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Abstract

RegComponent models are time series models with linear regression mean functions
and error terms that follow ARIMA (autoregressive-integrated-moving average) compo-
nent time series models. Bell (2004) discusses these models and gives some underlying
theoretical and computational results. The REGCMPNT program is a Fortran program for
performing Gaussian maximum likelihood estimation, signal extraction, and forecasting
with RegComponent models. In this paper we briefly examine the nature of RegCom-
ponent models, provide an overview of the REGCMPNT program, and then use three
examples to show some important features of the program and to illustrate its application
to various different RegComponent models.
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1. Introduction

REGCMPNT is a Fortran program for Gaussian maximum likelihood (ML) estimation, signal
extraction, and forecasting for univariate RegComponent models, which are time series mod-
els with linear regression mean functions and error terms following ARIMA (autoregressive-
integrated-moving average) component time series models. Bell (2004) gives a general discus-
sion of RegComponent models, presenting three examples, as well as discussing underlying
theoretical and computational results for Gaussian ML estimation, forecasting, and signal
extraction. The REGCMPNT program itself, along with example input and output files, is
available along with this manuscript. A Windows interface is also under development and is
expected to be available shortly from the author.

This paper illustrates the capabilities of the REGCMPNT program by showing in detail
its use in several examples (Sections 4–6). Prior to this, Section 2 gives a brief overview
of RegComponent models, and Section 3 discusses how to run the REGCMPNT program.

http://www.jstatsoft.org/
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Section 4 then shows how to use REGCMPNT to fit the local level model (Commandeur,
Koopman, and Ooms 2011, Equation 3) to the Nile riverflow data modeled in Durbin and
Koopman (2001, Chapter 2). Section 5 shows how REGCMPNT can handle a seasonal
structural model of Harvey (1989) that also includes regression terms for trading-day and
Easter holiday effects. Section 6 shows how REGCMPNT can handle a model for a time series
of repeated survey estimates whose sampling variances change over time. Finally, Section 7
offers some concluding remarks.

2. A brief overview of RegComponent models

The general form of a RegComponent model is

yt = x>t β +

m∑
j=1

hjtµ
(j)
t , (1)

where

yt is the observed time series with observations at time points t = 1, . . . , n. Note that yt
may be a transformation (e.g., logarithms) of an original time series.

xt is an r×1 vector of known regression variables and β is the corresponding vector of (fixed)
regression parameters.

hjt for j = 1, . . . ,m are series of known constants that we call scale factors. Often hjt = 1
for all j and t.

µ
(j)
t for j = 1, . . . ,m are independent unobserved component series following ARIMA models.

A general notation for the ARIMA models for the µ
(j)
t in (1) is

φj(B)∆j(B)µ
(j)
t = θj(B)ζjt (2)

where φj(B), ∆j(B), and θj(B) are the autoregressive (AR), “differencing,” and moving-

average (MA) operators, which are polynomials in the backshift operator B (Bµ
(j)
t = µ

(j)
t−1).

These polynomials can be multiplicative, as in seasonal ARIMA models. We require the
φj(B) to have all their zeros outside the unit circle, and the θj(B) to have all their zeros on
or outside the unit circle. Common versions of the ∆j(B) would be (i) the identity operator
(∆j(B) = 1), corresponding to stationary components (such as the observation disturbance
εt in Equation 1 of Commandeur et al. 2011); (ii) a nonseasonal (1−B) or seasonal (1−Bs)
difference, or a product of these; or (iii) a seasonal summation operator, 1 +B + · · ·+Bs−1

(see Equation 5 in Commandeur et al. 2011 or equation (7) in the model of Section 5 below).
The ∆j(B) typically have all their zeros on the unit circle, and usually must have no common
zeros, as common zeros can create problems for signal extraction results (Bell 1984, 1991;

Kohn and Ansley 1987). Exceptions to this rule occur for components hjtµ
(j)
t whose hjt are

not all equal over t (as occurs for models with time-varying regression parameters.) The
ζjt are i.i.d. N(0, σ2j ) (white noise) innovations, independent of one another (which implies
cov(ζit, ζjt′) = 0 unless i = j and t = t′.)
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Effect type Comments

Constant term Allows for nonzero mean levels in models with no differencing, and

for trend constants in models with differencing.

Fixed seasonal Modeled with either monthly (or quarterly) contrast variables or

with trigonometric terms.

Trading-day Variables for modeling trading-day effects in flow or stock series, as well as

for modeling length-of-month (or quarter) effects or leap-year effects.

Holiday Variables for modeling Easter, Labor Day, or Thanksgiving effects.

Outliers and Variables for modeling additive outliers, level shifts, and ramp effects.

interventions

User defined May read in data for regression variables to model other effects.

Table 1: Regression effects in REGCMPNT.

If m = 1 and h1t = 1 for all t, then model (1) reduces to the general RegARIMA model as a
special case. RegARIMA stands for a regression model with error terms that follow an ARIMA
model. See Bell and Hillmer (1983) and Findley, Monsell, Bell, Otto, and Chen (1998) for
discussion of RegARIMA modeling. The X-12-ARIMA seasonal adjustment program (Findley
et al. 1998; U.S. Census Bureau 2009) provides RegARIMA modeling capabilities that have
much in common with the capabilities of the REGCMPNT program, and in fact the two
programs share a lot of Fortran code.

Model (1) extends the pure ARIMA components model given as Equation 18 of Commandeur
et al. (2011) in two ways. The first extension involves the regression mean function x>t β
(also mentioned in Section 2.2 of Commandeur et al. 2011). REGCMPNT allows models to
include regression variables for several types of regression effects commonly used in modeling
seasonal economic time series. These are summarized in Table 1. They are substantially the
same variables that are available in the X-12-ARIMA program (U.S. Census Bureau 2009),
though X-12-ARIMA has a few extensions and modifications to the variables that are not
currently included in REGCMPNT.

