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Abstract

The Census Coverage and Measurement program at the U. S. Census
Bureau uses dual system estimation to measure the accuracy of the de-
cennial census. Construction of the dual system estimator involves first
estimating the percentage of correctly enumerated persons in the decen-
nial census within different domains. This estimation is complicated by
the presence of unresolved census enumerations (missing data) for which
enumeration status (correct or erroneous) can not be determined. Fur-
thermore, there is concern that the propensity to respond depends on
enumeration status, that is, that the missing data are not missing at ran-
dom. This paper is an exploration of different missing data models and
their effect on the prediction of enumeration status, and in particular a
comparison of missing at random and not missing at random data models.

1 Introduction

The goal of the decennial census is to count every person and housing unit in
the United States once and in the correct place. This goal can not be completely
achieved since some people are omitted that should have been included in the
decennial census, while some individuals that were enumerated in the census
are duplicates, are recorded in the wrong location, are not residents, or are
fictitious.

∗This report is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. The views expressed are those of the author and not necessarily
those of the U.S. Census Bureau. The authors would like to thank Doug Olson and Jerry
Maples for their careful review of this paper and helpful comments.

1



To measure the coverage of the decennial census, the Census Coverage and
Measurement (CCM) program conducts a second, operationally independent
post-enumeration survey, which can be compared to the original census and used
to measure coverage error. A sample of block clusters is taken, the people in the
sample are interviewed, and further effort is expended to resolve enumeration
status in the census of persons enumerated in this sample. The residents in this
sample of block clusters are called the P-sample. The sample of enumerations
in the decennial census corresponding to households located in the P-sample
block clusters is called the E-sample. The information contained in the P- and
E-sample can be used both to estimate net error and to improve the coverage
of future censuses.

The technique of using independent surveys to estimate a population total is
known as dual-system estimation, and is based on the capture-recapture method
(Seber, 1982; Hogan, 1993). A dual-system estimator of the population total can
be constructed based on the number of matches between the two surveys. The
form of the dual-system estimator used by the CCM program since the 2000
decennial census is (Cantwell and Ikeda, 2003)

N̂ = (C − I) p̂ce

(
1

p̂match

)
, (1)

where C is the official census count, I is the number of whole-person imputa-
tions, p̂ce is the estimated probability of correct enumeration in the census, and
p̂match is the estimated probability that a person in the P-sample matches to
someone enumerated in the census. The dual system estimator N̂ is computed
separately within different domains.

This paper is primarily concerned with estimating the probability of correct
enumeration pce in the census.1 A correct enumeration (CE) is the record of a
person that is complete and was counted exactly once and in the correct location
in the census. Examples of erroneous enumerations (EE) include people counted
multiple times, counted in the wrong place, (for example, because their usual
residence was elsewhere, such as in a college dormitory), or fictitious records.

The E-sample can be matched and compared to the P-sample to determine
which census records are correctly enumerated and which records are erroneously
enumerated within different domains. For the majority of the E-sample, there
is sufficient information to determine a record’s enumeration status. However,
for 5% (4.69% weighted) of the E-sample, not enough data could be collected
to determine whether a census enumeration is correct or erroneous. For exam-
ple, it is possible that a person moved after the decennial census, but before an
interviewer is able to follow up with that person, so that it is not possible to ob-
tain the information necessary to determine whether that person was correctly
enumerated. A census record for which enumeration status cannot be deter-
mined is said to be unresolved. Since the variable of interest is not observed
for unresolved enumerations, these census enumerations can be thought of as
missing data.

1From 1980 – 2000, CCM used post-stratification to estimate pce and in 2010 logistic
regression was used.
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When estimating the proportion of correct enumerations within a domain,
the usual assumption is that the unresolved enumerations are stochastically
equivalent to the resolved census enumerations, after conditioning on observable
covariates. This is the case of ignorable nonresponse, or of a missing at random
missing data mechanism. However, the missing at random assumption is not
verifiable in the absence of auxiliary distributional assumptions on the joint
behavior of enumeration status, resolved status, and covariates, and there is
concern that resolved status could depend on the unobservable enumeration
status, that is, the situation of nonignorable nonresponse, or of a not missing
at random missing data mechanism. The goal of this paper is to investigate
the sensitivity of CE estimates to different missing data methods, in particular
methods which allow for the possibility that missingness and enumeration status
are correlated, and to understand the sensitivity of estimates and imputations
to different missing data models and missing data assumptions. In Section 2,
methods of estimation in the presence of missing data are discussed. Section
3 describes the available data and selection of predictors for the missing data
models. A summary of estimates and model sensitivity is given in Section 4,
and concluding remarks are made in Section 5.

