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ABSTRACT

The Wiener-Kolmogorov (WK) signal extraction filter, extended to handle

nonstationary signal and noise, has minimum Mean Squared Error (MSE) for

Gaussian processes. However, the stochastic dynamics of the signal estimate

typically differ from that of the target. The use of such filters, although widespr-

ead, has been observed to produce dips in the spectrum of the seasonal adjust-

ments of seasonal time series. These spectral troughs correspond in practice

to negative autocorrelations at lag 12 (or negative seasonal autocorrelation),

a phenomenon corresponding to an annual stochastic cycle. So-called “square

root” WK filters were introduced by Wecker (1979) in the case of stationary sig-

nal and noise, to ensure that the signal estimate shared the same stochastic dy-

namics as the original signal, and thereby remove spectral dips. This represents

a different statistical philosophy: not only do we want to closely estimate a tar-

get quantity, but we desire that the dynamics of our estimate closely resemble

those of the target. The MSE criterion ignores this aspect of the signal extraction

problem, whereas the “dynamic matching” filters account for this issue at the

cost of accruing additional MSE. This paper provides empirical documentation

of the occurrence of negative seasonal autocorrelation in seasonally adjusted

data, and provides matrix formulas for filters that match the dynamics of the

desired signal, and are appropriate for finite samples of nonstationary time se-

ries. We apply these filters to 88 time series to produce seasonal adjustments

that have greatly reduced incidences of negative seasonal autocorrelation.
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1. INTRODUCTION

The principal task of seasonal adjustment methodology is to remove season-

ality. First, seasonality must be defined; given a precise mathematical defini-

tion, one can then devise statistical methods to remove the seasonality. See

Bell and Hillmer (1984) for a related discussion, and the antecedent Granger

(1978a, 1978b). Although there are many alternative definitions available, there

is generally agreement among seasonal adjusters that the presence of significant

positive seasonal autocorrelation does imply the presence of seasonality, and is

therefore a primitive concept – see Fase et al. (1973) and den Butter and Fase

(1991) for a discussion of empirical criteria used to judge seasonal adjustments.

Many seasonal adjusters require the presence of “nonstationary seasonality” –

i.e., sample seasonal autocorrelations (i.e., autocorrelations at lags that are a

multiple of the seasonal period) that decay extremely slowly over high lags – to

classify a time series seasonal. Also see the discussion in Findley et al. (1998).

For some practitioners, the presence of negative seasonal autocorrelation in the

seasonal adjustment might also be cause for concern (Granger, 1978a). The pa-

per at hand seeks to make several points: firstly, conventional signal extraction

techniques typically remove nonstationary seasonality, leaving behind residual

“stationary seasonal” effects; secondly, these residual seasonal effects are often

associated with negative seasonal correlations; thirdly, this effect can be greatly

attenuated by using modified “dynamic matching” filters, a model-based vari-

ant of classical seasonal adjustment filters.

Regarding the first point, there are many experts who view the expression

“stationary seasonality” as an oxymoron, since in their opinion quasi-periodic

effects that are mean-reverting will have a pattern that changes too quickly to

be classified as seasonal (Bell and Hillmer, 1984). Seasonality has been concep-

tually linked with nonstationarity and high positive seasonal autocorrelations.

Note that, in contrast, business cycles are typically stationary; if a business cy-

cle’s period were equal to one year, so that its modal frequency coincided with

the first seasonal frequency, we would observe the cycle as a “stationary sea-

sonal”. Therefore, to avoid the offense caused to some readers by the term
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“stationary seasonality”, we will use the term “annual cyclicality” instead. In

this paper, we consider seasonality in a broad mathematical sense – and not the

sense more narrowly prescribed by economic considerations – as constituting

quasi-periodic behavior, stationary or nonstationary as the case may be, asso-

ciated with the seasonal frequencies. This is indicated by large autocorrelation

values (either positive or negative) at lags that are a multiple of the seasonal

periodicity. When these correlations, as a function of the lag, exhibit geometric

decay, we refer to the phenomenon more specifically as annual cyclicality; this is

just a convenient choice of statistical nomenclature, and should not dismay any

readers on economic grounds. Likewise, we shall not refer to the phenomenon

observed by Nerlove (1964) and others – namely that seasonal adjustments tend

to exhibit negative seasonal autocorrelations – as residual seasonality, but rather

as residual annual cyclicality.1

Now if the reader may grant that the presence of nonzero seasonal au-

tocorrelations in a seasonally adjusted series may – when the correlations are

sufficiently large – be a possible cause for concern, it is natural to ask: how does

this phenomenon arise? It is well-known that MSE optimal filters produce ex-

actly this type of behavior in seasonally adjusted series, as described in Nerlove

(1964), Sims (1978), Tukey (1978), and Bell and Hillmer (1984). We review this

material in Section 2, also demonstrating that the typical effect of this optimal

filtering is to yield spectral troughs at seasonal frequencies, which is manifested

in the time domain as negative seasonal autocorrelations. The general concept

here has been established by older literature, which is reviewed, but we provide

some specific illustrations pertinent to our case.

Now for many authors, the recognition of the phenomena is an end to the

matter (Sims (1978) and Tukey (1978) express this opinion, as well as Bell and

Hillmer (1984)), although an alternative filter that avoids this behavior – at the

cost of some additional MSE – was proposed by Wecker (1979) and reiterated in

Ansley and Wecker (1984).2 The chief objections to their proposal are: (i) one

1 Properly speaking, a cycle corresponds to a spectral peak, and hence to positive autocor-
relations of appropriate lag, whereas a spectral trough with negative autocorrelations is some-
times referred to as an anti-cycle. Here we use the terms cycle and cyclicality to embrace both
peak and trough at once.

2 The authors demonstrate that their proposed filters minimize MSE subject to the con-
straint of matching the target signal’s dynamics. A similar result can be derived for the case of
nonstationary signal and noise processes.
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should not deviate from MSE optimal filtering, since this gives the minimal

overall error; (ii) their suggestion is developed for bi-infinite stationary time

series, so its practical implementation is unclear. A combination of these two

issues has prevented the Ansley and Wecker (1984) method – hereafter AW –

from becoming widely used. We provide some discussion of (i) in Section 2,

arguing that the objective of seasonal adjustment is not simply the most “ac-

curate” signal extraction possible, but one that produces a filter output whose

dynamics are most compatible with a non-seasonal time series. Ultimately, this

is a matter of personal opinion, as is much in the field of seasonal adjustment;

there are pros and cons to using MSE optimal filtering like any other statistical

tool.

To address (ii), this paper extends the AW approach to signal extraction

problems with nonstationary signal and nonstationary noise, from a finite sam-

ple of data. The theory is developed in Section 3. Since we no longer treat bi-

infinite time series, it is more appropriate to match the autocovariance matrices

of random vectors, rather than actual spectral densities, and therefore we in-

troduce the concept of “dynamic matching”. This means that the second-order

dynamics, i.e., the autocovariance function (acf) at a range of lags, is replicated.

The formulas that are derived are demonstrated to have the desired properties

when the noise is stationary. Given the usual model-based approach – the fit-

ting of component models through a structural (Gersch and Kitagawa, 1983)

or decomposition (Hillmer and Tiao, 1982) method – one can directly plug the

acf quantities into the formula and obtain the alternative seasonal adjustments.

A fairly large empirical study is conducted in Section 4. There we assess

the presence of residual annual cyclicality in economic time series via the tool

of the sample acf viewed at seasonal lags. Comparing the results of MSE opti-

mal filtering against the AW filters of this paper, we observe an overall reduction

in the presence of annual cyclicality in seasonally adjustments. A secondary as-

sessment of the AW filters is completed through revision variances and spectral

analysis – a comparison of gain and phase delay plots for concurrent filters from

both methods. Proofs are contained in the Appendix, and Section 5 concludes.