The second extension involves the scale factors hjt. These enter the state space representation
of the model (Equation 1 in Commandeur et al. 2011) through the matrix Zt, since the first

element of the state space representation of each ARIMA component µ
(j)
t can be taken to

be µ
(j)
t itself. (Note discussion in Section 4 of Commandeur et al. 2011.) This is analogous

to how regression effects (with constant or time-varying coefficients) enter the state space
representation in Section 2.2 of Commandeur et al. (2011). Thus, as mentioned above and
as discussed at the end of Section 5, one application of the scale factors hjt in model (1)
is to accommodate time-varying regression coefficients that follow ARIMA models (with the
corresponding regression variables given by the associated hjt’s).

Another important application of model (1) is to time series yt obtained as estimates from a
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repeated sample survey. In this case we write

yt = Yt + et (3)

where Yt is the time series of true population characteristics being estimated by yt, and
et = yt − Yt is the sampling error in yt as an estimate of Yt. In (3) the true series (or signal
component), Yt, includes any regression terms x>t β, and so follows a RegComponent model,
which could possibly be the special case of a RegARIMA model. The sampling error, et, is
generally assumed to have mean zero (i.e., the yt are assumed to be unbiased estimates of the

Yt), and we can assign et to the last component in (1), i.e., et = hmtµ
(m)
t , with µ

(m)
t generally

assumed to follow a stationary ARMA model (no differencing). The hmt then allow for the
variance of et to vary over time (something fairly common in repeated surveys) by defining

hmt =
√

Var(et) and setting the innovation variance of µ
(m)
t so that Var(µ

(m)
t ) = 1 for all t.

An important point about application of RegComponent models to time series from repeated
surveys is that the parameters of the model for et should be estimated using estimates of
variances and autocovariances of et obtained from survey microdata. (See Wolter 1985 for
discussion of survey variance estimation.) The parameters of the model for et are then held
fixed when model (1) is estimated. The option to fix parameters of the ARIMA component
models in (1) is a key feature of REGCMPNT.

Scott and Smith (1974) and Scott, Smith, and Jones (1977) first suggested use of time series
modeling and signal extraction to improve estimates from repeated surveys. Further discus-
sion covering the use of RegComponent models in this context, including examples analyzed
with the REGCMPNT program, is given in Bell and Hillmer (1990) and Bell (2004).

Bell (2004) discusses ML estimation of RegComponent models, giving details for the case
where all the scale factors are 1 (hjt ≡ 1). To summarize, the REGCMPNT program maxi-
mizes the likelihood of a RegComponent model (1) via an iterative generalized least squares
(IGLS) algorithm that alternates between (i) maximizing the log-likelihood over the regres-
sion parameters β for given values of the ARMA parameters and variances of the component
models (2), and (ii) maximizing the log-likelihood over the unknown ARMA parameters and
variances for a given value of β. The “unknown” ARMA parameters and variances are those
not specified as fixed at particular values in the program’s input file. Step (i) is achieved by
generalized least squares regression of the differenced data (∆(B)yt) on the differenced re-
gression variables (∆(B)xjt), where ∆(B) =

∏m
j=1 ∆j(B) is the overall differencing operator

for the model. Step (ii) is achieved by computing regression residuals, zt = yt − x>t β, and
maximizing the log-likelihood for the unknown ARMA parameters and variances, where this
is the log of the joint density of ∆(B)zt for t = d + 1, . . . , n, where d is the order of ∆(B).

For this step, the ARIMA component model for zt =
∑m

j=1 hjtµ
(j)
t is put in state space form

and the Kalman filter (with a suitable initialization) is used to evaluate the log-likelihood.
(This approach works generally, not just in the case where hjt ≡ 1.) The maximization for
step (ii) is carried out by the MINPACK Fortran routines (More, Garbow, and Hillstrom
1980). Commandeur et al. (2011) discuss the general use of the state space form and Kalman
filter for likelihood evaluation. While their approach of putting the regression parameters in
the state vector (Commandeur et al. 2011, Section 2.2) differs from the IGLS approach, both
approaches would lead to the same ML estimates of the model parameters.

The “suitable initialization” of the Kalman filter referred to above is needed to deal with
the nonstationarity resulting from the differencing in the ARIMA component models (2).
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REGCMPNT uses the initialization of Bell and Hillmer (1991), which yields the “transforma-
tion approach” results of Ansley and Kohn (1985). Other approaches to these computations
are possible (e.g., Koopman 1997) that will lead to the same “diffuse likelihood” (as the result-
ing likelihood is often called). Francke, Koopman, and de Vos (2010) suggest modification to
instead compute a marginal likelihood that is equivalent to the diffuse likelihood only under
certain conditions. (For ARIMA component models as in (2), these conditions are essen-
tially that the AR operators are constrained to have zeros outside the unit circle and the
“differencing operators” ∆j(B) do not depend on any unknown model parameters.)

Forecasting and signal extraction estimation (of the ARIMA components µ
(j)
t ) can be done

using the Kalman filter and a suitable smoother, as is discussed by Commandeur et al. (2011).
Bell (2004) gives matrix expressions for the results produced by such calculations for the case
where all scale factors are equal to 1. (See also McElroy 2008 for simplified expressions for
the signal extraction results.) For signal extraction computations, REGCMPNT uses a fixed

point smoother of reduced dimension (Anderson and Moore 1979) to produce E(µ
(j)
t |y) and

Var(µ
(j)
t |y), as well as E(hjtµ

(j)
t |y) and Var(hjtµ

(j)
t |y), where y = (y1, . . . , yn)>.

