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Abstract
| characterize the prevailing philosophy of officstatistics as a design/model compromise
(DMC). It is design-based for descriptive inferené®m large samples, and model-based for
small area estimation, nonsampling errors sucloasesponse or measurement error, and some
other subfields like ARIMA modeling of time seriésuggest that DMC involves a form of
“inferential schizophrenia”, and offer exampleglod problems this creates. An alternative
philosophy for survey inference is calibrated Baf@B), where inferences for a particular data
set are Bayesian, but models are chosen to yitddeimces that have good design-based
properties. | argue that CB resolves DMC conflietsg capitalizes on the strengths of both
frequentist and Bayesian approaches. Featurée @B approach to surveys include the
incorporation of survey design information into thedel, and models with weak prior
distributions that avoid strong parametric assuomgti | describe two applications to U.S.

Census Bureau data.
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1. Introduction

The mission of official statistics is to produetewvant, timely and credible statistics
about key social and economic phenomena. Statisiigancies face increased demand for data
products, and the questions asked by our societpezoming increasingly complex and hard to
measure. On the other hand, individuals and orgéinizs are less willing to respond to requests
for information, voluntary or not. Surveys and agses are expensive and challenging to mount.
Combining information from a variety of data sowc®attractive in principle, but difficult in
practice. Disseminating information for small aresasubject to the dangers from disclosure of
confidential information from respondents. Forstheeasons, the standard statistical approach
of taking a random sample of the target populadiod weighting the results up to the population
no longer meets our needs. We should see theitraalisurvey as one of an array of data
sources, including administrative records, androtifermation gleaned from cyberspace. Tying
this information together to yield cost-effectivedareliable estimates requires modern statistical

analysis tools.



In response to these challenges, the U.S. CenseaBbtas recently formed a new
Research and Methodology Directorate. | am it$ Asssociate Director, and | write as the first
Bayesian statistician with a senior leadershiptposiat the Census Bureau, and as one who has
great respect for the history and statistical trads of the agency.

One of my responsibilities is to uphold statistis@ndards, and this role has led me to
ponder the prevailing statistical philosophy of #gency, which | believe many other official
statistical agencies share. | feel that some obbstacles faced by official statistics are
attributable to the ambivalence of this prevailpiglosophy. | suggest that an alternative
statistical philosophy, calibrated Bayes, providdsetter vehicle for official statistics in the

future.

2. The Prevailing Philosophy of Statistical Inferene in Official Statistics.

Official statistics is largely concerned with cesssi and surveys, with a strong emphasis
on probability sampling. There are three main campgegeneral philosophies of inference from
probability sample surveys (e.g. Little and Rub@83; Little 2004): (a) Design or
randomization-based inference, (b) model-basedrpapalation inference, and (c) Bayesian

inference.

2.1. Design-based inferenc&he classical randomization or design-based apprtmasurvey
inference (e.g. Hansen, Hurwitz and Madow 1953hKi865, Cochran 1977) has the following

main features. For a population wiktunits, letY =(y,,...,y, ) wherey, is the set of survey
variables for unit, and letl =(l,,...,I, )denote the set of inclusion indicator variabiesere

I, =1 if uniti is included in the sample arld=0 if it is not included. Design-based inference



for a finite population quantit® = Q(Y) involves (a) the choice of an estimatpr (Y,

inc?

), a
function of the observed pav}, of Y, that is unbiased, or approximately unbiased(Xarith
respect to the distributidn and (b) the choice of a variance estimaterv(Y,,., 1) that is
unbiased or approximately unbiased for the variaia® with respect to the distribution bf
Inferences are then generally based on normal-sagele approximations. For example, a 95%
confidence interval fo® is c“]il.96\/§.

Models can and often do play a role in determinivgchoice of estimator in this
approach. Specifically, regression or ratio estasatre based on implicit models, and model-
assisted methods such as generalized regressiomdgbé&Swensson and Wretman, 1992)

incorporate model predictions. However, these naglave still fundamentally design-based,

since the distribution dfremains the basis for inference.

2.2. Model-based inferencelhe model-based approach bases inference on a foodieé
distribution forY, perhaps combined with distributionlofinitial model formulations did not
overtly assign a distribution féy but modeling botfy andl allows assumptions about the
method of selection to be formalized, and clariffes value of probability sampling. The model
is used to predict the non-sampled values of tipailation, and hence finite population
guantitiesQ. There are two major variants: superpopulationeting and Bayesian modeling.
In superpopulation modeling (e.g. Royall 1970; mipson 1988; Valliant, Dorfman, and
Royall 2000), the population valuesYare assumed to be a random sample from a
“superpopulation”, and assigned a probability disttion p(Y |Z,8) indexed by fixed

parameterg, and conditioned on known design varialdes



Bayesian survey inference (Ericson 1969, 1988uB&51; Scott 1977; Binder 1982;
Rubin 1983, 1987; Ghosh and Meeden 1997; Sedr&ft¥k Little 2003, 2004; Fienberg 2011)

requires the specification of a prior distributiggyY | Z) for the population values. Inferences for
finite population quantitieQ(Y) are then based on the posterior predictive diginhu
pP(Y,,. 1Y, Z,1 )of the non-sampled values (s&y,.) of Y, givenZ and the sampled valués, .

Probability sampling allows us to “ignore” the disution of the sample inclusion indicatioin

this model, and base inferences on posterior predidistribution p(Y,

exc

|Y:...Z), simplifying
the modeling task. The specification of the pristribution p(Y | Z) is often achieved via a
parametric modeb(Y | Z,8) indexed by paramete®, combined with a prior distribution
p(@|Zz) for @, that is:

p(Y12)=[ p(Y Z.8)p@ |2 6.

The posterior predictive distribution 8f,. is then

PVore | YinerZ) = [ P[0 Z BIP O Y, Z HO (1)
where p(@1Y,,.,Z) is the posterior distribution of the parametetsnputed via Bayes’
Theorem:

P1Ye:Z2)=PE@Z)P (X 12.8) 1PV 12),
where p(€|Z) is the prior distributionp(Y,. | Z,8) is the likelihood function, viewed as a
function of 8, and p(Y,. | Z) is a normalizing constant. This posterior disttitw induces a
posterior distributionp(Q|Y,,.,Z) for finite population quantitieQ(Y).

Some Bayesians have downplayed the importancendbraization, but this becomes

clear when the model is expanded to the jointiistion of Y andl, as in the above summary.



