Analysis based on noise-multiplied data with i(r) defined by (5), € = .10,
and using the Type B imputation method and the associated combining rules of
Wang and Robins (1998).

NMI10UIA1: Analysis based on noise-multiplied data with A(r) defined by (5), € = .10,
and using the Type A imputation method and Rubin’s (1987) combining rules with
the normal cut-off point for confidence interval construction.

NM10UIA2: Analysis based on noise-multiplied data with A(r) defined by (5), € = .10,
and using the Type A imputation method and Rubin’s (1987) combining rules with
the ¢ cut-off point for confidence interval construction.

NMI10UIA3: Analysis based on noise-multiplied data with A(7) defined by (5), € = .10,
and using the Type A imputation method and the associated combining rules of
Wang and Robins (1998).

NMIOUL: Analysis based on noise-multiplied data with h(r) defined by (5), € = .10,
and using the formal likelihood based method of analysis of Klein et al. (2013).

NMI10CIB, NMI10CIA1, NM10CIA2, NMI10CIA3, NM10CL: These methods are
defined analogously to the methods above, but A(r) is now the customized noise
distribution (23) (for lognormal data); the parameters & and & appearing in A(r) are
chosen so that if R ~ h(r), then Var(R) = (ez)/3, the variance of the Uniform
(I — €, 1 + e€) distribution with € = 0.10.

The remaining methods appearing in these tables are similar to the corresponding
methods mentioned above after making the appropriate change to the parameter € in
the referenced Uniform(1 — €, 1 + ¢€) distribution. For each method and each parameter
of interest, we display the root mean squared error of the estimator (RMSE), bias of
the estimator, standard deviation of the estimator (SD), average over simulation runs of the
estimated standard deviation of the estimator (S/]\)), empirical coverage probability of
the associated confidence interval (Cvg.), and average length (over simulation iterations)
of the corresponding confidence interval relative to the average length of the confidence
interval computed from the unperturbed data (Rel. Len.). In each case the nominal
coverage probability of the confidence interval is 0.95. For computing an estimate of the
standard deviation of an estimator, we simply compute the square root of the appropriate
variance estimator. For computing the estimator m(y) and variance estimator v(y) of
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Subsection 2.2, we use the maximum likelihood estimator and inverse of observed Fisher
information, respectively. All results shown for unperturbed data use Wald-type
inferences based on the maximum likelihood estimator and observed Fisher information.
The following is a summary of the simulation results of Tables 1-2.

1. In terms of RMSE, bias, and SD of point estimators, as well as average confidence
interval length, the proposed methods of analysis are generally only slightly less
accurate than the corresponding likelihood-based analysis.

2. In terms of coverage probability of confidence intervals, the multiple imputation-
based and formal likelihood-based methods of analysis yield similar results.

3. We consider Uniform(l — €, 1 + €) noise distributions with € = 0.1, 0.2, and 0.5,
or equivalent (in terms of variance) customized noise distributions. Generally, for
noise distributions with € = 0.1 and 0.2, the proposed analysis based on the noise-
multiplied data results only in a slight loss of accuracy in comparison with that based
on unperturbed data. When the noise distribution has a larger variance (i.e., when
e = (0.5) we notice that the bias of the resulting estimators generally remains small,
while the SD clearly increases. When the parameter of interest is the mean, the noise-
multiplied data with e = 0.5 still appear to provide inferences with only a slight loss
of accuracy compared with the unperturbed data. In contrast, when the parameter of
interest is the normal variance as in the right-hand panel of Table 1, the loss of
accuracy in terms of SD and hence RMSE appears to be more substantial when €
increases to 0.5. We refer to Klein et al. (2013) for a detailed study of the properties
of noise-multiplied data.

4. We observe very little difference in the bias, SD, and RMSE of estimators derived
under the Type A imputation procedure versus those derived under the Type B
imputation procedure.