2 Estimation methods

Let UE = {1, . . . , N} denote the set of census records, consisting of N labelled
individuals living in housing units. UD is the set of census data-defined records
which is a subset of UE which meet certain rule-based definitions and are deemed
sufficiently detailed that each must correspond to a unique individual person.
With each record i in UD, there is an associated value Yi ∈ {1, 0} corresponding
to whether individual i was correctly enumerated or erroneously enumerated in
the census, respectively, and a vector of covariates Xi consisting of characteris-
tics of the individual and the census record. A sample SE , called the E-sample,
is taken from UD, and to each individual i ∈ SE , there is an associated survey
weight wi = 1/P (i ∈ SE).

The interest is in estimating P (Y = 1 | Xi). The response variable Y and
the covariates X may be related through a vector of parameters β and a func-
tional form pi (β) = P (Yi = 1 | Xi,β). Based on this relationship, an esti-
mating function Ψ = Ψ (Yi,Xi;β) can be specified. The census estimating
function Ψ has the same dimension as the vector of parameters β, and the cen-
sus parameter βC is defined implicitly as the solution to the census estimating
equation

ΨC =
∑
i∈UD

Ψ (Yi,Xi;β) = 0. (2)

The form of the estimating function Ψ may be motivated by the form of the
data or the model assumptions that the investigator is willing to make and will
be discussed further in Section 2.1. While a model ξ may be used to motivate
the form of the estimating function, it is not necessary for the full model to
be specified for Ψ to produce valid (consistent) estimates, so long as Eξ (Ψ) =
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0, Eξ

(
ΨTΨ

)
< ∞, and Eξ (∂Ψ/∂β) is nonsingular, and instead it may be

that only the conditional mean of the distribution is specified, for example.
The tradeoff for having only partial model specification and the corresponding
robustness from lack of model dependency is that there could be loss of efficiency
in the estimates.

The census estimating function (2) can not be directly used when only a
sample is observed, rather than values from the entire finite population. It can,
however, be estimated using the observed sample data SE , through the use of
a Horvitz-Thompson estimator of (2),

ΨS =
∑
i∈SE

wiΨ (Yi,Xi;β) . (3)

The estimating function ΨS in equation (3) is called the sample estimating
function. Note that E (ΨS) = ΨC , where the expectation is taken with respect
to the sample design, so that ΨS is an unbiased estimator of ΨC . It was shown
in Godambe and Thompson (1986a) that ΨS is the optimal estimating function
for ΨC , in terms of minimizing the mean squared distance to ΨC over the class
of estimating functions Ψ̃ such that E(Ψ̃) = ΨC . An estimate of the census

parameter βC is β̃, the solution to the sample estimating equation ΨS = 0.
Now, suppose for some values i ∈ SM ⊂ SE , the response variable Yi is not

observed due to nonresponse. Let Ri = 1 if i ∈ SE \ SM and Ri = 0 if i ∈ SM .
For the moment, suppose πi = P (R = 1 | Yi,Xi) is known. It was shown in
Godambe and Thompson (1986b) that the estimating function

Ψ∗ =
∑
i∈SE

wi
Ri
πi

Ψ (Yi,Xi;β) (4)

is the optimal estimating function for β in the presence of missing data over
the class of estimating functions Ψ̃ such that E(Ψ̃ | Y,X) = ΨS . The statistic

β̂ which is the solution to the estimating equation Ψ∗ = 0 can be used as an
estimator for βC .

2.1 Choice of estimating function

Since Yi is binary, a sensible choice for the form of pi (β) is a class of generalized
linear models (McCullagh and Nelder, 1989) with suitable link function g; that
is, conditional on Xi and β,

g (E (Y | Xi,β)) = g (P (Y = 1 | Xi,β)) = Xiβ =

p∑
j=1

Xijβj .

Let pi (β) = P (Y = 1 | Xi,β) = h (Xiβ), where h = g−1 is the inverse of the
link function. The estimating function

Ψ (Yi,Xi;β) =
Yi − pi (β)

pi (β) (1− pi (β))

∂pi (β)

∂β
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can be used for inference on β. One popular choice of link function is the logistic
link, gL (x) = log (p/ (1− p)) with inverse hL (x) = expit(x) = ex/(1 + ex). The
corresponding estimating function is

ΨL (Yi,Xi;β) = (Yi − pi (β)) Xi.

