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FIXED-B ASYMPTOTICS FOR
THE STUDENTIZED MEAN

FROM TIME SERIES WITH SHORT,
LONG, OR NEGATIVE MEMORY

TUCKER MCELROY
U.S. Census Bureau

DIMITRIS N. POLITIS
University of California at San Diego

This paper considers the problem of variance estimation for the sample mean in the
context of long memory and negative memory time series dynamics, adopting the
fixed-bandwidth approach now popular in the econometrics literature. The distri-
bution theory generalizes the short memory results of Kiefer and Vogelsang (2005,
Econometric Theory 21, 1130–1164). In particular, our results highlight the depen-
dence on the kernel (we include flat-top kernels), whether or not the kernel is nonzero
at the boundary, and, most important, whether or not the process is short memory.
Simulation studies support the importance of accounting for memory in the con-
struction of confidence intervals for the mean.

1. INTRODUCTION

This paper considers the asymptotics of estimates of the variance of the sample
mean constructed from a kernel-smoothed sum of sample autocovariances, when
the underlying data generating process (DGP) exhibits either long, short, or in-
termediate memory. As in Kiefer and Vogelsang (2002, 2005), we work out the
so-called fixed-b asymptotics, i.e., the case that bandwidth is a fixed proportion
of sample size. In Kiefer, Vogelsang, and Bunzel (2000), results are obtained for
the Bartlett kernel and show that the limiting numerator and denominator are in-
dependent. Although this result is more generally true for all kernels, it does not
hold for the case of long/intermediate memory, as is shown in Theorems 1 and 2
below. A deeper analysis of the reasons for this phenomenon is afforded by the
Fourier-Laplace transform (FLT) techniques described below.

We study the situation in which we have a sample Y = {Y1,Y2, . . . ,Yn}
from a strictly stationary time series with mean EYt = μ, autocovariance
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γh = Cov(Yt ,Yt+h), and integrable spectral density function f (λ) = ∑h γhe−ihλ.
Memory strength can be parameterized through the partial sums of autocovari-
ances;

∑
|h|<n

γh ∼ C L(n)nβ, (1)

where in general An ∼ Bn denotes An/Bn → 1 as n → ∞. In (1), C is a pos-
itive constant, and L is slowly varying at infinity (Embrechts, Klüppelberg, and
Mikosch, 1997), with a limit that can be zero, one, or infinity. Then β and L
parameterize memory as follows: 1 > β > 0 or β = 0 and L tending to infinity
correspond to long memory (LM), in which case f (0) = ∞; β = 0 and L tending
to unity correspond to the usual short memory (SM) case where 0 < f (0) < ∞;
finally, −1 < β < 0 or β = 0 and L tending to zero correspond to the less-studied
case where f (0) = 0, which we will denote by negative memory (NM). In this
context, Brockwell and Davis (1991) used the terminology “intermediate mem-
ory,” whereas others have used “antipersistence” (Robinson (2005), Lieberman
and Phillips (2008)) or “negative dependence” (Samorodnitsky and Taqqu, 1994)
due to negative correlations; our choice of terminology follows these latter au-
thors. These definitions encompass autoregressive fractionally integrated moving
average (ARFIMA) models (Hosking, 1981), fractional exponential models (see
Beran, 1993, 1994), and fractional Gaussian noise models. Some authors prefer to
parameterize memory in terms of the rate of explosion of f or 1/ f at frequency
zero, but it is more convenient for us to work in the time domain; see Palma (2007)
for a recent overview.

We stipulate β < 1 to ensure that the sample mean is a consistent estimator
of the mean μ, and we assume β > −1 to ensure that Yt is not over-differenced,
i.e., equal to the first difference of another stationary process. The SM case was
covered in Kiefer and Vogelsang (2005), who used a variety of kernels for smooth-
ing; our results provide extensions to LM and NM DGPs. A related paper is Sun
(2004), which treats regression problems for both stationary and nonstationary
LM DGPs. In contrast to these papers, we here consider the NM case as well as
general flat-top tapers, and study the properties of the limit distribution in The-
orem 2. The chief problem of interest is to properly normalize the partial sums
Sn = ∑n

t=1 Yt , which have finite-sample variance Vn . In general Vn grows at a rate
dependent on β (e.g., see Taqqu, 1975; Taniguchi and Kakizawa, 2000), which
makes the problem of normalization more tricky. Supposing that V −1/2

n (Sn −nμ)
converges weakly to a nondegenerate distribution, it is of interest to develop an
estimate of Vn that can be plugged in. We consider an estimator V�,M based on a
kernel-smoothed sum of sample autocovariances and bandwidth M , which grows
at the same asymptotic rate as Vn .