5. In each table, the column SD provides the finite sample mean of each of the multiple
imputation standard deviation estimators (square root of variance estimators)
presented in Section 2. Thus we can compare the finite sample bias of Rubin’s (1987)
standard deviation estimator of Subsection 2.2 with that of Wang and Robins’s
(1998) standard deviation estimators of Subsection 2.3 under our setting of noise
multiplication. We find that the mean of both of Wang and Robins’s (1998) standard
deviation estimators is generally larger than the mean of Rubin’s (1987) standard
deviation estimator. From these numerical results it appears that we cannot make any
general statement about which estimators possess the smallest bias, because none of
these estimators uniformly dominates the other in terms of minimization of bias.
With a larger sample size of n = 500 (results not displayed here), we find that all
standard deviation estimators have similar expectation; this statement is especially
true for the normal case. With the sample size of n = 100 we notice in Table 1 that
the mean of Rubin’s (1987) SD estimator is slightly less than the true SD while both
of Wang and Robins’s (1998) estimators have a mean slightly larger than the true SD.
We should point out that this slight negative bias of Rubin’s (1987) SD estimator is
most likely due to the fact that the SD estimator based on the original data is itself
slightly downward-biased. In the lognormal case, for the sample size n = 100 of
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Table 2, we notice that Rubin’s (1987) estimator is nearly unbiased for the true SD
while Wang and Robins’s (1998) estimators tend to overestimate the true SD more
substantially.

6. When the customized noise distribution is available (e.g., exponential and lognormal
cases), the results obtained under the customized noise distribution are quite similar
to those obtained under the equivalent (in terms of variance) uniform noise
distribution.

7. For confidence interval construction based on Rubin’s (1987) variance estimator, the
interval based on the normal cut-off point performs very similarly to the interval
based on the 7 cut-off point.

8. The data augmentation algorithm, used by the Type A methods to sample from the
posterior predictive distribution of r, given the noise-multiplied data, appears to
provide an adequate approximation.

5.2.  Mixture Data

We now study the properties of estimators derived from mixture data as presented in
Section 3. Table 3 provides results for the case of a normal population, and Table 4
provides results for the case of a lognormal population. The parameters of interest in each
case are the same as in the previous subsection, and the top-coding threshold value C is
set equal to the 0.90 quantile of the population. The methods in the rows of Tables 3—4
are as described in the previous subsection, except that each ends with either .i or .ii to
indicate either case (i) or case (ii) of Section 3, respectively. The conclusions here are
generally in line with those of the previous subsection. Below are some additional
findings.

1. Rubin’s (1987) SD estimator in this case tends to exhibit very little bias.

2. Generally we find here that the noise multiplication methods yield quite accurate
inferences, even more so than in the case of full noise multiplication; this finding
is expected since with mixture data only a subset of the original observations are
noise-perturbed.

3. As expected, the inferences derived under the case (i) data scenario (observe (x, A))
are generally more accurate than those derived under the case (ii) data scenario
(observe only x), but for the noise distributions considered, the differences in
accuracy generally are not too substantial.

6. Further Evaluations and Extensions

6.1. Disclosure Risk Evaluation

In this section we report the results of a numerical study designed to give an indication of
the amount of disclosure protection provided by the proposed methodology. To be
specific, we determine how tightly the m draws y;»k(l), Ce y,.*(m) are centered around the
true value y;, and how well the average and median of these m draws approximate the true

value y;. We consider both the fully noise-multiplied data and mixture data scenarios.
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Case of Fully Noise-Multiplied Data. Tables 5 and 6 report the results of the numerical
study for evaluating the disclosure risk in the case of full noise multiplication. In Table 5,
f(¥10) is the lognormal density as in Subsection 4.2 with u =0, o> = 1, and the table
shows, for a few selected y; values, the corresponding z; values, and a summary of the
distribution of the associated values of yf(l), e yf(m). The z-values are shown for the
cases of the uniform noise density (5) with € = 0.1, 0.2, and 0.5; and the minimum, 1st
quartile, median, mean, 3rd quartile, and maximum of the associated values of
yf(l), A ,yf(m) are displayed for two cases: m = 5 and m = 5,000. While such a large
value as m = 5,000 may not be used in practice, we consider this large m in order to obtain
an accurate picture of the distribution of released values of yf“), e y;‘(”‘). Of course for
the case m = 5, the minimum, 1st quartile, median, 3rd quartile, and maximum are simply
the ordered values of y?(]), C ,yf(s), respectively. Furthermore, results for both the Type
A and Type B imputation methods for y*-values are shown in the table. Table 6 reports
similar results for lognormal except that instead of uniform, we use the customized noise
distribution for lognormal data as defined in Subsection 4.2, with variances matching those
of the Uniform(l — €, 1 + €) density with € = 0.1, 0.2, and 0.5. The following is a

summary of the results of Tables 5 and 6.