Although the proposal of alternative filters is tendentious and controversial,

and not suitable to everyone’s taste, we yet feel that the AW method is an in-

triguing technique that will be appealing to some practitioners.
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2. RESIDUAL ANNUAL CYCLICALITY

This section endeavors to first demonstrate how residual annual cyclicality arises

from the use of bi-infinite WK filters. Although the general concept is handled

in Ansley and Wecker (1984) and Maravall (1987), we provide specific illus-

trations that are pertinent to our context. Secondly, we set forth the lag 12

sample acf as a practical empirical measure of annual cyclicality in seasonal ad-

justments, and show how a notion of statistical significance can be associated

with this quantity.

It has long been known that WK seasonal adjustments, i.e., seasonal ad-

justments that arise from using a model-based WK methodology for filter-

ing, tend to have negative autocorrelations at lag 12. The accompanying phe-

nomenon in frequency domain is a dip in the pseudo-spectral density (i.e., the

spectral density of a stationary component process divided by the appropriate

unit root factors) in the neighborhood of the seasonal frequencies. This was

first noticed and documented in Nerlove (1964); subsequent literature includes

Grether and Nerlove (1970), Wecker (1979), Bell and Hillmer (1984), Ansley

and Wecker (1984), Maravall (1987), and Findley and Martin (2006). We refer

to this phenomenon as annual cyclicality – we avoid denoting it as residual sea-

sonality, because the periodic behavior is virtually always stationary, and hence

is not seasonal in the economic sense of the term. Some practitioners have

also referred to the phenomenon as “over-adjustment”, though we avoid using

this term, since it is vague, also referring to problems in seasonal adjustment

arising from using poorly fitted models (e.g., see McElroy (2008b)). The corre-

spondence between the time domain and frequency domain manifestations of

annual cyclicality is given mathematically by the formula

γ12 = 2

2π

∫ π

0
f (λ) cos(12λ)dλ,

which expresses the lag 12 autocovariance γ12 in terms of the spectral density f ;

the well-known shape of the cosine function positively weights values of f in
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the neighborhood of π/6, while negatively down-weighting values at least π/12

away. Although one cannot say that spectral seasonal troughs in f must imply

γ12 < 0, nonetheless this tends to be true in practice. This is demonstrated for

some explicit examples below.

Consider the case of a Box-Jenkins Airline model (Box and Jenkins, 1976)

fitted to a time series, from which a WK seasonal adjustment is generated ac-

cording to the canonical decomposition of Hillmer and Tiao (1982). Letting

fY , fT , fS, fSA denote the pseudo-spectra of the data process, the trend, the

seasonal, and the non-seasonal (equivalent to the sum of the trend and ir-

regular spectra) respectively, the pseudo-spectrum of the WK estimate of the

non-seasonal is f 2
SA/fY . This is an I (2) process, so after two non-seasonal

differences, we can meaningfully plot its acf. The formulas for these quan-

tities follow at once from Hillmer and Tiao (1982). Rather than reproduce

them here, we provide plots of pseudo-spectra and acfs for two choices of pa-

rameters – namely, (0.63, 0.42) and (0.36, 0.62) for the nonseasonal and sea-

sonal moving average parameters respectively – since this palpably illustrates

the phenomenon of residual annual cyclicality. These choices of parameters

correspond to two of the time series, m00190 and x3, discussed below. Figures

1 and 2 show the spectral dips at seasonal frequencies in f 2
SA/fY (indicated as

“WK SA”). We omit plotting fY and fS for clarity. The corresponding behavior

in the acf is immediately evident as well.

When does the WK estimate’s spectra correspond to its target? As noted in

Findley and Martin (2006), when fS and fSA have disjoint compact support,

then trivially f 2
SA/fY = fSA. Incidentally, WK signal extraction is also error-

less in this case, i.e., the MSE is zero. Unfortunately, this situation never arises

in the ARIMA model-based approach to signal extraction, since the pseudo-

spectra of ARIMA processes – including structural processes encountered in a

structural approach (Gersch and Kitagawa (1983) and Harvey (1989)) to the

problem, as in the time series software STAMP (Koopman et al., 2000) – have

a finite number of zeroes, not a continuum of zeroes. Thus the typical situa-

tion encountered by both SEATS (the seasonal adjustment program of the Bank

of Spain – see Maravall and Caporello (2004)) and STAMP (commercial soft-

ware for signal extraction) seasonal adjustments is essentially encapsulated by

Figures 1 and 2.
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Note: The left panel displays the pseudo-spectra corresponding to the canonical decomposition
of the (0.63, 0.42) Airline model. Spectra for trend, true non-seasonal, and seasonally
adjusted (WK) estimate are provided. The right panel displays autocorrelations for twice-
differenced non-seasonal and seasonally adjusted components.

Figure 1 Pseudo-Spectra and Autocorrelations for Components of a (0.63,

0.42) Airline Model
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Note: The left panel displays the pseudo-spectra corresponding to the canonical decomposition
of the (0.36, 0.62) Airline model. Spectra for trend, true non-seasonal, and seasonally
adjusted (WK) estimate are provided. The right panel displays autocorrelations for twice-
differenced non-seasonal and seasonally adjusted components.

Figure 2 Pseudo-Spectra and Autocorrelations for Components of a (0.36,

0.62) Airline Model
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Another observation is that annual cyclicality can also be manifested as

negative autocorrelations at lags 24 and 36 and higher multiples of 12. How-

ever, these correlations tend to be diminished. Although we have scrutinized

these higher lag correlations, no results on them are presented in this paper,

since the story at lag 12 is the most compelling and interesting, both in theory

and in practice.

Empirically speaking, actual seasonal adjustments – once appropriately

differenced – can be assessed for the presence of negative lag 12 autocorrela-

tion; all that is needed is to generate the sample acf plot for the differenced sea-

sonal adjustments. Of course there is the issue of what constitutes a statistically

significant value. We are trying to assess whether there is really any practical

discrepancy between the lag 12 autocorrelations arising from the WK seasonal

adjustments, versus the actual non-seasonal component itself. For the Airline

model, the actual non-seasonal component follows an IMA(2, 2) process. Its

two moving average parameters are determined by the Airline model param-

eters’ maximum likelihood estimates (mles) and the canonical decomposition

algorithm. Since we difference twice before computing the autocorrelations, we

can plug the MA(2) parameter values into Bartlett’s formula for the variance of

the sample acf (formula 7.2.5 of Brockwell and Davis, 1991). Critical values

assume a Gaussian distribution. Hence significant values can be interpreted

as a rejection of the hypothesis that the twice-differenced seasonally adjusted

estimate follows the given MA(2) model for the trend-irregular.

For example, consider series m00190 of Foreign Trade Imports (U.S. Cen-

sus Bureau). An Airline model in the original scale – with outliers and trading

day effects detected, but no Easter effect (see Findley et al., 1998) – was the best

fitting model according to X-12-ARIMA, and the model parameters are (0.63,

0.42). The resulting MA(2) model for the twice-differenced non-seasonal is

1 − 1.58B + 0.60B2. Given the series has 155 observations, the critical value

(based on a two-sided 0.95 confidence interval) is 0.218; the actual lag 12 sam-

ple autocorrelation is −0.382 (cf. Table 1). Now for these parameter values,

the lag 12 autocorrelation for the bi-infinite sample WK non-seasonal compo-

nent is −0.29.3 The reason for the discrepancy is that the actual non-seasonal

3 This refers to the component model identified by the canonical decomposition routine,
with parameters determined by algorithm from the Airline mles. We compute the autocorrela-
tions of the process with spectrum f 2

SA/fY , appropriately differenced.

