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The Multiple Testing Problem for Box-Pierce Statistics

Tucker McElroy∗and Brian Monsell†

U.S. Census Bureau

Abstract

We derive the exact joint asymptotic distribution for multiple Box-Pierce statistics, and use these

results to determine appropriate critical values in joint testing problems of time series goodness-

of-fit. A novel α-rationing scheme, motivated by the sequence of conditional probabilities for

the statistical tests, is developed and implemented. This method can be used to produce critical

values and p-values both for each step of the sequential testing procedure, and for the procedure

as a whole. Efficient computational algorithms are discussed. Simulation studies assess the

impact of finite samples on the real Type I error. It is also demonstrated empirically that the

conventional χ2 critical values for the Box-Pierce statistics are too small, with a Type I error

rate greater than the nominal; the new method does not suffer from this defect, and allows for

more rigorous model-building.

Keywords. ARIMA models, Ljung-Box statistic, Time series residuals.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

The most popular time series goodness-of-fit diagnostic test statistics are the portmanteau statistics

introduced by Box and Pierce (1970) and extended by Ljung and Box (1978). The original idea

is based on ascertaining model goodness-of-fit via examination of the correlation structure of time

series model residuals. The presence of residual autocorrelation can be measured through the

sample autocorrelation function of these residuals, and the Box-Pierce statistic is constructed from

a cumulation of the square of this function over various time lags. Despite many variants (see the
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treatment in Ljung (1986), Monti (1994), Kwan and Wu (1997), Peña and Rodriguez (2002), and

Kan and Wang (2010)), the original statistics remain quite popular, being featured in commonly

used statistical software packages such as X-12-ARIMA (Findley et al., 1998), TRAMO-SEATS

(Marvall and Caparello, 2004), and STAMP (Koopman et al., 2000). The reason for this popularity

is more than just cultural inertia; these statistics are intuitive, easy to calculate, and simple to

interpret. Various improvements to the initial proposed test statistics have focused, over four

decades, on improving finite sample size and power. However, an important but neglected topic is

the issue of multiple testing, since typically many of these test statistics are used concurrently.

For example, in X-12-ARIMA the default diagnostic output produces Ljung-Box Q statistics

(hereafter LBs) at a maximum lag up to 24, so that typically over 20 test statistics are presented

simultaneously. Now for 20 independent tests of the same null hypothesis, with a nominal Type I

error rate of .05, one is extremely likely to obtain at least one significant statistic by chance alone.

(But if all the tests were fully dependent, then the rejection rate would be identical with the nominal

of .05.) This general multiple testing phenomena is well-known in the field of statistics, but has

received little serious attention in time series analysis1, where typically many iterative phases of

exploratory analysis, model estimation, and model goodness-of-fit testing are involved. The primary

aim of this paper is to use the joint asymptotic distribution of the sample autocorrelations of time

series residuals to derive the joint cumulative distribution function (cdf) of Box-Pierce statistics

(BPs) and LBs. This mathematical result, along with a practical, fast technique for computing

the joint cdf, allows one to determine the asymptotic p-values and critical values associated with

a sequence of test statistics. Application of the methodology should be helpful in mitigating an

over-abundance of Type I errors, along with the unfortunate behavior of “data-snooping” with

ARIMA models.

Statistics based on sample autocorrelations are generally given a distribution (under the Null

Hypothesis that the model was correctly specified) derived from certain asymptotic calculations,

and typically two sources of error creep into this substitution for the exact finite sample distribution.

Firstly, there is the limiting effect of sample size tending to infinity. Secondly, there is the effect of

parameter uncertainty entering into the structure of the residuals. Our first result (given in Section

2) is the joint asymptotic limit of the sample autocovariances and autocorrelations of time series

residuals, accounting for parameter uncertainty in the Maximum Likelihood Estimates (MLEs),

and this is applied to joint asymptotics for BPs and LBs. This result was first derived in Box and

Pierce (1970), and re-capitulated and extended in other works such as Brockwell and Davis (1991),

Monti (1994) and Peña and Rodriguez (2002). Our formulation extends beyond the ARMA and

SARMA classes of models treated by the above authors, and our results include the important case

1Literature such as Box and Jenkins (1976) and Brockwell and Davis (1991) provide cautions against the multiple

testing fallacy – i.e., applying the Type I error rates for a single test to a collection of tests – but a procedure is not

set forth to integrate the various dependent statistics.
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of misspecification. Also the derivations in Box and Pierce (1970) assume that the moving average

coefficients decay as sample size increases, which effectively ensures that the limiting covariance

matrix of the residual autocorrelations is idempotent; our results dispense with this assumption,

which we have found to be untenable for small samples and low LB lags.

Size distortions for BPs observed in finite samples have led to various modifications, such as

those in Ljung and Box (1978), Ljung (1986), and later literature. A recent proposal for improving

the asymptotic distribution is that of Kan and Wang (2010): the authors base their entire analysis

on a finite sample of data drawn from an elliptical distribution, which obviates the first source of

approximation error mentioned above. Unfortunately, this elliptical distribution presumes an iid

structure, which is manifestly false for time series residuals – as Box and Pierce (1970) correctly

derived four decades earlier. Thus, at least from a theoretical standpoint, the Kan and Wang (2010)

analysis is not satisfactory, although it performs reasonably well in simulation studies.

Although the joint structure of residual autocorrelations has been considered in the prior liter-

ature, to our knowledge this has not been utilized to provide a joint distribution for the suite of

BPs and LBs, which is essential for the multiple testing problem. While one might hope that the

asymptotic distribution might behave as a random walk of χ2 variables on 1 degree of freedom – so

that conditional on previous BP/LBs, the current statistic is just χ2 – this is not true in general, as

our results show; actually, this result does hold true for the exponential (EXP) model of Bloomfield

(1973), but not for ARMA models.

The second major contribution of this paper (Section 3) is a novel scheme for multiple testing

apportionment of Type I error (called α-rationing; cf. Slud and Wei (1982) and later literature)

appropriate for sequences of test statistics. We argue that setting the sequential conditional prob-

abilities to a common error rate is intuitive, allowing for a common inferential basis at each step

of the sequence of tests, and facilitates computation of p-values and critical values. This general

technique is applied to sequences of BP/LBs, which are asymptotically given as Gaussian quadratic

forms; details of the algorithm (which depends on computation of the asymptotic covariance matrix

of the sample autocorrelations) are given in Section 3.

Then we assess (in Section 4) the actual Type I error rate in several ways. We conduct simu-

lations from finite length Gaussian time series, and look at empirical Type I error rates based on

conventional χ2 critical values, as well as the new joint critical values discussed in Section 3. As

sample size increases, we expect the new critical values to provide close to nominal rejection rates.

For any real time series, we also can plug the χ2 critical values into the sequential probabilities

to determine an asymptotic assessment of the Type I error rate accruing from using the (wrong)

marginal critical values; we compare these results to the correct asymptotic joint critical values, by

examining many dozens of time series. When a rejection does occur, we can also identify the exact

lags of the BP/LBs for which these rejections occur, and use this information to further refine the

model. Although the classical approach can also be used to do this, mistakes will occur due to the
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method being badly mis-sized.

In practice – as demonstrated through our examples – the understatement of the true Type I

error rate arising from using classical χ2 critical values is not so bad as might be feared at first (and

in some cases the critical values are actually larger than the appropriate ones). The main reason is

that actual BP/LBs tend to be highly correlated with one another, and this dependence offsets the

erroneous conclusions of the multiple testing fallacy (recall that if 20 tests are completely dependent,

the multiple testing problem evaporates). A secondary reason is that the χ2 distribution is indeed

a decent approximation to the marginal distribution of the BP/LBs for high lags. However, the low

lag behavior (where the idempotent approximation of Box and Pierce (1970) for the autocorrelation

covariance matrix tends to be invalid) can be quite different from χ2; these topics are summarized

in Section 5, and all proofs are in the Appendix, which also contains some supplementary material

on time series residual processes.