The generality of the ARIMA component specifications in (2) that are allowed by REGCMPNT
raises one caution. To allow for this level of generality in the models, REGCMPNT makes
no checks on whether the model structure is “identified,” this term referring to whether all
ARMA parameters and variances in the model are estimable. Hotta (1989) gives identifia-
bility conditions for ARIMA component models, but his results do not cover two important
cases allowed by REGCMPNT: components with scale factors, and components with fixed
parameters. To illustrate this issue with a simple example, suppose one specifies a model with
two scaled white noise components, yt = h1tζ1t + h2tζ2t, with ζ1t and ζ2t having variances σ21
and σ22. This model is not identified in the standard (default) case where h1t = h2t = 1 for
all t, because we could not then estimate both σ21 and σ22. This model is identified, however,
if either (i) h1t does not equal h2t for at least one observed time point t, or (ii) either or
both of σ21 and σ22 are fixed. Section 5 briefly illustrates a more realistic example of this kind
of thing – a model with time-varying trading-day regression coefficients all following random
walk models with unknown variances. Such a model is identified only because the resulting
ARIMA components have different scale factors (the trading-day regression variables). Be-
cause REGCMPNT provides no checks on model identifiability, it is incumbent on the user
to assure that any model specified to the program is indeed identifiable.

3. Getting started with REGCMPNT

REGCMPNT operates from a DOS command window. We have often named the executable
program regcmpnt.exe, though it really can be given any name. Here we will assume we have
named it rgc.exe. Also, assume we have an input file named ex1.nml. The extension .nml

refers to Fortran namelist input, which is discussed below. Assume that both the program
and input files are located in the same directory. From within this directory we enter the
following command:

rgc ex1

Note that the .nml input file extension is not needed here as .nml is the default input file
extension. If, however, the input file had a different extension (e.g., if the input file was named
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ex1.txt), then we would need to include the extension in the input filename above (e.g., rgc
ex1.txt). If the program and input files were in different directories, then path names would
need to be added to the executable program filename, or to the input filename, or both, as
appropriate. For example, if the executable program file were in the directory c:\regcmpnt

and the input file were in c:\examples, then if we entered the command from a prompt at
c:\regcmpnt we would type

rgc c:\examples\ex1

while if we entered the command from a prompt at c:\examples we would type

c:\regcmpnt\rgc ex1

In both cases the output files (discussed below) would be written to the same directory as
the input file, that is, to c:\examples.

The input file to REGCMPNT is an ASCII file containing Fortran namelist specifications. The
input namelists function like commands telling REGCMPNT what data to use, what analyses
to perform, what model specifications to use, and what output to provide. Table 2 summarizes
REGCMPNT’s namelists and their functions. The use of the namelists is illustrated with the
examples of Sections 4, 5, and 6.

Several comments are in order. First, most of the arguments to the namelists have default
values that are used if nothing is specified. This includes such things as the seasonal period
(default = 1, i.e., a nonseasonal series), whether to print out results for all estimation iterations
(default = no), and the maximum lag on residual autocorrelations (default depends on length
of series and the seasonal period). Thus, the namelist arguments can mostly be thought of
as means of changing the defaults. Of course, some arguments, such as the time series data

argument in the series namelist, do not have defaults.

Second, namelists only need be included in the input file if the corresponding action is desired.
Thus, if the series is not to be transformed, the transform namelist is omitted. If the model
has no regression variables, the regression namelist is omitted. If forecasting is not desired
the forecast namelist is omitted, etc. The minimal input file would include only a series

namelist (this is the only required namelist), though the only output that would result from
such an input file would be a table of the series values.

Third, namelists can usually be in any order in the input file, though we tend to order them
as listed in Table 2 to clarify the specifications of the series, model, and analyses. There is
one exception. When multiple arima namelists are present, the values given to the cmpntreg

argument of the regression namelist will depend on how the arima namelists are ordered.
(See the example of Section 5.) Fourth, inclusion of an arima namelist without an estimate

namelist will nonetheless force model estimation (with default estimation options).

Output files from the REGCMPNT program are given the same filename as the input file (ex1
for our illustration here), and the main output file is given the extension .out (i.e., ex1.out).
It repeats the model specifications as read by the program and gives the basic model fitting
results, with the amount of output controlled by various arguments in the namelists. The main
output file also includes the diagnostic checking results (if the check namelist is included) and
forecast results for the observed series (if the forecast namelist is included). Forecast results
for the unobserved components in model (1) are output to other files, however. Table 3 below
summarizes the full set of REGCMPNT output files.
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Namelist Function

series Read in the time series data (from within the namelist or from another file);

specify the series starting date, seasonal period, and a series title.

transform Apply a transformation (logarithm, power transformation) to the series,

or make other adjustments (e.g., a length-of-month adjustment).

regression Specify variables xit for the regression mean function of the model, such

as variables for fixed seasonal effects, trading-day or holiday effects, or

user-defined regression variables (data for the latter must be read in).

arima Specify the ARIMA model for one of the components µ
(j)
t , including as

many arima namelists as there are components in the model (m). Also,

specify or read in the corresponding scale factors hjt (if not 1 for all t).

estimate Specify various options for model estimation (changing default settings)

such as the maximum number of iterations and whether or not to print

out the correlation matrix of the estimated model parameters.

check Specify output of various diagnostic checks – residual autocorrelations

and partial autocorrelations (and how many lags), and residual histogram.

forecast Perform forecasting (of ARIMA components, µ
(j)
t , and of the observed series),

and specify related options (e.g., forecast origin, maximum forecast lead).

smooth Perform signal extraction estimation of the ARIMA components, µ
(j)
t , (over

the time frame of the observed series, or for just a subset of this).

Table 2: REGCMPNT input namelists and their functions.

Output file Contents

ex1.out Main output file containing model specifications and estimation results,

diagnostic checking results, and forecast results for the observed series.

ex1.inn Kalman filter innovations (one-step prediction errors), their variances,

and corresponding standardized innovations.

ex1.frc Point forecasts of the ARIMA components.

ex1.frv Forecast error variances of the ARIMA components.

ex1.est Signal extraction point estimates of the ARIMA components.

ex1.var Signal extraction error variances of the ARIMA components.

Table 3: REGCMPNT output files (with input file ex1.nml).

The files in Table 3 other than ex1.out are produced only when requested. That is, ex1.inn is
produced only if requested in the estimate namelist (via prtinn = T), ex1.frc and ex1.frv

are produced only if a forecast namelist is included, and ex1.est and ex1.var are produced
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only if a smooth namelist is included. The error variances in ex1.frv and ex1.var account
for error in estimating regression parameters, but not for error in estimating the ARMA
parameters and the component innovation variances.