Randomization provides a practical way to assuaettie selection or allocation mechanisms are
ignorable for inference Rubin 1978, Sugden and 54884, Gelman et al. 2003, chapter 7),
without making ignorable selection a questionaBRuanption. On the other hand, making
randomization the basis for inference, as withdésign-based approach, is restrictive, since it
does not provide a framework for handling deviaifmom randomization, or other non-
sampling errors.

The specification ofp(Y | Z,8) in the Bayesian formulation is the same as inrpatec
superpopulation modeling, and in large sampleslikbeéhood based on this distribution
dominates the contribution from the prior distribatof 8. As a result, large-sample inferences
from the superpopulation modeling and Bayesian@gagres are often similar, with the key
distinction then being between design-based anceimaked inference. Bayes modeling is to
my mind superior to superpopulation modeling in kse@mples, since the integration ouiin
(1) propagates uncertainty in the estimatior@olielding better inferences than approaches that

fix @ at an estimate.

2.3. The Current Design/Model CompromiseA recent comparative assessment of these
approaches is given in Rao (2011).The status qustdtistical inference at the U.S. Census
Bureau is a combination of design-based and moaksddideas, which | shall term the
“design/model compromise” (DMC); | believe thatiaigar philosophy pervades other official
statistical agencies. DMC applies design-basedentse for descriptive statistics like means and
totals in large samples, and models are used fal simea estimation, to handle survey
nonresponse, and in some specialized areas lilkesmes analysis (e.g. Kalton 2002; Rao 2003,

2011). The design-based approach is aftedel assisted, in that models are used to incorporate



auxiliary information. A common form of model agaisce is regression calibration, where
model predictions are adjusted by adding desigrghited residuals to protect against
misspecification, (e.g. Cassell, Sarndal, Wretm@ifi7i Sarndal, Swensson and Wretman 1992).

Models are used for small area estimation, sineEtidesign-based estimates are too
imprecise to be useful. An important early exaniplEay and Herriott (1979). Models are used
for nonresponse, though sometimes they are impdisitn hot deck methods. In time series
analysis, models are commonly used to smooth amdnsuize series of estimates collected over
time.

Design-based and model-based systems of statistfeaénce both have strengths and
weaknesses, and the key is to combine them in aledyapitalizes on their strengths. For
reasons given below, | do not think that DMC is blest way to do this. In the next section, |
describe an alternative approach, Calibrated B&yB3, which avoids “inferential
schizophrenia” by assigning distinct roles to med&r the inference) and frequentist methods

(for formulating and assessing the model).

3. Calibrated Bayesian (CB) Inference.

3.1 Calibrated Bayes Inference for Statistics in Geeral. In CB, all inferences are explicitly
Bayesian and hence model-based, but models arerchmgield inferences that are well
calibrated in a frequentist sense; specificallydels are sought that yield posterior credibility
intervals with (approximately) their nominal freontist coverage in repeated sampling. Seminal
references are Box (1980) and Rubin (1984). Singamguments in favor of CB have been
presented elsewhere (Little 2006, 2011), | sumreatizm here, specifically in the context of

survey sample inference.



Frequentist inference is in essence a set of ces,dége unbiasedness, consistency,
confidence coverage, efficiency, and robustnessagsessing properties of inference procedures.
It is not a prescriptive system leading to a ctdaoice of estimator and inferential procedure. Of
the many frequentist tools, such as least squarethod of moments, generalized weighting
equations or maximum likelihood (ML), asymptotiéarences based on ML seem the closest to
being prescriptive, but ML is not satisfactory fmnall sample inference. Exact small-sample
inferences have been developed for some problem&) many others there is no exact
frequentist method, in the sense of yielding a iclamfce interval that has exact nominal
confidence coverage for all values of the unknoarameters.

Design-based survey inferences are not only asyraptoey fail for probability
sampling schemes where the number of distinct tedesamples is limited. For example,
consider systematic sampling of units with a sangpinterval of five, from a random start. The
design-based standard error exists, but desigrdlestemates of standard error are not available,
and since there are only five possible repeategkmnand hence five possible estimates, design-
based 90% or 95% confidence intervals do not eiistlels are needed to create and provide
meaning to interval estimates.

Frequentist inference violates the likelihood pifttes (Birnbaum 1962), and is
ambiguous about whether to condition on ancillargmproximately ancillary statistics when
performing repeated sampling calculations (Cox 1@€tix and Hinkley 1974). In the sample
survey context, this issue arises in the questiavhether the sampling distribution of post-
stratified means should condition on post-stratoomes (Holt and Smith 1979; Little 1993).

The Bayesian approach avoids these problems vatjuéntist inference. Once a model

and prior distribution are specified, there is@aclpath to inferences based on the posterior



distribution, or optimal estimates for a given d®of loss function. Problems of inference under
a model become purely computational, and a richyasf Bayesian computational tools are now
available, even for complex high-dimensional pratdeThe likelihood principle is satisfied,
issues about conditioning on ancillary statistiosdt arise, and uncertainty about nuisance
parameters is propagated by integrating them dweer posterior distribution, an approach that
(with noninformative prior distributions) leadshtetter small-sample inferences than ML. In the
simplest case of a normal model and simple randompBng, integrating out the variance leads
to inferences based on the t distribution.

The problem with Bayesian inference in practicéha it generally requires full
specification of a likelihood and prior, and we eelnow the true model (Efron 1986). All
models are wrong, and bad models lead to bad asswader the frequentist paradigm, the
search for procedures with good frequentist progegrovides a degree of protection against
model misspecification, but there seems no suditibuyprotection under a strict Bayesian
paradigm where frequentist properties are not tnied.

We want model-based inferences with good frequigmtaperties, such as 95%
credibility intervals that cover the unknown paraenapproximately 95% of the time if the
procedure was applied to repeated samples. ThesBaykas some important tools for model
development and checking, like Bayes factors andainaveraging, but in my view frequentist
ideas are essential when it comes to model developand assessment. A natural compromise
is thus to use frequentist methods for model dgrant and assessment, and Bayesian methods
for inference under a model. This capitalizes endtnengths of both paradigms, and is the
essence of Calibrated Bayes (CB) (Peers 1965; Wi&I6B; Dawid 1982; Box 1980; Rubin

1984; Draper and Krnjajic 2010). Rubin (1984) werttat



“The applied statistician should be Bayesian imgple and calibrated to the real world
in practice — appropriate frequency calculationlp be define such a tie... frequency

calculations are useful for making Bayesian statesscientific, scientific in the sense
of capable of being shown wrong by empirical tbste the technique is the calibration

of Bayesian probabilities to the frequencies otiatevents.”