The complementary log-log link gC (x) = log (− log (1− p)) with inverse hC (x) =
1 − e−ex is also of interest in this work. The estimating function based on the
complementary log-log link is

ΨC (Yi,Xi;β) = − log (1− pi (β))

pi (β)
(Yi − pi (β)) Xi.

2.2 Missing data models

The response probabilities πi in (4) are rarely known in practice, and must be
estimated (Kim and Kim, 2007). Different choices of models for the probability
of nonresponse πi are investigated in this section. There are three types of non-
response (Little and Rubin, 2002). If missingness does not depend on any data
values, then the data are said to be missing completely at random (MCAR). If
missingness depends only on observed data values, then the missing data mech-
anism is said to be missing at random. If the missingness depends on unobserv-
able data, then the missing data mechanism is said to be not missing at random
(NMAR). Five different missing data models for πi (α) = P (R = 1 | Yi,Xi,α)
were considered:

• missing completely at random (MCAR)

πi (α) ≡ π,

• missing at random (MAR)

πi (α) = expit
(
α0 + XT

i α1

)
,

• not missing at random 1 (NMAR1)

πi (α) = expit (α0 + α1Yi) ,

• not missing at random 2 (NMAR2)

πi (α) = expit
(
α0 + α1Yi + XT

i α2

)
,

• not missing at random 3 (NMAR3)

πi (α) = expit
(
α0 + α1Yi + XT

i α2 + YiX
T
i α3

)
.
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For the MCAR model,

π̂ =

∑
i∈SE wiRi∑
i∈SE wi

, (5)

and β can be estimated by using the estimating function (3). Note that when
the missing data are missing completely at random, πi ≡ π for all i, and πi does
not affect estimation of β. For the MAR model, α can be estimated by solving
the system

Φ =
∑
i∈SE

wi
πi (α)

(Ri − πi (α))

[
1

Xi

]
= 0,

and β is estimated by using (3), with πi replaced by π̂i = πi (α̂).
For the different NMAR models, estimation of α is more difficult, because

while Ri is observed for all i ∈ SE , Yi is not observed if Ri = 0. If there were
no missing data, α could be estimated in the NMAR1 model, for example, by
solving the system

Φ∗ =
∑
i∈SE

wi
πi (α)

(Ri − πi (α))

[
1
Yi

]
= 0. (6)

Since Yi is not observable for all i ∈ SE , an adjustment has to be made to
Φ∗ for inference on α. One possibility is to replace Yi in equation (6) with
its expectation pi (β) = E (Yi | Xi,β) under the assumed model. Define Φ
to be the estimating function given in equation (6), with Yi replaced by pi (β).
Estimating functions for the other NMAR models can be constructed in a similar
way by replacing each occurrence of Yi by its expectation pi (β); this substitution
does not affect the unbiasedness of the estimating function as its expectation
remains equal to zero. However, the solution α̂ can still be biased in small and
moderate samples, and the form of the plug-in for Yi can affect both the bias
and the variability of the estimators. Note that Φ and the estimating function
in equation (4) depend on both parameters α and β, so that inference must be

made by solving the system
(
ΨT ,ΦT

)T
= 0. In the examples in this paper,

this system was solved using the Newton-Raphson algorithm.
Using the inverse of the probability of response as in equation (6) to mod-

ify the estimating equations in the presence of nonresponse was considered in
Robins et al. (1994). This inverse probability weighting is in the spirit of Horvitz
and Thompson (1952), and creates new weighting classes with large weights
given to respondents which are similar to nonrespondents, under the assumed
model. The extension to nonignorable nonresponse using inverse probability
weighted estimating functions was considered in, for example, Rotnitzky and
Robins (1997) and Sharfstein et al. (1999).

The ignorable model is embedded in each of the nonignorable models through
the submodel α1 = 0 for models NMAR1 and NMAR2 and through the sub-
model α1 = 0 and α3 = 0 for model NMAR3. Because of this, it is tempting to
consider tests for the hypothesis α1 = 0 (or α1 = 0 and α3 = 0) to determine
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whether an ignorable or a nonignorable model is more appropriate for a given
data set and a given model specification.