4. Modeling Nile riverflow

We now illustrate the use of REGCMPNT to fit the local level model (Commandeur et al.
2011, Equation 3) to the data on Nile riverflow, as was done by Durbin and Koopman (2001,
Chapter 2). The namelist input file (named nile.nml) is as follows:

&series title = 'Volume of Nile river at Aswan, 1871-1970' start = 1871

data =

1120 1160 963 1210 1160 1160 813 1230 1370 1140

995 935 1110 994 1020 960 1180 799 958 1140

1100 1210 1150 1250 1260 1220 1030 1100 774 840

874 694 940 833 701 916 692 1020 1050 969

831 726 456 824 702 1120 1100 832 764 821

768 845 864 862 698 845 744 796 1040 759

781 865 845 944 984 897 822 1010 771 676

649 846 812 742 801 1040 860 874 848 890

744 749 838 1050 918 986 797 923 975 815

1020 906 901 1170 912 746 919 718 714 740

&end

&arima order = 0 1 0 var = 1 &end

&arima order = 0 0 0 var = 1 &end

&estimate estim = t prtiter = t armacorr = t prtinn = t &end

&check acf = t pacf = t maxlag = 15 hist = t &end

&forecast maxlead = 10 &end

&smooth estimate = t &end

Notice that all the namelists have the same format:

&[namelist name] arguments = values &end

Thus, the series namelist is delimited by &series and &end, and in between these the
title, start, and data arguments are given values. The value assignments are fairly self-
explanatory, though a few points are worth noting. For title, the value (a phrase used as
a label at certain places in the output files) must be enclosed in quotation marks (single or
double). For start, the value given here is the beginning year, as this is an annual series.
For monthly or quarterly series a different format is used for the start value, as illustrated in
the next section. The data argument is used here to specify the time series data, which here
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are given as integers, though they could equally well be real values. Alternatively, the time
series data could be stored in and read from another file, in which case the data argument
would be omitted, and the file argument included instead (illustrated in the next section).
Finally, entries in the namelists can be separated by spaces or commas or both.

The values assigned in the other namelists have the following implications:

&arima (1st): This namelist specifies the ARIMA model for the first ARIMA component,

µ
(1)
t . The order argument gives the order of the nonseasonal part of the model in the

ARIMA(p, d, q) format used by Box and Jenkins (1970). The model specified here is a

random walk, i.e., (1−B)µ
(1)
t = ζ1t. The var argument sets the initial value of Var(ζ1t)

equal to 1, but note the qualification to this discussed below. Since the series is annual
there is no seasonal part specified for the ARIMA model.

&arima (2nd): This namelist specifies an ARIMA(0, 0, 0) model, that is, a white noise

model, for the second ARIMA component, µ
(2)
t = ζ2t. The var argument sets the initial

value of Var(ζ2t) equal to 1, but again note the qualification to this discussed below.

&estimate: The arguments given tell REGCMPNT to (i) estimate the model (estim = t,
specifying estim = f would result in just the likelihood being evaluated at the specified
values of the model parameters), (ii) print out results for each of the nonlinear estima-
tion iterations (prtiter = t), (iii) print out the correlation matrix of the estimated
ARMA parameters (armacorr = t), and (iv) write the file nile.inn containing a ta-
ble with the Kalman filter innovations, their variances, and the resulting standardized
innovations (vt, Ft, and vt/

√
Ft – see Commandeur et al. 2011, Section 3) from the

estimated model.

&check: The argument values request output of the autocorrelations and partial autocorre-
lations of the model residuals through lag 15, as well as a histogram of the standardized
residuals.

&forecast: Inclusion of this namelist requests forecast results (point forecasts, their error
variances, and prediction intervals) for the ARIMA components and the observed series
yt. The argument maxlead specifies that the forecasts be computed up through 10 years
ahead.

&smooth: The lone argument value (estimate = t) tells REGCMPNT to produce signal
extraction estimates and error variances for the two ARIMA components.

The qualification mentioned above about the initial values of innovation variances in the arima
namelists is as follows. If none of these variances is constrained to a fixed value, then for ML
estimation any one of the variances can be“concentrated out of the likelihood” (see Bell 2004).
In such cases REGCMPNT concentrates out the variance of the first component, and then
maximizes the likelihood over the m − 1 ratios σ22/σ

2
1, . . . , σ

2
m/σ

2
1, and the unknown ARMA

and regression parameters. The estimate of σ21 then follows from an analytic formula, and
the estimates of σ22, . . . , σ

2
m follow from this estimate and the estimates of the corresponding

variance ratios. In this case the initial values of the variances specified in the arima namelists
are converted to initial values of the corresponding variance ratios. Hence, the specification
given above results in an initial value of 1.0 for σ22/σ

2
1, though we would have gotten the
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same result by setting var = 100 in both arima namelists, or indeed by setting var equal to
any common value in both. It should be noted that initial values must be specified for all
innovation variances (i.e., var must be set to some value in all arima namelists), with the
exception that when the likelihood will be concentrated (no fixed variances), if var is not set
for the first ARIMA component it is given a default value of 1.0 so that, effectively, the var

specifications in the remaining arima namelists are specifying initial values of the variance
ratios. Initial values are not required, however, for ARMA parameters (the default initial
values are all 0.1), and initial values are not allowed for regression parameters.

(Actually, to be precise, REGCMPNT maximizes the concentrated likelihood over the square
roots of the variance ratios, σ2/σ1, . . . , σm/σ1, squaring their estimates after convergence.
This enforces the nonnegativity constraint on the variances. The same thing is done directly
with unknown variances when the likelihood cannot be concentrated. See Bell (2004) for
further discussion.)