3.2. Calibrated Bayes Inference for Sample Survey$Vhat are the implications of CB for
sample survey inference? The main features thahgissh survey sampling inference from
other areas of statistics are (a) the focus onrgise finite population quantities (though
analytic parameters are also of interest) andh@ptesence of survey design features like
stratification, weighting and clustering, which den simple “iid” assumptions invalid.

Bayesian inference is very suited to finite pogalatuantities; the tool is the posterior
predictive distribution. This distribution autoneily incorporates finite population corrections
— the uncertainty in the posterior predictive dgttion goes to zero as the sampling fraction
goes to one. The target population quantity doé¢seed to be a parameter of the CB model
used for inference; it could be the quantity olediby applying a “target model” to the full
population. CB inference is then based on the posteredictive distribution of this finite
population quantity, for an “analysis model”, whicéptures key features of the sample design,
and which may differ from the target model. Thisnpds developed in the context of multiple
regression in Section 4.2 below.

Concerning (b), the need for calibration, combingth the appreciation that all models

are approximations and hence to some degree misgeteads to Bayesian models that

10



incorporate design features like stratificationjgiding and clustering. Design features need to
be included in the model to protect against theat$f of model misspecification.

Specifically, models for cluster samples that assunits within clusters are independent
overstate precision when outcomes of units withiisters are correlated. Thus, hierarchical
Bayes models that include random effects for chgstes in the seminal work of Scott and Smith
(1969), are needed to model clustering of the sanyybdels for stratified unequal probability
samples that do not allow distinct parameters acstrata make the dubious assumption that
strata variables are unrelated to outcomes. Tlwadified samples require models that include
strata indicators as covariates. For probabilipprtional to size samples, models that
misspecify the relationship between the outcomesaelare not well calibrated. Robust
modeling of this relationship, for example by maadgithe outcome as a spline function of size,
avoids this problem, and has been shown to yielge&8an inferences with superior frequentist
properties to sample-weighted estimates in simanat(Zheng and Little 2004, 2005; Yuan and
Little 2007, 2008; Chen, Elliott and Little 2010).

Frequentist concepts like design consistency ymptotic design unbiasedness (Brewer
1979; Isaki and Fuller 1982) are useful in develgpCB models, particularly for inference with
large samples where asymptotic properties areaste®trictly speaking, design-consistency of
estimates is not a requirement of CB, since a desigpnsistent Bayes estimate for a well-
specified model can still achieve good frequermiisterage. However, design-consistency plays
arole in CB as a useful robustness property #rats to promote good confidence coverage,
particularly in large samples; the class of Bayesidels that yield design consistent estimates

is very broad, so design inconsistency is relagieasy to achieve under the CB paradigm.

11



Other features of CB models for surveys are thptdlatively weak prior distributions
should be favored so that the evidence in the @aesshadows the evidence in the prior; and (b)
model checks become an important feature of thiysieaThe latter point should not be
controversial, since any statistical approach,Jegtdjist or Bayesian, needs to evaluate
assumptions. Diagnostic approaches include postemadlictive checks (Rubin 1984, Gelman,
Meng and Stern 1996), and cross-validation appem{raper 1995; Draper and Krnjajic
2010).

The following simple examples from Little (2003udtrate these ideas.

Example 1. Stratified random sampling.Suppose the population with units 1, ...,Nis

divided intoH strata andn, units are randomly selected without replacemennfthe
population of N, units in stratunin. Define Z as a stratum variable, with
z =h, ifuniti is in stratunh . A CB model for an outcométhat conditions on the stratum
variablesz is

[y 1z =h{6, o}~ A G, ) (2)
WhereG(a, b) denotes the normal @Bssian) distribution with mean varianceb. Suppose first

o} is known and the stratum mean are assigned pritat
p(6,]Z) 0 const.
Bayesian calculations lead to the posterior pradiaistribution for the population mean:
[Y|Z,data,{o7}] ~ Q 'Y, 09

the normal distribution with posterior mean:

H
Vo = Z PV.. B, =N, /N, Yy, = sample mean in stratum

h=1

12



And posterior variance:
H
0% = R )02 n,, f, =n, IN,.
h=1

These Bayesian results lead to Bayes posterioitxgligdintervals that are identical to standard
confidence intervals from design-based inferencafetratified random sample. In particular,
the posterior mean weight each case by the indri¢g inclusion probability, and the posterior
variance equals the design-based variance of ithifisid mean.

With unknown variances, the standard design-bagpbach has weaknesses. Replacing
the variance§o} by sample stratum variances leads to normal cenéid intervals that fail to
achieve nominal coverage when sofng are small, since uncertainty in the estimated
variances is not incorporated; or pooling the sansplatum variances assumes the variances

{o3} are equal, leading to confidence intervals withwhrong width when this assumption is
strongly violated. The CB approach addresses tivea&nesses, by assigninp§(o;) }

uniform prior distributions. The resulting posteristribution ofY is a mixture of t
distributions, yielding improved frequentist covgean small samples because uncertainty in
estimating the stratum variances is propagated.

Suppose we ignore stratum effects, that is wenas€lj =6 0, = o in Eq. (2). The

posterior mean o¥ is then the unweighted sample mean, which is pialnvery biased if the
sampling rates vary across the strata. The proldehat inferences from this model are non-
robust to violations of the assumption of no straeffects, and we expect stratum effects in
most settings. The CB perspective leads to a mo@e(2) that allows for stratum effects.
Example 2. Two-stage samplingSuppose the population is divided i@elusters, based for
example on geographical areas. A simple form of$tege sampling first selects a simple

13



random sample af clusters, and then selects a simple random sashpigof the N_ units in

each sampled cluster The inclusion mechanism is ignorable conditiaratluster information,
but a CB model needs to account for within-clustarelation in the population. A normal

model that does this is:

y; = outcome for unit inclusteri= 1N, c= .1C.
[Ys16,,0°]~a G(6,,07), 3
(6] 4] ~ina G(14,9)-

Unlike the model for stratified sampling in Eq.,(&)e cluster means cannot be assigned a flat

prior, p(6.) =const, because only a subset of the clusters are sanptpidniform prior does

not allow information from sampled clusters to pcedeans for non-sampled clusters. The

model that assumes no cluster effeq@s,0 in (3), yields poor confidence coverage in the

presence of cluster effects, particularly in higtllystered samples. If the first stage clusters are
sampled with probability proportional to size, a @Bdel needs to include the size variable as a

covariate in Eqg. (3); see for example Zheng antlieL{2004).