41



TAIWAN ECONOMIC FORECAST AND POLICY 43:1 (2012)

Table 1 Results for Foreign Trade, Retail, and Housing Series

Series WK acf DM acf Crit DM/WK Rev

m00190 −0.382 −0.154 0.218 0.40 0.64

m12060 −0.264 −0.042 0.219 0.16 0.77

m12135 −0.148 −0.069 0.204 0.46 0.62

m12150 −0.230 −0.172 0.216 0.75 0.62

m12540 −0.027 −0.021 0.218 0.79 0.95

m21110 −0.151 −0.111 0.218 0.73 0.69

m21180 −0.198 −0.135 0.211 0.68 0.58

m21610 −0.220 −0.148 0.216 0.67 0.58

m22020 −0.260 −0.200 0.215 0.77 0.60

m3000 −0.250 0.007 0.211 0.03 0.64

m3010 −0.238 −0.089 0.213 0.37 0.55

m40020 −0.323 −0.079 0.195 0.24 0.59

m40110 −0.242 −0.238 0.219 0.98 0.93

m41140 −0.051 0.023 0.215 0.44 0.60

m41310 −0.314 −0.149 0.211 0.48 0.65

m42110 −0.409 −0.187 0.218 0.46 0.56

x00300 0.090 0.090 0.210 1.00 1.00

x10140 −0.311 −0.171 0.219 0.55 0.56

x11020 −0.134 −0.052 0.217 0.39 0.58

x12550 −0.060 0.057 0.213 0.96 0.58

x12600 −0.353 −0.274 0.215 0.78 0.58

x13200 −0.089 −0.052 0.217 0.58 0.65

x21000 −0.368 −0.305 0.218 0.83 0.53

x21030 −0.229 −0.229 0.214 1.00 1.00

x21150 −0.191 −0.150 0.217 0.79 0.61

x21500 −0.190 −0.122 0.214 0.64 0.57

x3020 −0.170 −0.002 0.215 0.01 0.53

x3 −0.023 0.097 0.212 4.29 0.57

x40000 −0.143 −0.050 0.210 0.35 0.62

x40030 −0.298 −0.225 0.214 0.75 0.58

x41020 −0.160 −0.068 0.214 0.43 0.55

x41120 −0.270 −0.126 0.215 0.47 0.56

x41140 −0.154 −0.154 0.217 1.00 1.00

x42100 −0.065 0.082 0.218 1.26 0.56

s0b44000 −0.291 −0.092 0.193 0.32 0.60

s0b44130 −0.343 −0.243 0.190 0.71 0.57
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Table 1 Results for Foreign Trade, Retail, and Housing Series (Continued)

Series WK acf DM acf Crit DM/WK Rev

s0b44312 −0.255 −0.078 0.175 0.31 0.59

s0b44500 −0.093 0.031 0.192 0.33 0.57

s1fam −0.180 −0.092 0.190 0.51 0.59

stot −0.053 0.025 0.198 0.47 0.60

us1fam −0.213 −0.104 0.179 0.49 0.56

wtot −0.039 −0.023 0.197 0.60 0.81

mw1fam −0.055 −0.055 0.189 1.00 1.00

mwtot −0.195 −0.195 0.197 1.00 1.00

Note: For time series of Foreign Trade Imports (m prefix), Foreign Trade Exports (x pre-
fix), Retail (s0b prefix), and Housing Starts, the lag 12 sample autocorrelation of
twice-differenced seasonal adjustments from both the WK and DM methodologies
is given, along with the critical value associated with a 5 percent rejection rate (see
Section 2 for discussion). The absolute ratio of the correlations is given in the fifth
column. The sixth column gives the ratio of DM revision variance to WK revision
variance, for the respective seasonal adjustments (see Section 4).

estimate is not computed from the single bi-infinite WK filter – as the com-

putations involving fSA presume – but rather a suite of time-varying filters of

finite length, as explicitly described in McElroy (2008a). It is known that the

model-based concurrent filter, for example, will produce an estimate whose

dynamics match those of the target (Bell and Martin, 2004). Since the actual

seasonal adjustment is an amalgam of concurrent and symmetric filters – and

all the asymmetric filters in-between these extremes – we cannot expect the lag

12 sample acf to match the theoretical quantity (there is also statistical error

involved).

So according to our criterion based on the Bartlett formula, significant

annual cyclicality exists in the WK seasonal adjustment of series m00190. As

another example, consider x3 of Foreign Trade Exports (U.S. Census Bureau),

with an Airline model identified as best for the untransformed data, with Trad-

ing Day and Easter effects identified and removed. X-12-ARIMA estimated

the parameters to be (0.36, 0.62), and the corresponding MA(2) for the non-

seasonal was 1 − 1.33B + 0.356B2. Having the same length as m00190, the
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critical value was 0.212 with lag 12 autocorrelation −0.02 (Table 1) – clearly

nonsignificant. The bi-infinite sample WK non-seasonal component has lag 12

autocorrelation −0.19, a wide discrepancy from the estimated value.

By repeating this latter exercise over a grid of parameters uniformly dis-

tributed over the unit square [0, 1]×[0, 1], one finds a remarkable relationship:

to a high degree of precision, the lag 12 autocorrelation for the bi-infinite sam-

ple WK non-seasonal is equal to (θ12 − 1)/2, where θ12 is the seasonal Airline

model parameter. The non-seasonal Airline model parameter has negligible

impact on this relationship. In the case of a stable seasonal (θ12 close to unity)

we expect to have less negative correlation, but the issue becomes more preva-

lent as the seasonal becomes more chaotic.

Generalizing from these two examples, we summarize our observations:

• For Airline processes, the stochastic properties of the WK estimate of the

non-seasonal differ from the properties of the true non-seasonal; this

is true not only of estimates based on bi-infinite samples (a known re-

sult), but also from estimates based on finite sample (which is empha-

sized here).

• Characteristic seasonal spectral troughs in the seasonal adjustment’s spec-

trum correspond to negative lag 12 autocorrelation.

• Actual annual cyclicality can be assessed through the sample acf with sig-

nificance determined by the Bartlett formula. The phenomenon may or

may not be significant.

In view of the last point, it is important to repeat the analysis over many time

series, drawn from different sectors of the economy, in order to gauge the over-

all prevalence of annual cyclicality in seasonal adjustments. This is carried out

in Section 4. But first in Section 3 we turn to a modified signal extraction proce-

dure, in the spirit of AW, that strives to reduce the incidence of residual annual

cyclicality.
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3. MATHEMATICAL TREATMENT OF DYNAMIC-
MATCHING FILTERS

In this section we discuss the DM filter, which is a n × n matrix that left-

multiplies the data vector Y = {Y1, · · · , Yn}′. Section 3.1 sets out some basic

conventions, and Section 3.2 gives explicit formulas for DM filter.

3.1 Defining the Component Models

We suppose that the signal and noise processes are ARIMA, with differencing

operators δS(z) and δN (z) respectively. These polynomials include only unit

roots, and are assumed to be of order dS and dN respectively. A crucial as-

sumption is that the two polynomials share no common factors; in practice this

is easily accomplished as follows. For the canonical decomposition approach to

component modeling, we have in mind an ARIMA model for the data of the

form

δ(B)Yt = 9(B)ϵt =: Wt ,

where 9(z) is a rational function (with no poles on the unit circle), and ϵt is

white noise. Since Yt = St +Nt , it follows that each factor of δ(B) must appear

as a “left-hand operator” in the ARIMA equation for either St or Nt (or both).