1. As the variation in the noise distribution A(r) increases (i.e., as € increases), the
dispersion in yf(l), . .,y:f(m) also increases. Therefore, as one would expect, the
amount of privacy protection provided by this method increases with the variance of
the noise-generating distribution.

2. Generally, even for large m, one does not recover the original y; by averaging or
computing the median of the imputed copies yf(l), RN yf(m). Usually we find that
the noise-multiplied observation z; is contained between the 1st and 3rd quartiles of
y;k(l), e y;k(m), but interestingly, the y; value may not be contained between these
quartiles. In fact, when € is small, the distribution of the y;k(l), c ,yf(m) values tends
to be concentrated around z; and not y;. However, when the noise multiplication
results in a large perturbation as in the bottom row of Table 6 where y; = 18.21 and
z; = 31.32, then we find that the distribution of y,-*(l), A ,yi*(m) is shifted downward
toward y;, yet still the original value of y; = 18.21 is not contained between the 1st
and 3rd quartiles of y,-*(l), . .,yi*(m). This finding gives some indication that the
method does provide some correction of an extreme z; value, while at the same time
does not disclose the original y; value.

3. Comparing the results of the Type A and Type B imputation procedures, we find
them to be quite similar.

4. The results for the uniform and customized noise distributions are similar, although
the uniform noise does tend to give a slightly larger interquartile range of
y;-k(”, . .,yf(m) than the customized noise, thus providing perhaps slightly more

privacy protection.

Case of Mixture Data. Table 7 reports the results of the numerical study for evaluating
the disclosure risk in the case of mixture data. The population density f (y|6) is again the
lognormal density as in Subsection 4.2 with uw = 0, o = 1, the top-coding threshold is
C = 3.60 which is the 0.90 quantile of the population density (rounded to two decimal
places), and the table shows, for three particular y; values, the corresponding x; value, and
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distribution of the associated values of yi*(l), . .,y;-k(m). In this table, the x-values are
shown for the cases of the uniform noise density (5) with € = 0.1, 0.2, and 0.5; and the
minimum, 1st quartile, median, mean, 3rd quartile, and maximum of y;k(l), e y:f(m) are
displayed for the cases m = 5 and m = 5,000. Results are shown for both cases (i) and
(i) of Section 3 and for both the Type A and Type B imputation methods. Most of the
findings here are similar to those of the case of full noise multiplication. Below is a
summary of findings from Table 7 which highlights the similarities and differences in

privacy protection between cases (i) and (ii) of Section 3.

1. The first part of the table shows results when the y-value is y; = 5.71, which is, of
course, greater than the top-coding threshold C = 3.60. It happens here that each of
the displayed noise-multiplied values is also larger than C. Therefore, based on each
of the x-values shown, we know with certainty that A; = O (that is, the conditional
probability (17) equals 0), and hence the case (ii) method will always impute this
particular A; value correctly. Here, the properties of the replications yl’f(l), R ,y;‘(”‘)
for both cases (i) and (ii) are similar to each other and similar to those noted for the
full noise multiplication case (replications not centered at y;, dispersion increasing
with €, etc.). Note that the imputations under case (i) may be of slightly higher
quality, since the estimate of @ (either posterior draw or MLE) needed to generate the
imputations may be of higher quality when based on case (i) data.

