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ABSTRACT

Various authors – Cleveland and Tiao (1976), Burridge and Wallis (1984),

and Depoutot and Planas (1998) – have compared weight functions from

X-11 versus model-based seasonal adjustment filters. We suggest a different ap-

proach to comparing filters by computing the mean squared error (MSE) when

using an X-12-ARIMA filter for estimating the underlying seasonal component

from an ARIMA model-based decomposition, and comparing this to the MSE of

the optimal model-based estimator. This provides a criterion for choosing an

X-12 filter for a given series (model the series and pick the X-12 filter with low-

est MSE), and also provides results on how much MSE increases when using an

X-12 filter rather than the optimal model-based filter. Calculations for monthly

time series following the airline model with various parameter values show gen-

erally small increases in MSE for estimating the canonical seasonal component

by using the best X-12 filter instead of the optimal model-based filter. The re-

sults are much less favorable to the X-12 filters with a uniform prior distribution

on the white noise allocation in the seasonal model decomposition. Examina-

tions of simulated series show that, for the canonical decomposition, automatic

filter choices of the X-12-ARIMA program sometimes use shorter seasonal mov-

ing averages than are desirable.
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1. INTRODUCTION

The fixed filtering approach to seasonal adjustment, as implemented in the

original Census X-11 program (Shiskin et al., 1967) and its successors, X-11-

ARIMA (Dagum, 1975) and X-12-ARIMA (Findley et al., 1998), has been

widely used by government and industry. This approach relies on a finite set

of empirically developed moving averages. The user can either specify the par-

ticular moving averages used for a time series or let the program choose them

automatically according to some empirical criteria. An advantage to this ap-

proach is that it is relatively easy to use even for people with limited statistical

background. A disadvantage is that the reliance on a limited set of filters raises

the possibility of cases arising that are not well-handled by the available filters.

Another disadvantage is that the empirical criteria used by the program to au-

tomatically select filters do not follow from standard statistical principles that

would lead to certain optimality properties such as minimum mean squared

error (MMSE).

In contrast, a model-based approach to seasonal adjustment specifies stoc-

hastic models for the observed series and underlying components, and derives

seasonal adjustment filters from optimal signal extraction theory. The filters

used are thus determined by the model form specified, by assumptions made

about the component decomposition, and by estimates of the model parame-

ters. See Bell and Hillmer (1984) for discussion. The model-based approach of-

fers more flexibility in determining filters than the empirical filtering approach,

as well as providing for determination of filters according to standard statistical

principles.

To relate these two approaches, Cleveland and Tiao (1976) and Burridge

and Wallis (1984) proposed stochastic models leading to seasonal adjustment

filters close to linear filters used in the Census X-11 program. Chu (2000) ex-

tended this line of work further to provide models for 24 X-12 symmetric fil-

ters.1 These results can provide a model-based foundation for use of X-12 fil-

ters. However, the models developed to approximate the X-12 filters are rather

1 We use the term “X-12 filter” to refer to the filters available in the X-12-ARIMA program,
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complex, more complex than models used in practice, making this approach

rather cumbersome and vague in practice as a means of evaluating and choos-

ing X-12 filters. Depoutot and Planas (1998) and Planas and Depoutot (2002)

avoid complex approximating models by restricting consideration to the popu-

lar “airline” ARIMA model (Box and Jenkins, 1976), using the ARIMA model-

based seasonal decomposition approach of Hillmer and Tiao (1982) and Bur-

man (1980). They specifically focus on matching the weights of X-12 filters

with weights from model-based optimal filters under the “canonical decompo-

sition”.

In this paper we suggest a different approach to comparing X-12 linear

filters to model-based filters. More specifically, for a given ARIMA model we

compute the mean squared error (MSE) when a specific X-12 filter is used to

estimate the underlying seasonal component from the model-based decompo-

sition. This approach provides results on how much accuracy is lost (in terms

of increased MSE) by using an X-12 filter rather than the optimal model-based

filter. The approach also provides an objective means of choosing an X-12 filter,

namely, pick the filter that minimizes the MSE.

An issue that arises in the ARIMA model-based approach concerns uncer-

tainty about the model decomposition in regard to allocation of white noise

between the seasonal and nonseasonal components. We consider two options

for dealing with this uncertainty. One is to assume a particular white noise al-

location, such as the canonical decomposition of Hillmer and Tiao (1982) and

Burman (1980), which allocates all the white noise to the nonseasonal com-

ponent. The other option considered is to allow for uncertainty about the de-

composition by putting a prior distribution on the white noise allocation and

examining the average MSE over the prior. Here we obtain results for both

the canonical decomposition (which can be viewed as corresponding to a par-

ticular degenerate prior) and for a uniform prior over the admissible range of

though we could equally well use the term “X-11 filter,” as is done by some authors, such as
Depoutot and Planas (1998). The basic filtering approach of X-12-ARIMA (and also of X-11-
ARIMA) is that of the original X-11 program, and, in fact, the seasonal adjustment procedure
in the X-12 program is referred to as X11. Also, most of the filters used in X-12 were available in
the X-11 program, though X-12 does provide some additional choices based on a few seasonal
and trend moving averages not available in X-11.
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the white noise allocation. Bell and Otto (1992) also used these two cases in a

Bayesian approach to treating ARIMA model-based seasonal adjustment.

We should emphasize that the comparisons in this paper reflect differences

between X-12 and model-based seasonal adjustment only in regard to differ-

ences in their seasonal and seasonal adjustment linear filters. The comparisons

do not reflect any differences between them in other important aspects of the

process of seasonal adjustment. While this may be a limitation, it is worth

noting that some other major aspects of seasonal adjustment, such as model-

ing and adjustment for calendar effects (trading-day and holiday effects) and

outliers, are generally similar or even identical between X-12 and model-based

procedures. In particular, the new X-13ARIMA-SEATS program (U.S. Cen-

sus Bureau, 2012) addresses calendar effects and outliers via a common regres-

sion plus time series modeling front end used for either X-12 or model-based

(SEATS) seasonal adjustment. (But note that X-12’s replacements of “extreme

values” are in addition to the outlier adjustments and are not part of model-

based seasonal adjustment.)