Making a priori allocations of the factors of δ(z) to either the signal or the noise

constitutes part of the definition of the components; we can choose to do this

in such a way that no factors are shared. This is sensible too, since the left-

hand operators δS(z) and δN (z) serve to define some of the key dynamics of

the signal and noise processes, so that making the operators distinct serves to

separate the components and assist in making them well-defined. For example,

suppose that a time series has the fitted ARIMA model (2, 1, 3) (0, 1, 1)12 given

by

(1 − 2ρ cos ωB + ρ2B2)(1 − B)2U(B)Yt = 2(B)ϵt ,

where ρ and ω control the strength and location respectively of a cycle, U(B) =
1 + B + B2 + · · · + B11 is the annual summation operator associated with
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nonstationary seasonality, 2(z) is an order 15 polynomial with zero coeffi-

cients at certain particular lags, and ϵt is white noise. If we are interested in

suppressing seasonality, then we naturally let δN (B) = U(B) – since this is

associated with the seasonal frequencies – and δS(B) = (1 − B)2, which cor-

responds to the trend frequencies. If instead we want cycle estimation, then

δN (B) = (1 −B)2U(B) and δS(B) = 1; the (1 − 2ρ cos ωB +ρ2B2) operator

will be an autoregressive operator defining the stationary signal component. If

we wish to detrend the series, then δN (B) = (1 − B)2 and δS(B) = U(B).

Once δ(z) has been partitioned among the signal and noise appropriately,

one typically assumes a balanced ARIMA process for each component, so that

the “right-hand operator” in each ARIMA equation has order equal to the left-

hand, i.e., we have an MA polynomial of order dS+p or dN +p for the signal or

the noise, respectively, where p is the order of any autoregressive polynomials

in the model. Note that because the factors are made distinct by construction,

the order of δ(z) is d = dS + dN . The MA polynomials for the signal and noise

component processes are then determined via partial fractions, as discussed in

Hillmer and Tiao (1982).

Hence, we will proceed from the standpoint that ARIMA models have been

found for each of the components, with the following notation:

δ(B)Yt = Wt = 9(B)ϵt ,

δS(B)St = Ut = 9S(B)ϵS
t ,

δN (B)Nt = Vt = 9N (B)ϵN
t .

This corresponds to the classical signal extraction scenario (Hillmer and Tiao,

1982). For ARIMA models, one typically assumes that the leading coefficients

of AR and MA polynomials are unity.

Next, for any polynomial g of order h we define 1(g) to be the (n−h)×n

matrix with entries given by 1ij = gi−j+h (with the convention that gk = 0

if k < 0 or k > h). This means that each row of this matrix consists of the

coefficients of the polynomial g, horizontally shifted in an appropriate fashion.

Alternatively, these can be defined via 1(g) = [0 1n−h]g(Ln) where Ln is the

lag matrix of dimension n, i.e., it has ones on the first sub-diagonal and zeroes
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elsewhere. Here 1 denotes an identity matrix. We are principally interested in

1(δ), 1(δS) and 1(δN ), which we write as 1, 1S and 1N for short. Thus

W = 1Y, U = 1SS, V = 1NN;

where W , U , V , S, and N are column vectors like Y . To express

Wt = δN (B)Ut + δS(B)Vt . (1)

in matrix form we need some additional notation. Let 1N = [0 1n−d]δN (Ln−dS
)

and 1S = [0 1n−d]δS(Ln−dN
), which have the same form as 1N and 1S , but

of reduced dimension. Then one can easily show (see Lemma 1 of McElroy and

Sutcliffe (2006)) that

1 = 1N1S = 1S1N . (2)

This is because 1N1S = [0 1n−d]δN (Ln−dS
)[0 1n−dS

]δS(Ln), which equals

[0 1n−d]δN (Ln)δ
S(Ln) = 1. Then we can write down the matrix version of

(1):

W = 1NU + 1SV. (3)

We also adopt the following notation: 0X denotes the covariance matrix of a

random vector X, and for any square integrable (possibly complex) function

f , 0(f ) is the corresponding covariance matrix with jkth entry

0jk(f ) = 1

2π

∫ π

−π

f (λ)eiλ(j−k) dλ.

Hence if X is stationary with associated spectral density f , then 0X = 0(f ). At

this point we can define the MSE optimal matrix formulas of McElroy (2008a)

for the signal extraction estimate, which we repeat for convenience.

M = 1′
N0−1

V 1N + 1′
S0−1

U 1S; (4)

F∗ = M−11′
N0−1

V 1N , (5)
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where F∗ is the MSE optimal filter matrix and M is the error covariance matrix.

There are a few other concepts that we need as well. The components in (3) are

essentially “over-differenced”, and will be referred to as ∂U and ∂V respectively,

as a short-hand. Then they have covariance matrices

0∂U = 1N0U1′
N ;

0∂V = 1S0V 1′
S .

Finally, we will need to consider the matrix square root of a given symmetric

positive-definite matrix (Golub and van Loan, 1996, p.149). (This is not the

same thing as the Cholesky decomposition.) Given such a symmetric positive-

definite matrix A, its singular value decomposition takes the form A = QDQ′

with Q orthogonal and D diagonal with positive entries. Then A1/2 = QD1/2Q′

by definition, and satisfies A1/2A1/2 = A. Moreover this square root is sym-

metric and has inverse QD−1/2Q′, which will be denoted A−1/2.

3.2 The Filter Formulas

A signal extraction filter F should reduce the noise process to stationarity, and

this condition can be expressed as F = G1N for some matrix G. In order to

avoid nonstationarity in the error process FY −S, we likewise require 1−F =
H1S for some matrix H , where 1 is the n × n identity matrix. These two

criteria together will be called the signal extraction conditions:

F = G1N ; (6)

1 − F = H 1S . (7)

We also say that a signal estimate FY is dynamic replicating if the estimate has

the same nonstationary differencing operator as S, and 1SFY has the same

covariance structure as 1SS. Since 1SFY = 1S Ŝ = Û should hold true if F

is sensibly constructed, we can parse this condition as

0Û = 0U . (8)
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Then under (8) the signal estimate Ŝ will have the exact same dynamics – i.e.,

same nonstationary differencing operator and same covariance matrix for its

differences – as S, which is why we call it dynamic replicating. A further de-

sirable quality is that F be centro-symmetric, i.e., Fij = Fn−i+1,n−j+1 (see

Dagum and Luati (2004) and McElroy (2008a)). In particular, the centro-

symmetry property implies that the asymmetric filters corresponding to the

first and last rows of F are reverses of one another, and the middle filter given

by the central row of F (when n is odd) is a symmetric sequence.

There is no unique filter matrix with these properties (6), (7), (8). More-

over, when the noise process is non-stationary the problem has no solution at

all, as the result below shows.

Proposition Consider a filter matrix such that (6) and (7) hold. Then (8) holds

iff δN (B) = 1, i.e., the noise process is stationary.

Since (6) and (7) are non-negotiable conditions for filtering, the Proposi-

tion indicates that we should relax the condition of dynamic replication. We

therefore introduce the concept of dynamic matching, which states that the sig-

nal estimate has the same nonstationary differencing operator as S, and 1FY

has the same covariance structure as 1S = 1NU . In other words,

1N0Û1′
N = 1N0U1′

N . (9)

Note that (8) implies (9), but not vice versa. They are, of course, the same

condition when δN (B) = 1. We use the term “matching” rather than “repli-

cating” to signify the weakened condition on the estimate’s dynamics. Then

dynamic-matching is the right concept, in the sense that filter matrices F exist

such that (6), (7) and (9) hold; this follows from the calculations in the proof

of the Proposition. However, these conditions are not enough to guarantee

uniqueness; there are actually many possible filter matrices. In order to ob-

tain a unique filter matrix, we add an additional condition that will also yield

centro-symmetry.