2. The second part of the table shows results when y; = 3.75, which is again greater
than C = 3.60, but each of the displayed x-values happen to fall in the interval
((1 — €)C, C). When the x-value falls in this interval, the indicator A; cannot be
determined from x; with certainty (that is, the conditional probability (17) does not
equal O or 1). Therefore, the case (ii) method will sometimes (with a probability
governed by (17)), impute A, by the value one, and hence release the noise-multiplied
data point as the y*-value. Here it is interesting to look at the € = 0.50 case where
x; = 1.94 because in this case we see a large difference between the results in cases
(i) and (ii). In case (i) we use the information that A, =0 when generating
imputations, and hence the released y#*-values are more similar to the original
y-value. In case (ii) we do not have this knowledge about the true value of A;. Since
the noise-multiplied observation is fairly small, A; is often imputed as 1 in case (ii).
Therefore, under case (ii), the noise-multiplied data point is often directly released in

the replications y?(1)7 e yf(m) and a user who sees these data would not

immediately know if the value repeated several times in the released y:-‘(l), c ,y;‘('")
was the original y; or its noise perturbed version.

3. The third part of the table shows results with y; = 3.56. In this case, the y-value is
less than the top-coding threshold C = 3.60, while each of the x-values happen to
fall in the interval ((1 — €)C, C). Therefore, the value of A; cannot be determined
with certainty from x; (the conditional probability (17) does not equal O or 1). Thus,
the case (ii) method sometimes imputes A; by 0, and in these cases the released y*
will not be equal to the original y-value, since it will be divided by a random draw
from (14). In this situation, unlike the situation described in item (2) directly above,
the value repeated several times in the replications yf(l), N yf(m) for case (ii) is
the original observation, not its noise-perturbed version. In this case, the case
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(i) method, which uses knowledge of A; = 1, always sets the released y*-value to
the true value of y.

6.2.  Comparison with Synthetic Data

The methodology developed in this article is designed to enable statistical agencies to
release privacy-protected data that can be readily analyzed by data users. The methods of
(partially) synthetic data developed in Reiter (2003) are designed for the same purpose,
and hence a comparison of our methodology with that of Reiter (2003) is in order.
A general criticism of noise multiplication is that a proper statistical analysis of noise-
multiplied data is complicated for data users. The results of this article show how to
remedy this criticism by making the analysis as simple (for the data user) as the analysis of
synthetic data (we showed that Rubin’s (1987) combining rules can be used here, and these
rules are only slightly different from those of Reiter (2003)). Since the methodology of this
article gives very similar results to the full likelihood-based analysis of noise-multiplied
data developed in Klein et al. (2013), we believe that the pertinent comparison is that of
synthetic data versus noise multiplication, assuming a valid data analysis is performed in
both cases. Such a comparison, in terms of data quality, is precisely the topic of Klein et al.
(2013). We note that synthetic data certainly has benefits, as it has been thoroughly studied
in recent years, and successfully applied to complex multivariate data sets. At the same
time, the methodology of this article can be extended to multivariate data as outlined in the
subsection below. An advantage of noise multiplication over synthetic data is that noise
multiplication allows the statistical agency to precisely control the quality of the released
data, and also the level of privacy protection, through the choice of h(r). For instance,
when A(r) is the uniform density (5), the extensive numerical results of Klein et al. (2013)
show, for some univariate parametric models, precisely how to select € so that the quality
of inferences are equivalent to, less than, or greater than, the quality of inferences derived
under synthetic data. Indeed, the ability to choose A(r) provides the statistical agency with
a very fine level of control over the data quality and privacy protection, and such an
explicit tuning mechanism is not present in standard synthetic data methodology. Further
privacy guarantees under noise multiplication can be made, for instance, by taking h(r)
to be a density such as

1

hry=——-—,ifre(l1—€6,1-9U+E1+e), 27
2(e — &

where 0 < £ < € < 1. Notice that the noise density (27) implies that the noise multiplier

ris always a distance £ away from 1, and hence we are guaranteed that the relative distance

between the original observation y and noise-multiplied observation z is |[(z — y)/y| > &