4. DMC and CB Perspectives on Some Analysis Issues
4.1. Design-based statistical standards for modebbed analysis.The statistical standards at
the U.S. Census Bureau are essentially design-patedeas many Census Bureau researchers
are social scientists targeting substantive jogrimatlisciplines such as economics and
demography, where statistical models are the ndhis. difference in underlying philosophy
leads to confusion and conflict. The statisticahdiard-bearers play the role of high priests in a
religion that many social scientists have not eméada

If, on the other hand, statistical standards weittem from a CB perspective, the

inference would always be model-based, greatlyaieduthe communication gap between social

14



science modelers and standard-setters; the ralesagn features in the analysis is to find robust
and well-specified models. The fact that the infieeeis Bayesian is admittedly a departure for
modelers more versed in superpopulation frequemkigteling. The gap may not be as large as
sometimes suggested — for example, economisteagiwch like Bayesians, in the sense that
prior judgment enters strongly into model spectfmathrough variable selection, assumptions
about instrumental variables, exclusion restrictjaand so on. The additional information
injected by including a diffuse Bayesian prior diaftion is usually minor compared to the
assumptions required to identify models.

Bayesian inferences have repeated sampling prepeglite any other inferential
procedure. All modelers interested in obtainingusibnferences should embrace the calibrated
part of CB. In the finite population context, esdites for a model fitted to the sample should be
close to the estimates that would be obtainedhif tlodel were fitted on the entire population.
One way of achieving this is to incorporate feaguwtthe sample design, such as weighting and
clustering, into the model, since ignoring featuiles the design weights yields inferences that
are vulnerable to model misspecification (Kish &nankel 1974; Holt, Smith and Winter 1980;

Hansen, Madow and Tepping 1983; Pfeffermann andeel|1985).

4.2. Role of sampling weights in regressioif.he conflict between design-based statisticians
and modelers arises in the role of sampling weighidesign-based analysis weights units in the
regression analysis by the inverse of their selagtrobability (Horvitz and Thompson, 1952),
but this form of weighting is seen as unnecessargany branches of economics, where

extrapolation to a population is not the primanyaand weights, if used at all, model non-

15



constant variance (Konjin 1962; Brewer and Mell®73; Dumouchel and Duncan 1983; Smith
1988; Pfeffermann 1993, Little 2004).

From a CB viewpoint, it is useful to distinguisletbase where the variables defining the
sampling weights (e.g. the strata indicators inrapd@ 1 above) are or are not included as
predictors in the model. If they are, then desigighting is unnecessary if the model is
correctly specified. However, from a CB perspectareomparison of estimates from the
weighted and unweighted analysis provides an impogpecification check, since a serious
difference between a design-weighted and unweigkdéchate is a strong indicator of
misspecification of the regression model. Since#igation checks for the hard problem of
selection on unobservables are popular in econaeée.g. Heckman 1976), we should
welcome checks for the much easier problem of 8efeon observables! Dumouchel and
Duncan (1983) propose a test comparing the weigimddunweighted regression coefficients,
and extensions of this idea to other complex sudesygns would be useful; also determining
what constitutes a “serious” difference betweengiwieid and unweighted estimates is not
obvious.

If the variables defining the weights are not ined as predictors in the regression
model, the design-weighted regression is a simplg of correcting for selection bias in the
sample. In fact, the design-weighted estimates haviaterpretation as approximate posterior
means for a CB model, as in the following exampl#lé 1991, 2004). This example also

illustrates the distinction between a target maatel an analysis model mentioned in Section 3.2.

Example 3. Distinct target and analysis models, leiing to a Bayesian interpretation of

design-weighted regression estimateknoted in Section 3.2 that the target quantitg iGB

16



analysis does not have to be a parameter in a GRInfor its finite population equivalent). It is
useful to distinguish a target model, which deteesithe target quantity of interest, and the
analysis model, the basis for inferences aboutatgeet quantity.

Consider first inference about a population meamfa stratified sample, as in Example

1. The target model assumes the outcomfor uniti has a mean that does not depend on
stratum, and a non-constant variance, namely

Target model: [y |u,z =h,{6 0} ~., Q8 d° u), (4)
wherevu, is a known constant. The target quantity is tiselteof applying this model to the

whole population with an uninformative prior, nagntie precision-weighted mean:

This is the finite population meanif =1 for all i, but other choices dfu} lead to useful target

quantities. For example, ¥, = x /u, then Eq. (4) defines the ratio model, and Eqg3he

population ratio(zzlx )/(Z‘”N:"lui ) .

A standard design-based approach weights casttatomj by their sampling weight

w; =N, /n;, yielding design-unbiased estimates of the nutoeemnd denominator of Eq. (5):

where w’;i =wy, is the product of the sampling weight and the isier weight. This estimator

can also be motivated as an approximate posteeanmnder a CB model, as follows:
The target model (4) ignores the stratified natfrdhe sample, and for inference

purposes it is vulnerable to misspecification & theans o¥ and selection rates vary across the

17



strata. Thus for inference about (5), we replagdoydan analysis model that allows different
parameters for the mean and variance in each strabat is:

iz = j’{gjiajz})~ind qe, 012/ u),

Analysis model:
p({,uj, log af}) = const

(7)

This model yields a posterior predictive distriloatifor the nonsampled values, and hence for the

target quantity (5). I{u} are known for all units of the population, a stamdBayesian

calculation yields
J
E(YY |data,{i }) = (z y“u,, ]/(Z u,, ]
j=1

where y(”’ -st uy /st U, is the precision-weighted mean of the sampledsunits; in

stratumj, andu,; is the sum ofu, for all unitsi in stratum. If {u} are only known for sampled
units of the population, a model is also needgquédict valuequ} for nonsampled units. A

variety of models fofu} that involve distinct means in each stratum ygfabsterior mean of

the total in stratumof the form E(u+j |data) = u , wherew, =N, /n, is the sampling

i0s;

weight for stratum. Then

E(Y"™ |data)= EHZ y¥u,, J {i uﬂ) |dat%x
j=1

J

(Z yVE{u,, |datz}] {Z E{u,, |dat}aJ
j=1

J J
(Sotw /[ Ewza =Sz E v =57,
iCs; =1 iOs, i=1i0s; i=1i0s;
the design-weighted estimator (6). The approxinmaitiothe second line of this expression

results from replacing the posterior expectation cdtio by a ratio of posterior expectations,

18



which ignores terms of ordé€d(1/n). Hence, under this formulation, the CB approaekiseto
weighting by the product of the sampling weight @necision weight, as in the design-based
approach.
An extension of this analysis yields design-wetgh¢stimates for regression coefficients.