2 Asymptotic Theory for Q Statistics

We will refer to either BP or LB statistics as Q statistics. Here we present the main theoretical

results of the paper. Consider a sample of size n from a stationary time series, denoted X =

{X1, X2, · · · , Xn}′. (If the raw data is nonstationary, we assume it has been correctly differenced

to stationarity already.) The series may have a nonzero mean µ̃. We are interested in studying

the asymptotic distribution for Q statistics, which are based on linear combinations of squared

sample autocorrelations of model residuals. The chief context is the fitting of ARMA and SARMA

models to the data X utilizing a Gaussian likelihood function; however, our results also extend to

structural models (Harvey, 1989), the chief requirement being a spectral density that is sufficiently

smooth with respect to its parameters.

We develop the asymptotic theory from the fundamental results of McElroy and Holan (2009),

which reveal the joint distribution of multiple Q statistics. This framework is convenient because

it does not restrict us to a certain model class, such as ARMA, and permits us to describe the

asymptotics under misspecification as well. It will be seen directly in the asymptotic results how

parameter estimation error prevents the limiting marginal distributions from corresponding exactly

to a χ2 variable; the true result is instead a nontrivial Gaussian quadratic form.

Time series models for stationary data are formulated by specifying a family of spectral densities

fθ that depend on a parameter θ, which is to be estimated from the data. Given the spectral density

fθ, it is typically a simple matter to compute autocovariances (see below), which together with the

mean is sufficient to determine a Gaussian time series’ distribution. We proceed to formulate models

in terms of spectra, rather than using a Wold decomposition or State Space Form (SSF), because this

is the most general treatment possible – including non-linear processes and long memory processes

that cannot be represented in SSF. It will allow us to formulate the time series residuals in a general
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way; by reducing to a discussion of the primitive concept (the spectrum), we automatically treat

all cases of practical interest (i.e., stationary time series with finite variance).

We use the notation Σ(fθ) to denote the Toeplitz covariance matrix corresponding to the model

spectrum fθ, i.e., with jkth entry given by γj−k(fθ), the lag j − k autocovariance (acv). More

generally, we have the inverse Fourier Transform (FT) of any real-valued function of frequency g

defined via γh(g) = (2π)−1 ∫ π
−π g(λ)eiλh dλ. Such weighted integrals will be abbreviated with a

< · > notation, i.e., < g >= (2π)−1 ∫ π
−π g(λ)dλ. We will say that g is the FT associated with the

Toeplitz matrix Σ(g). The Gaussian log likelihood function multiplied by −2, i.e., the “deviance”,

is simply

D(θ) = log |Σ(fθ)|+ (X − µ̃ι)′Σ−1(fθ) (X − µ̃ι) , (1)

where |Σ(fθ)| denotes the determinant of Σ(fθ). Here ι is a vector of n ones. Maximum likelihood

estimation yields θ̂ as the minimizer of D; we may very well wish to use (1) even when our data is

not Gaussian (or is not known to be Gaussian), since Maximum Likelihood Estimates (MLEs) are

asymptotically efficient for a broad class of processes (cf. treatment in Taniguchi and Kakizawa

(2000)). The mean µ is essentially a nuisance parameter for purposes of the Q statistics.

Now it is convenient to distinguish within our notation the innovation variance from the other

parameters, when it is a separate parameter (e.g., in an ARMA model). We will write fθ(λ) =

f [θ](λ)σ2, where θ = {[θ]′, σ2}′ consists of r+1 components, the last component being the innovation

variance σ2. The other parameter components are denoted by [θ]. The “innovation-free” spectral

density f [θ] is obtained from fθ by setting σ2 = 1. Note that for structural models the innovation

variance is not a parameter (i.e., it is a nonlinear function of the model parameters); in such a case

we can identify f [θ] with fθ in the subsequent treatment; in our exposition we focus on the case

that σ2 is a parameter.

We are interested in testing the goodness-of-fit of the data to a model-class F = {(f [θ], σ
2) :

[θ] ∈ Θ, σ2 ∈ (0,∞)}, with Θ an r-dimensional space. The true spectrum of the process is some

unknown f̃ , and we seek to discern whether f̃ ∈ F or not; if it is, there is some [θ̃] ∈ Θ and σ̃2

such that f̃ = f
[θ̃]
σ̃2. When f̃ 6∈ F , the tilde notation on parameters then refers to Pseudo-True

Values (PTVs), i.e., the minimizers of the Kullback-Leibler (KL) discrepancy between f̃ and F ;

see Taniguchi and Kakizawa (2000) and McElroy and Wildi (2012) for background. To be precise,

[θ̃] is the minimizer of [θ] 7→< f̃/f [θ] >, and σ̃2 =< f̃/f
[θ̃]
>. More intuitively, a PTV is the vector

(or one of a set of vectors) to which the MLE converges when the model is misspecified (i.e., the

spectral density is misspecified). The PTVs need not be unique, but in many cases of interest (e.g.,

AR models) they are.

Now the MLE for [θ] can be determined by minimizing (with respect to [θ]) the sum of squared

residuals, which we take to be the vector Σ−1/2(f [θ])(X − µ̃ι). The square root refers to the matrix

square root described in Golub and Van Loan (1996). This vector of residuals exactly corresponds
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to a Gaussian white noise vector when the model is correctly specified and ([θ], µ) are replaced by

the true parameters ([θ̃], µ̃). Estimated residuals are obtained by substituting the MLE [θ̂] and

X = n−1 ι′X for ([θ], µ); although a GLS estimate for µ could also be used, the nature of the mean

estimate won’t be relevant for our asymptotic treatment of Q statistics. The result is a vector R

of estimated residuals:

R = Σ−1/2(f
[θ̂]

)(X −Xι). (2)

This is not the only way to define time series residuals; see alternative treatments in Box and Jenkins

(1976) and Brockwell and Davis (1991). Although our definition is not the most computationally

efficient, it seems quite natural (given the form of the likelihood) and also has the merit of being

well-defined for any parametric model (whereas the residuals of the above authors require an ARMA

or SARMA specification).

This minimization produces the MLEs [θ̂]; the innovation variance is estimated by the average

of squared residuals, i.e., σ̂2 = n−1R′R. The sample acvs of the residuals are

γ̂k =
1

n

n−k∑
t=1

(Rt −R)(Rt+k −R),

where we have taken the biased definition (this won’t matter asymptotically, since we will always

have k = o(n) in our treatment).

The BP and LB statistics are computed from weighted linear combinations of squared sample

acvs γ̂k. Let the sample autocorrelations (acs) be defined via ρ̂k = γ̂k/γ̂0. Then

QBP = n

m∑
k=1

ρ̂2
k QLB = n(n+ 2)

m∑
k=1

ρ̂2
k/(n− k)

defines the BP and LB Q statistics. Here m is chosen by the practitioner, and may be viewed as a

fixed integer in the asymptotic analysis. A third Q statistic, which we won’t pursue further here,

is QKS = 4−1
∑m

k=1(n− k − 3) log2[(1 + ρ̂k)/(1− ρ̂k)], discussed in Kwan and Sim (1996).