In Section 2, we briefly review the ARIMA model-based approach to sea-

sonal adjustment and the white noise allocation issue. This sets up the frame-

work for developing our approach to comparing X-12 and model-based filters

in Section 3. Section 4 then presents results of such comparisons for a monthly

time series following the airline model for various combinations of the airline

model parameters. The results, which are given for symmetric filters, show

which X-12 filters fare best in this comparison for series following various air-

line models, and how much accuracy is lost in terms of increased MSE from

using the best X-12 filter instead of the optimal model-based filter. In many

cases little accuracy is lost in estimating the canonical model-based seasonal

component by using the best X-12 filter. The results are much less favorable to

the X-12 filters when we assume a uniform prior distribution on the white noise

allocation. Additional results presented in Section 4 use simulated series from

the airline model to compare our best X-12 filter selections with those from

the automatic filter selection procedure of the X-12-ARIMA program. Finally,

Section 5 summarizes the results and raises some questions for future research.
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2. THE ARIMA MODEL-BASED APPROACH AND
THE WHITE NOISE ALLOCATION ISSUE

In this section, we briefly review the ARIMA model-based approach to sea-

sonal adjustment and the white noise allocation issue. Following Hillmer and

Tiao (1982) and Burman (1980), we suppose that an observable time series, Zt ,

where in this paper t denotes the month, can be decomposed as

Zt = St + Nt , (1)

where St and Nt are unobservable seasonal and nonseasonal components that

follow the ARIMA models

U(B)St = ηS(B)bt , and (2)

(1 − B)dϕN (B)Nt = ηN (B)ct , (3)

respectively. In (2) and (3) B is the backshift operator such that BSt = St−1,

U(B) = (1 + B + · · · + Bs−1), and s denotes the number of time periods per

year (here s = 12). Further, ϕN (B) is a polynomial in B of degree p with its

zeros lying outside the unit circle, while ηS(B) and ηN (B) are polynomials of

degrees s − 1 and p + d , respectively, with zeros lying on or outside the unit

circle. (Note: These assumptions effectively impose only upper limits on the

degrees. If ηS(B) has lower degree than s − 1 we can append additional terms

with zero coefficients to raise its degree to s − 1, and similarly if ηN (B) has

lower degree than p + d .) We also assume that U(B) and ηS(B) have no com-

mon zeros, and that (1 − B)dϕN (B) and ηN (B) have no common zeros. The

innovation series bt and ct are mutually independent Gaussian white noises

with variances σ 2
b and σ 2

c , respectively.

Overall model implied by component models: Let AZ(z), AS(z), and AN (z)

denote the “pseudo” autocovariance generating functions (ACGFs) of Zt , St ,
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and Nt , respectively. We then have from (1) – (3) that

AZ(z) = AS(z) + AN (z), (4)

where

AS(z) = ηS(z)ηS

(
z−1

)
U(z)U

(
z−1

) σ 2
b , and (5)

AN (z) = ηN (z)ηN

(
z−1

)
(1 − z)d

(
1 − z−1

)d
ϕN (z)ϕN

(
z−1

)σ 2
c . (6)

It follows that AZ(z) can be written in the form

AZ(z) = θ(z)θ
(
z−1

)
φ(z)φ

(
z−1

)σ 2
a , (7)

where φ(z) = U(z)(1 − z)dϕN (z) and θ(z) both have degree p + s + d − 1.

Thus, the overall model for Zt is the ARIMA model

φ(B)Zt = θ(B)at . (8)

The innovation series at is Gaussian white noise with variance σ 2
a . We assume

that all the zeros of θ(B) are outside of the unit circle.

Decomposition of an overall model: On the other hand, given an overall model

in the form of (8), which can be verified from observable data Zt , we can pro-

ceed to use the results in Hillmer and Tiao (1982) and Burman (1980) to obtain

a decomposition of Zt into seasonal and nonseasonal components St and Nt as

follows.

Note first that, given the ARIMA model (8) for Zt , any choice of ηS(B),

ηN (B), σ 2
b , and σ 2

c satisfying (4) – (7) gives what is termed an “acceptable”

decomposition of AZ(z) into seasonal and nonseasonal component ACGFs,

corresponding to an acceptable decomposition of Zt into seasonal and non-

seasonal component series as in (1). Now if AS(z) and AN (z) represent an

7
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acceptable decomposition, then AS(z) + τ and AN (z) − τ , where τ is a con-

stant, represent another acceptable decomposition provided that AS(e−iλ) + τ

and AN (e−iλ) − τ are nonnegative for all λ ∈ [0, π]. Thus, in general there

are an infinite number of ways one can decompose a series corresponding to a

given overall model.

Now we can represent the range of acceptable decompositions in terms

of one unidentified parameter. Specifically, writing 8(B) ≡ φ(B)/U(B) =
(1−B)dϕN (B), and following Hillmer and Tiao (1982), we perform a (unique)

partial fractions decomposition of AZ(z) in (7) into

AZ(z) = AS(z) + AN (z) + κ,

where

AS(z) = QS(z)

U(z)U
(
z−1

) , with QS(z) = q0S +
s−2∑
i=1

qiS

(
zi + z−i

)
,

AN (z) = QN (z)

8(z)8
(
z−1

) , with QN (z) = q0N +
p+d−1∑

i=1

qiN

(
zi + z−i

)
,

and κ is a constant. Let

ASC(z) = QS(z)

U(z)U
(
z−1

) − εs, and

ANC(z) = QN (z)

8(z)8
(
z−1

) − εn,

where

εs = min
λ∈[0,π]

QS

(
e−iλ

)
U

(
e−iλ

)
U

(
eiλ

) , and

εn = min
λ∈[0,π]

QN

(
e−iλ

)
8

(
e−iλ

)
8

(
eiλ

) .

Then, we can write
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AZ(z) = ASC(z) + ANC(z) + εs + εn + κ.

As shown in Hillmer and Tiao (1982), an acceptable decomposition exists if and

only if γmax ≡ εs + εn + κ ≥ 0. When this is so, acceptable decompositions

AZ(z) = A
γ

S (z) + A
γ

N (z) can be indexed by γ ∈ [0, γmax], and the range of

acceptable seasonal and nonseasonal components must correspond to

A
γ

S (z) = ASC(z) + γ, (9)

A
γ

N (z) = ANC(z) + (γmax − γ ) . (10)

We shall let S
γ
t denote the seasonal component corresponding to A

γ

S (z) and

N
γ
t = Zt − S

γ
t the nonseasonal component corresponding to A

γ

N (z). The

constant γmax, when positive, can be viewed as corresponding to unobservable

white noise in the series Zt . We see from equations (9) and (10) that the value

specified for γ ∈ [0, γmax] thus determines an allocation of this white noise

between the unobserved seasonal and nonseasonal components.

Canonical Decomposition: In (9) it is easy to see that setting γ = 0 will

minimize the innovation variance σ 2
b of the seasonal component. Hillmer and

Tiao (1982) call this the “canonical decomposition” and discuss its properties.

Fundamentally, the canonical decomposition provides the most stable seasonal

component, i.e., the one that shows the least variation over time from a fixed

seasonal pattern. At the other extreme, setting γ = γmax will maximize the

innovation variance of the seasonal component and provide the most variation

over time from a fixed seasonal pattern. The only information provided about

γ by the model (8) for the observed series Zt , and hence by the data, is the

range γ ∈ [0, γmax]. This means that given the ARIMA model for Zt in (8),

unobserved seasonal components for all values of γ ∈ [0, γmax] are equally

consistent with the data. Dealing with uncertainty about γ is discussed in Sec-

tion 3.