Consider more generally the target regression model
Target model: (Y| X,8)~G(XB,U"c?), (8)
whereY consists of the population elements agx1) vector,X is an(N x p) matrix of
covariates, antd is a (N x N) diagonal matrix with the valugu} on the diagonal. The target
guantities are the precision-weighted least squestates:

BW = (XTUX)™XTUY . (9)
For inference about (9), we assume an analysis Inttoateallows different stratum regression
coefficients, namely

Y. 1X,.8.0)~G(X,8, U 'c})

Analysis model:
p({ B, log o’} ) = const

(10)

whereY,, X, are the components ¥fandXin stratumj, with dimension(N; x1) and (N, x p)

respectively. An approximation to the posterior me&B" under (10) is obtained by writing

(9) as a function of sumB"™ =g(T,,...,T, ), where{T, = Zj:lzi'i"lu h., ¢=1,...,L}, for

ji' Yo
difference choices ofh,} represent the set of sums, sums of squares, amslafucross
products of the covariates and outcome. Then

E(BY |data=E(g T, ,..T, |dale=g(ET( |data)E.T ( |dated

by a linearization argument similar to that useddesign-based inference. Also,
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E(T, | data) = i > wih,,

j=1is;
wherew} =wu; andw; is the sampling rate in stratymapplying an argument similar to that
for the mean model tbh,} . Hence the posterior mean is approximated by ¢isegd-weighted
regression estimates:
E(BY |data) = (X,'W, X )* X WY, (12)
where the subscrigtdenotes sample quantities (Little 2004).

Can sampling weights be ignored when interestitiéanalytic” inference for the

parametersS of the target model (10), rather than in the fipiggulation quantity (9)? 1 would
say no, Eq. (11) should still be used to estim@teThe inference differs only in the omission of

finite population corrections, which follows dirgcfrom the application of Bayes’ theorem. My

reason is that the finite population is assumedakta random sample from the superpopulation
under the superpopulation model, Bodiffers from the finite population quantitg™ by a
(small) quantity of orde©(1/N). Since ignoring the sampling weights yields a pesiimate of
B, it also yields a poor estimate @f.

What is gained by the CB approach if the analysislel (10) merely recovers the
design-based estimator? The Bayesian paradigm @fiavwbetter small-sample inferences, by
propagating error in estimating the variances, andllowing the possibility of shrinkage of the

weights by mixed models.

4.3. DMC and CB for small area estimation.The DMC philosophy suggests that when there

are sufficient data to support “direct” estimatesttdo not borrow strength across subdomains,
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inferences are design-based, but when the data@iinited then model-based small area

estimates are acceptable. This dichotomy impl@samy particular survey, the existence of a
tipping point (sayn,), the “point of inferential schizophrenia”, sud¢tat inferences are design-
based whem > n, and model-based wham< n,. The choice o, is of course rather arbitrary,

and it bothers me that one’s entire philosophytatistics, and the nature of the estimator,
changes depending on where the sample size fitsveeto this value (Figure 1A).

The CB philosophy avoids “inferential schizophrérsimce all inferences are model-
based. Hierarchical Bayes models yield estimatesedo “direct” estimates when sample sizes
are large, and as the sample size decreases, eawvdessly towards predictions from a fixed-
effects model (Figure 1B). Consider, for exampe, following simple hierarchical Bayes model
for simple random sampling, relating an outcovite a covariateX measured for all units in the

population:

Ya la, ~ N (4, ’Jz)nuaj =a,+BX

2
a,~N(a,r?), (12)

wherex,,y, are the value of andX for uniti in areaa, anda, is a random intercept for area
a. (A more complex model would entertain interacsitdetween the areas and covariates). If the

sampling fraction in areais small, the posterior mean of the population méam areaa given
(o?,7?) has the form

E(Y, |datayFw,y, + (bw, )J§+B8 & - X, (13)
wherey,, X ,n, are the sample meansYoaindX and sample size in araa(7+,5’(_xa -X) is

the regression prediction for the mearvafggregated over all areas, angd=n,o”/ (n,o*+71?)
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assigns most of the weight to the sample mean whexnlarge, and most of the weight to the
regression prediction over all areas whepis small.

The weights here depend on the variances, whiphactice need to be estimated.

Empirical Bayes approaches replace the variancg®ioy estimates, typically computed by the

method of moments or maximum likelihood. When thtineate of7* goes negative, it is
replaced by a value 0 on the boundary of the paerspace. Uncertainty in the variance
estimates is not reflected in inferences. Fully@&agethods based on weak priors on the

variance components propagate uncertainty and aapichates on the boundary of the

parameter space, though care is need with theelodigrior distribution forr? (Gelman 2006).
What precisely is the role of CB in small arearaation? Essentially, that Bayes is
preferable to empirical Bayes because it addrassesrtainty in the variance components, and
as a result, it tends to be better calibrated,ithaields credibility intervals with better
confidence coverage. Two other related issuesddigehe referees are that (apdel-based
estimators have a bias that does not necessanigtvavith increasing sample size, and that can be
substantial and dominate the MSE if the model faifal (b)CB for small areas yields estimates
that do not necessarily sum to design-based estinfiat higher levels of aggregation. My view
is that “design consistency”, not “design biasthe important issue, since the essence of
shrinkage estimates is that exact unbiasednessamdary to mean squared error. Prediction
estimates under any particular CB model are autoalbtinternally consistent, since
predictions of quantities at high levels of aggtegaare sums of the predictions at lower levels.
Design inconsistent estimates from a CB model neagdequately calibrated for small areas,
because design bias is not an important comporignéan squared error; but design bias from

model misspecification becomes an issue when thras#l area estimates are aggregated to
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higher levels. Thus, if aggregation to higher Isvslimportant, then | recommend seeking a CB

model that yields design-consistent estimates.