We suppose that fixed mean effects exist corresponding to the signal and

noise, so that we can write the observed data as Z = Y + Xβ = S + XSβS +
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N +XNβN , where the regression matrix X breaks into sets of columns XS and

XN corresponding to signal and noise mean effects, respectively, with associ-

ated parameter vectors βS and βN . Naturally these effects are annihilated by

the corresponding differencing operators, so that 1SXS and 1NXN are both

zero matrices. Our viewpoint is now that Y, S, N are mean zero stochastic pro-

cesses, with the fixed effects describing the expectations of Z, signal, and noise

(respectively). Then

FZ = XSβS + FY. (10)

so long as (6) and (7) hold. It may be of interest to extract the fixed effect

portion of the signal estimate FZ, namely XSβS (the mean zero portion is

FY ). Suppose we utilize the weighted least squares (WLS) estimate given by

β̃S = (X′
SD−1XS)−1X′

SD−1FZ, where D is some invertible matrix. Then

since 1N annihilates XS , by (10) we know that β̃S is the same if defined in

terms of Y rather than Z. Now if working with unfiltered data Z rather than

FZ, we have the WLS estimate

β̂S = (
X′

SD−1XS

)−1
X′

SD−1Z = βS + (
X′

SD−1XS

)−1
X′

SD−1 [Y + XNβN ] .

Note that in order to eliminate the noise mean functions, we must have

X′
SD−1XN = 0. Due to the structure of the regressor functions, one can show

that D−1 must have the form

D−1 = 1′
NP1N + 1′

SQ1S,

for symmetric matrices P and Q. For any such D, the difference in the esti-

mates, when based on the optimal filter matrix F∗, is

β̃S − β̂S = (
X′

SD−1XS

)−1
X′

SD−1 (FZ − Z)

= − (
X′

SD−1XS

)−1
X′

S1′
NP0V 1′

S0−1
W 1Y.

This will be zero, for all Y , iff X′
S1′

NP0V 1′
S = 0. This relation is implied by

P = 0−1
V , but this is not necessary. It follows from this discussion that β̃S = β̂S

when using the optimal filter F∗ and doing WLS with the matrix D = M−1
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given by (4). We will say that a filter matrix F is compatible with WLS regression

estimates based on a matrix D iff the resulting regression parameter estimates

are the same whether or not they are based on raw or filtered data, i.e., β̃S = β̂S .

This is a reasonable property to require of our filters, and will also result in a

unique – up to choice of a certain orthogonal matrix – filter.

Theorem Let F be a filter matrix that is compatible with WLS estimates based

on M−1, such that (6), (7), and (9) hold. Then the filter is uniquely given, up to

an indeterminate orthogonal matrix R of dimension n − d , by

F = M−1 (
1′

N0−1
V 1N − 1′0−1

∂V J1
) ;

J = 1 − 0W0
−1/2
∂U R0

−1/2
W .

Also F is centro-symmetric iff R is. F is dynamic-replicating, i.e., (8) holds, iff

the noise is stationary. In any case, the error covariance matrix is

M−1 + M−1 (
1′0−1

∂V J0WJ ′0−1
∂V 1

)
M−1. (11)

Remark It is shown in McElroy (2008a) that the minimal mean square error

signal extraction filter has error covariance matrix M−1; hence the second term

of (11) represents the additional error that results from the dynamic matching

approach. We also see from the formula for F that the DM filter equals the

MSE optimal filter F∗ minus a matrix term that fully differences the data.

For implementation of these results, one first obtains the component mod-

els using either a decomposition or structural approach. The requisite 1 and 0

matrices are then easily formed from the differencing, AR and MA polynomi-

als. Then it is a simple matter to form the filter matrix F from the Theorem,

utilizing singular value decompositions to compute the requisite matrix square

roots. Repeating this procedure for every desired signal, we obtain dynamic

matching estimates for all the components of interest. For example, if the data

has seasonal (S), trend (T ), and irregular (I ) components, then

Y = S̃ + T̃ + Ĩ + E,
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where S̃ denotes the DM estimate of S, etc. Here E is a remainder component–

unlike with WK smoothing, the filter matrices do not sum up to the identity

matrix. However, E will have mean zero, since each of the errors S̃ −S, T̃ −T ,

and Ĩ − I do. For the application of seasonal adjustment, we see three possible

ways of defining a seasonally adjusted component:

Y − S̃, T̃ + Ĩ , T̃ + I .

Only with the first definition do the estimated components for seasonal and

nonseasonal sum to Y , and only the last estimate will have the desired dynamic-

matching properties, in general. In this case, the remainder can be lumped in

with the seasonal as an undesirable portion of the series, i.e., we propose to

publish T̃ + I as the seasonal adjustment and Y − T̃ + I as the seasonal. This

preserves additivity of the components, which is important for statistical agen-

cies. Of course Y−T̃ + I is not a DM estimate of seasonality, but nevertheless it

will capture the main nonstationary seasonal patterns (since it equals (1−F)Y ,

and we may apply (7)).

One further point is that a choice of the orthogonal matrix R in Theorem

must be determined, such that it is centro-symmetric. For simplicity we choose

the identity matrix in all our applications below. In Section 4 below, we will

compute DM seasonal adjustments by the following procedure:

1. Fit a model to Y

2. Obtain the component models for seasonal, trend, and irregular (e.g., via

canonical decomposition)

3. Compute F from Theorem, and the DM seasonal adjustment is T̃ + I =
FY using R = 1n−d .

4. COMPARISON OF METHODOLOGIES

We now proceed to evaluate the DM filtering methodology of Section 3, in

comparison to the traditional WK approach (which is also explicitly described
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in Section 3). First, we look at 88 time series published by the U.S. Census

Bureau, and apply both methods to seasonally adjust each series. Comparisons

are then made between the lag 12 sample autocorrelations. Second, we examine

revision variances for both methods on all 88 time series. Thirdly, we plot the

signal extraction MSE curves for both methods applied to two series, m00190

and x3, as an illustration. Finally, we examine the gain and phase delay prop-

erties of concurrent WK and DM seasonal adjustment filters for a particular

Airline process.

Let us begin with a discussion of the data. Since it was our intention to

fix a particular model – due to its frequent identification in X-12-ARIMA as

well as its pedagogical appeal, we have chosen the Airline model – we began

with a large suite of series, performed automatic model selection, and retained

only those with a common model. Beginning with 19 Foreign Trade Import se-

ries (1989.1 through 2001.11), 20 Foreign Trade Export series (1989.1 through

2001.11), 10 Retail series (1992.1 through 2007.12), 10 Housing Starts series

(1992.1 through 2006.12), and 87 Manufacturing Value of Shipments series

(1992.1 through 2009.11), a subset of 88 series were best fit with an Airline

model – these are listed in Tables 1 and 2. Many of these 88 required a log

transformation and/or correction for regression effects (e.g., additive outliers,

level shifts, trading day, and holiday effects). Five of the 88 series had a seasonal

moving average parameter extremely close to unity – though X-12-ARIMA pre-

ferred the Airline model to a reduced model with seasonal regressors. See Find-

ley et al. (1998) for background concepts.