It was shown in Rotnitzky and Robins (1997) in model NMAR1, if the true
value of the parameter is α1 = 0, that there does not exist a regular asymptot-
ically linear (RAL) estimator of β (that is, an estimator that is asymptotically
Gaussian, with a

√
n rate of convergence, such that the convergence is locally

uniform). It can be shown that the same phenomenon occurs in models NMAR2
and NMAR3. The reason for the non-existence of RAL estimators in the NMAR
models is that the matrix Eξ (∂Ψ/∂β) α1=0 is singular, hence a hypothesis test
of α1 = 0 (or α1 = 0 and α3 = 0) cannot be constructed in the usual way (using,
for example, a Wald test statistic or a Rao-score test statistic) to distinguish be-
tween a NMAR model and a MAR submodel since there is no longer a

√
n rate

of convergence. See also Molenberghs et al. (2008). However, while inference
depends critically on model assumptions, nonignorable models can still be use-
ful as part of a sensitivity analysis, to better understand how the specification
of the missing data mechanism can affect the analysis.

3 Summary of data and variable selection

The sample SE consists of 5681 block clusters with a total of 370,505 people.
For each record, there is associated an 800 dimensional vector of covariates
describing, for example, characteristics of the individual, geographic location,
and data collection methods, which are observable for all persons in sample,
regardless of resolved status. Due to the high dimensionality of the data set,
variable selection was done in the interest of having a more parsimonious and
interpretable model while maintaining predictive power.

Stepwise variable selection (Venables and Ripley, 2002, p. 175) was used to
choose a set of predictive variables. For this exploratory data analysis, the sur-
vey weights were ignored, and the data was treated as a sample of independent
random variables. The group lasso of Meier et al. (2008) was also investigated
for model selection, but it was found that the selected models were generally
the same as models selected using stepwise variable selection.

The stepwise variable selection procedure fits a sequence of nested models
by either adding or removing a covariate, depending on which step minimizes
a chosen objective function. For modeling correct enumeration rate, a BIC
penalty was used, so that the objective function was

BIC = −2log-likelihood + p log n,

where p is the number of parameters in the model and n is the sample size. A
final model is chosen when no added covariate and no removed covariate can
reduce the BIC.

The log-likelihood depends on the choice of link function, and initially, the
logistic link was used. However, the model chosen using stepwise variable se-
lection, a logistic link, and a BIC penalty did not appear to result in adequate

7



1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Fitted and Observed
      Proportions

logit link

quantile gp meds

P
r
o

p
o

r
ti
o

n

(a) logit link

0.6 0.8 1.0 1.2 1.4 1.6

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Fitted and Observed
      Proportions

complementary log log link

quantile gp meds

P
r
o

p
o

r
ti
o

n

(b) complementary log-log link

Figure 1: fitted and observed proportions

fit, as can be seen in Figure 1(a). Figure 1(a) compares the predicted and ob-
served probability of correct enumeration, by first dividing the linear predictors
Xiβ̂ into 20 quantile groups, then plotting the predicted and observed values
in each quantile group. The open diamonds in each column represent the 25th,
50th, and 75th percentiles of the predicted values in each quantile group and
the filled diamond in each column represents the mean of the observed data cor-
responding to the predicted values in each quantile group. This type of figure
can be used as a graphical tool for assessing the goodness-of-fit of the model.
Further discussion about “binning” as a diagnostic tool in binary regression can
be found in Gelman and Hill (2007, ch. 5).

In Figure 1(a), the mean of the observed values are below the 25th percentile
of the predicted values in the middle bins, and above the 75th percentile of the
predicted values in the upper bins, suggesting the logistic link is inappropriate
for this data set. This is most likely due to the fact that in most domains
the average probability of correct enumeration was large, and the logistic link
function increases too slowly, resulting in predictions that were too small for
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Figure 2: Comparison of standardized link functions
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high probability events.
Alternatively, the complementary log-log link was considered. Figure 2 com-

pares the shape of the logistic link function and the complementary log-log link.
The complementary log-log link increases much more rapidly than does the lo-
gistic link, and was more appropriate for this problem. Model selection was
done using stepwise regression and a BIC penalty, but with the complementary
log-log link in the log-likelihood. A comparison of the predicted and observed
probabilities are shown in Figure 1(b).