3. AN APPROACH TO COMPARING X-12 AND
MODEL-BASED SEASONAL FILTERS

In this section we develop an approach to comparing any given linear seasonal

9
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filter with the optimal model-based seasonal filter based on comparing their

MSEs when estimating the seasonal component S
γ
t . We then apply the results

to comparing linear X-12 and optimal model-based seasonal filters. We first

discuss the case where γ is assumed to be known (Section 3.1), and then the

case where γ is unknown (Section 3.2). Although numerical results given in

Section 4 consider only symmetric filters applied to doubly infinite data, the

derivations given here apply to symmetric or asymmetric filters applied to ei-

ther semi-infinite (data into the infinite past) or finite data.

Let wS(B) = ∑
i wSiB

i be a specific linear filter to be used for estimating

any seasonal component St , i.e., Ŝt = wS(B)Zt , and let wN (B) = 1 − wS(B)

be the corresponding linear filter for estimating Nt . For a given value of γ , the

error in estimating S
γ
t by Ŝt , which we shall denote by g

γ
t = S

γ
t − Ŝt , is

g
γ
t = wN (B)S

γ
t − wS(B)N

γ
t . (11)

Given that S
γ
t and N

γ
t are assumed to follow models of the form of (2) and (3),

it is easy to see from (11) that the error series g
γ
t will be stationary if wN (B)

contains U(B) as a factor and wS(B) contains (1 − B)d as a factor. This will

be true for all the filters considered here. When this is true, the ACGF of g
γ
t is

Aγ
g (z) = wN (z)wN

(
z−1) A

γ

S (z) + wS(z)wS

(
z−1) A

γ

N (z), (12)

and the corresponding MSE is

MS
(
g

γ
t

) = (2π)−1
∫ π

−π

Aγ
g

(
e−iλ

)
dλ. (13)

The above results were given by Pierce (1979). Since (12) shows A
γ
g (z) to be

symmetric (coefficients of zk and z−k are equal for all k), we can compute

MS(g
γ
t ) by expanding (12) and taking the constant term (coefficient of z0 in

the expansion). Before doing so, however, we must cancel the unit root factors

U(z)U(z−1) that appear in wN (z)wN (z−1) and in the denominator of A
γ

S (z),

and similarly cancel (1 − z)d(1 − z−1)d that appears in wS(z)wS(z−1) and in

the denominator of A
γ

N (z).

10
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We now discuss an interesting and important property of MS(g
γ
t ). Watson

(1987, eq. (3.9)) showed that (allowing for differences in notation)

MS
(
g

γ
t

) = MS
(
g0

t

) + γ (1 − 2wS0), (14)

where g0
t is the estimation error for S

γ
t at γ = 0, i.e., the error in estimating

the canonical seasonal S0
t , and wS0 is the weight that wS(B) applies to Zt (the

observation at the time point at which we are estimating St). This is the “center

weight” for symmetric filters. When wS0 < 0.5 in (14), MS(g
γ
t ) is an increasing

linear function of γ that is thus bounded below by MS(g0
t ) and bounded above

by MS(g
γmax
t ).

Equations (12) – (14) apply whether wS(B) is a model-based or X-12 fil-

ter, symmetric or asymmetric. When wS(B) is the (symmetric or asymmetric)

model-based filter corresponding to the true value of γ , we get the optimal

(MMSE) signal extraction estimate, which we shall denote as S̃
γ
t . In the sym-

metric case, the optimal signal extraction filter is w
γ

S (B) = A
γ

S (B)/AZ(B) and

(12) simplifies to A
γ
g (z) = A

γ

S (z)A
γ

N (z)/AZ(z) (Bell, 1984). Bell and Martin

(2004) discuss optimal asymmetric signal extraction, and computation of the

resulting MSE, with ARIMA component models.

3.1 Comparing X-12 and Model-Based Filters When γ Is Known

Now let j index the filters within a relevant set J of X-12 linear filters, such as

the symmetric X-12 seasonal filters. We write x
j

S(B) for a particular X-12 sea-

sonal filter, with corresponding estimated seasonal component Ŝ
j
t = x

j

S(B)Zt .

Letting g
γ,j
t = S

γ
t − Ŝ

j
t be the error series, for each j ∈ J we can expand (12)

as discussed above to compute MS[gγ,j
t ]. We can then pick the best X-12 filter,

x
j∗
S (B), to achieve the minimum MSE, i.e.,

MS
[
g

γ,j∗
t

]
= min

j∈J

{
MS

[
S

γ
t − Ŝ

j
t

]}
. (15)

Stationarity of the error series g
γ,j
t for any γ and any symmetric X-12 filter

follows from (11) since, according to Bell (2012), any symmetric X-12 seasonal

filter x
j

S(B) contains (1 − B)6 and any symmetric X-12 seasonal adjustment

11
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filter, x
j

N (B) = 1 − x
j

S(B), contains U(B). Asymmetric filters obtained by

applying symmetric X-12 filters to series extended by a sufficient number of

forecasts and backcasts from the ARIMA model (8) will also contain the needed

differencing operators.

We remark here that the center weight for all the symmetric X-12 sea-

sonal filters satisfies the condition w
j

S0 < 0.5. (Note, e.g., Bell and Monsell,

1992.) Hence, for X-12 symmetric seasonal filters, the minimum of MS(g
γ,j
t )

as a function of γ always occurs at γ = 0, i.e., at the canonical decomposi-

tion. Thus, any X-12 symmetric seasonal filter will better estimate the canon-

ical seasonal component for a given model than any other admissible seasonal

component for that model.

3.2 Comparing X-12 and Model-Based Filters When γ Is
Unknown

When the value of γ in the model-based decomposition is regarded as un-

known, we assign to γ a prior probability density, p(γ ), over the acceptable

range [0, γmax], and then compute, for a given filter, the average MSE over

p(γ ). That is, we compute Eγ MS(g
γ
t ) = ∫

MS(g
γ
t )p(γ )dγ . Computation of

this average MSE is greatly aided by the linearity of MS(g
γ
t ) in γ as shown in

(14). We thus have the following lemma.

Lemma Let Zt = S
γ
t +N

γ
t be an acceptable decomposition of Zt following the

model (8), where S
γ
t and N

γ
t follow models given by (2) and (3) corresponding

to ACGFs as given by (5) and (6). Let wS(B) be a linear seasonal filter such

that the error series g
γ
t in (11) is stationary. Then, the average MSE over the

distribution of γ with density p(γ ) for estimating S
γ
t by wS(B)Zt is

Eγ MS
(
g

γ
t

) = MS
(
g

µγ

t

)
,

where µγ = ∫
γp(γ )dγ is the mean of γ .

Proof The result follows immediately from (14) by noting that

Eγ MS
(
g

γ
t

) = MS
(
g0

t

) + µγ (1 − 2wS0) = MS
(
g

µγ

t

)
.

12
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Note In the special case of a uniform prior for γ , µγ = (1/2)γmax. The

Lemma also applies to the canonical decomposition by setting µγ = 0, since

the canonical decomposition can be viewed as corresponding to a degenerate

prior of γ = 0 with probability one.