4.4. CB for small area inference: fixing the “standrd error error”. Official statistics often
presents uncertainty in the form of standard emormargins of error. In particular, users of the
U.S. American Community Survey (ACS) have the gbtlh generate tables of estimated counts
of individuals by race, age and gender, in smahsr Results are reported by an estimate and a
margin of error, chosen so that the estimate plusious the margin of error is asymptotically a
90% confidence interval. However, in many instartbesmargin of error is larger than the
estimate, yielding intervals containing negativarts of people! The ACS documentation
suggests truncating the resulting intervals sottieyt are bounded below by zero, but the
confidence interval based on the margin of eridrfatls to have the nominal coverage in small
samples, since it is based on a large-sample ajppation.

This exemplifies a general weakness of designebederences — that they are too
focused on estimates and standard errors, assuhahge are in the “land of asymptotia” where
an estimate plus or minus two standard errorsailg & 95% confidence interval. We learn in
elementary statistics that this is false when #rae size is small, as when a t correction is
applied to a normal test or confidence interval mitee variance is not known. In simulation
studies with realistic sample sizes, design-basefidence intervals often fail to achieve the
nominal coverage (e.g. Zheng and Little 2004, 20@&n and Little 2007, 2008; Chen, Elliott
and Little 2010). A comprehensive theory for firsmples should be able to deal with small
sample sizes, and (as discussed below) the singdastral way to achieve this is to make the

inference Bayesian. The concern is that the inttbdn of the prior distribution adds subjective
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information, but Bayes credibility intervals witlominformative priors tend to be more, not less,
conservative than design-based confidence intervals

In particular, it is well known that asymptotic WWladonfidence intervals for proportions
do not achieve nominal coverage when the sampéeisigmall, particularly for proportions
close to zero or one (Brown, Cai and DasGupta, R08Imple fixes such as the Wilson
estimate, which for a 95% interval adds 2 to theerator and 4 to the denominator of the
proportion (Agresti and Coull 1998), have a Bayesiderpretation. The Bayesian posterior
credibility interval based on a noninformative deyk’ prior distribution is constrained to lie
between 0 and 1, is appropriately asymmetric wherestimate is close to zero or one, and has
better confidence coverage than the asymptotic \viéddval (Brown, Cai and DasGupta 2001).
Extensions of the Bayesian approach to unequakibity sampling show similar improved
frequency properties over design-weighted and masieisted approaches (Chen, Elliott and

Little 2010).

4.5. Model-assisted estimationlhe prevailing paradigm of design-based inferesgaadel-
assisted, where model predictions are calibratgtketd estimates that are design-consistent
(Brewer 1979, Isaki and Fuller 1982) and hencegated from model misspecification -- note
that this use of the term “calibration” differs mnathe calibration in CB. This popular approach
uses regression models on auxiliary data to inerdesefficiency of design-based inferences
while retaining the randomization distribution he basis for inference. A weakness of the
method is that, by modifying the prediction estiondb improve its robustness, the resulting
estimator can involve parameter estimates fromlwbiniy models held simultaneously. | would

rather base inferences on predictions from a mibdelyields design consistent estimates. Since
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design consistency is a rather weak property,ishi®t hard to do in many problems (Firth and
Bennett, 1998). In short, model-assisted estimagpresent for me a rather ad-hoc way of
making a design-based estimator robust to modedpewfication, whereas a more direct
approach is simply to choose a more robust modt.fdllowing example (Little 2007)
illustrates this point.

Example 4. Generalized Regression in an equal probdity sample based on a regression
model without an intercept. Opsomer et al. (2007) applied the model-assistpdoagh to
incorporating auxiliary information into an equabpability sample, where the regression

models for prediction did not include the constantn. Lety andX denote sample means of an
outcomeY and a vector of covariates [S’x the vector of least squares slopes for the regnes
of Y on X with no interceptand X the population mean & The resulting regression prediction

of the mean o¥ is /?XX , and the average residual for the sampled casgs ﬁj, so the

generalized regression estimator has the form

Vereo = BXHY~-BR = Bo+ BX where B,=y-BX.
Observe that the slope@ are estimated under the regression model thatessno intercept,
but the inclusion of,@’O in Yapee iMplies a model that includes an intercept. Ifraercept is

needed, it should be included in the model wheimasing ,E’X. Since any linear model with an

intercept yields design-consistent predictions umedgal probability sampling (Firth and
Bennett 1998), there is then no need for calibmadiball in this situation. Other examples of
model inconsistency in model-assisted estimaten tmequal probability samples are given in

Little (1983).
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Is this a “counter-example”? It depends on themixto which one cares about the logical
consistency of estimators from the viewpoint of pinediction -- since the CB perspective views
the task of statistics as fundamentally to proyidsterior predictive inference for unknowns
given the data, it places considerable weight anabpect. A more pragmatic CB argument
against model-assisted approaches is that theirgsobnfidence intervals do not achieve the
nominal coverage, particularly when the samplingghis applied to the residuals are highly
variable (Zheng and Little 2004, 2005; Yuan andl€i2007, 2008; Chen, Elliott and Little
2010).

Another comment about model-assisted estimatitimaisit is a tool for incorporating
auxiliary data, but not effective for small are@iraation —hierarchical Bayes models like (4)
above that incorporate shrinkage via random effaesnore suited to this purpose. For
example, in the setting of model (4) with equallgadoility sampling, the form of the generalized
regression estimator with predictions based omdgesssion o on X is

Voreoa = Bot BXat Vo= Bo~ BL = Vo + BLX,~ %),
which incorporates information in the auxiliaryriagdole X, but does not incorporate shrinkage to

the regression estima{g +,5’(>_<a - X) combined over areas, as in the CB estimate (183. T

lack of shrinkage also applies to unequal probgtsimples, where the model-assisted approach
calibrates the regression estimate by adding wetbtgsiduals. For discussions of model and

design-based approaches to survey weights, sée (2@04, 2008) and Gelman (2007).