The final set of covariates selected using stepwise variable selection and the
complementary log-log link is denoted by Xi, and consists of the 15 variables
and 11 interactions (for a total of 75 coefficients)

• type of housing unit (huTyp) (single-unit; multi-unit; trailer; other)

• proxy type (PROX) (household member on 4 – 1; household member
moved in after 4 – 1; neighbor or other proxy; other)

• relationship type (relType) (member of the nuclear family; adult child of
the householder; other member of the household)

• participation rate (btPart) (0.5 – 0.92, treated as continuous)

• eligible for supplemental nonresponse followup universe (supnrfu) (address
is not a valid decennial address, eligible to be part of the supplemental
nonresponse follow up universe; address is a valid decennial address, eli-
gible to be part of the supplemental nonresponse follow up universe; not
eligible to be part of the supplemental nonresponse follow up universe)
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• (msatea) (MSA = L and TEA = 1 or 6; MSA = M and TEA = 1 or 6;
MSA = S and TEA = 1 or 6; MSA = X and TEA = 1 or 6; MSA = L,
M, or S and TEA = 2 or 7; MSA = X and TEA = 2 or 7; TEA = 3 or 5)

– MSA2 (L = one of the 12 largest; M = not one of the 12 largest and
> 500,000; S = < 500,000; X = 0)

– TEA3 (1 = Mailout / Mailback; 2 = Update / Leave; 3 = List
/ Enumerate; 5 = Rural Update / Enumerate; 6 = Military; 7 =
Urban Update / Leave)

• composition of household (typeHH) (married-couple family; other family;
non-family with householder living alone; non-family with householder not
living alone; occupied, but does not fulfill other requirements for other
types)

• log of the number in household (palt) (treated as continuous)

• (repmail) (blanketed replacement mailing block; targeted replacement mail-
ing block; not targeted replacement mailing block)

• age (0 – 17; 18 – 29; 30 – 49; 50 +)

• mailReturn (yes; no)

• sex

• characteristic imputation flag (charImpFlag) (all characteristics reported;
at least one characteristic imputed)

• date of birth reported indicator (dobInd) (day, month, and year of birth
reported; at least one not reported)

• race / ethnicity (race4) (American Indian or Alaska Native on Reserva-
tion; off-reservation American Indian or Alaska Native; Hispanic; non-
Hispanic Black; native Hawaiian or Pacific islander; non-Hispanic Asian;
non-Hispanic White)

• interaction terms (relType * palt; huTyp * typeHH; relType * btPart;
supnrfu * mailReturn; palt * mailReturn; palt * cmAge; typeHH * palt;
relType * typeHH; typeHH * mailReturn; btPart * palt; palt * sex)

For the missing data models, the set of covariates Xi was used as the uni-
verse of possible predictors and stepwise variable selection with a logistic link
function was done on this set with a BIC penalty. The selected predictors
for nonresponse, denoted by X̃i, are huTyp, PROX, relType, btPart, supnrfu,
msatea, typeHH, palt, repmail, age, sex, charImpFlag, dobInd, domain, relType

2MSA = metropolitan statistical area
3TEA = type of enumeration area
4race is modeled using the seven-category Race-Origin Domain described in Mulligan and

Davis (2012)
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Table 1: Summary of predicted probability of being resolved P̂ (R = 1 | X)

Percentiles

Model 0.01 0.10 0.25 0.50 0.75 0.90 0.99

MCAR 0.953 0.953 0.953 0.953 0.953 0.953 0.953
MAR 0.747 0.896 0.944 0.971 0.982 0.988 0.992
NMAR1 0.845 0.915 0.940 0.962 0.975 0.979 0.982
NMAR2 0.747 0.896 0.944 0.971 0.982 0.988 0.993
NMAR3 0.720 0.941 0.972 0.988 0.994 0.996 0.998

* palt, and palt * age. For model NMAR3, the covariates used for the ‘nonignor-
able’ interaction terms Y ∗Xi are the variables relType, charImpFlag, dobInd,
and huTyp, which were among the first few variable selected in the stepwise
procedure for choosing a missing data model.

Solving the different estimating equations under missing data models MCAR,
MAR, NMAR1 and NMAR2 was easily done using the Newton-Raphson algo-
rithm. However, solving the estimating equation using model NMAR3 was more
challenging. It was found that the more nonignorable interaction terms included
in the model, the more difficult it was to find a root of the corresponding esti-
mating equation; the Newton-Raphson algorithm became more sensitive to the
choice of starting value, and the size of each step needed to be small to avoid
large jumps which made the iterations computationally intractable, that is the
solution was found iteratively using the steps

θ(n+1) = θ(n) − ρ
(
∂

∂θ
Ψ
(
θ(n)

))−1
Ψ
(
θ(n)

)
for small values of ρ, rather than the usual Newton-Raphson algorithm with
ρ = 1. Due to the small jump sizes, the computational time is greatly increased.