The centering by R will not affect the asymptotic distributions, and so it is valid to approximate

the sample acv by n−1R′L(k)R, where R is given in (2) and the matrix L(k) is the symmetrization

of the kth power of the lag matrix, namely a matrix of all zeroes except the value 1/2 on the bands

given by all entries i, j such that |i − j| = k. When k = 0 this is just the identity matrix, and in

all cases it is a Toeplitz matrix with associated Fourier Transform given by cos(kλ) – which will be

denoted by ck(λ). See Pollock (1999) for background on lag matrices. Also, centering R by X is

irrelevant asymptotically, so that the sample acv of the residuals can be approximately written as

γk =
1

n
[X − µ̃]′Σ(f

−1

[θ̂] ck) [X − µ̃] .

Likewise, let ρk = γk/γ0. Our main theoretical results focus on the joint asymptotic distribution

of γk for k = 0, 1, · · · ,m.
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Theorem 1 Suppose that the PTVs θ̃ exist uniquely in the interior of the parameter space, which

is compact and convex, and that the Hessian of the KL discrepancy is invertible at the PTVs.

Suppose that the process {Xt} is mean zero Gaussian and stationary, and that the model spectrum

fθ is twice continuously differentiable in θ and continuous in λ; also that the derivatives with respect

to θ are uniformly bounded in λ away from zero and infinity. Then the following weak convergence

holds as n→∞: {√
nγk +

√
n < ck

(
σ̃2 − f̃/f

[θ̃]

)
>
}m
k=1

L
=⇒ N

(
0, V (θ̃)

)
. (3)

Also γ0
P−→ σ̃2. The asymptotic variance under the null hypothesis of a correct model is given by

Vk`(θ) = 2σ4 < ckc` > −2b′k(θ)M
−1
f (θ)b`(θ)

bk(θ) =< ckf
−1
[θ]∇θfθ >

Mf (θ) =< ∇θ log fθ∇′θ log fθ > .

Here the indexing is k, ` = 1, 2, · · · ,m. Moreover, the same results are true with γ̂k substituted for

γk.

Remark 1 The asymptotic bias term < ck

(
σ̃2 − f̃/f

[θ̃]

)
> is identically zero when the model is

correctly specified, but otherwise may be nonzero. However, it is possible for this bias to be zero

even when the model is incorrect, which has ramifications for the Q statistics considered below;

in such a case the LB and BP test statistics will be inconsistent. Clearly, the first term of V is

just proportional to the identity matrix; the second term arises solely from the uncertainty in the

MLEs. In particular, if we fix a particular parameter rather than estimating it, we can zero out

the corresponding entries of bk and b`. When σ2 is a parameter, then for any k = 1, 2, · · · ,m the

vector bk(θ) has r + 1 components with the last component equal to < ck >= 0, whereas the first

r components are given by σ2 < ck∇[θ] log f [θ] >. Mf (θ) is the Hessian of the Kullback-Leibler

discrepancy, which under the null hypothesis of a correct model is equal to the Fisher information

matrix.

Remark 2 The asymptotic distribution, when the model is correctly specified, is identical with

the derivations of Box and Pierce (1970) and later authors, except that their limiting covariance

matrix is idempotent (see below). This may assure the reader that our particular definition of time

series residual does not alter the asymptotics from the formulation peculiar to ARMA and SARMA

models (see Brockwell and Davis (1991) for full treatment).

From Theorem 1 we can derive as a corollary the joint asymptotic limit of the sample acs.

We first define the notion of residual autocorrelations: the lag k autocovariance of the asymptotic

residual process is defined to be γ̃k =< ckf̃f
−1

[̃θ]
>, and hence the lag k autocorrelation is ρ̃k =

7



σ̃−2 < ckf̃f
−1

[̃θ]
>, using the fact that < f̃f

−1

[̃θ]
>= σ̃2. The sample residual autocorrelations are

consistent for these asymptotic residual autocorrelations, as shown next.

Corollary 1 Suppose the same conditions as Theorem 1. Whether or not the model is true,

{
√
n (ρk − ρ̃k)}

m
k=1

L
=⇒ N

(
0, V (θ̃)/σ̃4

)
(4)

for k = 1, 2, · · · ,m. Moreover, the same results are true with ρ̂k substituted for ρk in (4).

Remark 3 When the model is correctly specified, the vector of asymptotic residual autocorrela-

tions – denoted by ρ̃ – is zero. Denoting the limiting covariance matrix in (4) by V (θ), we can

write

V (θ) = 1m − 2C ′N−1C

with N the upper r × r sub-matrix of Mf . Here 1m denotes an identity matrix of dimension m.

The r ×m dimensional matrix C is defined to have entry jk given by

Cjk = [bk(θ)]j/σ
2 =< ck∇[θ] log f [θ] > .

From Corollary 1 and the above Remark, we at once obtain distributional results for the BP

and LB statistics. Denote the limiting multivariate normal vector in (4) by Y . The Null Hypothesis

states that the model is correctly specified, and hence guarantees hat ρ̃ = 0. We derive the general

case (where the Alternative Hypothesis holds, so that perhaps ρ̃ 6= 0) for the Box-Pierce statistic:

QBP = (
√
nρ̂)
′
(
√
nρ̂)

=
√
n (ρ− ρ̃)′

√
n (ρ− ρ̃) + 2

√
n ρ̃′
√
n (ρ− ρ̃) + n ρ̃′ρ̃

L
=⇒ Y ′Y + 2

√
n ρ̃′Y + n ρ̃′ρ̃.

Formally the result in the last line only makes sense when ρ̃ = 0; otherwise, it is interpreted as

giving an order of divergence of the statistic to ∞, such that n−1QBP
P−→ ρ̃′ρ̃. The same result

holds for the Ljung-Box statistic, since m is held constant in the asymptotics. Note that the same

derivation (under the Null Hypothesis) can also be found in Brockwell and Davis (1991) and Peña

and Rodriguez (2002) for ARMA and SARMA models, though the method of analysis is different

(being based on time domain techniques, rather than frequency domain techniques).

More generally, the joint asymptotic distribution of several QBP or QLB statistics can be de-

scribed via the Cramer-Wold device by considering
∑M

m=1 αmQm (where Qm denotes either Q

statistic, computed using the first m sample autocorrelations), and has limit Y ′AY with A an

M -dimensional diagonal matrix with mth entry
∑M

`=m α`. Now since Y is normal with variance V ,

we can simply characterize the limiting distribution of the Q statistic via the Laplace Transform

(LT) as follows (Tziritas, 1987):

E exp{−φY ′AY } = |1M + 2φAV |−1/2
.
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This formula, however, is of little use in determining quantiles except in special cases, discussed

below. Also see Imhof (1961) for background on this distribution.

Let us focus on the case of just a single QM statistic by taking A = 1M . Note that the first term

of V is the identity matrix, which indicates that when we ignore parameter estimation error (i.e.,

set the bk vectors identically to zero) the above LT reduces to (1 + 2φ)−M/2. This is recognizable

as the LT for the sum of M iid χ2 variables on one degree of freedom, i.e., in this special case∑M
k=1 Y

2
k is χ2 on M degrees of freedom. But when parameter uncertainty is present, V will not

be diagonal and the LT might not be the product of LTs for χ2 variables.

In Box and Pierce (1970) the authors propose a formula for V that is somewhat different. In

fact, accounting for differences in notation, they essentially propose

V ](θ) = 1M − C ′
(
CC ′

)−1
C,

which means replacing the upper left portion of the Fisher information matrix with 2CC ′. Of course

N 6= 2CC ′, but Box and Pierce (1970) argue that it is a suitable approximation especially when M

is large and assuming that the coefficients in the Wold decomposition decay at a suitable rate as the

sample size increases. Moreover, it is a convenient substitution because then 1M−V ] is idempotent

with rank r, so that M − r eigenvalues of V ] are equal to unity, and the remaining r eigenvalues

are zero. We can apply Proposition 2 of Tziritas (1987) to conclude that the limiting distribution

would then be a χ2
M−r. We know of one case (discussed below) where this approximation is actually

valid without assuming that the Wold coefficients depend on sample size n; i.e., we discuss below

a case where V has all its eigenvalues equal to either zero or one.