Alternatively, one might consider a small-bandwidth approach to the above
problem, which is studied in Robinson (2005). That work estimates

√
Vn di-

rectly by employing a consistent estimate of β. Our work, in contrast, focuses
on the fixed-b asymptotics for generic kernels (including flat-top kernels) and



ASYMPTOTICS FOR STUDENTIZED MEAN 3

demonstrates that the limiting distribution depends vitally on the unknown β, but
not, interestingly, upon any parameters associated with remaining short-run dy-
namics; i.e., the limit distribution is pivotal with respect to short-term dependence.
One can then obtain practicable estimates of the limiting quantiles via utilizing a
plug-in estimator of β̂. This differs from Robinson in that the plug-in estimator
here is not used to construct an estimate of Vn , but rather to estimate the limit
quantiles. Our theoretical results, along with discussion, are provided in Section
2. The behavior of simulated quantiles is summarized in Section 3, where we also
study the empirical size of a plug-in approach to estimation of the limit quantiles.
Technical proofs are deferred to the Appendix.

2. ASYMPTOTIC RESULTS

As in Kiefer and Vogelsang (2005), let the bandwidth M be proportional to sample
size n, i.e., M = bn with b ∈ (0,1]. We first introduce the following notation: The
sample autocovariance is γ̃k = n−1 ∑n−k

t=1 (Yt+k − Y )(Yt − Y ) for 0 ≤ k < n, and
Y the sample mean. Also let Ŝi = ∑i

t=1(Yt − Y ) (so that Ŝn = 0), and define the
kernel-smoothed sum of autocovariances by V�,M = ∑h �(h/M)γ̃h , where � is
a kernel. We consider kernels �(x) from the following general family:

{� is continuous and even, with support on [-1,1] such that �(x) = 1 for

|x | ≤ c, for some c ∈ [0,1); also, � is continuous and twice continuously

differentiable on(c,1)∪ (−1,−c).} (2)

The above class of kernels includes the family of flat-top kernels of Politis (2005)
where c > 0, the Bartlett kernel (letting c = 0 and a linear decay of �), as well as
other kernels considered in Kiefer and Vogelsang (2005).

A derivative of � from the left (with respect to x) is denoted �̇−, whereas
from the right it is �̇+; the second derivative is �̈. The greatest integer function
is denoted by [·]. With this notation, the following basic proposition is presented.

PROPOSITION 1. Let � be a kernel from family (2), and assume (1) with
|β| < 1. Then

nV�,M =
n

∑
i, j=1

Ŝi Ŝj

(
2�

(
i − j

M

)
−�

(
i − j +1

M

)
−�

(
i − j −1

M

))

= − 2

bn

n−[cbn]

∑
i=1

Ŝi Ŝi+[cbn]

(
�̇+(c)+ 1

2bn
�̈(c)+ O(n−2)

)
− 1

b2n2 ∑
[cbn]<|i− j |<[bn]

Ŝi Ŝj

(
�̈

( |i − j |
bn

)
+ O(n−1)

)

+ 2

bn

n−[bn]

∑
i=1

Ŝi Ŝi+[bn]

(
�̇−(1)+ O(n−1)

)
.
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Remark 1. In case the kernel is continuously differentiable at c, �̇+(c) = 0
and the second derivative becomes dominant in the first term, which can then be
recombined with the second term to yield

− 1

b2n2 ∑
[cbn]≤|i− j |<[bn]

Ŝi Ŝj

(
�̈

( |i − j |
bn

)
+ O(n−1)

)
.

Likewise, if there is no kink at |x | = 1, then �̇−(1) = 0 and the third term vanishes
completely.

Since we want the asymptotics of nV�,M , we need functional limit theorems
for the partial sums, as Ŝi = Si − i/n Sn . To that end we suppose that

V −1/2
n

(
S[nr ] − [nr ]μ

) L=⇒ B(r) (3)

in the sense that the corresponding probability measures on D[0,1] converge
weakly. Here D[0,1] refers to the space of functions on [0,1] that are right con-
tinuous with left limits, endowed with the Skorohod topology (Taniguchi and
Kakizawa, 2000). Also, B(·) is a fractional Brownian motion (FBM) process of
parameter (β +1)/2 (Samorodnitsky and Taqqu, 1994).

Sufficient conditions for (3) include linearity and a moment condition (see
Taniguchi and Kakizawa, 2000, Thm. 5.2.4), as well as supposing that the pro-
cess is an instantaneous functional of a long memory Gaussian (see Taqqu, 1975,
Thm. 5.1, or Taniguchi and Kakizawa). In the interest of brevity we will hence-
forth assume that (3) holds, from which it follows that Ŝ[rn]/

√
Vn converges

weakly to the process B̃(r) = B(r)−r B(1), which is a fractional Brownian bridge
(FBB). Then we may conclude the following result.