With the above input file, REGCMPNT produces the following ML estimates of the two model
parameters, which are the two component innovation variances, along with their associated
asymptotic standard errors:

σ̂21 = 1472.7 std. error(σ̂21) = 1347.6

σ̂22 = 15092 std. error(σ̂22) = 3176.4

The point estimates agree closely with those reported in Durbin and Koopman (2001, p. 32).
The asymptotic variance-covariance matrix of the vector of estimated model parameters (de-
noted as ψ) is given by the negative inverse Hessian matrix (−D−1) of the (not concentrated)
log-likelihood `(ψ) = logL(y|ψ) (for L(y|ψ) note Commandeur et al. 2011, Section 3, Equa-
tion 16):

Var(ψ̂) = −D−1 where D = [dik] with dik = ∂2`(ψ)/∂ψi∂ψk|ψ=ψ̂ (4)

The derivatives are approximated numerically using standard formulas. The square roots
of the diagonal elements of Var(ψ̂) provide the standard errors of the parameter estimates.
Notice that the standard error of σ̂21 is relatively large, so that the coefficient of variation,
CV, of σ̂21 is std. error(σ̂21)/σ̂21 = 0.92. That is, σ̂21 is rather poorly estimated relative to
its magnitude. The CV of σ̂22 is only 3176.4/15092 = 0.21, so σ̂22 is rather better estimated.
Also available from Var(ψ̂) is Corr(σ̂21, σ̂

2
2) = −0.62, showing that there is a rather strong

negative dependence between estimates of the two variances. This sort of result is not unusual,
reflecting the fact that increasing the variance of one component while decreasing the variance
of another will tend to offset somewhat, so that the overall variation may not change very
much (though this also depends on the ARIMA structure of the components), and this has
less effect on overall model fit than would be the case if one simply increased one variance
and kept the other fixed.

Figure 1 shows additional results produced by REGCMPNT. (Note that the graphs themselves
are not produced by REGCMPNT, but rather were done in the R statistical package R
Development Core Team 2011.) The first graph in Figure 1 is simply a plot of the observed
time series yt. The second graph also shows the observed series (now plotted as a dotted line)

in addition to the signal extraction estimate (solid line) of the trend component (µ
(1)
t ), and

90 percent confidence interval limits (dashed lines) for the trend. The trend estimates are
taken from the file nile.est and the standard deviations used to construct the confidence
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Figure 1: Volume of Nile river at Aswan, 1871–1970.

interval limits are the square roots of the signal extraction variances from the file nile.var.
The third graph plots the Kalman filter standardized innovations, which are taken from the
file nile.inn. Finally, the fourth graph again plots the observed series, but also shows point
forecasts and 50 percent prediction intervals for yt for the years 1971,. . . ,1980. The forecast
results appear at the end of the main output file (nile.out), though the point forecasts of yt
and the trend component are the same since the second component is white noise (whose
forecasts are zero). Also, note that the forecasts of yt and its trend are constant at the value
798, the constancy being due to the random walk model used for the trend. The results in
Figure 1 agree, as near as can be determined from examining graphs, with the corresponding
results given in Durbin and Koopman (2001, Chapter 2).

5. A structural model with regression effects

We now illustrate use of REGCMPNT to fit a seasonal ARIMA component model that also
includes regression terms for trading-day and Easter holiday effects. The time series to which
we fit the model is the logarithm of monthly retail sales of U.S. department stores from
January, 1967 to December, 1993, a time series that was analyzed with a somewhat different
model in Bell (2004), which we discuss later. The regression mean function follows from Bell
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and Hillmer (1983), and can be written as

x>t β =

6∑
i=1

βiTit + βEE10,t. (5)

Here T1t, . . . , T6t are the six trading-day contrast variables defined as (# Mondays in month
t) − (# Sundays in month t),. . . , (# Saturdays in month t) − (# Sundays in month t), and
β1, . . . , β6 are the deviations of the Monday, . . . , Saturday effects from the average daily effect
on sales. The corresponding Sunday coefficient is defined implicitly from a constraint that the
seven daily effects sum to zero, and so is β7 = −(β1 + · · · + β6). In addition, to account for
length of month effects the series is divided by the length of each month before logs are taken.
That is, if st is the original series of sales in dollars, we model yt = log(st/dt), where dt is the
length in days of month t. The model used for the Easter effect assumes that sales increase
by a uniform amount every day before Easter over a window of a given length, which here is
10 days. Thus, E10,t = (# of days in month t falling in the 10-day period before Easter)/10.
Actually, REGCMPNT also subtracts off the long-term monthly means of the E10,t to remove
a fixed seasonal and overall level effect from this term (something also implicit in how the
trading-day regressors Tit are defined).

The ARIMA component model that we use here is the structural model of Harvey (1989)
with a trend component that allows for a random slope, and with a trigonometric seasonal
component with a single variance parameter. (Bell 2004, Section 2) notes that these com-
ponent models have ARIMA representations, so that our overall model can be written as
yt = x>t β + γt + µt + εt, where εt is white noise with variance σ2ε and

(1−B)2µt = (1− θµB)ζ1t (6)

(1 +B + · · ·+B11)γt = (1− θ1B − · · · − θ10B10)ζ2t. (7)

The values of the MA coefficients θ1, . . . , θ10 are fixed at values shown in the namelist input file
given below, so the only unknown parameter in (7) is σ21 =Var(ζ2t). The unknown parameters
of (6) are θµ and σ21 =Var(ζ1t). Harvey formulated this model in a different form, but the only
potentially material difference is that Harvey’s formulation requires θµ ∈ [0, 1], whereas the
standard ARIMA constraint on (6) is θµ ∈ [−1, 1]. In practice, with this model ML estimates
of θµ are invariably positive, and in fact are often close to or even equal to 1 (Bell and Pugh
1990; Shephard 1993), so this difference in constraints on θµ is unlikely to have an effect.