Consider the EXP(r) model of Bloomfield (1973), which has spectral density given by f [θ](λ) =

exp{[θ]′−→c (λ)}, with −→c denoting the column vector of functions ck. For this model, bk is one half

the kth unit vector, and N = .5 1r. Hence V is diagonal with the first r entries equal to zero and

the remaining M − r entries equal to one. This is quite a special structure, and is not true for

ARMA models. To digress briefly – since it is pertinent to the time series fitting problem in general

– seems appropriate here.

Let the periodogram be defined as I(λ) = n−1
∑
|k|<n γke

−iλk. Gaussian maximum likelihood

estimation – or asymptotically equivalently, fitting via minimization of KL discrepancy between

model and periodogram – essentially works to minimize the sample variance < I/f [θ] > of time

series residuals, whereas Q statistics test whether the residual spectrum I/f
[θ̂]

behaves like white

noise. Because the gradient of KL for the EXP(r) model equals < −→c I/f [θ] >, minimization

necessarily entails that the first r sample autocorrelations of the residual process are zero – which

is what the Q statistics are attempting to verify. It is this strong property of exponential models

that is responsible for the simple asymptotic structure of the Q statistics.

As for the exact asymptotic distribution in the general case with fixed coefficients – leaving

aside the useful approximation of Box and Pierce (1970) for the moment – we note that C has a
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null space of dimension at least M − r by the rank-nullity theorem, and hence M − r eigenvalues of

V are equal to unity. Then the limiting LT is that of a χ2
M−r variable plus an independent variable

with LT

exp{−1

2

r∑
`=1

log(1 + 2φ[1− λ`])},

with λ1, · · · , λr the r nonzero eigenvalues of 2C ′N−1C. In practice, these r eigenvalues can be

quite close to zero for values of M as small as 5 or 6, depending upon the model and the underlying

process. This makes the inversion of V infeasible and the approximation of Box and Pierce (1970)

quite useful. On the other hand, the degrees of freedom in the Box and Pierce (1970) approach is

M − r, so that no distributional result can be used when M ≤ r; in these cases, V may be quite

different from idempotency, and is moreover invertible. Moreover, in the sequential approach to

testing advocated below, the joint behavior of the LBs for small M is indispensable. In applications

one evaluates V at parameter estimates, such as MLEs.

3 Joint Testing of Q Statistics

The joint testing problem is to determine a sensible sequence of critical values for a given overall

Type I error rate α. The challenge is that there are so many ways to divide up the mass of

a multivariate probability density. However, when the statistics have a sequential relationship,

we can describe a methodical procedure to obtain critical values. The idea is to use conditional

probabilities of prior statistics, for which critical values have already been obtained, such that the

Type I error at each step is controlled as desired.

In this section we describe a novel sequential testing procedure, which is related to ideas first

published in Slud and Wei (1982). We first develop the ideas somewhat generally, and then specialize

to the case of BPs and LBs.

3.1 Sequential Testing

The basic idea of sequential testing is related to ideas in the biostatistics literature (Slud and Wei,

1982). Consider a sequence of test statistics {Tk} for k = 1, 2, · · · ,M (where M = ∞ is allowed,

although in our LB application M < ∞). Quantities of considerable interest are the conditional

probabilities

αk+1 = P [Tk+1 > xk+1|Tk ≤ xk, · · · , T1 ≤ x1] . (5)

This represents, for a given sequence of critical values x`, the probability of rejection now, given

that we have not rejected up to now. Also set α1 = P[T1 > x1]. A closely related quantity is the

joint probability

pk+1 = P [Tk+1 ≤ xk+1, Tk ≤ xk, · · · , T1 ≤ x1] . (6)
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Of course we have the relation αk+1 = 1 − pk+1/pk. The overall assessment of the procedure

involves computing the probability that at least one test rejects, i.e., the event ∪k{Tk > xk}. Now

while Slud and Wei (1982) focus on computing the joint probabilities pk (6), we emphasize the αks,

although there is a ready equivalence between the two approaches. We first note a few elementary

facts.

Let α = P[∪k{Tk > xk}], which is called the Type I error rate of the sequential procedure –

whereas the sequential Type I error rates are the quantities αk. This is nomenclature. By induction,

pk+1 = Πk+1
`=1 (1 − α`). In addition α = 1 − pM , which also equals

∑M
k=1 αkpk−1 (with p0 = 1), as

shown in Slud and Wei (1982).

Consider two extreme cases: first, if all the tests are independent, then αk is the kth marginal

probability. If the tests are also identically distributed, then the sequential critical values are all

the same, and equal to 1 − (1− α)1/M . If instead all the tests are fully dependent (say, actually

identical), then there is really no multiple testing problem, and α must equal the sequential condi-

tional probability. More generally, the test statistics are somewhat dependent and the relationship

of marginal to joint distribution is more complicated.

The first challenge is to determine, for a given α, the critical values xk such that the correspond-

ing sequential conditional or joint probabilities aggregate appropriately to α. As an initial step, one

must choose the numbers pk or αk to satisfy the appropriate constraint; then we may determine

the xk sequentially given certain information about the distribution functions. Whereas Slud and

Wei (1982) choose to work with the pk, partitioning them such that they sum to α, we in contrast

work with the αk. The reason is that we find these to be a more intuitive quantity, given their in-

terpretation in the sequence of tests. In fact, it seems reasonable to impose that all the αk numbers

be identically equal, say to a common value α0. Although this decision is arbitrary, it imposes an

equitable restriction – each step of our testing procedure is treated equally. However, this approach

need not generate the maximal possible power; determining a most powerful sequence of Type I

error rates αk for Q statistics is difficult to discover a priori, because power depends on the nature

of the alternative hypothesis through the unknown ρ̃, the residual asymptotic autocorrelations.

Our setting of equal sequential Type I error rates implies that pk = (1− α0)k and we must

choose α0 = 1− (1− α)1/M (this approach does not work when M =∞, and in fact the sequential

conditional probabilities must decay, being non-constant, in this case). This is equivalent to taking

a geometrically decaying sequence of joint probabilities in the Slud and Wei (1982) rationing of α.

Note that if the tests happened to be independent, order would be unimportant and we should set

all probabilities equal; setting all the conditional probabilities to be equal generalizes this concept

to potentially dependent statistics.

A second challenge is to compute, for a given sequence xk, the joint and conditional probabilities.

In practice, this is much easier than finding critical values, so we describe it first. Note that

when the various xk correspond to the observed values of actual test statistics, the corresponding
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probabilities can be interpreted as sequential (conditional or joint) p-values. The algorithm is to

compute p1, p2, · · · , pM in sequence – potentially using Monte Carlo simulation if analytic formulas

are unavailable – and then determine each αk, which depend on knowing pk and pk−1. The p-value

of the sequential procedure would then be just pM . Explicitly, if we have J Monte Carlo draws of

the various statistics, with the jth draw denoted T
(j)
` for 1 ≤ ` ≤ k and 1 ≤ j ≤ J , then

pk ≈ J−1
J∑
j=1

1{T (j)
k ≤xk,··· ,T

(j)
1 ≤x1}

= J−1#{j : max
1≤`≤k

[
T

(j)
` − x`

]
≤ 0}.

The second expression is useful for encoding the method, e.g., in R (R Development Core Team,

2009).

Now consider computation of critical values, using the α-rationing scheme described above.