THEOREM 1. Let � be a kernel from family (2), and suppose that {Yt } is a
DGP such that (3) holds. Also assume that (1) holds with |β| < 1. Then

Sn −nμ√
nV�,M

L=⇒ B(1)√
Q(b)

(4)

as n → ∞, where Q(b) is defined by

− 2

b
�̇+(c)

∫ 1−cb

0
B̃(r)B̃(r + cb)dr

− 1

b2

∫
cb<|r−s|<b

B̃(r)B̃(s)�̈

( |r − s|
b

)
drds

+ 2

b
�̇−(1)

∫ 1−b

0
B̃(r)B̃(r +b)dr.

Example 1
The trapezoidal kernel is the benchmark flat-top kernel whose use was proposed
by Politis and Romano (1995); it is defined by
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�T,c(x) =

⎧⎪⎨⎪⎩
1 if |x | ≤ c
|x |−1
c−1 ifc < |x | ≤ 1

0 else.

Hence the second derivative for |x | ∈ (c,1] is zero, and

Q(b) = 2

b(c −1)

(∫ 1−b

0
B̃(r)B̃(r +b)dr −

∫ 1−cb

0
B̃(r)B̃(r + cb)dr

)
.

We can further describe the joint distribution of B(1) and Q(b) through their
joint Fourier-Laplace transform (FLT); see Fitzsimmons and McElroy (2010). In
order to describe the result given below, we need to introduce some concepts from
Tziritas (1987). Define the kernel as a tempered distribution,

K (r,s) = − 1

b2

{
�̈

(
r − s

b

)
−�1(s)

∫ 1

0
x�̈

(
r − x

b

)
dx

−�1(r)

∫ 1

0
x�̈

(
x − s

b

)
dx

+�1(r)�1(s)
∫ 1

0

∫ 1

0
xy�̈

(
x − y

b

)
dxdy

}

− 2

b
�̇+(c)�c(r,s)+ 2

b
�̇−(1)�1(r,s),

�a(r,s) = �ab(r − s)−�1(s)
∫ 1−ab

0
x�ab(r − x)dx −�1(r)

∫ 1−ab

0
x�ab(x − s)dx

+�1(r)�1(s)
∫ 1−ab

0
x(x +ab)dx,

for r,s ∈ [0,1]. Here �a for a ∈ [0,1] denotes the Dirac delta function. We need
to consider the space of square integrable (real-valued) tempered distributions
on [0,1], endowed with the inner product < u,v >= ∫ 1

0 u(s)v(s)ds for elements
u,v . This is a separable Hilbert space and will be called H . Linear operators on H
map elements to the space of functions on [0,1] as follows: An operator O maps
u ∈ H to Ou, which has value [Ou](s) = ∫ 1

0 O(s, x)u(x)dx . Let ι ∈ H denote the
function that is identically one; then the trace of an operator is tr[O] =< Oι, ι >.
Let ζ ∈ H denote the line given by ζ(s) = s; then some algebra shows that K ζ
is equal to the zero element (this result is important later). Next, let the kernel
function of FBM be denoted T (r,s) = 1

2

(
rβ+1 + sβ+1 −|r − s|β+1

)
, which is

nonnegative definite (Samorodnitsky and Taqqu, 1994, p. 318); moreover it is self-
adjoint (symmetric), linear, and bounded on H . The identity operator is denoted
by 1. We can now state our main result.
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THEOREM 2. For any β ∈ (−1,1) the joint Fourier-Laplace transform
of B(1), Q(b) is

Eexp{iθ B(1)−φQ(b)} = exp

{
−θ2

2
< T (1+2φK T )−1�1,�1 >

}
[det(1+2φK T )]−1/2.

It follows that B(1)/
√

Q(b) is symmetric about zero and has a cumulative distri-
bution function that is continuous in β.

Setting θ = 0 produces the Laplace transform of Q(b), which is analogous
to the χ2; sufficient conditions for Q(b) to be χ2 or a sum of gamma variables
are given by Propositions 2 and 3 of Tziritas (1987). Setting φ = 0 produces
exp{−θ2/2}, corresponding to the standard normal, since < T �1,�1 >= 1 for
all β ∈ (−1,1). Since the FLT does not in general factor into a product of functions
only involving θ and φ, we conclude that B(1) and Q(b) are dependent. However,
when β = 0 we find that T simplifies to the pairwise minimum function; hence
T �1 = ζ . Expanding (1+2φK T )−1 = ∑n≥0 (−2φ)n(K T )n in the first term of
the FLT and using the fact that K ζ = 0, all the terms in the infinite sum actually
vanish except the first; as a result we are left with just exp{−θ2/2} times the
determinantal term. Thus we obtain independence of B(1) and Q(b) when β = 0
(a known result). When β �= 0 dependence remains, essentially because T �1 is
nonlinear and hence not in the null space of K . The fact that K annihilates lines
stems directly from the sample mean centering that is used to construct sample
autocovariances in V�,M .