Note that wS(B) could be either a symmetric filter or an asymmetric filter,

so the Lemma applies to both symmetric and concurrent seasonal adjustment.

It could also be either a finite or an infinite filter. The only requirements are

that (i) wS(B) and wN (B) contain the needed operators (1 − B)d and U(B),

respectively, so the error series g
γ
t is stationary, and (ii) the time point for which

we are estimating S
γ
t lies within the span of the observed data. The second

requirement excludes forecasting of S
γ
t , since, for forecasting, wN (B) ̸= 1 −

wS(B).

The Lemma can be used to compute the average MSE for a given filter,

X-12 or model-based, and in each case we need only compute the MSE when

the filter is used to estimate S
µγ

t . Given a set J of X-12 filters, the best

X-12 filter in terms of average MSE is thus the one that achieves the minimum

average MSE over the set. For related results and further insights, see Watson

(1987) and Bell and Otto (1992).

3.3 MSE Comparison Measures

In Section 4 we compare average (over p(γ )) MSEs of symmetric X-12 and

optimal model-based filters. We do this both for the canonical decomposition

(γ = 0) and for the case of unknown γ following a uniform prior on [0, γmax].

From the previous Lemma, these average MSEs are just the MSEs for estimating

S
µγ

t , with µγ = 0 for the canonical decomposition, and µγ = γmax/2 for the

uniform prior on γ .

We present the average MSE comparisons as percentage differences, using

the average MSE for the best model-based estimator, S̃
µγ

t = w
µγ

S (B)Zt , as a

base value. So the percentage difference for a given X-12 filter x
j
s (B) is

100 ×
MS

[
S

µγ

t − x
j

S(B)Zt

]
− MS

[
S

µγ

t − S̃
µγ

t

]
MS

[
S

µγ

t − S̃
µγ

t

]
 . (16)

13
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When x
j
s (B) in (16) is x

j∗
s (B) satisfying (15) (with the γ in (15) fixed at µγ ),

then (16) gives the percentage increase in MSE from using the best X-12 filter

instead of the best model-based filter for estimating S
µγ

t .

The denominator of (16) can be computed from standard signal extraction

results. In the numerator we can write

S
µγ

t − x
j

S(B)Zt =
[
S

µγ

t − S̃
µγ

t

]
+

[(
w

µγ

S (B) − x
j

S(B)
)

Zt

]
. (17)

The first term on the right hand side of (17), the error in the optimal estimate

S̃
µγ

t , is orthogonal to all linear functions of Zt . Thus, the two terms in (17) are

orthogonal and the numerator of (16) immediately reduces to MS[(w
µγ

S (B) −
x

j

S(B))Zt], the MS of the difference of the two estimators S̃
µγ

t and x
j

S(B)Zt .

For the airline model, which we use here, w
µγ

S (B) − x
j

S(B) always contains

U(B)(1 − B)2 = (1 − B)(1 − Bs), so that (w
µγ

S (B) − x
j

S(B))Zt is stationary.

Thus, the ACGF of (w
µγ

S (B) − x
j

S(B))Zt , and hence its MS, can be calculated.

Use of (16) thus implies that, apart from the normalization by the denom-

inator, we measure the distance between the X-12 and model-based filters by

comparing the mean squared difference of their seasonal component estima-

tors. In contrast, Depoutot and Planas (1998), hereafter DP, directly compared

filter weights from X-12 and (canonical) model-based filters. Their criterion for

comparing an X-12 filter, x
j

S(B), with a canonical model-based filter, w0
S(B),

can be written

∑
h

(
w0

S,h − x
j

S,h

)2 = (2π)−1
∫ π

−π

∣∣∣w0
S

(
e−iλ

) − x
j

S

(
e−iλ

)∣∣∣2
dλ. (18)

Equation (18) can be thought of as measuring the mean squared difference

of two “seasonal component estimators” obtained by applying the X-12 and

canonical model-based filters to a white noise series (with variance 1). Our

criterion measures the mean squared difference of the two estimators of the

canonical seasonal component of the series Zt . This can be written as

MS
[(

w0
S(B) − x

j

S(B)
)

Zt

]
=

∫ π

−π

∣∣∣w0
S

(
e−iλ

) − x
j

S

(
e−iλ

)∣∣∣2
f (λ)dλ, (19)
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where f (λ) = (2π)−1AZ(e−iλ) is the spectral density of Zt . This weights the

squared difference of the X-12 and canonical model-based filters at each fre-

quency λ by the value of the spectral density f (λ) at that frequency.2 Finally,

despite the difference between (18) and (19), DP’s choices of seasonal moving

averages (for symmetric filters and the canonical decomposition), are essen-

tially in agreement with those that we report in the next section. Note that our

focus here is not just on the best X-12 filter choices, though, but also on the

MSEs related to the X-12 filters, and particularly on how these compare, via

(16), to the MSEs of the model-based filters.

4. COMPARING X-12 AND MODEL-BASED SYM-
METRIC FILTERS

In this section we apply the results of Section 3 to the airline model with various

parameter values for monthly time series Zt ,

(1 − B)
(
1 − B12) Zt = (1 − θ1B)

(
1 − θ12B

12) at , (20)

where at is a normally distributed white noise series with variance that we set to

unity. Our first objectives are to (i) compare the average MSEs for various X-12

filters to the average MSE of the optimal model-based filter, and (ii) determine

which of a set of J X-12 seasonal filters minimizes the average MSE, MS[g
µγ ,j
t ].

We then examine, for given airline models, how much the MSE is increased by

using the best of the X-12 filters instead of the optimal model-based filter. We

focus on the cases of the canonical decomposition (µγ = 0) and the uniform

prior on γ (µγ = γmax/2).

We study the airline model (20) because it is probably the most commonly

used model for analyzing seasonal time series. We restrict consideration to

nonnegative values of θ1 and θ12. One reason for this is that the condition

2 DP write their comparison criterion as π−1
∫ π

0 |w0
S(e−iλ) − x

j
S (e−iλ)|2dλ, a form that is

equivalent to (18) for symmetric filters but not for asymmetric filters. They also start with dλ

replaced by dm(λ), where m(λ) is a general measure on [0, π], though they explicitly consider
only Lebesgue measure, i.e., dλ. Note that setting dm(λ) = f (λ)dλ yields our criterion (19).

15
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θ12 ≥ 0 is needed for an acceptable decomposition to exist (Hillmer and Tiao

(1982), p. 67). A second reason is that, in practice, estimated models tend to

satisfy these constraints. DP modeled over 7,000 series with the airline model

and found that about 97 percent of the estimates of the model parameters (θ1,

θ12) were positive.