First compute x1 such that 1 − α0 = 1 − α1 = P[T1 ≤ x1], possibly by inverting the marginal

distribution, otherwise by using the approximation to p1 above, noting that 1− p1 = α1. Given a

knowledge of x1, x2, · · · , xk, we wish to compute xk+1 such that 1−αk+1 equals P[Tk+1 ≤ xk+1|Tk ≤
xk, · · · , T1 ≤ x1]. So consider a subset L(xk, xk−1, · · · , x1) ⊂ {1, 2, · · · , J} consisting of only those

Monte Carlo draws j such that max1≤`≤k[T
(j)
` − x`] is less than or equal to zero. Then

1− α0 = 1− αk+1 ≈ L−1(xk, xk−1, · · · , x1)
∑

j∈L(xk,xk−1,··· ,x1)

1{T (j)
k+1≤xk+1}

.

Hence, one only needs the (1−α0)th largest order statistic of the collection T
(j)
k+1 − xk+1 such that

j ∈ L(xk, xk−1, · · · , x1), and this will be the approximation to xk+1.

We have found such a procedure to be effective, written in R, for determining critical values

of Q statistics (more details given below). Determination of p-values can be more problematic in

practice, since the formula αk+1 = 1−pk+1/pk produces negative conditional probabilities whenever

pk+1 < pk – of course, such an occurrence is impossible in theory, but due to Monte Carlo error our

estimate of pk+1 may be less than pk. However, there seems to be little difficulty with the critical

values that are produced; additional accuracy can be obtained by increasing J . For simulation

studies we lowered J to be 104 in order for the computations to finish in a reasonable amount of

time, but for real data analysis J = 105 provided increased accuracy – while the calculations of all

critical values and p-values completed in a few seconds.

It may arise that we desire some subset of the full sequence of test statistics. Of course, one could

just relabel the subsequence and start the analysis over again. An alternative way of thinking about

it is to view certain test statistics Tj as “missing”: then set pj = pj−1 and αj = 0, and essentially

declare xj = ∞. Then when p-values are computed, the jth statistic offers no restrictions on the

probabilities, as all Monte Carlo draws will be less than ∞. For critical values, use the same trick.

Of course, if K of a sequence of M statistics are missing in this manner, then we should compute

α0 = 1 − (1− α)1/(M−K), since we only really have M −K statistics to consider. Our R code is

adapted to handle the calculations for any subset of Q statistics that is desired.
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3.2 Q Statistics

We here consider computation of the joint probabilities of asymptotic Q statistics, using the the-

oretical results of Section 2. Suppose that we consider a sequence of M asymptotic Q-statistics,

denoted by the random vector Q = [Q1, Q2, · · · , QM ], and we want to know the joint cdf for all the

Qm with 1 ≤ m ≤M , evaluated at non-negative numbers qm. Clearly

P [Q1 ≤ q1, · · · , QM ≤ qM ] =

∫ qM

0
· · ·
∫ q1

0
pQ(u1, · · · , uM ) du1 · · · duM ,

and we will denote this function by FQ (q1, · · · , qM ). Let Y denote a Gaussian vector of length M

with covariance matrix V ; this is simple to simulate once V
1/2

is computed, which is valid even

when V is non-invertible (e.g., idempotent) or close to singular. Let Y 2 denote the component-wise

squaring of Y , and let A be an M ×M aggregation matrix with Ajk = 1 whenever j ≥ k, and

zero otherwise. Then Q is equal in distribution to AY 2. So by Monte Carlo methods we can easily

approximate FQ.

V can be computed from the theoretical results, utilizing the null hypothesis, with MLEs substi-

tuted for PTVs. Details on the computation of V for the case of a SARIMA model follow, utilizing

standard Box and Jenkins (1976) notation. Although the ARMA case is treated in Brockwell and

Davis (1991), we are unaware of published details on the SARMA case. We are not concerned with

nonstationary differencing here, so we instead consider just the SARMA(p,q,P,Q) of period s given

by the difference equation

Φ(B)Ξ(Bs)Xt = Ψ(B)Ω(Bs)εt.

The nonseasonal AR polynomial is Φ(B) = 1− φ1B− · · · − φpBp; the nonseasonal MA polynomial

is Ψ(B) = 1− ψ1B − · · · − ψqBq; the seasonal AR polynomial is Ξ(Bs) = 1− ξ1B
s − · · · − ξPBPs;

the seasonal MA polynomial is Ω(Bs) = 1 − ω1B
s − · · · − ωQBQs. These parameters are entered

in this order in the vector [θ], i.e., [θ]′ = {φ1, · · · , φp, ψ1, · · · , ψq, ξ1, · · · , ξP , ω1, · · · , ωQ}. Of course

r = p+ q + P +Q.

In order to present the results it is useful to introduce a notation for reciprocal polynomials.

We consider the inverses of Φ(B), Ψ(B), Ξ(Bs), and Ω(Bs) as causal power series in B, and denote

the resulting coefficients by φ]t, ψ
]
t , ξ

]
t , and ω]t respectively, for t ≥ 0. Note that in the case of the

seasonal AR and seasonal MA the coefficients are for the power series in B, not Bs. Then by direct
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calculation the jkth entry of C is given by

Cjk =



1
2π

∫ π
−π cos(kλ)

(
zj

Φ(z) + z−j

Φ(z)

)
dλ 1 ≤ j ≤ p

1
2π

∫ π
−π cos(kλ)

(
−zj
Ψ(z) + −z−j

Ψ(z)

)
dλ 1 ≤ j − p ≤ q

1
2π

∫ π
−π cos(kλ)

(
zsj

Ξ(zs) + z−sj

Ξ(zs)

)
dλ 1 ≤ j − p− q ≤ P

1
2π

∫ π
−π cos(kλ)

(
−zsj
Ω(zs) + −z−sj

Ω(zs)

)
dλ 1 ≤ j − p− q − P ≤ Q

=



φ]k−j 1 ≤ j ≤ p

−ψ]k−j 1 ≤ j − p ≤ q

ξ]k−sj 1 ≤ j − p− q ≤ P

−ω]k−sj 1 ≤ j − p− q − P ≤ Q

Here z = e−iλ. The calculations for N are more complicated, but there are essentially 16 blocks to

compute. Recall that our notation is γh(f) = (2π)−1 ∫ π
−π z

hf(λ) dλ. Then

Njk =



γj−k

(
|Φ(z)|−2

)
+ γk−j

(
|Φ(z)|−2

)
1 ≤ j, k ≤ p

−γj−k
(
Φ−1(z)Ψ−1(z)

)
− γk−j

(
Φ−1(z)Ψ−1(z)

)
1 ≤ j ≤ p, 1 ≤ k − p ≤ q

γj−k
(
Φ−1(z)Ξ−1(zs)

)
+ γk−j

(
Φ−1(z)Ξ−1(zs)

)
1 ≤ j ≤ p, 1 ≤ k − p− q ≤ P

−γj−k
(
Φ−1(z)Ω−1(zs)

)
− γk−j

(
Φ−1(z)Ω−1(zs)

)
1 ≤ j ≤ p, 1 ≤ k − p− q − P ≤ Q

−γj−k
(
Ψ−1(z)Φ−1(z)

)
− γk−j

(
Ψ−1(z)Φ−1(z)

)
1 ≤ j − p ≤ q, 1 ≤ k ≤ p

γj−k

(
|Ψ(z)|−2

)
+ γk−j

(
|Ψ(z)|−2

)
1 ≤ j − p ≤ q, 1 ≤ k − p ≤ q

−γj−k
(
Ψ−1(z)Ξ−1(zs)

)
− γk−j

(
Ψ−1(z)Ξ−1(zs)

)
1 ≤ j − p ≤ q, 1 ≤ k − p− q ≤ P

γj−k
(
Ψ−1(z)Ω−1(zs)