6.3. Extensions for Multivariate Data

So far in this article we assumed that the original data, y;, . . .,y,, consist of a set of
n independent random variables whose support is a subset R. In this section, we outline
an extension of our methodology to the case of multivariate and fully noise-multiplied
data. In the multivariate case, we assume that the original data consist of yi, . . .,y,,
a set of n independent k X 1 dimensional random vectors. Thus we suppose that
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Yi, - - Y0 ~ iid ~ f(y|0), independent of ry, . . ., r, ~ iid ~ h(r) where f(y|0) and h(r)
are densities of continuous probability distributions whose support is a subset of R¥. As
before, @ = (0, . . ., 6,) is an unknown p X 1 parameter vector, and now A(r) is a known
density such that i(r) = O if any component of the vector r is less than zero. Writing
yi= i, .. .,va)andr; = (ry, . . ., ri), the fully noise-multiplied data are now defined
by zi, . . .,z where z; = (zi1, - - -, 2ik) = (VitFilys - - -, YViklik), L= 1,, . . . n.
The joint density of (z;, r;) is
Zil Zik

g(ziarila) :f<7 c

il ik

k
0) h(ra, - ra) [Hr,ﬂ],
=1

the marginal density of z; is

* * [z Zik
g(zlle):J J f(_77_
0 0 Wij1 Wik

and hence the conditional density of r; given z; is

k
0)]1((1),‘17 - .,w,-k) [H w;]‘|dw,’1. . .da)l'k7

=1

f(Gi/riD), - G/ ria) | OA(rit, . .. rig) [Hllerﬁl}

5 St o, /ol Ohn, ..o |11 07 |don.. den
28)

h(ri|Zi; 0) =

The complete, observed, and missing data are defined, respectively, as
xC= {(zl7r1)7 A 'a(zll7rn)}7 x0b8= {zla A -7zn}7 xmis = {r17 . ~7rn}-

The noise vectors ry, . . .,r, are imputed m times to obtain
X0 = { <Z1,r1 j )7 3 .,(zn,r,,(-’))}

_ *(J) *(J) *(J) #(J) s __
_{(le7---7zlk)7<r1]] ;'”ar]kj )7-"7(Zn17"'aznk)a(rn1] a"'?rnkj )}7.]_17"'5’"7

and the privacy-protected data are obtained as

y*(J): {yl(j)7"'7yZ(J)}:{(yl(lj)a"'7y1](¢j))7'"?(yn(lj)?"'vyngcj))}

(29)
_{(le Zlk) <an an)} ]_1 k
—_— Tj)""’Tj‘) g ooy Tj)""’Tj) 3 —_— PICICICY .
1 Tk s Tk

The methods of Subsection 2.2 can be used to impute the noise vectors, and the methods of
Subsection 2.3 can be used to analyze the privacy-protected data given in (29).
Conceptually, the methods of Subsections 2.2 and 2.3 can be readily applied to
multivariate data. For instance, a data user wishing to draw inference about the correlation
between y;; and y;» would set Q(0) = Corr( y;1,y2|0), and apply methods of Subsection 2.3.
For the statistical agency generating the imputations, there is perhaps one extension
needed in applying the methods of Subsection 2.2, because when generating the
imputations (either Type A or Type B), instead of sampling from the univariate



Klein and Sinha: Analysis of Noise-Multiplied Data Using MI 459

conditional density (4), we must now sample from the k-dimensional multivariate
conditional density (28). In the univariate case we used Proposition 1 to extract samples
from (4) when one takes the noise-generating density to be (5). In the multivariate case, a
generalization of Proposition 1 can be used to sample random vectors from (28), when the
noise-generating distribution is the following k-dimensional uniform density (which is a
straightforward generalization of (5)):

]’l(h,...,l‘k) ,fOI‘(?‘],...,I"k)E[l_61714—61])("')([1_Ek,]—f-Ek]7 (30)

_ 1
TokTTE
2k [ &

where 0 < €,...,6, < 1. The generalization of Proposition 1 is stated below as
Proposition 2; the proof is similar to that of Proposition 1 and hence is omitted.