The symmetric X-12 filters are determined by the choices of seasonal and

trend moving averages (MAs) that are applied in X-12’s iterative filtering cal-

culations. See Bell and Monsell (1992), Findley et al. (1998), or Chu (2000)

for details. As notation for the X-12 filters we write, for example, S3335H13

to denote the X-12 seasonal filter that results when the first seasonal MA is the

3 × 3 ((1/9)(F 12 + 1 + B12)(F 12 + 1 + B12)), the second seasonal MA is the

3×5 ((1/15)(F 12 +1+B12)(F 24 +F 12 +1+B12 +B24)), and the trend MA is

the 13-term symmetric Henderson MA. Findley et al. (1998, pp. 149–151) and

Dagum (1985, p. 634) discuss the Henderson trend MAs.

For the set J of X-12 symmetric seasonal filters that we consider here it

would be desirable, in principle, to include all the possibilities, i.e., those re-

sulting from all possible combinations of X-12’s seasonal and trend MAs. This

would involve, however, a large number of combinations, and would include

several sets of filters not appreciably different from one another. (For example,

Bell and Monsell (1992) note that filters with S3335 versus S3535, and having

the same Henderson trend MA, are not appreciably different.) We thus restrict

J to contain the 20 X-12 seasonal filters generated from the combinations of

five different seasonal MAs (S3131, S3333, S3335, S3339, and S315315) and 4

Henderson trend MAs (H9, H13, H17, and H23). As will be noted in Section

4.3, the S3333, S3335, and S3339 seasonal MAs, as well as the H9, H13, and H23

Henderson trend MAs, are possibilities that can arise from the X-12-ARIMA

automatic filter selection scheme. The S3131 and S315315 seasonal MAs, and

the H17 Henderson trend MA, are available as user-specified options.3

3 There are two minor differences in X-12-ARIMA between automatic selection of a given
seasonal MA and user specification of the same MA. First, automatic selection applies only to
the second seasonal MA in the X-11 filtering; the first seasonal MA under automatic selection is
always the 3×3. User specification, in contrast, applies to both seasonal MAs. Thus, automatic
selection of the 3 × 5 seasonal MA implies, in our notation, the S3335 filter, whereas user
specification of the 3 × 5 seasonal MA implies S3535. As just noted, these two filters are quite
close. The second minor difference is that automatic selection affects only the final iteration
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Section 4.1 following gives MSE comparisons between X-12 and model-

based symmetric filters for the canonical decomposition, while Section 4.2 gives

MSE comparisons for the case of the uniform prior on γ . MSEs for the sym-

metric model-based filters were computed from standard signal extraction re-

sults (Bell, 1984), while those for the symmetric X-12 filters were computed by

expanding (12) as discussed in the first part of Section 3. Section 4.3 examines

automatic X-12 filter selections for time series simulated from the airline model

and notes how these selections compare to the “best selections” as determined

in Sections 4.1 and 4.2. One point to note for practical application of the re-

sults in this section is that there is an implicit assumption that the time series

under consideration is “sufficiently long” for the filters being compared. That

is, we implicitly assume the series is long enough and the filter weights die out

sufficiently quickly as they reach forward and backward through the series so

that the weights that would be applied before the beginning and after the end

of the observed series are essentially negligible.

4.1 Comparisons for the Canonical Decomposition

We consider first the case where the true seasonal component is from the canon-

ical decomposition (γ = 0) of the airline model. Table 1 below shows the best

X-12 filter, the minimum MSE in (15), and the best X-12 filter’s MSE percent-

age difference (16) for the combinations where the parameter θ1 takes one of

the values {0.9, 0.7, 0.5, 0.3, 0.1} and the parameter θ12 takes one of the values

{0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. We use fewer values of θ1 because the

variation in the results across different θ1 values is not that large. We note the

following from the results in the table:

1. The percentage increase in MSE from using the best X-12 symmetric fil-

ter rather than the optimal model-based filter is generally small for esti-

mating the canonical seasonal. It is generally less than or equal to about

12 percent, except for large values of θ12 (0.9) or small values of θ12 (0.1,

0.2).

(D) of the X-11 procedure, while user specification also determines the filters used in iterations
B and C (Ladiray and Quenneville, 2001). The B and C iterations are for preliminary and
final estimation (by the X-11 procedure, not via the modeling capabilities in X-12) of calendar
effects and extreme values. Our focus here is on the final seasonal filtering at iteration D.

17



Ta
bl

e
1

Sy
m

m
et

ri
c

Fi
lt

er
E

st
im

at
io

n
of

th
e

C
an

on
ic

al
Se

as
on

al
fo

r
th

e
A

ir
lin

e
M

od
el

(C
h

oi
ce

s
of

th
e

be
st

sy
m

m
et

ri
c

X
-1

2
fi

lt
er

s,
th

ei
r

M
SE

va
lu

es
,a

n
d

th
e

p
er

ce
n

ta
ge

in
cr

ea
se

s
in

M
SE

ov
er

th
os

e
of

th
e

op
ti

m
al

m
od

el
-b

as
ed

fi
lt

er
s)

θ 1
2

=
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1

θ 1
=

0.
9

S3
15

31
5-

H
9

S3
15

31
5-

H
9

S3
33

9-
H

9
S3

33
5-

H
9

S3
33

3-
H

9
S3

33
3-

H
23

S3
33

3-
H

23
S3

33
3-

H
23

S3
13

1-
H

23

0.
05

32
35

0.
07

93
59

0.
10

81
68

0.
12

86
42

0.
14

24
94

0.
14

44
34

0.
14

97
12

0.
15

87
52

0.
16

14
49

37
.1

0%
10

.6
8%

9.
94

%
8.

48
%

8.
04

%
4.

86
%

10
.5

9%
28

.2
4%

59
.0

0%

0.
7

S3
15

31
5-

H
9

S3
15

31
5-

H
9

S3
33

9-
H

9
S3

33
5-

H
9

S3
33

5-
H

23
S3

33
3-

H
23

S3
33

3-
H

23
S3

33
3-

H
23

S3
13

1-
H

23

0.
04

57
64

0.
06

79
15

0.
09

17
72

0.
10

87
04

0.
11

89
18

0.
12

22
22

0.
12

56
17

0.
13

21
00

0.
13

19
79

36
.0

9%
10

.4
5%

9.
65

%
8.

36
%

6.
69

%
4.

39
%

7.
22

%
18

.4
2%

31
.9

7%

0.
5

S3
15

31
5-

H
9

S3
15

31
5-

H
9

S3
33

9-
H

9
S3

33
5-

H
9

S3
33

5-
H

23
S3

33
3-

H
23

S3
33

3-
H

23
S3

13
1-

H
23

S3
13

1-
H

23

0.
04

30
36

0.
06

44
93

0.
08

68
77

0.
10

30
16

0.
11

20
77

0.
11

78
28

0.
12

16
17

0.
12

74
58

0.
12

69
60

33
.3

5%
9.

94
%

9.
27

%
8.

30
%

5.
89

%
5.

25
%

6.
91

%
14

.3
0%

20
.4

2%

0.
3

S3
15

31
5-

H
9

S3
15

31
5-

H
9

S3
33

9-
H

9
S3

33
5-

H
9

S3
33

5-
H

23
S3

33
3-

H
23

S3
33

3-
H

23
S3

13
1-

H
23

S3
13

1-
H

23

0.
04

55
20

0.
07

09
74

0.
09

73
16

0.
11

70
43

0.
13

05
72

0.
13

89
97

0.
14

82
52

0.
15

77
56

0.
16

35
79

29
.1

2%
9.