4.6. Methods for propagating imputation uncertainty. Single imputation methods lead to
confidence intervals that are too narrow (thatagehless than nominal coverage) when

imputation uncertainty is not propagated. Therenaodel-based and design-based approaches to
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correcting this problem. A Bayesian approach istiplel imputation, where multiple data sets
are generated with different sets of draws frompiteglictive distribution of the missing values
(Rubin 1987, 1996). A design-based approach ipptyaeplicate methods such as the jackknife
(Rao 1996, Fay 1996), with different imputationgach replicate; these methods are design-
based in spirit but “pseudo” randomization- basethct, since they rely on an assumption that,
within classes, nonresponse is in effect a formanflom sampling. Multiple imputation does not
yield consistent estimates of variance under paeidorms of model misspecification (Meng
1994; Rao 1996; Fay 1996; Robins and Wang 2000;&ial., 2006). Modelers accept model
specification as inevitable, and seek multiple itaion models that capture key features of the
population — they also point to simulations sugggsihat multiple imputation under plausible
models generally yields good or conservative canfa® coverage.

| view this as a proxy fight for the more basic arlging philosophical differences. At
the Census Bureau it has led to a form of stalemdtere single imputation methods that fail to
propagate imputation error continue to be appksen though both of the alternatives

mentioned above are clearly superior to the sigias

4.7. DMC-induced constrictions of the total surveyerror paradigm. Total survey error (TSE)
centers around a decomposition of mean squaredadreosurvey estimate into components of
sampling error, and nonsampling errors such asdramors, errors due to nonresponse, response
errors, editing and interviewer effects. In a réceniew of TSE, Groves and Lyberg (2010) note
that the explicit attention to the decompositiorenbrs in TSE, and the separation of

phenomena affecting statistics in various waysyipies a central conceptual basis for the field

27



of survey methodology. At the same time, they poiritthe following weaknesses with the
current TSE paradigm:
(i) quantitative measurement of many componenbsiidensome and lagging;
(i) the TSE paradigm has not led to enriched emeasurement in practical surveys;
(iif) assumptions required for some estimatorsrafreterms are frequently not true;
(iv) there is a mismatch between existing error et®dnd theoretical causal models of the error
mechanisms;
(v) there is a misplaced focus on descriptive stiat; and
(vi) there is a failure to integrate error modedseloped in other fields.

| believe that a primary source of these weaknedssbe design-based tradition of survey
inference, making it difficult to harmonize in agle inference the design-based approach for
sampling errors and model-based approach neededfesampling errors. An explicitly model-
based CB representation of the TSE concept, dralagagily on Rubin’s unified concepts of
causal inference and missing data (Rubin 1974)yesdds many of the failures in implementing

the TSE paradigm.

4.8. Incorporating information from multiple data sources.The modeling paradigm of CB is
particularly relevant to problems of combining dataoss data sources. The design-based
paradigm can incorporate known administrative dagayg methods such as poststratification or
raking, and methods from multiple frame probabiigmples, but a modeling framework like
CB is required for combining information from prdiildy samples with information from non-
probability sources, or sources where non-sam@ingrs need to be modeled. The topic is too

large for an extended treatment here, but seetB&iia Little (2005), Schenker and Raghunathan
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(2007), and Raghunathan et al. (2007) for examgfl@&ayesian approaches to combining

information from different data sources.

5. Two Census Bureau Applications

While DMC is the prevailing philosophy of statistiat the Census Bureau, there is an
increasing acceptance of model based, and eversBaymethods. In this section | describe two
small area estimation topics that are being adddesem a CB perspective.
Example 5. Small Area Income and Poverty Estimate3he U.S. Census Bureau Small Area
Income and Poverty Estimates (SAIPE 2011) aredatesal estimates of selected income and
poverty statistics for school districts, countiasd states, for the administration of federal
programs and the allocation of federal funds talqarisdictions. Data from administrative
records, intercensal population estimates, andéaennial census are combined with direct
estimates from the American Community Survey tovjgi® consistent and reliable single-year
estimates. Direct survey estimates (from the CufPepulation Survey, CPS, or more recently
from the American Community Survey, ACS) are tooeliable for many areas, and a
small area model is applied to integrate surveq dath data from administrative records and

the previous census long form. The basic form efrtiodel (Fay and Herriott 1979) is

v.16,.v, ~N@,.v,)
6,18.0° ~NKXB.0%)

wherey, is the direct survey estimate of population qugifor areaa, v, is the sampling
variance ofy,, X, is a vector of regression variables for amewdth associated regression
parameterg, ands” is the variance of small area random effectsialhjtthe variances, ands?
were treated as known, but more recent formulati@ve included prior distributions as part of

a Bayesian formulation.
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In particular, for the State poverty rate modeldges 5-17, the direct survey estimagtes
were originally from CPS, but since 2005 are fréve ACS; the regression variablesn
include a constant term and, for each state, pspaderty rate for children from tax return data
Table 1. Posterior Variances from SAIPE State MéoieR004 CPS 5-17 Poverty Rates

Results for four states

State Ny Va | Var(Ys|data)| Approx. wt. onYy in E(Y;|data)
CA 5834 | 1.1 0.8 .61
NC 1,274 4.6 2.0 .28
IN 904 8.1 2.0 .18
MS 755 | 12.0 3.9 A3

Tax “nonfiler rate”, SNAP (food stamp) participaticate, previous census estimated state 5-17
poverty rate, or residuals from regressing previ®Isus estimates on other elements fafr

the census year. Table 1 presents CPS samplalsie, variancev, and posterior variance for
four states from the State Model for 2004 CPS Baverty Rates. For California (CA), the
sample size is large, most of the weight (61%hish@ direct estimate, and the posterior
variance (0.8) is not much smaller than the divactance (1.1). For Mississippi (MS), the
sample size is small, most of the weight (87%)nidlee model prediction, and the posterior
variance (3.9) is much smaller than the directarare (12.0). The other two states lie between

these two.

Example 6: Language Provisions of the Voting Rightéct. The Voting Rights Act determines
that certain counties and townships are requirgduide language assistance at the polls.

Determinations are based in pantthere being more than 5 percent of voting afijgecis in a
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political district who are members of a single laage minority and are limited English
Proficient (LEP). The Census Bureau is charged dattermining which jurisdictions are
covered under the Act, and until now have usedtlgstimates from Long Form Decennial
Census Data. With the replacement of the long festimates are henceforward to be based on
the smaller ACS, and some districts have small A@8ples and hence have direct estimates
with unacceptably high variance. The 2011 detertiina use a small area model that combines
information from the 2005-2009 ACS and 2010 Certfaia. To see why a model is needed, let
P be the proportion of voting age citizens in a ngtdistrict who are members of a single
language minority and are LEP. Suppose the ACSavgasiple random sample; then a direct
estimate oP is the sample proportian/n, wheren is the sample count of voting age citizens in
a district, andnis the number of minority voting age citizenshat district who are LEP. For a
small District A withn=105 m=5, m/n < 0.05, and the 5% provision would not apply, butdor
District B withn=105 m=6, m/n > 0.05 and the 5% provision would apply. That ishange in

the sample count of just one changes the outconsenall area model is applied to increase the
precision of the estimate, and hence the religlolitthe outcome.