4 Summary of results

This section summarizes the parameter estimates and predicted values under the
different models. All results in this section are based on the generalized linear
model with a complementary log-log link function, the covariates described in
Section 3 for the correct enumeration model, and the five different missing data
models described in Section 2.2.

Table 1 summarizes the marginal distribution of the predicted probability
of being resolved

F̂n (t) =
1∑
i wi

∑
i

wiI
{
P̂ (R = 1 | Xi) ≤ t

}
under each of the five missing data models. For model MCAR, the probability
of being resolved does not depend on any covariate or response variable, hence
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Table 2: Mean predicted correct enumeration rate within domain, unresolved
only

Missing Data Model
MCAR MAR NMAR1 NMAR2 NMAR3

huTyp M 0.9136 0.9144 0.8558 0.9135 0.8986
huTyp O 0.8303 0.8319 0.7378 0.8307 0.8041
huTyp S 0.9483 0.9484 0.9113 0.9481 0.9290
huTyp T 0.9142 0.9145 0.8573 0.9140 0.8978

race 1 0.9111 0.9114 0.8523 0.9110 0.8968
race 2 0.8951 0.8952 0.8304 0.8945 0.8746
race 3 0.9244 0.9249 0.8728 0.9243 0.9073
race 4 0.9229 0.9235 0.8710 0.9227 0.9022
race 5 0.8971 0.8982 0.8369 0.8974 0.8799
race 6 0.9334 0.9342 0.8872 0.9337 0.9188
race 7 0.9286 0.9290 0.8811 0.9285 0.9116

Total 0.9256 0.9261 0.8758 0.9255 0.9080

the probability of being resolved is the same for all individuals and can be calcu-
lated using equation (5). The NMAR models considered are conditional on the

response variable Y . Since P̂ (R = 1 | Y,X) can not calculated for the sampled
individuals for which Y is missing, Table 1 gives the distribution of the marginal
probabilities P̂ (R = 1 | X) =

∑1
y=0 P̂ (R = 1 | Y = y,X)× P̂ (Y = y | X).

Notice that the distribution of the predicted probability of being resolved
using the MAR model is nearly identical to the distribution under the NMAR2
model. Recall that model MAR is a submodel of model NMAR2 when α1 =
0. The estimated value of α1 in model NMAR2 is 0.074. Since there are 42
other variables used in the model to predict resolved status, the effect of α1 in
the predicted values of resolved status was minimal. The only real difference
between the predicted values is in the tails, and even these differences are small.
Further discussion of the estimated parameter values is given in Section 4.2.

Table 2 shows the mean predicted correct enumeration rate of the unresolved
census enumerations within different domains. The domains used in Table 2 are
the housing unit types (huTyp) and race categories. Two items stand out in
Table 2. First, there is hardly any difference in the mean predicted probabilities
of correct enumeration within the presented domains for models MCAR, MAR
and NMAR2. While the lack of difference in the predicted values using models
MAR and NMAR2 can be attributed to the near-zero estimated coefficient of Y
in model NMAR2, the lack of difference in models MCAR and MAR is surpris-
ing. Two factors may account for this: first, there is a large observed sample
that can be used to fit the models, and a relatively small amount of missing
data. Second, there is a large set of covariates which can be used as predictors,
and stepwise variable selection was done to select a subset for the model. The
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lack of effect of the MAR missing data model on the predicted probabilities of
correct enumeration suggest that the covariates used in the correct enumeration
model have sufficient predictive power to eliminate the effect of the missing data
mechanism in this model.

The second interesting point in Table 2 is the comparison of models NMAR1
and NMAR3 with the other models. Recall that intuitively, it should be ex-
pected that it is more difficult to resolve a correct enumeration than an erro-
neous enumeration, so that if the missing data mechanism does depend on enu-
meration status, a NMAR assumption should reduce the probability of correct
enumeration over a MAR or MCAR assumption. While the results presented
in Table 2 do conform to intuition, in that the average predicted probability
of correct enumeration is reduced, it is somewhat surprising that the effects
on CE rate are as small as they are. The missing data mechanism specified
in model NMAR1 is that enumeration status is the only variable which affects
the propensity to respond. Hence NMAR1 can be thought of as an extreme
case. Yet even in this extreme case, the average predicted probability of correct
enumeration within the unresolved census enumerations is only reduced from
0.9256 to 0.8758. Again, this suggests good predictive power in the covariates
used to model enumeration status, mitigating effects of the specification of the
missing data model.