23
%

8.
95

%
7.

95
%

6.
69

%
5.

89
%

9.
77

%
18

.0
2%

28
.9

1%

0.
1

S3
15

31
5-

H
9

S3
15

31
5-

H
9

S3
33

9-
H

9
S3

33
5-

H
9

S3
33

5-
H

23
S3

33
3-

H
23

S3
33

3-
H

23
S3

13
1-

H
23

S3
13

1-
H

23

0.
05

26
39

0.
08

50
50

0.
11

83
90

0.
14

40
67

0.
16

39
67

0.
17

62
38

0.
19

25
99

0.
20

71
77

0.
22

07
63

25
.4

0%
8.

63
%

8.
69

%
7.

69
%

7.
37

%
6.

50
%

12
.1

6%
21

.2
2%

36
.0

8%

N
ot

e:
In

ea
ch

ce
ll,

1s
t

ro
w

:t
h

e
ch

os
en

X
-1

2
fi

lt
er

,i
.e

.,
j

∗ as
de

fi
n

ed
by

eq
.(

15
);

2n
d

ro
w

:t
h

e
M

M
SE

va
lu

e
fr

om
eq

.(
15

)
w

h
en

t
is

in
th

e
m

id
d

le
of

a
su

ffi
ci

en
tl

y
lo

n
g

se
ri

es
;

3r
d

ro
w

:t
h

e
p

er
ce

n
ta

ge
in

cr
ea

se
in

M
SE

(X
-1

2
fi

lt
er

co
m

pa
re

d
to

op
ti

m
al

m
od

el
-b

as
ed

fi
lt

er
)

fr
om

eq
.(

16
).

18



A Mean Squared Error Criterion (Yea-Jane Chu, George C. Tiao, and William R. Bell)

Table 2 Best Choices of X-12 Seasonal MAs for Estimating
the Canonical Seasonal

Value of θ12 0.1–0.2 0.3–0.4 0.5–0.6 0.7 0.8–0.9

Best seasonal MA S3131 S3333 S3335 S3339 S315315

2. Larger values of θ12 imply longer seasonal MAs for the best X-12 fil-

ter. This is, of course, to be expected, because as θ12 approaches 1 the

stochastic seasonal component will tend to become deterministic. Ta-

ble 2 roughly summarizes the best seasonal MA choices corresponding

to given values of θ12. Exceptions to these choices occur for (θ1, θ12) =
(0.9, 0.2), (0.7, 0.2), and (0.9, 0.5), for which the S3333 seasonal MA is

best. Figure 1 discussed below shows, though, that in cases like these, the

MSEs with the seasonal MAs shown in Table 2 are only slightly higher.

(As noted earlier, DP arrived at essentially these same choices of seasonal

MAs.)

3. With one exception the Henderson trend MA chosen is the 9-term for

θ12 ≥ 0.6 and the 23-term for θ12 ≤ 0.5. The one exception is that the

9-term Henderson is chosen for (θ1, θ12) = (0.9, 0.5). Figure 1 shows,

though, generally little dependence of the MSEs on the choice of Hen-

derson trend MA.

4. We see that the value of θ1 has little effect on the choice of seasonal or

trend MA for determining the best X-12 filter for estimating the canon-

ical seasonal. More effect from the value of θ1 would be expected for

estimation of the canonical trend component.

5. The X-12 MSEs tend to increase as θ12 decreases. As θ1 increases from

0.1, the MSEs first decrease and then increase, with the minimum value

in each column of the table occurring at θ1 = 0.5. The largest MSE

shown in Table 1 (0.220763) is about five times the smallest (0.043036).

The general conclusion from Table 1 is that, except for the largest and

smallest values of θ12, little is lost by using the best X-12 symmetric filter in-
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Figure 1 The MSEs when using various X-12 symmetric seasonal filters to estimate the sea-
sonal component of the airline model with various parameter values ((a) canonical
decomposition, (b) uniform prior on γ )
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stead of the optimal model-based symmetric filter for estimating the canonical

seasonal from a series that follows the airline model.

Figure 1 shows how the MSE of the X-12 estimated seasonal varies across

different X-12 filters. The figure consists of two columns with three plots each.

The first column of plots shows results for the canonical decomposition, and

the second column of plots, to be discussed later in Section 4.2, shows results

for the uniform prior on γ . The three rows of plots correspond to the values

θ12 = 0.8, 0.5, and 0.2, respectively. We use these three values to generically

represent high, medium, and low values of θ12. Within each plot are sets of

results for θ1 values 0.8, 0.5, and 0.2, as indicated. For each θ1 value the MSEs as

plotted are seen to fall into five groups of four values, each group corresponding

to a particular choice of X-12 seasonal MA (S3131, S3333, S3335, S3339, and

S315315). The four values within each group correspond to the four choices of

Henderson trend MAs considered (9-term, 13-term, 17-term, and 23-term, in

that order). Two general results are evident from the plots of Figure 1 for the

canonical decomposition:

• MSEs are generally insensitive to the choice of Henderson trend MA.

Some exceptions occur when a very poor choice is made for the seasonal

MA (e.g., with the S3131 seasonal MA when θ12 = 0.8). Keep in mind

that these results are for estimation of the canonical seasonal (equiva-

lently, the canonical nonseasonal). We would expect more sensitivity to

the choice of Henderson trend MAs in MSEs for X-12 trend estimates.

• Choice of the best seasonal MA is not crucial. For θ12 = 0.8 the S3339

seasonal MA does about as well as the S315315, for θ12 = 0.5 the S3333

does about as well as the S3335, and for θ12 = 0.2 the S3333 does about

as well as the S3131. Straying further than this from the best choice of

seasonal MA entails a more substantial increase in MSE.

4.2 Comparisons for the Uniform Prior on γ

We now consider the case where γ is unknown and with a uniform prior dis-

tribution over [0, γmax]. From the Lemma of Section 3.2, the average MSEs,
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for both the X-12 and model-based filters, are the MSEs of the filters for esti-

mating S
µγ

t . With the uniform prior, or indeed with any symmetric prior for

γ in [0, γmax], µγ = γmax/2. Table 3 gives MSE results analogous to those in

Table 1 except that we include more θ1 values, {0.9, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1},
because the results here depend more on θ1. Comparing the results of Table 3

with those of Table 1, we observe the following:

1. The average MSE values in Table 3 are higher than the corresponding

values in Table 1, as are the percentage increases. In particular, for large

values of θ12 the MSEs are much higher, while for small values of θ12 the

percentage increases are much larger. The higher MSEs in Table 3 could

be expected due to the result noted at the end of Section 3.1 that for X-12

filters the MSE in estimating S
γ
t is an increasing function of γ .