The approach to the “more than 5%” provision walsuibd a district level regression
model to predicP based on variables in the ACS, and Census 20Ittcofiminority groups.
Classify districts into classes with similar pradtP based on the model -- predictive mean
stratification; and then within classes, apply er&ichical random-effects model that pulls the
direct ACS estimate d® towards the averadefor districts in that class; and compare the model
estimate with 5% for this aspect of the determoratComparison of the Bayesian model
estimates with the direct ACS estimates indicaéegd gains in precision, particularly for the

small voting districts. The predictive mean stiagifion is used to reduce dependency on model

31



assumptions, since the regression model is usgtgp similar jurisdictions rather than to

create direct predictions. See Joyce et al. (2fk2nore details.

6. Conclusions

I have argued for a paradigm shift in official gats, away from the current DMC
towards Bayesian models that are geared to yiéddances with good frequentist properties. My
design-based statistical colleagues raise two ipahobjections to this viewpoint.

First, the idea of an overtly model-based, everse@ayesian, approach to probability
surveys is not well received, although the calidgtart of CB welcomed for its focus on good
randomization properties. Models are mistrusted,sdmould be avoided at all costs! My view is
simply that classical design-based methods do mtigee the comprehensive approach needed
for the complex problems that increasingly arisefircial statistics: small area estimation,
nonresponse and response errors, file linkage amtbiaing information across probabilistic and
non-probabilistic sources. Judicious choices of-walibrated models are needed to tackle such
problems. Attention to design features and objegpirrors can yield Bayesian inferences that
avoid subijectivity, and modeling assumptions aggieix, and hence capable of criticism and
refinement.

The second objection is that Bayesian methodsoaredmplex computationally for the
official statistics world, where large numbers ofitine statistics need to be computed correctly
and created in a timely fashion. It is true thatent Bayesian computation may seem forbidding
to statisticians familiar with simple weighted stts and replicate variance methods. Sedransk
(2008), in an article strongly supportive of Bagesapproaches, points to the practical

computational challenges as an inhibiting featuagree that much work remains to meet this
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objection, but | do not view it as insuperable. &&sh on Bayesian computation methods has
exploded in recent decades, as have our compugatiapabilities. To take as an example my
research area of missing data, methods have evbitwedsimple imputation methods, to
maximum likelihood for general patterns of missitga via iterative algorithms like EM, to
Bayesian multiple imputation methods for increalirggmplex models based on Gibbs’
sampling, now widely available in standard softw@iétle and Rubin 2002; Little 2011).
Bayesian models have been fitted to very largecanaplex problems, in some cases much more
complex than those faced in the official statisties|d.

Part of the problem here is a lack of familiaritigfwmodeling and Bayesian methods
among government statisticians, since unfamiligkgaare often easier than they seem. Clearly
government statisticians need to be skilled instteal computation, a better marriage is needed
between computer science and statistics, and tniidsre is needed to bring more sophisticated
analysis methods into production environments. &la@e challenging problems, but | do not see
them as insuperable, if there is recognition thaytare worth tackling.

The move to a more overt modeling approach medatgbvernment agencies need to
recruit and train statisticians who are adept ileting (and yes, Bayesian) methods, as well as
being familiar with survey sampling design. Surgaynpling needs to be considered a part of
mainstream statistics, in which Bayesian modelsititrporate complex design features play a
central role. A CB philosophy would improve statiat output, and provide a common
philosophy for statisticians and researchers irstguttive disciplines such as economics and
demography. A strong research program within gaweimt statistical agencies, including

cooperative ties with statistics departments irdanac institutions, would also foster
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examination and development of the viewpoints adednn this article (Lehtonen, Pahkinen
and Sarndal 2002, Lehtonen and Sarndal 2009).

Change is also needed before statisticians areited into government agencies.
Currently Bayesian statistics is absent or “optibimamany programs for training MS
statisticians, and even Ph.D. statisticians aendftained with very little exposure to Bayesian
ideas, beyond a few lectures in a theory sequeniceéncted by frequentist ideas. This is clearly
incompatible with the rising prominence of Bayesdmence, as evidenced by the strong
representation of modern-day Bayesians in sciet@gons (Science Watch 2002).

The examples in Section 5 are for me an encouragjygngthat the Census Bureau is more
open to the CB approach | favor, at least in theexd of small area estimation. | would like to
see it applied more generally to other problemsh ss the treatment of missing data, and
applications that require combining across datacgs, which are becoming more urgent with
the attempts to incorporate administrative recath éhto Census Bureau products. Aside from
the statistical benefits of modeling, direct suibgibn of administrative records may be
problematic because of privacy and legal issuetsyding the administrative records as
predictors in a model to impute missing recordsfisn more acceptable (Zanutto and Zaslavsky
2001).

When it comes to consumers of statistics, Bayesti® part of most introductory
statistics courses, so most think of frequenteistics as all of statistics, and are not awaa¢ th
Bayesian inference exists. Defenders of the staiosclaim that Bayesian inference is too
difficult to teach to students with limited matheinal ability, but my view is that these
difficulties are overrated. The basic idea of Bayasorem can be conveyed without calculus,

and Bayesian methods seem to me quite teachable @mphasis is placed on interpretation of
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models and results, rather than on the inner wgskof Bayesian calculations. Indeed, Bayesian
posterior credibility intervals have a much monedi interpretation than confidence intervals,
as noted above. Frequentist hypothesis testing @anic to teach to consumers of statistics, for
that matter!

Formulating useful statistical models for real geobs is not simple, and students need
more instruction on how to fit models to complichtiata sets. We need to elucidate the
subtleties of model development. Issues includdédh@wing: (a) models with better fits can
yield worse predictions than methods that fit theeyved data better; (b) all model assumptions
are not equal, for example in regression lack ofradity of errors is secondary to
misspecification of the error variance, which igum secondary to misspecification of the mean
structure; (c) If inferences are to be Bayesiamenadtention needs to be paid to the difficulties
of picking priors in high-dimensional complex masledbjective or subjective.

Models are imperfect idealizations, and hence maeeful checking; this is where
frequentist methods have an important role. Thesthods include Fisherian significance tests
of null models, diagnostics that check the modeliractions that are important for the target
inferences, and model-checking devices like pastg@nedictive checking and cross-validation.
Such diagnostics are well known for regression pgeuhaps less developed and taught for other

models, particularly when complex survey desigesiavolved.
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