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Multivariate Fay-Herriot (FH) model:

y = Y + e

= (Xβ + u) + e

where y = (1     )
0 are the ×1 vectors of observations (direct survey estimates)

for areas  = 1    , and Y are the corresponding × 1 vectors of true population
quantities estimated by y with sampling error vectors e. The th equation for

 = 1      can be written as

 = 0 +  + 

which allows for different regression parameters  in each equation. Note that

Xβ =
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⎤⎥⎥⎥⎦ 
One could restrict the model to have common regression parameters  in each equa-

tion, in which case Xβ would collapse to⎡⎢⎢⎢⎣
01
02
...

0

⎤⎥⎥⎥⎦
One could also use intermediate possibilities such as different intercept parameters

for each equation but with the remaining  common across the  equations.

The general multivariate model would have Var(u) = Σ where Σ is a general,

symmetric positive definite  ×  matrix (( + 1)2 distinct elements). If  is not

too large, this general model is feasible. Also, we treat Var(e) = Σ as known

(estimated from survey micro-data, though possibly also smoothed over areas in

some way). Assuming u and e are both independent over areas , our model for the

observed data is

y ∼  (XβΣ
)  = 1    

where

Σ = Σ +Σ 
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Autoregressive (AR) models for u:

If the  observations in y are for different time points, then we may specify Σ

and Σ to correspond to time series models reflecting the dependence in  and 
where  indexes the time points. For ACS data, we assume the  are independent

over time, so that

Σ =

⎡⎢⎣
2
1

. . .

2

⎤⎥⎦ 
Some alternative first-order AR models can be specified for . These determine the

form of Σ ≡ Σ(), where  denotes the unknown parameters to be estimated in

the model for .

Stationary AR(1):  = −1 + ,  ∼  (0 2),  ∈ (−1 1),
2 = 2(1− 2),  = (2 )

0,

Σ = 2
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Heteroskedastic AR(1):  = (21      
2
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⎤⎥⎥⎥⎦ 
For the case of  = 2, this model is equivalent to a general bivariate model.

Random walk (AR(1) with  = 1):  = −1 + ,  ∼  (0 2),

 = (21  
2
)
0,

Σ = 21
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Notice that this Σbecomes singular if either 
2
1
→ 0 or 2 → 0, so we must watch

if parameter estimation heads towards either of these boundary values. Also, this

covariance matrix is ill-conditioned if  is large, but this should not be a problem if

 is small.
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Maximum likelihood (ML) estimation:

The Gaussian log-likelihood function to be maximized over  and β is

(β) = −

2
log(2)− 1

2

X
=1

©
log |Σ |+ (y −Xβ)

0
Σ−1 (y −Xβ)

ª


Maximizing (β) can be accomplished by minimizing the summation term above,

which can be done by iterative generalized least squares. At iteration :

1. Given estimates β̂
()
, maximize ()() ≡ ( β̂

()
) over  to get updated

estimates ̂
()
.

2. Given ̂
()
, estimate β by generalized least squares:

β̂
()
=

Ã
X
=1

X0[Σ
()

]−1X

!−1Ã X
=1

X0[Σ
()

]−1y

!
(1)

where Σ
()
 = Σ(̂

()
) +Σ 

We could start this process by estimating β by OLS, or by setting Σ
()
 = Σ and

computing β from (1). Convergence of the above iterations should be fairly rapid.

At the end, we have the MLEs ̂ and β̂. The large sample covariance matrix of β̂ is

Var(β̂) =

Ã
X
=1

X0Σ̂
−1

X

!−1
(2)

where Σ̂ = Σ(̂) +Σ . The large sample covariance matrix of ̂ is given by

Var(̂) ≈ −
∙

2



( β̂)

¸−1
evaluated at ̂. This can be computed using numerical derivatives, though many

optimization routines will automatically provide it. The large sample covariance

between ̂ and β̂ is zero.