Proposition 2 Suppose that f(y|0) is a continuous probability density function of a
k-dimensional distribution, and let us write f(y|0) = c(0)q(y|0) where c¢(0) > 0 is a
normalizing constant. Let M = M(0, €y, . . ., €,z) be such that

31 Tk
q{ —» - - - —
r Ik

Then the following algorithm produces a random vector (Ry, . . ., Ry) having the density

0) = Mforall(ry, ..., 1)

e[l —e,14+e]X---X[1— €1+ €l

hU(rh E -a”kler . ')Zk)a)

) a(i/r), - G /rolO)[ T 7]

Fe T o, G oolOTT o der. . do

)

for(ri, .. .,r) €[l —€, 1+ ]X--- X[l — €, 1+ €l
I. Generate U, Vi, . ..,V as independent Uniform (0, 1) and let W; = (1 + el)v’/
(1— el)vlflforl= 1,...,k
II. Accept (R, ...,Rp) =Wy, ..., W) if U=M'q((zi/W1), .. .,(z%/Wpl6),
otherwise reject the vector (Wy, . . ., W) and return to step (I).
The expected number of iterations of steps (1) and (Il) required to obtain (R, . . ., Ry) is
1
MHLI log { s e,}
1—- €]

e g@ o, - @/ o0l8) [Hllewl’l}dw] . daoy,

Remark 5. In this section we briefly outlined the multivariate extension for the case of
fully noise-multiplied data; that is, where y, . . .,y, ~ iid ~ Y and each component of Y
requires protection from disclosure. We note that the methodology outlined in this section
allows one to use different levels of privacy protection for each component of ¥ through
the choice of €y, . . ., € in (30). Other scenarios are certainly possible; for instance, it
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may be that Y = (Y, Y5, Y3) where the variable Y; must always be protected, Y, requires
protection only if it exceeds a fixed threshold C > 0, and Y3 does not require any
protection. We intend to address such issues in a future communication.

7. Concluding Remarks

There are perhaps two rigorous ways of producing privacy-protected data: multiple
imputation and noise perturbation. Klein et al. (2013) show that the likelihood-based
method of analysis of noise-multiplied data can yield accurate inferences under several
standard parametric models and compare favorably with the standard multiple imputation-
based analysis methods of Reiter (2003) and An and Little (2007). Since the likelihood of
the noise-multiplied data is often complex, one wonders if an alternative simpler and fairly
accurate data analysis method can be developed based on such kind of privacy-protected
data. With precisely this objective in mind, we have shown in this article that a proper
application of multiple imputation leads to such an analysis. In implementing the proposed
method under a standard parametric model f(y|@), the most complex part is generally
simulation from the conditional densities (4) or (14), and this part would be the
responsibility of the data producer, not the data user. We have provided Proposition 1
which gives an exact algorithm to sample from (4) and (14) for general continuous f ( y| @),
when A(r) is the uniform distribution (5). Moreover, we have seen that in the lognormal
case under full noise multiplication, if one uses the customized noise distribution, then the
conditional density (4) takes a standard form from which sampling is straightforward.
Simulation results based on sample sizes of 100 and 500 indicate that the multiple
imputation-based analysis, as developed in this article, generally results in only a slight
loss of accuracy in comparison to the formal likelihood-based analysis. Our simulation
results also indicate that both the Rubin (1987) and Wang and Robins (1998) combining
rules exhibit adequate performance in the selected sample settings. We have also reported
some additional numerical results for evaluating the amount of privacy protection offered
by the method. These results showed that one does not recover the original observation
simply by averaging the multiply imputed copies of the original value.

In conclusion, we observe that, from a data user’s perspective, our method does require
a knowledge of the underlying parametric model of the original y-data so that efficient
model-based estimates can be used to analyze the reconstructed y *-values. In this article
we assumed that the model used by the agency to multiply impute the original data,
namely f (y|@), is the same model adopted by the data user to analyze the released data.
However, in practice this may not be the case (see Meng 1994 and Robins and Wang 2000
for a discussion of possible consequences of model misspecification). In any event,
modeling by data users, if necessary, will be based on the released y “-values, and not on
the noise-multiplied z-values. It is expected that the sampling behaviors of y-values and
y “-values would be similar. This is in the same spirit as in the case of synthetic data usage
where a data user will either be informed about the original model or try to build up a
reasonable model based on the released synthetic data. We should also point out that in
practice, most data sets have a complex multivariate structure. We briefly outlined how
our methodology can be extended to multivariate data. In a future communication we
intend to investigate the robustness of the multiple imputation-based analysis to
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discrepancies between the imputation and analysis models, and to further develop the
multivariate extensions of the proposed method.