)
+ γk−j

(
Ψ−1(z)Ω−1(zs)

)
1 ≤ j − p ≤ q, 1 ≤ k − p− q − P ≤ Q

γj−k
(
Ξ−1(zs)Φ−1(z)

)
+ γk−j

(
Ξ−1(zs)Φ−1(z)

)
1 ≤ j − p− q ≤ P, 1 ≤ k ≤ p

−γj−k
(
Ξ−1(zs)Ψ−1(z)

)
− γk−j

(
Ξ−1(zs)Ψ−1(z)

)
1 ≤ j − p− q ≤ P, 1 ≤ k − p ≤ q

γj−k

(
|Ξ(zs)|−2

)
+ γk−j

(
|Ξ(zs)|−2

)
1 ≤ j − p− q ≤ P, 1 ≤ k − p− q ≤ P

−γj−k
(
Ξ−1(zs)Ω−1(zs)

)
− γk−j

(
Ξ−1(zs)Ω−1(zs)

)
1 ≤ j − p− q ≤ P, 1 ≤ k − p− q − P ≤ Q

−γj−k
(
Ω−1(zs)Φ−1(z)

)
− γk−j

(
Ω−1(zs)Φ−1(z)

)
1 ≤ j − p− q − P ≤ Q, 1 ≤ k ≤ p

γj−k
(
Ω−1(zs)Ψ−1(z)

)
+ γk−j

(
Ω−1(zs)Ψ−1(z)

)
1 ≤ j − p− q − P ≤ Q, 1 ≤ k − p ≤ q

−γj−k
(
Ω−1(zs)Ξ−1(zs)

)
− γk−j

(
Ω−1(zs)Ξ−1(zs)

)
1 ≤ j − p− q − P ≤ Q, 1 ≤ k − p− q ≤ P

γj−k

(
|Ω(zs)|−2

)
+ γk−j

(
|Ω(zs)|−2

)
1 ≤ j − p− q − P ≤ Q, 1 ≤ k − p− q − P ≤ Q

The recommended method is first to obtain the causal power series representation for each of the

four reciprocal polynomials – the coefficients can be taken out to a thousand terms or so with
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little effort2. Then for the block diagonal terms in N one can utilize a procedure to compute

autocovariances from the resulting moving average – the advantage of doing the calculation in two

steps is that problems arising from the direct approach when auto-regressive roots are close to unity

can be circumvented. For the off-block diagonal terms in N , one should rationalize by multiplying

top and bottom by the conjugate; then the terms are calculated as certain linear combinations of

autocovariances. Code developed using version 2.7.1 of R (R Development Core Team, 2009) for

the entire computation of V is available from the authors.

Example: Consider the Airline model, which has spectral density f [θ](λ) = |1− θ1z|2|1− θ2z
12|2.

Then we obtain

N =

 2
1−θ21

0

0 2
1−θ22

 .
Taking M = 2 for illustration, we obtain

C =

[
−1 −θ1

0 0

]
V =

[
θ2

1 −θ1(1− θ2
1)

−θ1(1− θ2
1) 1− θ2

1(1− θ2
1)

]
.

The determinant of V is θ4
1, which is zero iff θ1 = 0, in which case the eigenvalues are zero and one.

Hence if the true DGP has θ̃1 = 0, then the first two LB statistics will be asymptotic to point mass

at zero (at lag 1) and χ2 on one degree of freedom (at lag 2). When θ̃1 6= 0 this degeneracy is not

the case. Note that when adopting our method there is no problem when degeneracy happens to

arise (since the square root of V is well-defined even when the matrix is singular).

4 Numerical Studies and Data Analysis

In order to evaluate the practical importance of these ideas, it is helpful to do a simulation study.

This will assess the impact of having a finite sample on the use of asymptotic critical values, under

the rather idealized scenario of Gaussian data. Secondly, the new method should be compared to

the standard Box-Pierce method on real time series, in order to form an idea of how much the

proposed methodology really matters in practice. We first consider a simulation study of finite

sample size impact, and then consider analysis of 9 U.S. Census Bureau time series.

4.1 Simulation Study

Here we are interested in drawing samples from a monthly Gaussian Airline model with parameters

.6 and .6 for the nonseasonal and seasonal moving average parameters, and unit innovation variance,

with sample sizes of 10, 15, and 20 years. Since the data is seasonal, there may be considerable

interest in residual autocorrelations at lags 12 and 24. By a “full” set of Q statistics, we mean the

2In R one can use the function ARMAtoMA.
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sequential procedure involving Qm for 1 ≤ m ≤ 24. But we might also consider certain subsets of

the full M = 24 collection of Q statistics, as alluded to at the end of section 3.1.

In particular, we might only be interested in those lags of the Q statistics deemed to be important

to the model. One such subset – henceforth referred to as the “partial” set – consists of lags

1,2,3,4,12, and 24. Or we might just take the seasonal lags Q12 and Q24; this choice will be called

the “restricted” set. Finally, one might just consider Q24, which being a marginal distribution has

no multiple testing issue – this will be called the “maximal” set. Then for any of the four sets – full,

partial, restricted, or maximal – we can determine the sequential Type I error rate appropriately,

given a selection of the α for the sequential procedure described in Section 3.

For each simulation, we fit the airline model and construct critical values using the sequential

procedure, for each of the four sets of Q statistics, for α = .01, .05, .10. We also compute the critical

values for the classical method, utilizing χ2
m−r quantiles when the lag m exceeds r (this method does

not use the sequential procedure, because it does not assume anything about the joint distribution

of the Q statistics). By determining empirical model rejection rates over many simulations, we can

evaluate the competing methods in terms of their Type I error, taking finite-sample effects into

account.

The simulations were 5000 draws from a Gaussian airline model, with parameters .6, .6, with

sample sizes n = 120, 180, 240. Tables 2 and 3 summarize the empirical size results for the four

subsets of statistics, both LB and BP, as well as the classical method. The coverage of the new

methods is somewhat rough when n = 120, and yet far superior to the classical method, which

rejects far too often (as expected). The LB statistics were over-sized, with only marginal improve-

ment as sample size increased. The BP statistics were under-sized, but actually improved quite a

bit by sample size n = 240. Overall, the LB statistics have better size than the BP statistics, which

is not surprising given the motivation for their definition (Ljung and Box, 1978). Although the

finite sample distribution is slow to converge to the asymptotic, the coverage for these subsets of

Q statistics is adequate for practical applications, and is greatly superior to the classical coverage.

4.2 Census Bureau Time Series

We consider nine seasonal time series published by the Census Bureau from the Monthly Retail

Sales Survey. Table 1 gives the names and descriptions of these series3.

All series cover the period 1992 through 2007 inclusive (truncated to avoid the Great Recession,

for simplicity). In each case we have performed the following analysis: fitted a SARIMA model

(identified as best according to the automdl spec of X-12-ARIMA), with fixed effects handled

appropriately; computed V (θ̂) at the MLEs, as well as the LB statistics for lags 1 through 24;

3Descriptions of data sources and reliability are available from the Census Bureau web site http://www.census.

gov/retail/mrts/how_surveys_are_collected.html. Program overviews and current data are available from the

site http://www.census.gov/cgi-bin/briefroom/BriefRm.
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Series Description of Retail Sales Series

Elect Electronics and Appliance Stores

Food Food Services and Drinking Places

Furn Furniture and Home Furnishing Stores

Gas Gasoline Stations

GenMerch General Merchandise Stores

Groc Grocery

MenCloth Men’s Clothing

Motor Motor Vehicle and Parts Dealers

WomCloth Women’s Clothing

Table 1: Descriptions of Monthly Retail Sales Series, covering the period 1992 through 2007 (Source:

U.S. Census Bureau).

evaluated our proposed methodology with a sequential procedure α of .01, .05, .10 using either the

full, partial, restricted, or maximal sets of Q statistics, along with the default procedure. The

competing sets of critical values are plotted along with the actual LB statistics.