2. Much shorter seasonal MAs are chosen as best X-12 filters in compari-

son to the choices in Table 1: the S3333 seasonal MA is generally best for

θ12 ≥ 0.3, and the S3131 seasonal MA is generally best for θ12 ≤ 0.2.

Exceptions are that the S3333 seasonal MA is chosen for (θ1, θ12) =
(0.9, 0.2) and (0.7, 0.2), the S315315 for (0.3, 0.9) and (0.1, 0.9), and

the S3339 for (0.1, 0.8). Apart from the cases where the S315315 and the

S3339 seasonal MAs are chosen, we see that for estimating the seasonal

component S
µγ

t with µγ = γmax/2 (which contains half the available

white noise), short X-12 seasonal MAs are generally the best.

3. There is more variation in the best choice of Henderson trend MA in

Table 3 than in Table 1. For θ12 ≤ 0.5 the 23-term is always chosen, but

for θ12 ≥ 0.6 the Henderson trend MA chosen ranges from the 9-term to

23-term as θ1 increases from 0.1 to 0.9. Figure 1 shows, though, that for a

given seasonal MA the MSEs for estimating S
µγ

t with an X-12 filter over

the different choices of Henderson trend MAs usually don’t vary much.

4. Contrary to the results of Table 1, in Table 3 the X-12 filter MSEs gener-

ally increase consistently as θ12 increases, except for θ1 = 0.1 or 0.3.

The second column of 3 plots in Figure 1 shows how the MSEs under the

uniform prior on γ vary across alternative X-12 seasonal filters. As with the
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canonical decomposition, for a given seasonal MA the MSEs usually don’t vary

much over the different choices of Henderson trend MAs, except in a few cases

where the seasonal MA is badly chosen. Results on the MSEs with alternative

choices of the seasonal MAs are more mixed. For θ12 = 0.8 and θ1 = 0.2,

MSEs for seasonal MA choices other than the S3131 are not very different, but

for θ1 = 0.5 or 0.8 (especially) more is lost by not choosing the best seasonal

MA (S3333). For θ12 = 0.5 and θ1 = 0.5 or 0.2, MSEs with the S3131, S3333,

and S3335 seasonal MAs are similar, but with other seasonal MAs the MSEs

are higher. For θ12 = 0.5 and θ1 = 0.8, the MSEs with the S3333 seasonal

MA are lower than those with the S3131 and much lower than the MSEs with

other seasonal MAs. Finally, for θ12 = 0.2 and any value of θ1, the MSEs with

the S3131 and S3333 seasonal MAs are similar while the MSEs with the other

seasonal MAs are higher.

4.3 Comparisons to X-12-ARIMA Automatic Filter Selections

In this section we compare the previous results on the “best” X-12 filter selec-

tions to automatic filter selections that are made by the X-12-ARIMA program

(when the user does not select a specific filter). According to the X-12-ARIMA

reference manual (U.S. Census Bureau, 2002), a 3 × 3 MA is used to calculate

the initial seasonal estimate, then the program chooses whether to use a 3 × 3,

3 × 5, or 3 × 9 seasonal MA based on the size of the “moving seasonality ratio”.

In our notation, either the S3333, S3335, or S3339 will be selected for the X-12

seasonal MA. Also, for monthly series, either a 9-, 13-, or 23-term Henderson

trend MA will be selected based on the size of the Ī /C̄ ratio, where Ī and C̄

are the average absolute month-to-month changes (percent changes for a mul-

tiplicative decomposition) of the estimated irregular and trend-cycle compo-

nents, respectively. In our notation, either H9, H13, or H23 will be selected for

the X-12 Henderson trend MA. For further discussion of the automatic filter

selection procedure, see Ladiray and Quenneville (2001).

To examine the automatic filter selection procedure, we simulated 100

time series of length 660 from the airline model with N(0, 1) innovations for

each of various (θ1, θ12) combinations. We used long time series so that sym-

metric filters are effectively applied in the middle of the time series. We list the
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Table 4 Selections of Seasonal MAs for Series Following the Airline Model:

(I) from the X-12-ARIMA automatic filter selection procedure ap-
plied to 100 simulated series;

(II) the choices that minimize the MSE as in eq. (15) for either the
canonical decomposition or the uniform prior on γ

Panel θ1 \ θ12 0.9 0.7 0.5 0.3 0.1

0.9 S3339(0.29)†
S3335(0.71) S3335(1.00) S3335(0.96) S3335(0.29)

S3333(0.04) S3333(0.71) S3333(1.0)

0.7 S3339(0.23)
S3335(0.77) S3335(1.00) S3335(1.00) S3335(0.16)

S3333(0.84) S3333(1.0)

0.5 S3339(0.12)
(I) S3335(0.88) S3335(1.00) S3335(0.82) S3335(0.06)

S3333(0.18) S3333(0.94) S3333(1.0)

0.3 S3339(0.05)
S3335(0.95) S3335(1.00) S3335(0.52) S3335(0.01)

S3333(0.48) S3333(0.99) S3333(1.0)

0.1
S3335(1.00) S3335(0.97) S3335(0.22)

S3333(0.03) S3333(0.78) S3333(1.00) S3333(1.0)

Canonical‡ S315315 S3939 S3335 S3333 S3131
(II)

Uniform‡ S3333 → S315315 S3333 → S3939 S3333 S3333 S3131

Note: † The values in parentheses are the proportions of times over the 100 simulated series
that the given seasonal MA was chosen.

‡ Canonical means canonical decomposition; Uniform means uniform prior on γ .

relative frequency of the seasonal MAs from the automatic selection procedure

in the top panel, (I), of Table 4 for comparison to the best X-12 filters listed in

panel (II). The latter are obtained from Table 1 for the canonical decomposi-

tion and from Table 3 for the uniform prior on γ . The values in parentheses are

the proportions of times the various filters were selected over the 100 simulated

series. To simplify the table, only the selections for θ1 and θ12 taking on the

values (0.9, 0.7, 0.5, 0.3, 0.1) are listed. Selections of the Henderson trend MAs

were also examined, but as Figure 1 shows that these choices rarely have much

effect on the MSE, these results are not shown.

For estimating the canonical seasonal, Table 4 shows that for θ12 = 0.7
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or 0.9 the automatic selection procedure tended to select seasonal MAs which

are shorter than optimal. For θ12 = 0.9 the automatic selection procedure

mostly selected the S3335, and occasionally selected the S3339, instead of the

best choice S315315, a choice not considered by the automatic selection proce-

dure. For θ12 = 0.7 the automatic selection procedure almost always selected

the S3335 instead of the best choice S3339. In Figure 1, for θ12 = 0.8 we see

that selecting the S3339 instead of the S315315 seasonal MA doesn’t increase

the MSE very much, but selecting the S3335 instead of the S315315 or S3339

does significantly worse. For θ12 ≤ 0.5 the automatic selection procedure tends

to do a better job of selecting the seasonal MA, and Figure 1 shows in these

cases that even when the best X-12 filter is not chosen the automatic selection

procedure generally chooses one with only a slightly higher MSE.