Appendix A

Proof of Proposition 1. This is a rejection sampling algorithm where the target density
hy(rlz, @) is proportional to Sireer(r) = q((z/r)|O)r ', 1 — € =r =, and the instru-
mental density is Sinse(r) = 7' /(log(y) — log(1 —€)), 1 —€ = r = v. To fill in the
details, first note that since f( y| 0) is continuous in y, it follows that ¢((z/r)| @) is continuous
as a function of r, on the interval [1 — €, y], and thus the bounding constant M exists. Then
we see that

slarget(r)
Sinste (1)

= Llog (7 — log (1~ €)lq(>10) = [log () ~ log(1 — )W, (31)

for all » € [1 — €, y]. Note that the cumulative distribution function corresponding to
Sinsu(r) 15 Sinse(r) = (log (r) = log (1 — €)/(log(y) — log(1 — €)), l —e =r =,
and the inverse of this distribution function is S| (u) = y*/(1 — €)', 0 =u=1.
Thus, by the inversion method (Devroye 1986), step (I) is equivalent to inde-
pendently drawing U ~ Uniform(0,1) and W from the density sj,(7). Since
M’lstarge[(W)/([log (y) — log(1 = )lsinse(W)) = q(z/wl|0)/M, step (1) is equivalent
to accepting WifU = M’lslarget(W)/([log (y) — log (1 — €)]sinstr(W)), which is the
usual rejection step based on the bound in (31). Finally, we use the well-known fact
that the expected number of iterations of the rejection algorithm is equal to the
bounding constant in (31) times the normalizing constant for Sgrged(r), i.€

[log(y) — log(1 — &)IM/[[|__q((z/ )| O)» ' dw].

Appendix B

Here we provide proofs of the posterior propriety of 6, given the fully noise-multiplied
data z, for normal and lognormal distributions.

Normal distribution. Here g(z|@) oc (1/0) [ exp[—((z/r) — w)?/a»)(h(r)/r)dr. Writ-
ing down the joint pdf of z1, . . ., z,, it is obvious that upon integrating out u with respect
to (wrt) the Lebesgue measure and o wrt the flat or noninformative prior, we end up with
the expression U(z) given by

—n—=8

Y 2
n _,@i/r)
UG) = JJ ;i_z_ (Z:—lnz /) h(ril): :f:r")drl. .,

where 6 = 0. To prove that U(z) is finite for any given z, note that

n Z,n: (@i/ri)’ ; 2>1 o ]’
[Z B — 22,,1< - .)—5{,—1‘72}

=172 n
for any pair (z1, z2; 1, 72), Assume without any loss of generality that z; > z,, and note that
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[(z1/r1) — (z2/r2))* = [(z1/22) — (r1/r2)]> X Z3r; 2. Then under the condition
h(r)

J —dr=K; < oo, J PO (e h(ry)drdry = Ky < 00, (32)
r r r=ry

U(z) is bounded above by
z —2(n+38)
Uz) = 2"k} 2 {—‘ - 1} U r O G h(ry)drdrs | < oo
ZZ FI=r

In particular, when R ~ Uniform(1 — €, 1 4 €), the above condition is trivially satisfied!

Lognormal distribution. Here g(z|@) oc (1/z0) [exp[—(log(z/r) — w)?/QoHh(r)dr.
Writing down the joint density of zj, . . ., z,, and putting u = log (z/r), it is obvious that
upon integrating out u wrt the Lebesgue measure and o wrt the flat or noninformative
prior, we end up with the expression U(z) given by

n —2(n+96)
U@ = J : j [Z (i — u)Z] h(r) - h(rdr - dr,
i=1

r Tn

where 6 = 0. To prove that U(z) is finite for any given z, note as in the normal case that
when z; > 7z, (without any loss of generality),

n 1 1 1 2
[; (ui — 171)2] = E,; (i — uj)2 = 5(“1 - M2)2 = 3 [log (%) — log <:_;>]

=2[=()]

for r; < r,. Hence U(z) is always finite, since fr1<r2 h(rph(ry)dridry, < oo.

Appendix C

Here we provide proofs of the posterior propriety of , given the mixture data, for normal
and lognormal distributions. We consider two cases depending on the nature of mixture
data that will be released.