The namelist input file for the model defined by (5)–(7) is as follows:

&series start = 1967,1 period = 12

title = 'U.S. Retail Sales of Dept Stores, 1/67 - 12/93',

file = 'c:\retail\bdptrs.dat'

&end

&transform power = 0.0 &end

&regression td = t easter = 10 cmpntreg = 7*2 &end

&arima order = 0 2 1 macoefs = 0.8 var = 200. &end
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&arima order = 0 11 10 diffcoefs = 11*-1. var = 60.

macoefs = -0.737378, -0.627978, -0.430368, -0.360770, -0.219736,

-0.180929, -0.088488, -0.071423, -0.020306, -0.016083

mafixed = t

&end

&arima var = 200. &end

&estimate estim = t prtiter = t maxiter = 100 armacorr = t &end

&check acf = t pacf = f hist = t &end

&forecast maxlead = 24 &end

&smooth estimate = t &end

Explanation of the entries that differ from those of the namelist file for the Nile riverflow
example are as follows:

&series: The start date and title are, of course, appropriate for this series, and since the
series is monthly we have period = 12 and the start date as given in the year, month
format. Also, rather than putting the data for the observed series in the series namelist
it is read from the file c:\retail\bdptrs.dat using the file argument. Note the input
file name is enclosed in quotes.

&transform: The transform namelist is included to take logarithms of the series, which
results from setting the Box and Cox (1964) power transformation argument to power

= 0.0.

&regression: The regression namelist includes the trading-day regression effects (via
td = t) and the Easter holiday regression effects with a 10-day window (via easter =

10). The cmpntreg argument is used to assign individual regression effects (βixit) to the
components defined by the arima namelists. This matters not for model estimation, but
does affect forecasting of the components and signal extraction, as noted by Bell (2005).
The values given to cmpntreg assign the regression effects to the ARIMA components
in the order in which the latter appear in the input file. The notation 7*2 is a Fortran
convention that simply repeats the number 2 seven times, and so this is the same as
cmpntreg = 2 2 2 2 2 2 2. Since the second arima namelist is that for the seasonal
component in the model, the trading-day and Easter effects are all assigned to the
seasonal component.

&arima (1st): This specifies the ARIMA model (6) for the trend component. It sets the
initial value of the MA coefficient θµ to .8 and the initial value of the variance σ21 to
200, though, as with the previous example, this value will be used only in determining
initial values of the variance ratios.

&arima (2nd): This specifies the ARIMA model (7) for the seasonal component. The
specification of the “differencing order” as 11, together with the specification of the
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coefficients of the differencing operator via diffcoefs = 11*-1, yields the operator
1 +B + · · ·+B11. The MA coefficients are set to the values shown, and the argument
mafixed = t specifies that the coefficients remain fixed at these values. The initial
value specified for the variance translates into an initial value of the variance ratio
σ22/σ

2
1 = 60/200 = 0.3.

&arima (3rd): This specifies the white noise model for the irregular component, with the
initial value of the variance leading to a value of 1 for the initial value of σ2ε /σ

2
1.

The remaining namelists are similar to those for the Nile riverflow example, with a few different
specifications: the estimate namelist sets the maximum number of nonlinear estimation
iterations to 100 and does not specify printing of the file of standardized innovations; the
check namelist suppresses printing of the PACF of the residuals and accepts whatever is
the default number of lags of residual autocorrelations; and the forecast namelist specifies
forecasts up to lead 24.

The following shows an excerpt from the main output file of REGCMPNT for this example,
showing estimation results for the regression part of the model:

Regression Model

------------------------------------------------------------------

Parameter Standard

Variable Estimate Error t-value

------------------------------------------------------------------

Trading Day

Mon -0.0046 0.00209 -2.23

Tue 0.0025 0.00210 1.20

Wed -0.0075 0.00206 -3.62

Thu 0.0067 0.00209 3.21

Fri 0.0079 0.00207 3.81

Sat 0.0098 0.00210 4.69

*Sun (derived) -0.0149 0.00206 -7.23

Holiday

Easter 10 0.0352 0.00420 8.38

------------------------------------------------------------------

Chi-squared Tests

------------------------------------------------------------------

Regression Effect df Chi-square p-value

------------------------------------------------------------------

Trading Day 6 244.40 0.00

------------------------------------------------------------------

We see that most of the individual trading-day coefficients are easily statistically significant,
and jointly (the Wold chi-squared test) they are very highly significant. Since logarithms were
taken and the trading-day variables take on the values −1, 0, or 1, 100 times the trading-
day parameters can be interpreted as percentages. Hence, the coefficients for Sunday and
Saturday imply that sales are depressed about an estimated 1.5 percent when a month has
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Figure 2: U.S. retail sales of department stores, 1967(1)–1993(12).

five Sundays rather than four, but sales are increased about 1.0 percent by a fifth Saturday.
The Easter effect coefficient is also highly significant, and given the definition of the Easter
variable it reflects about 3.5 percent of monthly sales coming from the 10 days before Easter
that can thus be partially shifted between March and April by variations in the date of Easter.
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Model estimation also yielded θ̂µ = 0.99, a value sufficiently close to 1.0 that the MA operator
in (6) can be cancelled with one of the differences, and the constant term that would be
annihilated by the differences added in, yielding the random walk with drift model, (1−B)µt =
β0 + ζ1t (Harvey 1981). Results obtained with this model are very close to those obtained
with the model (6).

Figure 2 shows signal extraction estimates and point forecasts of the time series and its
components on the original (unlogged) scale. The signal extraction estimates and forecasts in
the log scale are simply exponentiated back to the original scale by REGCMPNT. The first
graph shows the original series with trend estimates superimposed, and corresponding point
forecasts of both the series and the trend. The trend estimates and point forecasts appear
quite smooth relative to the variation in the original series, with the trend estimates in the
middle of each calendar year a little hard to spot as they tend to overlap in the graph with
the series values. The remaining three graphs show the signal extraction estimates and point
forecasts for the seasonal, regression, and irregular components. The regression component
includes the trading-day plus Easter regression effects, and also the length-of-month effects.
For these graphs these effects are separated from the seasonal component, which in this plot
refers only to the stochastic part of the seasonal. (The REGCMPNT output files provide
signal extraction and forecasting results both separating the regression and stochastic parts
of each component, as well as with the regression and stochastic parts of each component
combined.) The vertical scales on all three of these graphs are identical, making it easy to see
that, for this series, the seasonal variation is much larger than the variation in the regression
and length-of-month effects, which in turn is much larger than the irregular variation.