In each graph (Figure 1 through 9), for a fixed value of α, we see the actual LB statistics

plotted as a function of lag, with the critical values plotted in other colors. If the former curve

crosses above any of the critical values, it indicates rejection of the specified model according to

that particular criterion. It is apparent that the results are sensitive to whether we adopt the full,

partial, restricted, or maximal sets of Q statistics, as well as what the given α is set to be.

In general, the modified critical values increase as a function of lag, but less smoothly than with

the classical method. In most cases, the classical critical values are lower than the proposed full

critical values, so that fewer models are rejected with the proposed method. However, this story

changes when we move to the partial or restricted sets of Q statistics. Note that there is not so

much discrepancy between the classical and proposed critical values as might be thought initially,

which is due to the fact that the sequence of Q statistics are cross-correlated; recall that when

the test statistics are fully correlated, there is no multiple testing problem. Also, since the critical

values of the classical method ignore multiple testing, they should approximately agree (at lag 24)

with the maximal critical value of our new method. This is because the only discrepancies between

them would be due to our use of Corollary 1 to compute the critical values, as opposed to a χ2
24−r.

Since 24− r is fairly large, the idempotent approximation of V is reasonably accurate, so that the

exact asymptotic distribution differs very little from the χ2
24−r, as discussed in Section 2.

Another general feature is that the first r critical values for the default method are not available,

since the degrees of freedom would not be positive in this case. Also, critical values decrease as

we move from the upper α = .01 panel to the bottom α = .10 panel; note that the y-axes on the
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three panels have not been standardized, since it is not our primary intention to make comparisons

across α.

Let us now discuss the individual results. All series required a log transformation, and were

linearized (i.e., all types of fixed effects, such as outliers, Easter and trading day, were removed)

before further analysis. For the Motor series (Figure 1) a (012)(011) model was identified, and

there seem to be no problems with it according to any of the four proposed sets of Q statistics,

though according to the classical method rejection at the .05 and .10 levels is warranted. The Food

series (Figure 2) has an airline model, and there is rejection – according to classical criteria – at

α = .05, .10 at a few distinct lags. But accounting for multiple testing indicates this model would

not be rejected at all. For the Elec series (Figure 3) a (211)(011) model was identified, so that

r = 4 (fairly high for a SARIMA model). For α = .05 we have rejection of the model based on

the classical, full, restricted, and maximal schemes, but not for the partial scheme. Rejection at

rate α = .10 occurs for all the schemes, and the problems seem to arise from the higher lags; no

rejections occur at α = .01.

The Furn series was identified as a (210)(011) model, and Figure 4 gives no reason to reject it

(by any of the methods). The Gas series in Figure 5 follows a (012)(011) model, and at the α = .05

level is rejected under the classical, maximal, and restricted schemes. The problem lags occur at

lag 12 and 24 in this case. At α = .10 the model would be rejected by the full scheme as well, while

there would be no rejections for α = .01. The GenMerch series of Figure 6 follows an (011)(110)

model, and there is no evidence whatsoever to reject it. The story is the same for the Groc series

(Figure 7), which was identified with a (110)(011) model. Likewise, the MenCloth and WomCloth

series (Figure 8 and 9) were both identified with (011)(011) models, which cannot be rejected.

In summary, five of the nine series (Furn, GenMerch, Groc, MenCloth, WomCloth) provide no

evidence of model misspecification. Two of the series (Elec and Gas) yield model rejection results

both for the classical and the proposed methods, so there is an agreement of decisions. Finally, two

of the series (Motor and Food) would be rejected by the classical method, while not being rejected

by any of the proposed methods. We know that critical values are increased by accounting for

multiple testing, so it is not surprising that sometimes we will incorrectly reject some models when

using conventional χ2 critical values.

5 Conclusion

This paper makes several novel contributions to an important problem in time series analysis. The

use of Q statistics is widespread, has a long legacy (more than four decades), and despite recent

alternatives seems likely to continue to occupy a central place among time series model diagnostics.

Two outstanding issues with the conventional use of BP and LB statistics are that the asymptotic

theory currently in common use is flawed, and secondly the use of multiple Q statistics suffers from
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the ubiquitous multiple testing problem.

The first issue is shown in this paper to be of primary concern when the number of lags m in

a Q statistic are small; for larger m the χ2 approximate asymptotic distribution of Box and Pierce

(1970) is highly accurate. But given that small lags are of key interest in practice – and that the

BP method furnishes no critical values at all when m is exceeded by the model order, since the

degrees of freedom would be in essence negative – our correct asymptotic distribution is compelling.

Our analysis generalizes and extends previous treatments of the topic, and our analysis furnishes

additional insight by allowing examination of the eigenvalues, so that one can understand the real

differences between the χ2 heuristic and the actual limit.

The second issue is resolved in the paper through a sequential testing paradigm, which has

precedent in Slud and Wei (1982), but is developed somewhat differently here. When a series of

test statistics is fully dependent, one need not worry about multiple testing, but for independent

or partially dependent statistics, getting the Type I error rate is a serious issue. Our approach is

effective and practical, as illustrated through our numerical studies.

In particular, our procedure involves an initial specification of a Type I error rate for the entire

testing procedure, which is split equally into sequential error rates for conditional probabilities of

rejection given that rejection has not yet occurred. The computations of critical values require

software to compute the crucial asymptotic covariance matrix V , which is only approximately

idempotent for large lags. Equipped with the MLEs and a knowledge of the fitted SARIMA

model, R software can rapidly produce this matrix and determine the corresponding asymptotic

distributions of sample autocorrelations of time series residuals4. We propose a Monte Carlo method

for determining joint and conditional probabilities of test statistics, and for the corresponding

critical values. In our implementation this process requires only a few seconds (this time depends

on the number of Monte Carlo draws) for each series, no matter its length, and therefore is not

onerous. Given the grossly inadequate inferences that can arise from using the classical method,

i.e., by ignoring the multiple testing problem, our proposed method is both important and viable.

The crucial defect of the classical method is its inadequate handling of the multiple testing

problem; the use of χ2 critical values is a secondary, and lesser problem. Our derivation of the

exact distribution is important chiefly because it allows treatment of the joint distribution – if one

were only concerned with a single Q statistic at high lag, then the methodology proposed here

would grant little improvement in return for a slight delay in computing time, and we would not

advocate it. The key is that typical users of time series software do indeed examine multiple Q

statistics simultaneously. Our method is able to address this case, as well as the case where a single

Q statistic for a low lag is of interest. The main tradeoff is the additional computational time

required.

4R code for fitting SARIMA models, computing their time series residuals, computing V , and calculating the

critical values is available upon request.
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Appendix

A.1 Time Series Residual Processes

A key concept in time series model fitting is to “whiten the spectrum.” A time series sample

decorrelated by a given model (of the types considered in Section 2) has asymptotic spectrum given

by f̃/f
[θ̃]

. The Whittle likelihood seeks to fit models by minimizing the integral of an empirical

version of the time series residual spectrum, namely the periodogram divided by model spectrum.

But with either MLE or Whittle estimation, under typical regularity assumptions the asymptotic

time series residual spectrum is f̃/f
[θ̃]

.

This quantity is featured prominently in the asymptotic analysis of Q statistics – see Remark 1.