For the uniform prior on γ (equivalently, for estimating S
µγ

t ), Table 4

shows that the automatic selection procedure tends to select longer seasonal

MAs than the best choices, though Figure 1 shows that sometimes these choices

do not increase the MSEs very much. In particular, for θ12 = 0.8 or 0.5 the

automatic procedure’s usual choice of the S3335 does poorly for θ1 = 0.8, but

not as badly for θ1 = 0.5 or 0.2. For θ12 = 0.5 and low values of θ1, the

automatic selection procedure frequently makes the best choice of S3333. For

θ12 = 0.2, the automatic selection procedure’s usual choice of S3333 generally

does well, with only slightly higher MSE than the best choice of S3131, a choice

not considered by the automatic selection procedure.

To summarize these results, under either the canonical or uniform priors

the automatic filter selection procedure tends to make better choices for small

than for large values of θ12. For θ12 ≥ 0.7, X-12-ARIMA tends to pick seasonal

MAs shorter than the best for estimating the canonical seasonal, and longer

than the best for estimating under the uniform prior for γ . We must also keep

in mind, though, that under the uniform prior even the best X-12 filter choices

usually do not do very well. Thus, the best case for the automatic selection

procedure’s filter choices appears to be estimating the canonical seasonal with a

value of θ12 ≤ 0.5. One qualification to note is that these results were obtained

for time series sufficiently long (660 months) that results for the symmetric

X-12 and model-based filters are relevant. It is possible that use of shorter

seasonal MAs may do relatively better for estimating the canonical seasonal
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with time series of shorter lengths more typically encountered in practice (e.g.,

10–25 years), even for large values of θ12. Study of this question is a topic for

future research.

5. CONCLUSIONS AND TOPICS FOR FUTURE
RESEARCH

In this paper we examined the performance of X-12 symmetric filters for es-

timating the seasonal component of a model-based decomposition of a time

series following the airline model. The performance was assessed in terms of

average MSE for estimating the seasonal component, with these average MSEs

compared to those of the optimal model-based filters. The average MSE was

computed over a prior distribution for the parameter γ that allocates white

noise between the seasonal and nonseasonal components of the model-based

decomposition. We considered two priors for γ : the canonical decomposition

(a degenerate prior on the minimum value of 0 for γ ), and a uniform prior

over the admissible range [0, γmax] of γ . A Lemma showed that the average

MSE over the prior for γ equals the MSE for estimating the seasonal compo-

nent, S
µγ

t , corresponding to setting γ equal to its prior mean. For the canonical

decomposition the prior mean is just the minimum value 0; for the uniform

prior the mean is µγ = γmax/2.

As a criterion for picking an X-12 filter from among the various possible

options, we suggested picking the X-12 filter that minimizes the average MSE

for estimating S
γ
t , i.e., the X-12 filter that minimizes the MSE for estimating

S
µγ

t . Results showed that increases in MSE from using the best X-12 symmetric

filter rather than the optimal model-based symmetric filter are mostly small for

the canonical decomposition. Table 2 provided results relating the best choices

of seasonal MAs to values of the seasonal moving average parameter θ12 for the

airline model. For the uniform prior on γ the MSE increases from using the

best X-12 filter are much larger.

MSE results for X-12 filters other than the best choices were mixed. Choice

of the Henderson trend MA rarely had an appreciable effect on the MSE. Typi-

cally, choice of one of the seasonal MAs “close to” the best did not appreciably
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increase the MSE, but choice of other seasonal MAs could lead to more sub-

stantial MSE increases.

An experiment with time series simulated from the airline model with

various parameter values revealed that automatic filter choices made by the

X-12-ARIMA program tended to yield the best or close to the best choices of

X-12 filters for estimating the canonical seasonal from models with values of

θ12 ≤ 0.5. For θ12 > 0.5 the X-12 automatic filter choices tended to use shorter

seasonal MAs than were best for estimating the canonical seasonal. Under the

uniform prior even the best X-12 filters don’t do very well, so it appears that X-

12-ARIMA with its automatic filter choices fares best for estimating the canon-

ical seasonal when θ12 ≤ 0.5.

The results presented here considered only use of symmetric filters in the

middle of time series sufficiently long for these filters to apply without forecast

and backcast extension of the series. In Bell et al. (2012) we presented, for the

canonical decomposition, analogous MSE results for concurrent adjustment

and for finite sample seasonal adjustment of series with lengths from eight to

forty years. Those results show, as expected, MSE increases for both X-12 and

model-based filters compared to the MSEs for symmetric filters (those shown

for X-12 here in Table 1). However, the percentage increases in MSEs for X-12

compared to model-based adjustment for the concurrent and finite filters are

either about the same or substantially less than those presented here in Table 1

for symmetric filters. In fact, with rare exceptions (such as symmetric finite fil-

ters applied to series of forty years with a large θ12 value such as 0.9), we judged

the MSE increases for X-12 concurrent and finite sample seasonal adjustments

over the corresponding canonical model-based adjustments to be negligible.

We thus concluded that, “· · · in real situations that are something like those

considered [there] — series of reasonable length approximately following an

airline model — if a suitable choice is made of an X-12 filter, the difference in

statistical accuracy between its use versus using [canonical] model-based sea-

sonal adjustment may well be negligible”.

Several questions remain for future research. One concerns whether sim-

ilar results to those shown here would be obtained with different models than

the airline model? The results here suggest that for other seasonal ARIMA mod-

els the value of the seasonal moving average parameter θ12 would be an impor-

tant determining factor in the results. Another question concerns the accuracy
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of X-12 trend estimates. The approach presented here extends in a straightfor-

ward fashion to estimation of the trend component. Results of DP suggest that

MSEs for X-12 trend filters would depend on the choices of both the Henderson

trend MAs and the seasonal MAs.
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摘 要

許多文獻如 Cleveland and Tiao (1976), Burridge and Wallis (1984),

和 Depoutot and Planas (1998) 已比較 X-11 和以模型基礎推導的季節

調整濾器的權數函數, 本文則建議另一個以計算均方誤差為準則的比較

方法。 對於一個 ARIMA 模型所產生的時間數列, 本文分別計算以 X12-

ARIMA 估算的季節成分, 及以模型為基礎所估算最適的季節成分, 並比

較兩者的均方誤差。 以挑選較低均方誤差為圭臬, 本文的方法提供了如何

選擇最佳 X-12 季節調整濾器的準則, 以及尚可改進的幅度。 當以航空公

司月資料模型做模擬實驗, 我們發現如果估計標準季節成分, 選擇最佳 X-

12 季節調整濾器只會造成些許均方誤差值的增加; 但如果是在白噪音為

均一先驗分配假設下估計季節成分, 最佳 X-12 季節調整濾器會造成均方

誤差值大幅的增加, 所以並不是一個好的選擇。 模擬實驗分析發現 X-12-

ARIMA 程式經常會選擇較短的季節調整濾器。
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