The results shown above are relevant to the time period of the data (January, 1967 to Decem-
ber, 1993), and results with more recent data could be different. One way results could differ is
if trading-day effects changed over time due to changes over time in store hours and shopping
patterns of consumers. This motivates consideration of time-varying trading-day parameters,
which were considered for this series in Bell (2004), and more generally in Martin and Bell
(2004). There an airline model (Box and Jenkins 1970) was used in place of the structural
components model, but the main objective was to extend the regression mean function to let
the trading-day coefficients follow random walk models. That is, for the trading-day (but not
Easter) effects, βj gets replaced by βjt with (1−B)βjt = ξjt, with the ξjt independent white
noise series. To specify such a model, we use the following regression namelist in place of
that shown above, and also add the additional arima namelists below to the input file:

&regression td = t easter = 10 cmpntreg = 4 5 6 7 8 9 2 &end

{original three &arima namelists}

&arima order = 0 1 0 var = 1 tvreg = t &end

&arima order = 0 1 0 var = 1 tvreg = t &end

&arima order = 0 1 0 var = 1 tvreg = t &end

&arima order = 0 1 0 var = 1 tvreg = t &end

&arima order = 0 1 0 var = 1 tvreg = t &end

&arima order = 0 1 0 var = 1 tvreg = t &end

Note the change in the cmpntreg argument to now associate the six trading-day regression
variables with the six new arima namelists shown, which we assume are included after the
three original arima namelists for the trend, seasonal, and irregular components. (The Easter
effects are still associated with the second ARIMA component, which is the seasonal.) In
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the new arima namelists, the argument specification tvreg = t tells REGCMPNT that this
ARIMA component is a time-varying regression coefficient, which thus must be associated
with a regression variable through the cmpntreg argument of the regression namelist. The
initial value of 1.0 given to the variances of the innovations in the random walk models for the
trading-day coefficients is a guess at a value that will lead to a reasonable variance ratio, since
the first component variance will be concentrated out of the likelihood. So the initial variance
ratios for these components are 1/200 = 0.005. Generally the innovation variances of time-
varying trading-day coefficients are expected to be considerably smaller than the innovation
variances for the other ARIMA components.

Two additional points are worth noting about the use of the cmpntreg argument. First,
in assigning regression effects to components, cmpntreg takes the regression effects in the
order shown in Table 1, which need not match the order in which they are specified in the
regression namelist. Thus, if the easter = 10 was put before the td = t in the regression
namelist above, this would not alter the assignments. Second, cmpntreg can also assign
regression effects to component 0, which is the default. This keeps them as separate effects
not assigned to any ARIMA component, and they are then shown separately in the component
forecasting and signal extraction results.

The department store sales data analyzed here were produced by the U.S. Census Bu-
reau’s monthly retail trade survey. Further information about the survey is available at
http://www.census.gov/retail/, and more recent data, as well as revised historical data,
are available at http://www.census.gov/retail/mrts/historic_releases.html. Finally,
note that estimates from the survey are generally subject to sampling and nonsampling errors,
but in the case of department store sales the sample is sufficiently close to the entire universe
of department stores that the sampling error in the data is negligible. This is not the case for
the example considered in the next section.

6. Modeling a time series with a sampling error component

The value of construction put in place (VIP) is a U.S. Census Bureau publication measuring
the value of construction installed or erected at construction sites during a given month.
The VIP estimates come from the monthly Construction Progress Reporting Survey (CPRS)
augmented with estimates of a non-CPRS component based on regulatory filings, phasing of
other Census data, administrative records, and trade association data. Further information,
including more recent data and revised historical VIP estimates, can be found at http:

//www.census.gov/const/www/c30index.html.

Nguyen, Bell, and Gomish (2002), hereafter NBG, investigated use of time series modeling
and signal extraction methods for improving the VIP estimates. Here, to illustrate how
REGCMPNT can be applied to model time series with a sampling error component, we show
how the general model they developed is applied to the particular VIP series of construc-
tion of other educational structures from January, 1997 to December, 2002 (two more years
of data than were available for the series analyzed by NBG). NBG developed generalized
variance function models for the sampling error relative variances (squares of the sampling
error coefficients of variation, or CVs) of the VIP series, to reduce noise in the direct survey
relative variance estimates. (The relative variances are, from a Taylor series linearization,
approximately the sampling error variances of the log estimates.) The resulting CVs used

https://www.census.gov/retail/
https://www.census.gov/retail/mrts/historic_releases.html
https://www.census.gov/const/www/c30index.html
https://www.census.gov/const/www/c30index.html
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here mostly range from around 15 to 17 percent over the time frame of the series, reflecting
a substantial level of sampling error in the series. NBG also found that AR(2) models fitted
the direct estimated sampling error autocorrelations of the VIP series well.

As in NBG we use an airline model (Box and Jenkins 1970) for the signal component Yt (true
series) of the log VIP series yt, and an AR(2) model for the sampling error et. We write the
full model as follows:

yt = Yt + et (8)

(1−B)(1−B12)Yt = (1− θ1B)(1− θ12B12)ζ1t (9)

et = htẽt (1− φ1B − φ2B2)ẽt = ζ2t (10)

where ζ1t and ζ2t are independent white noise series with variances σ21 and σ22, and θ1 and θ12
are parameters satisfying the constraints |θ1| ≤ 1 and |θ12| ≤ 1. In (10), ht is the sampling
error CV of exp(yt), the (untransformed) VIP survey estimate at time t, and φ1 and φ2 are
estimated via the Yule-Walker equations for the AR(2) model (Box and Jenkins 1970, p. 60)
using direct estimates of the sampling error autocorrelations at lags 1 and 2 that are averaged
over time for the given lag. σ22 is then determined from the formula for the variance of an
AR(2) process (Box and Jenkins 1970, p. 62) so that Var(ẽt) = 1. The ht, φ1, φ2, and σ22 are
to be held fixed at these values when fitting the model defined by (8)–(10).