4.1 Variance estimation

There are two general strategies for variance estimation – Taylor series lineariza-

tion and replication methods. Let θT =
(
βT ,αT

)
and ΥT =

(
ΨT ,ΦT

)
. Using

a Taylor series linearization, the variance of θ̂ can be estimated by (Fuller, 2009,
p. 68)

V ar
(
θ̂
)
≈
(
∂

∂θ
Υ
(
θ̂
))−1

V̂ arHT

(
Υ
(
θ̂
))( ∂

∂θ
Υ
(
θ̂
)T)−1

. (7)

The Horvitz-Thompson variance estimator of Υ requires knowledge about the
joint inclusion probabilities, which are not available. However, V̂ arHT (Υ) can
be approximated by (Morel, 1989; Natarajan et al., 2008)

V̂ ar (Υ (θ)) =

n∑
i=1

(Υi· −Υ··) (Υi· −Υ··)
T
,

where Υij = Υ (Yij ,Xij ;θ), Υi· =
∑ni

j=1 Υij , and Υ·· =
∑n
i=1

∑ni

j=1 Υij . Here
i = 1, . . . , n = 5681 indexes the block clusters and j = 1, . . . , ni indexes the
records in the ith block cluster.

Alternatively, replication-based variance estimates can be made. Rao and
Tausi (2004) give a delete-one-cluster Jackknife method for estimating the vari-
ance of estimators obtained by solving survey-weighted estimating equations. It
was found that since there are 5681 clusters in this problem, that this method is
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Table 3: ‘nonignorable’ coefficients

Model variable estimate se 95% CI

NMAR1 Y 4.1420 0.2587 ( 3.6349, 4.6491)

NMAR2 Y 0.0740 0.5485 (−1.0011, 1.1491)

NMAR3

Y 2.2788 0.6108 ( 1.0816, 3.4760)
Y ∗ huTypO 0.1659 0.5076 ( 0.8290, 1.1608)
Y ∗ huTypS 1.7220 0.3459 (−1.0440, 2.4000)
Y ∗ huTypT 0.6712 0.5758 ( 0.4574, 1.7998)
Y ∗ relTyp2 −0.8419 0.4206 (−1.6663, −0.0175)
Y ∗ relTyp3 −0.8727 0.2047 (−1.2739, −0.4715)
Y ∗ dobInd −1.6253 0.4975 (−2.6004, −0.6502)

Y ∗ charImpF lag −0.1612 0.2481 (−0.6475, 0.3251)

too computationally demanding. The less computationally demanding delete-
a-group jackknife of Kott (2001) was implementable, with 100 groups in this
problem. It was found that the Taylor series linearization variance estimates
were very similar to the delete-a-group jackknife variance estimates, so only the
former are reported. For example, for model NMAR2, the mean absolute differ-
ence of the 118 estimated standard errors using Taylor series linearization and
the estimated standard errors using the delete-a-group jackknife was 0.0056,
while the maximum absolute difference was 0.0373.

4.2 Analysis of nonignorable terms

Table 3 shows the estimates of the ‘nonignorable’ parameter α1 in the non-
response models NMAR1, NMAR2, and the parameters α1 and α3 in model
NMAR3, along with the estimate of the standard errors computed using Taylor
series linearization as in equation (7).

The 95% confidence intervals shown in the last column of Table 3 are based
on the normal approximation. Using such an approximation it is simple to
construct a test statistic, for example the Wald statistic, to test the hypothesis
that α1 = 0. However, as discussed in Section 2.2, it is not clear how such a
test statistic should be interpreted, since the parameter estimates are no longer
regular when the true model is the missing at random submodel of the not
missing at random model. Similarly, caution should be taken in interpreting
the confidence intervals, particularly when the interval includes 0, such as the
interval for the estimate of the coefficient for Y in model NMAR2.