One might hope that the autocovariances of this residual process would be small (or zero); when the

model is correctly specified, f
[θ̃]

= f̃/σ̃2, and the residual process is white noise. Typically, when

the model is misspecified, the positive lag autocovariances of the residual process will be nonzero,

but this need not always be true. As mentioned in Section 2, the EXP(r) model will have the first

r positive lag autocovariances of the residual process equal to zero; this is because the PTVs (by

definition) minimize the KL discrepancy, and therefore are zeroes of the gradient function, which

has kth component given by the integral of ck times the residual spectrum. In other words, when

fitting a potentially misspecified EXP(r) model such that θ̃ is the PTV, then necessarily the first r

autocovariances of the residual spectrum are zero, which ensures that the BP and LB test statistics

are inconsistent when m ≤ r.
However, this intriguing property need not be true for misspecified ARMA models. As an

example, consider fitting an AR(1) to an MA(1). Say the MA process is written Xt = (1 + θB)εt,

so that the PTV for the AR(1) parameter is the lag one autocorrelation, or θ/(1 + θ2). Plugging

this value into the AR(1) spectrum, the residual spectrum becomes∣∣∣∣1 +
θ3

1 + θ2
z − θ2

1 + θ2
z2

∣∣∣∣2,
where z = e−iλ. So the residual process is an MA(2). For an invertible MA, θ ∈ (−1, 1), which we

henceforth assume. The autocovariances of the residual process then are given by

γ0 = (1 + θ2)
−2 (

1 + 2θ2 + 2θ4 + θ6
)

γ1 = (1 + θ2)
−2
θ3

γ2 = (1 + θ2)
−1

(−θ2).

At higher lags the autocovariances are zero. The maximal values of the lag one and two autocorre-

lations is ±1/6, and occur for θ = ±1. These are clearly the cases of worst model misspecification,

whereas θ = 0 implies no model misspecification, and the residual spectrum is white noise.

More generally, these types of calculations are extremely difficult to perform analytically –

although the limiting MLEs for fitted AR models are simple enough (they are just solutions of
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Yule-Walker equations, expressible through the true autocovariances of the DGP), for more general

ARMA models the solution requires nonlinear optimization. The point is that residual autocorre-

lations may be fairly large when there is misspecification present; these are the quantities driving

the power of the Q statistics, as is clear from the asymptotic bias in Theorem 1.

A.2 Proofs of Technical Results

We first introduce a concept from McElroy (2008): we say that A ∼ B for two matrices A and B if

Z ′AZ−Z ′AZ = O(1) for all vectors Z with uniformly bounded second moments, as the dimension

n→∞.

Lemma 1 Suppose that the model spectral density is continuously differentiable in λ and is positive.

Then

Σ−1/2(f
θ̂
)L(k)Σ−1/2(f

θ̂
) ∼ Σ(f−1

θ̂
ck).

The result follows from Lemmas 2, 3, and 4 of McElroy (2008), which can be easily extended to

handle spectra depending on random coefficients, so long as the spectra are continuously differen-

tiable.

Proof of Theorem 1. Let the periodogram of the uncentered data be defined as I(λ) =

n−1|
∑n

t=1Xte
−iλt|2 for λ ∈ [−π, π] (the previous definition above inserted a centering by the

sample mean), and note that γk =< f
−1

[θ̂] ckI >. Since we have a linear functional of the peri-

dogram, it makes no difference whether we consider an integral or a discrete sum over Fourier

frequencies, and we may apply Theorem 2 of McElroy and Holan (2009) with the weighting func-

tions gθ,k(λ) = cos(kλ)/fθ(λ). The formulas for the asymptotic bias and null variance matrix follow

from the same results. The variance matrix is complicated, but typically only needs to be computed

under the Null Hypothesis, which greatly simplifies things. The convergence in probability of γ0

follows as well from the weak convergence.

The conditions of the theorem guarantee that Lemma 1 holds. Also since X = OP (n−1/2), we

can show using Lemmas 2, 3, and 4 of McElroy (2008), along with the Cauchy-Schwarz inequality,

that R = OP (1/
√
n). (We use the fact that ι′Σ−1/2(f)ι = O(n).) Then

√
nγ̂k = n−1/2R′L(k)R +

OP (n−1/2). Expanding again using the same techniques,

n−1/2R′L(k)R = n−1/2Y ′Σ−1/2(f)L(k)Σ−1/2(f)Y +OP (n−1/2),

where Y is the demeaned X vector. In these calculations, the spectral density can be evaluated at

any parameter, even θ̂. Finally, we can apply Lemma 1 to conclude that
√
nγ̂k = OP (n−1/2)+

√
nγk.

2

Proof of Corollary 1. The result is immediate from Slutsky’s theorem. Also since γ̂k and γk

are asymptotically equivalent, the same follows for the autocorrelations. 2
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Table 2. Simulation Results for LB Statistics

n=120 n=180 n=240

Type .01 .05 .10 .01 .05 .10 .01 .05 .10

Full .0166 .0564 .1098 .0168 .0540 .0990 .0170 .0582 .1038

Partial .0162 .0588 .1034 .0132 .0536 .0988 .0140 .0588 .1056

Restricted .0162 .0552 .1100 .0160 .0514 .1014 .0164 .0590 .1012

Maximal .0166 .0578 .1060 .0156 .0524 .0980 .0176 .0608 .1024

Classical .0848 .2766 .4408 .0790 .2846 .4598 .0838 .2820 .4560

Table 2: Empirical Type I error for the sequential procedure, based on a nominal α = .01, .05, .10,
for each of the five methods (see text). Results are based on 5000 simulations of a Gaussian airline
model with parameters .6, .6, with sample sizes n = 120, 180, 240.

Table 3. Simulation Results for BP Statistics

n=120 n=180 n=240

Type .01 .05 .10 .01 .05 .10 .01 .05 .10

Full .0058 .0298 .0616 .0082 .0342 .0676 .0120 .0418 .0784

Partial .0094 .0412 .0772 .0096 .0044 .0812 .0096 .0476 .0896

Restricted .0054 .0274 .0542 .0068 .0314 .0630 .0092 .0404 .0770

Maximal .0056 .0232 .0444 .0082 .0306 .0570 .0110 .0402 .0728

Classical .0600 .2252 .3844 .0650 .2494 .4226 .0722 .2572 .4262

Table 3: Empirical Type I error for the sequential procedure, based on a nominal α = .01, .05, .10,
for each of the five methods (see text). Results are based on 5000 simulations of a Gaussian airline
model with parameters .6, .6, with sample sizes n = 120, 180, 240.
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Figure 1: Critical values and LB statistics for Motor series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 2: Critical values and LB statistics for Food series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 3: Critical values and LB statistics for Elec series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 4: Critical values and LB statistics for Furn series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 5: Critical values and LB statistics for Gas series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 6: Critical values and LB statistics for GenMerch series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 7: Critical values and LB statistics for Groc series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.

31



Lag

5 10 15 20

0
10

20
30

40
50

●

●

●

●

●

●

●

New Crit, full
New Crit, partial
New Crit, restricted
New Crit, maximal
Old Crit
LBs

Lag

5 10 15 20

0
10

20
30

40

●

●

●

●

●

●

●

New Crit, full
New Crit, partial
New Crit, restricted
New Crit, maximal
Old Crit
LBs

Lag

5 10 15 20

0
10

20
30

40

●

●

●

●

●

●

●

New Crit, full
New Crit, partial
New Crit, restricted
New Crit, maximal
Old Crit
LBs

Figure 8: Critical values and LB statistics for MenCloth series. From top to bottom, the procedure’s
Type I error rates are .01, .05, and .10.
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Figure 9: Critical values and LB statistics for WomCloth series. From top to bottom, the proce-
dure’s Type I error rates are .01, .05, and .10.
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