So for each of the 88 regression-adjusted series, we proceeded with appli-

cation of the WK and DM seasonal adjustment procedures (end of Section 3),

taking a log transformation first if needed. For an example of what these adjust-

ments look like, along with the accompanying MSE curves, see Figures 3 and

4. We summarize the overall patterns of residual annual cyclicality in Tables

1 and 2: the lag 12 sample autocorrelation for the twice-differenced seasonal

adjustments are reported, along with the corresponding critical value, which is

computed in the manner described in Section 2. Significant autocorrelations

are in bold font. Now by reckoning up the number of significant WK sea-

sonal adjustments, and for how many of these the corresponding DM seasonal
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Table 2 Results for Manufacturing Series

Series WK acf DM acf Crit DM/WK Rev

u11avs −0.247 −0.049 0.180 0.20 0.57

u11bvs −0.197 0.041 0.164 0.21 0.55

u11cvs −0.091 0.002 0.177 0.02 0.57

u11svs −0.189 −0.023 0.180 0.12 0.56

u12avs −0.215 0.026 0.182 0.12 0.59

u12bvs −0.118 0.009 0.186 0.07 0.57

u14svs −0.064 0.068 0.176 1.06 0.54

u15svs −0.240 −0.068 0.177 0.28 0.58

u16svs −0.306 −0.055 0.178 0.18 0.60

u21svs −0.170 −0.051 0.164 0.30 0.57

u22avs −0.050 0.143 0.164 2.83 0.59

u24svs −0.117 0.003 0.165 0.02 0.59

u25bvs −0.096 0.122 0.185 1.27 0.61

u25svs −0.121 0.000 0.164 0.00 0.59

u26svs −0.140 0.070 0.180 0.50 0.57

u31cvs −0.182 −0.010 0.178 0.06 0.56

u33avs −0.235 −0.079 0.176 0.33 0.57

u33dvs −0.105 0.033 0.178 0.31 0.56

u33gvs −0.099 0.047 0.179 0.47 0.55

u33ivs −0.270 −0.100 0.182 0.37 0.56

u34jvs −0.056 0.103 0.184 1.84 0.57

u35avs −0.167 0.038 0.184 0.23 0.59

u35bvs −0.274 −0.087 0.184 0.32 0.65

u35cvs −0.284 0.030 0.185 0.11 0.61

u35dvs −0.197 0.019 0.185 0.10 0.61

u35svs −0.232 −0.011 0.183 0.05 0.59

u36avs −0.140 −0.015 0.182 0.11 0.57

u36bvs −0.161 0.005 0.181 0.03 0.56

u36svs −0.119 0.032 0.182 0.27 0.57

u36zvs 0.007 0.060 0.185 8.23 0.63

u37svs −0.281 −0.084 0.176 0.30 0.56

uanmvs −0.246 −0.045 0.164 0.18 0.55

ubtpvs −0.141 −0.005 0.180 0.04 0.58

ucdgvs −0.204 −0.024 0.180 0.12 0.56

ucmsvs −0.353 −0.129 0.170 0.37 0.55

ucngvs −0.226 −0.033 0.179 0.15 0.57
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Table 2 Results for Manufacturing Series (Continued)

Series WK acf DM acf Crit DM/WK Rev

ucogvs −0.316 −0.086 0.182 0.27 0.59

udapvs −0.128 −0.040 0.185 0.31 0.58

umtmvs −0.305 −0.017 0.176 0.06 0.58

umvpvs −0.189 −0.036 0.181 0.19 0.57

umxdvs −0.307 −0.012 0.174 0.04 0.58

unapvs 0.097 0.097 0.185 1.00 1.00

uodgvs −0.246 0.027 0.177 0.11 0.57

utgpvs −0.298 −0.056 0.184 0.19 0.60

Note: For Manufacturing series, the lag 12 sample autocorrelation of twice-differenced
seasonal adjustments from both the WK and DM methodologies is given, along
with the critical value associated with a 5 percent rejection rate (see Section 2 for
discussion). The absolute ratio of the correlations is given in the fifth column. The
sixth column gives the ratio of DM revision variance to WK revision variance, for
the respective seasonal adjustments (see Section 4).

adjustments are significant, we can get an overall idea of the empirical perfor-

mance of the methods. We summarize over all 88 series, although results were

not remarkably different if we restrict to just Manufacturing or just Foreign

Trade.

We find that 46 out of 88 series had significant annual cyclicality in the

WK SAs. Out of these 46 series, 40 did not have significant annual cyclicality

in the DM SAs. That is, 87 percent of the “problematic” series were “fixed” by

the DM procedure. Six of the 46 series were not “fixed” by the DM procedure,

although the overall magnitude of lag 12 autocorrelation tended to decrease.

Of the other 42 series for which there was no significant annual cyclicality in

their WK SAs, none of them had significant annual cyclicality in their DM SAs;

so the DM procedure never made things worse than the WK procedure.

However, because our null hypothesis – that the WK estimate’s γ12 is not

significantly different from the γ12 for the true component – is known a priori

to be false, some readers may find formal testing to be unhelpful in gauging

the empirical prevalence of residual annual cyclicality. Another approach is to

just chart the ratios of γ̂12 for the WK and DM estimates. So we also assess
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Note: The left panel displays the m00190 series with both the DM and WK seasonal
adjustments. The right panel displays the MSE curves from both the DM and
WK methods, in units of the innovation variance. The fitted model was a (0.63,
0.42) Airline model.

Figure 3 Seasonal Adjustments and MSE Curves for the m00190 Series
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Note: The left panel displays the x3 series with both the DM and WK seasonal adjust-
ments. The right panel displays the MSE curves from both the DM and WK
methods, in units of the innovation variance. The fitted model was a (0.36,
0.62) Airline model.

Figure 4 Seasonal Adjustments and MSE Curves for the x3 Series
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performance by taking the absolute ratio of lag 12 sample autocorrelations for

the DM and WK SAs, which is reported in Tables 1 and 2. Values less than one

favor the DM method. This generally happened, with exceptions falling into

two classes. In two cases the WK autocorrelation was indeed much less, but

both correlations were close to zero and non-significant. In five other cases the

autocorrelations were exactly the same for the two methods – this arose when

the seasonal moving average parameter was close to unity. Here, the value of the

parameters makes the matrices F∗ and F almost identical, so that the SAs are

really the same. The average of all the ratios was 0.608 – overall, the DM gives

a 39 percent reduction in lag 12 sample autocorrelation over the WK method.

Moreover, except for the seven cases described above, DM always reduced the

magnitude of γ̂12 as compared to WK.

We make one other observation here. In our empirical work, we experi-

mented with what happens when the DM and WK methods are utilized with

parameter values other than the mles. This really tended to ruin the DM meth-

od’s matching properties, as we would expect from the Theorem; the result-

ing autocorrelations then did not improve measurably over those from the WK

method. This indicates that correct model specification and good fit – such as

provided by mles – is required for the DM method to be practically useful.

Now let us consider the issue of revisions. A signal extraction revision is

defined as an update to a previous estimate when new data becomes available

(see McElroy and Gagnon (2008) for discussion). If new data have lots of per-

tinent information about the signal, we can expect large revisions – this should

be viewed favorably, since we are improving on an obsolete estimate, although

statistical agencies tend to be nervous when revisions are large and are aware

that they bewilder many users. Application of a WK filter always decreases the

series’ variance, because the gain function is bounded between 0 and 1. There-

fore they tend to smooth series, which indicates that we can expect substan-

tial revisions in practice. The DM approach does less smoothing: in AW it is

shown that its gain (for the case of stationary bi-infinite series) is the square

root of that of the WK filter, resulting in a larger number. Hence, we should

expect revisions to be smaller for the DM method, which is indeed the case in

practice.
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Ultimately, preliminary signal extraction estimates are revised to a final

estimate. This could be viewed asymptotically as the output of a bi-infinite filter

that uses the maximum possible set of information. Note that AW derives a

frequency domain expression for a dynamic-replicating filter for stationary bi-

infinite time series; the extension to the non-stationary case is currently being

studied by the author. Now the final dynamic-replicating estimator discussed in

AW differs substantially from the final WK estimator – the former’s frequency

response function being the square root of the latter’s. We emphasize that our

discussion of revisions is in terms of preliminary to final estimates (though for

finite samples), for each method, and these final estimators are indeed different.