The REGCMPNT input file for this example is shown below. As with the previous example,
the time series data are read from a separate file (here c:\VIP\nr055.dat).

&series start = 1997,1 period = 12

title = 'Other Educational Value of Construction Put-in-Place'

file = 'c:\VIP\nr055.dat'

&end

&transform power = 0.0 &end

&arima order = 0 1 1 sorder = 0 1 1 var = 0.016565 &end

&arima order = 2 0 0 arcoefs =0.600, 0.246 var = 0.34488 fix = t

h=

.042 .042 .067 .122 .129 .135 .152 .168 .173 .177 .179 .179

.179 .182 .179 .177 .175 .170 .162 .165 .152 .149 .149 .135

.144 .140 .144 .159 .152 .149 .144 .129 .144 .140 .140 .149

.149 .156 .152 .152 .156 .165 .159 .159 .159 .149 .144 .144

.152 .159 .156 .156 .162 .156 .165 .162 .165 .168 .170 .159

.144 .149 .144 .144 .129 .135 .140 .135 .149 .140 .140 .115

&end

&estimate estim = t prtiter = t armacorr = t &end

&check acf = t pacf = t maxlag = 18 hist = t &end

&smooth estimate = t &end
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Figure 3: Value of construction put in place, other educational, 1997(1)–2002(12).

The only new features of this input file relative to those of the previous examples involve the
two arima namelists. The first of these specifies the airline model (9) for Yt, denoted as an
(0, 1, 1)(0, 1, 1)12 model in Box and Jenkins (1970, Chapter 9). Note the nonseasonal part
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of this model is specified with the order argument, and the seasonal part with the sorder

argument. The seasonal period (here 12) is taken from the period argument in the series

namelist. Note also that no initial values are specified for the nonseasonal and seasonal MA
parameters θ1 and θ12; their initial values will thus be set to the ARMA parameter default
initial value of .1. The initial value set for σ21 by the var argument was taken from a previous
analysis of the series. The important point here is that, in contrast to the previous two
examples, this initial value is actually for the parameter σ21, and not for a variance ratio. This
is because σ22, the innovation variance of the second (sampling error) component, is being
held fixed, so that a variance cannot be concentrated out of the likelihood function.

In fact, the argument specification fix = t in the second arima namelist fixes all the param-
eters of the model (10) at their specified values: φ1 = 0.600 and φ2 = 0.246 in the arcoefs

argument, and σ22 = 0.34488 in the var argument. (The latter is the value determined so
that Var(ẽt) = 1 when φ1 = 0.600 and φ2 = 0.246.) The other new feature shown in this
arima namelist is the specification of the scale factors ht, which are set to the CV values
shown via the h = argument. As with the input of data values for the series, these values
could alternatively be placed in and read from another file by including a file argument in
the arima namelist.

Maximum likelihood parameter estimates for the model defined by (8)–(10) are θ̂1 = 0.47,
θ̂12 = 0.42, and σ̂21 = 0.0052. Signal extraction results from REGCMPNT are shown in
Figure 3. The first graph plots the original series (on the original scale, i.e., exp(yt)), along
with the signal extraction estimates (exp(Ŷt), where Ŷt is the signal extraction estimate of
Yt). We see that the signal extraction does a large amount of smoothing of the series, which
is due to the relatively high level of sampling error in the estimates. The corresponding signal
extraction estimates of the sampling error component (exp(et)) are plotted in the second
graph. These fluctuate around 1.0 (recall that, on the original scale, these are multiplicative
factors), with the largest estimated sampling errors occurring in early 1998. The third graph
plots the CVs of the sampling error and the signal extraction error, which are approximated
by the corresponding standard deviations in the log scale ([Var(et)]

.5 and [Var(Yt − Ŷt)].5).
We see these are lowest at the very beginning of the series, with both rising substantially
in early 1997, and with [Var(et)]

.5 rising further to vary around .15, while [Var(Yt − Ŷt)].5
stabilizes closer to .10. The fourth graph plots the CV percent improvement from signal
extraction defined as 100 × {[Var(et)]

.5 − [Var(Yt − Ŷt)].5}/[Var(et)]
.5. Corresponding to the

results shown in the third graph, the fourth graph shows that the CV improvement is small
in the first few and last one or two observations, but is substantial over much of the series.
The improvement is often around 30 percent, but reaches close to 50 percent in early 1998
when the sampling CV is the highest. It should be kept in mind, however, that these results
on CV improvement from signal extraction are optimistic in that they treat the fitted model
as correct.

7. Conclusions

The examples presented illustrate the main capabilities of the REGCMPNT program for
analyzing RegComponent models. Discussion of the underlying theory and computational
approaches was limited, but these topics are covered by Bell (2004). A few features of
REGCMPNT are worth emphasizing. One is the availability of many regression variables
commonly used in modeling seasonal economic time series that are built into the program
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(through the regression namelist). Section 2 discussed these in general terms, and the ex-
ample of Section 5 illustrated this capability. Another important feature of REGCMPNT is
the ability to fix parameter values in the ML estimation, including the convenient way one
can fix all the parameters of a given ARIMA component. This feature is essential to modeling
time series with a sampling error component, and was illustrated in Section 6. Finally, we
note the generality of the ARIMA component specifications available in REGCMPNT. While
the requirement of specifying the component models in ARIMA form eliminates some uni-
variate state space models (the cycle model of Harvey 1989 being one example, as its ARMA
representation involves a nonlinear parameter constraint), the models REGCMPNT allows
are quite general, covering a wide range of commonly used cases. This includes RegARIMA
models as are used in X-12-ARIMA, the basic structural models of Harvey (1989), models
with time-varying regression coefficients, and many others.
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