For model NMAR1, the estimated coefficient of 4.142 along with an esti-
mated standard error of 0.2587 indicates a strong influence on enumeration
status on the propensity to respond. As was discussed earlier in this section,
the nonresponse model NMAR1 is an extreme model, in the sense that resolved
status depends only on enumeration status, which is most likely not a reason-
able assumption. This model is, however, useful as a reference for comparison
to the other models, in the spirit of a sensitivity analysis.
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In model NMAR2, since the estimated coefficient of Y is 0.0740, the pre-
dicted probabilities are nearly identical to the predicted probabilities using the
MCAR or MAR models. While there is little change in the predicted prob-
abilities of correct enumeration, there is a noticeable change in the estimated
standard errors. The inclusion of a single nonignorable term in the missing data
model on average increased the estimated standard errors of the 75 coefficients
in the correct enumeration model by 1.1%, and increased the estimated stan-
dard errors of the 42 coefficients in the missing data model by an average of
2.7%.

Because the estimated coefficient of Y is close to zero in model NMAR2,
it is tempting to conclude that extending model NMAR1 and conditioning on
observable covariates eliminates the nonignorable effect and that a missing at
random model is appropriate. However, as was discussed in Section 2.2, if the
model is correctly specified and the truth is that the nonignorable parameter is
exactly equal to zero, the estimate of the coefficient will not have the typical

√
n

rate of convergence, so that the usual test statistics may not be valid. Because
of the unusual behavior of estimators when the nonignorable coefficients are
simultaneously equal to zero and the possibility of model misspecification, it
is important to investigate larger models with more nonignorable interaction
terms to see if a nonignorable effect appears.

Missing data model NMAR3 is an extension of model NMAR2, in that the
probability of response depends on the response variable, the observed covari-
ates, and the interaction between the two. The estimated coefficient of Y and
the estimated coefficients of the interaction terms Y ∗Xi can be seen in Table 3.
Inclusion of additional interaction terms causes the magnitude of the estimates
of the nonignorable coefficients to increase, resulting in predicted probabilities of
correct enumerations which fall between the predictions using models NMAR1
and NMAR2 in Table 2.

Conceptually, it is simple to expand the NMAR missing data models with
more interaction terms to investigate nonignorable nonresponse associated with
different covariates or domains. However, computationally, the inclusion of more
interaction terms involving the response variable Y made it much more diffi-
cult to find a root to the estimating equation Υ = 0. In particular, inclusion
of the variable Y ∗ PROX caused difficulties, as the coefficient of the term
Y ∗ PROX3 increased rapidly at each iteration of the Newton-Raphson algo-
rithm. It is possible that a root to the estimating equation does not exist when
certain interactions are included in the missing data model. Another difficulty
in expanding the missing data model with more interaction terms to investigate
which ‘nonignorable’ interactions are influential is that the estimated standard
errors increase rapidly. The ‘more nonignorable’ the nonresponse model be-
comes the more uncertainty is introduced, and there is no unresolved data for
which the response variable Y is observed with which to fit the model.
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5 Conclusion

This paper investigated missing data alternatives for modeling correct enumera-
tion status in the decennial census. Because it was expected that if the propen-
sity to respond is affected by enumeration status, then being erroneously enu-
merated should reduce the probability of response, it was not surprising that
nonignorable nonresponse models reduced the predicted probabilities, both over-
all and within different domains. What was something of a surprise was the
moderate degree to which nonignorable modeling reduced the predicted proba-
bilities, with the most extreme nonignorable assumptions only reducing the over-
all predicted probability of correct enumeration from 0.9256 to 0.8758 among
the unresolved census enumerations. However, within the domains considered,
the effect could be larger (for example, huTyp 0 in Table 2), and it is possible
that within finer cross-classifications that were not considered, the effect could
be even more dramatic. Some explanations for the relative lack of sensitivity
to the choice of missing data model could be the large overall sample size, the
small percentage of missing data, and the rich collection of available predictors.

In this paper, only the effect of missing data on modeling correct enumer-
ations was considered. While interesting in its own right, the probability of
correct enumeration is only one piece of the dual system estimator in (1). The
analysis in the paper can be repeated to model the probability of matching to
the census. These estimates could then be combined to better understand the
effects of missing data on the dual system estimator. Future work involves in-
vestigating the effect of missing data alternatives on the dual system estimator.

Another possibility for future work is to investigate the effects of missing
data on the different types of erroneous enumerations. Starting in 2010, the
CCM program produced estimates of the four components of census coverage:
correct enumerations, erroneous enumerations, whole-person imputations, and
omissions. The erroneous enumeration estimate was 10.04 million people, with
8.52 million people coming from duplication and 1.52 million coming from other
reasons (Keller and Fox, 2012). Nonignorable missing data models can be used
to investigate the sensitivity of the estimate of erroneous enumerations due to
duplication to different missing data models.
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