To fix ideas in our study of revisions, we consider estimating the non-

seasonal component at a given time t based on the 120 present and past ob-

servations (i.e., a concurrent estimate of the signal). This initial estimate is

updated 12 months later; the new estimate is based on the asymmetric filter

of length 132, that uses 12 future observations (i.e., future to time t , which is

fixed, but now available to us) and 120 present and past observations. In this

manner revisions can be computed – for either the DM or WK SAs – by win-

dowing through each series, taking as many windows of length 132 as can be

contained. We call the average of the square of these revisions the revision vari-

ance (this is an empirical quantity; theoretical variances could be calculated

for the DM filter by extension of the formulas in McElroy and Gagnon (2008),

which handle the WK case). Note that we have fixed the model and mles for

the entire data span, so this revision variance is “in-sample”. Of course, results

will depend upon this choice, as well as the window size (120) and revision lead

(12), and this tempers our findings accordingly. However, the revision variance

pattern in the final column of Tables 1 and 2 is remarkable, none of the ratio

being greater than unity. The average of the ratios over the 88 series is 0.624, a

38 percent reduction of the WK revision variance. For those agencies favoring

small revisions to SAs, the DM method may be appealing.

However, as in all things, there is a tradeoff to using the DM method. The

WK method minimizes MSE, so the signal extraction error is higher with the

DM method. Its MSE can be computed using the Theorem; see the Remark of

Section 3. We plot these MSE curves for both methods, for the series m00190
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and x3, in Figures 3 and 4. The irregular convex shape is a well-known phe-

nomenon; higher error is present at the sample boundaries due to increased un-

certainty in concurrent filtering, whereas the oscillations arise from the finite-

sample aspect of the model (Bell, 2005; McElroy, 2008a). Comparing the mini-

mum MSEs for the WK and DM methods, and taking the ratio of the former to

the latter, we find that the WK MSE is 86.9 percent of the DM MSE for m00190,

whereas the number is 93.7 percent for the x3 series. We can also compare MSEs

at the boundary of the sample – corresponding to concurrent estimators – and

obtain the percentages 84.4 and 90.1 respectively. This increase in the DM MSE

can be weighed against the decrease in revision variance.

A final comparison between the methods is afforded by comparing gain

and phase delay plots for concurrent filters. As discussed in Findley and Mar-

tin (2006), (squared) gain plots can be used to assess how a filter attenuates the

variance of a stationary time series at various frequencies, whereas the phase de-

lay gives information about how much lag a filter induces on a stationary time

series at each frequency. We refer the reader to Findley and Martin (2006) for

details on definitions; note that we construct the continuous phase delay func-

tion, which can be done by introducing a ± sign to the gain function. When we

plot the corresponding gains, we take the absolute value (these functions would

be squared to understand their impact on variances). Graphs are provided (Fig-

ures 5 and 6) for the (0.63, 0.42) Airline model of m00190 and the (0.36, 0.62)

Airline model of x3, with concurrent filters arising from the respective series

(so length 155) analyzed for both the WK and DM methods.

The first gain plot (Figure 5) has the characteristic “nose” in the low-pass

band, a known feature with low-pass (e.g., trend or seasonal adjustment) con-

current filters (cf. Findley and Martin, 2006). The dips at seasonal frequencies

serve to annihilate poles in the data pseudo-spectrum. Note that the DM filter

has narrower dips, which facilitates dynamic matching. Also, the higher humps

of the DM filter indicate that less smoothing of the middle and high frequencies

occurs, as compared to the WK – this is consistent with the output in Figures 3

and 4. The oscillations in the humps are a known finite-sample phenomenon

(Findley and Martin, 2006).

The phase delay plots are to be read as follows: at each frequency, the corre-

sponding ordinate tells you how much the corresponding harmonic in the data
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Note: The left panel displays the gain functions for the concurrent filters used on the
m00190 series, for both the WK and DM methods. The right panel displays the
two phase delay functions for the concurrent filter used on the m00190 series, for
both the WK and DM methods.

Figure 5 Gain and Phase Delay Functions for the m00190 Series
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Note: The left panel displays the gain functions for the concurrent filters used on the x3
series, for both the WK and DM methods. The right panel displays the two phase
delay functions for the concurrent filter used on the x3 series, for both the WK and
DM methods.

Figure 6 Gain and Phase Delay Functions for the x3 Series
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is delayed in time by the action of the filter. This amount of delay is between

0 and 6 months, in these cases. Now it is desirable that a concurrent low-pass

filter have less phase delay in its low-pass band, since this allows for timeliness

and reduced bias in trends and non-seasonal components. Although the over-

all contours are similar in both Figures 5 and 6, the DM filter has less phase

delay in the low-pass band (roughly speaking, frequencies between 0 and 0.1

or 0.2, say). This is an encouraging and intuitive result: since the WK method

does more smoothing, we can expect it to have greater phase delay in the low

frequency band.

5. CONCLUSION

This paper’s empirical work shows the presence of annual cylicality in model-

based seasonal adjustments arising from the Wiener-Kolmogorov (WK) filter-

ing methodology (Tables 1 and 2). Although this phenomenon has been known

to exist for more than four decades, our methods of quantifying it are new and

easily applied in practice (the Bartlett confidence thresholds of Section 2). More

importantly, we have presented an extension of the AW methodology to finite

samples drawn from non-stationary time series (the Theorem of Section 3),

called the dynamic matching (DM) approach. This represents a non-trivial ex-

tension of the AW idea. Our extensive empirical study of 88 economic time

series shows that DM improves upon the WK approach, in terms of reducing

the presence of annual cyclicality in adjusted series (Section 4). However, DM

seasonal adjustments have higher MSE. This is the principal tradeoff.

Of course there are other issues to assess in a comparison of methods. We

have hit upon some of the topics of most interest to practitioners – namely,

revision variance and phase delay (Section 4 and Figures 5 and 6). It might

also be asked: what of the implementation of the DM method versus the WK?

And what of computational speed? The direct encoding of F in the Theorem

requires virtually no additional effort beyond that of F∗ in (5), if one adopts a

matrix-based approach to signal extraction. This is also far easier than imple-

menting a state space algorithm; our R code is available upon request from the

author. As for speed, the required matrix inversions are extremely fast for series
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of moderate length (i.e., less than 30 years of data), those commonly encoun-

tered in seasonal adjustment practice.

Another feature of the DM method is that estimates of signal and noise

do not aggregate to the original process, as it does with the WK method. It

is a common phenomenon that quantities no longer satisfy innate aggregation

relations after the application of a statistical procedure – this has spurred many

efforts in the time series literature on benchmarking and reconciliation. The

enforcing of aggregation relations necessarily destroys the statistical properties

enjoyed by the original estimates (except in the rare case that these properties

are invariant to the reconciliation procedure). One may not retain both the DM

property and the additivity of signal and noise estimates, except in the special

case that true signal and noise are decoupled – i.e., the product of their pseudo-

spectra is identically zero. This case does not arise in ARIMA-modeling of time

series, though the WK approach would be dynamic matching.