One can also use a Bayesian approach to inference, which will require some form of

simulation. A standard prior for these models would be a flat prior just restricting the

variances to be non-negative and  ∈ (−1 1). With this prior the posterior, (β|y),
where y = (y1    y)

0 is all the data, is proportional to the likelihood, and a large
sample approximation to the posterior treats it as normal with mean vector given

by the MLEs ̂ and β̂, and covariance matrix given by the large sample covariance

matrix of ̂ and β̂. One can easily simulate from this normal approximation to the

posterior.
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For exact Bayesian calculations it is useful to note that

(β|y) = (|y)(β|y)

where (β|y) is a normal density with mean and covariance matrix given by the
GLS results (1) and (2), and (|y) can be readily calculated from (β|y)(β|y)
= (β)(β)(β|y) where (β) is the prior (possibly just a constant). If
one can simulate from (|y), appending to each simulated  a simulation of β from
its conditional normal distribution, (β|y), yields a simulation from (β|y). For
the first and third models discussed above,  has only two elements, so independent

simulations from (|y) could be obtained by rejection sampling. Alternatively,

the Metropolis-Hastings (MH) MCMC algorithm could be used. The MH approach

could also be used when  has a large enough dimension to make rejection sampling

inefficient, which can be the case for the heteroskedastic model when  is not very

small.

Small area prediction:

If we knew the parameters  and β, the minimum mean squared error predictor

of Y would be, from standard multivariate normal results

(Y|y β) = (Y|y β) = Xβ +Σ()Σ
−1

(y −Xβ) (3)

In practice, we can substitute the MLEs, ̂ and β̂, into (3) yielding

Ŷ = Xβ̂ +Σ(̂)Σ
−1

(y −Xβ̂) (4)

Note that Σ also depends on ̂. For the Bayesian approach, (4) with  instead

of ̂ gives (Y|y ). Given simulations of  from its posterior, (|y), we can
calculate (4) for each simulated  and then average the results over the simulations

to approximate the posterior mean, (Y|y), which is the Bayesian MMSE predictor.

The prediction error of Ŷ can be written

Y − Ŷ = (Y − Ỹ) + (Ỹ − Ŷ) (5)

where we use the notation Ỹ for (Y|y β) given by (3). The two terms on
the right-hand-side of (5) are orthogonal, so the prediction error variance of Ŷ is

Var(Y − Ŷ) = Var(Y − Ỹ)+Var(Ỹ − Ŷ). To derive this we rewrite (3) as

(Y|y β) = y −(e|y β)
= y −ΣΣ−1 (y −Xβ)

and similarly for (4), from which one can easily see that

Ỹ − Ŷ = ΣΣ
−1

X(β − β̂)
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Also, from standard results, given , Var(Y − Ỹ) = Σ() − Σ()Σ−1 Σ() =
Σ −ΣΣ−1 Σ . Therefore,

Var(Y − Ŷ) =
©
Σ −ΣΣ−1 Σ

ª
+ΣΣ

−1

XVar(β − β̂)X0Σ−1 Σ  (6)

Notice that this depends on  through Σ and Var(β − β̂). This result accounts

for error due to estimating β, but not for error due to estimating . If the number

of observations is large compared to the number of elements of , the error due to

estimating  should be unimportant.

For the Bayesian approach, (6) gives the variance of Y conditional on both y

and , Var(Y|y ). Given simulations of  from its posterior, (|y), we can
approximate the posterior variance, Var(Y|y), using

Var(Y|y) = |y[Var(Y|y )] +Var|y[(Y|y )]

where Var(Y|y ) is given by (6), (Y|y ) is given by (4) with  replacing

̂, and |y and Var|y denote the expectation and variance under the posterior
(|y). We approximate |y[Var(Y|y )] by averaging the values of Var(Y|y )
computed for each simulated value of , and we approximate Var|y[(Y|y )] by
taking the sample variance of (Y|y ) across the simulations of . If we use a
normal approximation to (|y) to obtain the simulations of , these results could
also be taken as an extension to the ML prediction results to obtain an improved

Var(Y − Ŷ) that also accounts for the error in estimating .
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