Case (i): Nature of data {(x1,A1), -, (x,, A}

Normal distribution. Given the data {(x;,A}), . . ., (x,, Ay}, let Iy = {i: A; = 1} and
Io = {i: A; = 0}. Then the normal likelihood L(@|data), apart from a constant, can be
expressed as

o — w?

L(6|data) oc o " | exp —Z 552
g

i€l

((xi/c) ) — w)? .
x HJ exp(— ((‘xl/rl) ) ) h(:[)l(xi > 0)dr, | .

2
€150 20 i
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It is then obvious that upon integrating out w wrt the Lebesgue measure and o wrt the flat
or noninformative prior, we end up with the expression U (data) given by

2
(xi/¢) (in + Z(XMV,’))
U(data)zHJ I(x; > 0) Zx +Z - it icn h(r;) dr.

i€1pJ 0 i€l i€l i n Ti

—n—=a

Writing v; =x;/r; for iEly, the expression W(data)=3} X2+ ZlEIo x2/r?
— (ZE,I X + Zie,o(x,-/r,-) /n is readily simplified as [S? + S% +rs(x; — X)) 1(r + )7 !
where r and s are the cardinalities of /; and o, respectively, and (X, 57) and (Xo,S5) are
the sample means and variances of the data in the two subgroups /; and /,, respectively.

When I, is nonempty, an obvious lower bound of W(data) is S? 1/ (r + ), and if I; is
empty, W(data) = S% /n. In the first case, U(data) is finite whenever f(x' C)(h(r) /r)dr < o
for i € Ij. In the second case, we proceed as in the fully noise-perturbed case for normal
and conclude that U (data) is finite under the conditions stated in (32) except that the
bounds of r; in the integrals are replaced by x;/C. In particular, for uniform noise
distribution, the conditions trivially hold.

Lognormal distribution. Proceeding as in the normal case with u = log(x/r), and
breaking up the sum in the exponent into two parts corresponding to /; and /,, we get the
finiteness of corresponding U(data) under noninformative priors of w and o when the noise
distribution is uniform.

Case (ii): Nature of data (x, . . .,x,).
Normal distribution. Upon carefully examining the joint pdf of the data x, given by (18),
let us split the entire data into three mutually exclusive sets:

L={i:x;<0), L={i:0<x<C), Iy={i:x>C}.

It is now clear from standard computations under the normal distribution that whenever /;
is non-empty, the posterior of (u, o) under a flat or noninformative prior of (u, o) will be
proper. This is because the rest of the joint pdf arising out of I; and I5 can be bounded under
a uniform noise distribution or even under a general /(.) under very mild conditions, and
the retained part under /; will lead to propriety of the posterior. Likewise, if I; is empty
but /3 is non-empty, we can easily bound the terms in /,, and proceed as in the fully noise-
perturbed case for data in I3 and show that the posterior is proper. Lastly, assume that
the entire data fall in I,, resulting in the joint pdf L(6|data € I,) as a product of terms
of the type

(xi/¢) (x;/c)
f(xil6) +J ( |0) hr) 4. < J [f(xilﬂ)c —I—f( |0> h(”)] dr;
0 ri 0 X(1)

l 1

where x() = min (x;). Let us now carefully check the product of the above integrands
under the normal distribution, which will be first integrated wrt (u, o) under a flat or
noninformative prior, and later wrt the noise variables which we take to be iid uniform.
Obviously this product will be a sum of mixed terms of the following two types which are
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relevant to check the propriety of the resultant posterior:

n 1 Xi g
o Texp 552 Z(Xi_,U«)z‘f‘Z(;_M)

iIeJ i€J,

where J; and J, form a partition of {1,. . ., n}. It is now immediate that the terms of the
first type (standard normal theory without any noise perturbation) will lead to a proper
posterior of (u, o). Likewise, from our previous computations under the fully noise-
perturbed case, it follows that the terms of the second type will also lead to propriety of the
posterior of w and o under a uniform noise distribution.

Lognormal distribution. Proceeding as in the normal case above by replacing x/r by
u = log (x/r), we get the posterior propriety of u and o under flat or noninformative priors
when the noise is uniform. We omit the details.
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