We have written this paper with an audience of seasonal adjustment prac-

titioners in mind. We have attempted to clearly lay out the pros and cons of

both the DM and WK methods in an honest manner. The AW philosophy may

be appealing to some, the benefits of reduced annual cyclicality and revisions

outweighing the increased MSE; others may prefer to retain the classical WK

approach instead. However, there is little cost to examining both seasonal ad-

justments; one can view the lag 12 sample autocovariance of the differenced

seasonal adjustments, assess against the Bartlett-based significance levels, and

then decide upon which method to utilize.
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APPENDIX 1 PROOF OF THE PROPOSITION

By (6) and (7), we have 1SF = 1SG1N = (1 − 1SH)1S . It follows from

(4) and results in McElroy (2008a) that 1SM−11′
N = 0U1′

N0−1
W 1S0V ; also

1NM−11′
N is invertible with inverse 0−1

V + 1′
S0−1

∂U1S . Then if we multiply

1SG1N = (1 − 1SH)1S on both sides by M−11′
N (1NM−1 1′

N )−1, we

obtain

1SG = (1 − 1SH)1SM−11′
N

(
1NM−11′

N

)−1

= (1 − 1SH)0U1′
N0−1

∂U1S,

which implies that 1SF = B1 for a matrix B = (1 − 1SH)0U1′
N0−1

∂U , i.e.,

the signal-differenced filter matrix first does δ(B)-differencing on the data. We

also note that 1SM−11′
S is invertible with inverse 0−1

U + 1′
N0−1

∂V 1N . Thus a

similar calculation to that given above will yield

1NH = (1 − 1NG)1NM−11′
S

(
1SM−11′

S

)−1

= (1 − 1NG)0V 1′
S0−1

∂V 1N ,

so that 1N (1 − F) = C1 with C = (1 − 1NG)0V 1′
S0−1

∂V . So 1 = 1F +
1(1 − F) = 1NB1 + 1SC1, and multiplying this by 1′(11′)−1 we obtain

1NB + 1SC = 1. (A.1)

Then we obtain 1NF = 1N −C1 = (1−C1S)1N , and it follows from (A.1)

and (5) that

MF = 1′
N0−1

V (1 − C1S)1N + 1′
S0−1

U B1;
F = F∗ + M−1 (

1′
S0−1

U B − 1′
N0−1

V C
)
1.
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Now the estimate of the differenced signal is Û = 1S Ŝ = 1SFY = BW .

Hence 0Û = B0WB ′, and B is n − dS × n − d dimensional. Now (8) holds iff

0U = B0WB ′, which has no solution unless dN = 0, in which case B is square

and equals 0
1/2
U R0

−1/2
W for some orthogonal matrix R. Proceeding under the

assumption that dN = 0, note that all occurrences of 1N can be replaced by

identity matrices, and also V can be replaced by N (likewise 0N substitutes for

0V , and 1S replaces 1S , etc.). In this case we obtain

F = F∗ + M−1
(
1′

S0
−1/2
U R0

−1/2
W − 0−1

N C
)

1,

where 1SC = 1−B. Then any choice of R and C (e.g., C = 1′
S(1S1′

S)−1(1−
B)) yields a filter matrix with the desired properties.

APPENDIX 2 PROOF OF THE THEOREM

From the proof of the Proposition we know that under the stated conditions

(6) and (7) the matrix has the form

F = F∗ + M−1 (
1′

S0−1
U B − 1′

N0−1
V C

)
1.

But the compatibility condition (for both signal and noise) requires that 0 =
X′

N1′
S0−1

U B and 0 = X′
S1′

N0−1
V C, which – due to the fact that X = [XS XN ]

and 1NXN = 0 = 1SXS – is equivalent to X′A = 0, where A = 1′
S0−1

U B −
1′

N0−1
V C. By linear independence of the columns of X, and the fact that they

all lie in the null space of 1 (cf. the proof of Lemma 2 of McElroy and Sutcliffe

(2006)), we must have A′ equal to a linear combination of 1, or in other words

A = 1′
S0−1

U B − 1′
N0−1

V C = 1′K, (A.2)

for some matrix K . Applying 1SM−1 to the left hand side of (A.2) then yields

(after much algebra) B = 0U1′
N (K + 0−1

∂V 1SC). Likewise, applying 1NM−1

to the left hand side of (A.2) produces C = −0V 1′
S(K − 0−1

∂U1NB). This

shows that B = 0U1′
NQ and C = 0V 1′

SP for some matrices Q and P . Then

under condition (9) we obtain 0∂U = 0∂UQ0WQ′0∂U , and by the singular
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value decomposition we obtain Q = 0
−1/2
∂U R0

−1/2
W for some orthogonal R.

So B = 0U1′
N0

−1/2
∂U R0

−1/2
W , and from (A.1) we obtain C = 0V 1′

S0−1
∂V (1 −

0∂UQ). Now plugging these formulas in and simplifying yields the stated ex-

pression for F .

To prove centro-symmetry, define the transverse-transpose of a square

matrix A to be A∗ with jkth entry An−k+1,n−j+1. Then A is centro-symmetric

iff A′ = A∗. Now from the definition of the matrix square root and the elemen-

tary properties (AB)∗ = B∗A∗ and A∗′ = A′∗, we find that (A1/2)∗ = (A∗)1/2.

It follows that if A is centro-symmetric, so is A1/2. Let C denote the space of

invertible centro-symmetric matrices. By the properties discussed in McElroy

(2008a), we have the following closure properties of this space: A,A + B ∈
C ⇒ B ∈ C; A,AB ∈ C ⇒ B ∈ C. Then it suffices to demonstrate

centro-symmetry of 1′0−1
∂V J1. So let 1̃ be shorthand for δ(Ln), noting that

[0 1]1̃ = 1. Then

1′0−1
∂V J1 = 1̃′

[
0 0

0 0−1
∂V

(
1 − 0W0

−1/2
∂U R0

−1/2
W

) ]
1̃.

Applying the operator ∗ yields

1̃∗
[ (

1 − 0
−1/2
W R∗0−1/2

∂U 0W

)
0−1

∂V 0

0 0

]
1̃′∗

= 1′ (1 − 0
−1/2
W R∗0−1/2

∂U 0W

)
0−1

∂V 1.

But so long as R ∈ C, this is the transpose of the original expression, which

establishes the centro-symmetry of 1′0−1
∂V J1, and hence F ∈ C. Finally, we

compute the signal extraction error covariance matrix. Note that F = F∗ +
M−11′0−1

∂V J1, so that the error process is

ϵ = FY − S = (F∗ − 1) S + F∗N + M−11′0−1
∂V JW.

This equals the error process for the optimal matrix filter F∗ – which is orthog-

onal to W (this is the optimality property) – plus a second term. Hence the

covariance matrix at once is shown to be given by (11).
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摘 要

當擴展 Wiener-Kolmogorov (WK) 訊號抽出濾器到非平穩數序列及

干擾時, 它對於高斯過程具有均方誤差 (MSE) 最小的特性。 然而, WK 訊

號估計的隨機動態性質卻經常與目標過程大相逕庭。 使用這廣為周知的

濾器, 它可能會在季節調整後時間序列的譜函數中產生凹點。 這些凹點符

合落後 12 期的負自我相關 (或負季節自我相關), 亦即存在全年隨機週期

的現象。 所謂的 「平方根」 WK 濾器是由 Wecker (1979) 在分析平穩的訊

號和干擾數列時提出的, 它能確保訊號估計與原始的數列有相同的隨機動

態, 亦即消除了譜凹點。 這說明了一個不同的統計原理: 我們不只想要估

計量能精準貼近目標值, 我們同時也希望估計量的動態也能很貼近目標的

動態。 MSE 標準忽略訊號抽出在這方面的問題, 然而 「動態匹配」 濾器雖

然會增加額外的 MSE, 它考慮並解決這個問題。 本文對於季節調整後序列

發生負季節自我相關這個現象提出一個實證研究, 並提供符合理想訊號動

態特徵且同時符合非平穩時間序列有限樣本下濾器的矩陣公式。 我們將

這些濾器應用到 88 個時間序列, 大幅降低出現負季節自我相關的頻率。
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