In principle we can set θ = 0 and differentiate the FLT to get all moments of
Q(b); using the formulas from the proof of Theorem 2 we find that

E[Q(b)]k = (k −1)!2k−1 tr[(K T )k].

The trace calculation is algebraically challenging when k > 1, and hence mit-
igates the utility of the above formula. Finally, we note that the FLT does not
provide a practical method for computing the cumulative distribution function of
B(1)/

√
Q(b), as the inversion of Laplace transforms is a difficult mathematical

problem.

3. NUMERICAL RESULTS

In this section we investigate the distribution B(1)/
√

Q(b) of equation (4) for
various choices of β, b, and kernel. Following Kiefer and Vogelsang (2005), we
simulated the upper quantiles of this distribution using the device of regressing on
a convenient function of b for fixed kernel, α-level, and β. (Since the distribution
of B(1)/

√
Q(b) is symmetric for all |β| < 1, it is sufficient to consider the upper

quantiles.) The simulation was conducted by generating 50,000 sample-paths of
an FBB of length 1,000, and computing B(1)/

√
Q(b) for a given choice of kernel,
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FIGURE 1. Log quantiles of the limiting studentized statistic based on 50,000 simu-
lations of fractional Brownian bridge, for the upper .90 quantile, plotted against
bandwidth proportion b. Multiple curves represent increasing values of β ∈ {−.8,
−.6,−.4,−.2,0, .2, .4, .6, .8} in ascending order (curves corresponding to higher values
of β lie above those for lower values of β). The left panel is for the Bartlett taper, and the
right panel for the trapezoidal taper with c = .5.

50 values of b (evenly spaced between .02 and 1.00), and nine values of β ∈
B = {−.8,−.6,−.4,−.2,0, .2, .4, .6, .8}. Full tables summarizing our regression
on to an exponential quintic function, as well as details concerning our method of
simulation, can be found in the technical report of McElroy and Politis (2009).

Now, although results varied slightly by taper and percentile (we also con-
sidered the Parzen, Daniell, quadratic spectral, Tukey-Hanning, and Bohman ta-
pers), qualitatively the behavior of the quantiles as a function of b and β can be
demonstrated through a single figure. Figure 1 displays the results for the Bartlett
(left) and trapezoidal (right) with c = .5, with b between .02 and 1.00 in incre-
ments of .02 along the x-axis, and β ∈ B in successive curves overlaid. The y-axis
displays the logarithm of the .90 upper one-sided quantile (logs are used to make
the patterns more discernible). Note that the curves are ordered from lowest to
highest values according to the values of β, their ordering being monotonic.

The middle curve corresponds to β = 0, and is identical (up to Monte Carlo
error) to the results of Kiefer and Vogelsang (2005). The effect of both β and
b on the limiting distribution is apparent from these graphs. The trumpet shape
at the left of each plot is indicated by a divergence in the behavior of the mean
of Q(b) when b is small, depending on whether β is positive or negative; this
phenomenon is further discussed in McElroy and Politis (2009). Because these
log quantile curves generally tend to move in parallel for moderate to high values
of b, the consequences of using the β = 0 distribution when in fact β �= 0 can be
considerable at all bandwidths.

Consider now the practical procedure of using a plug-in estimator of β to con-
struct a confidence interval. We utilize some consistent estimate β̂, find the nearest
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TABLE 1. Empirical α-level (i.e., proportion of simulations for which true mean
lay outside the constructed interval) for a nominal 95% two-sided confidence in-
terval for the mean, using the plug-in quantile method described in Section 3

b Memory β

Bartlett –.8 –.4 0 .4 .8

.2 .008 (.000) .039 (.004) .075 (.051) .105 (.245) .294 (.529)

.4 .016 (.000) .039 (.003) .078 (.041) .108 (.186) .256 (.463)

.6 .025 (.000) .046 (.005) .094 (.050) .116 (.182) .275 (.435)

.8 .041 (.000) .054 (.006) .093 (.053) .137 (.192) .287 (.432)
1.0 .049 (.000) .067 (.005) .086 (.057) .135 (.184) .325 (.438)

Trap (c = .5)

.2 .048 (.019) .054 (.033) .068 (.050) .079 (.113) .202 (.323)

.4 .055 (.021) .063 (.031) .081 (.043) .106 (.112) .174 (.250)

.6 .061 (.012) .084 (.027) .100 (.063) .116 (.117) .201 (.248)

.8 .039 (.010) .073 (.024) .089 (.050) .126 (.118) .241 (.267)
1.0 .041 (.010) .063 (.019) .109 (.042) .134 (.117) .239 (.273)

Note: True β is given by column, and each row describes taper and bandwidth proportion. Numbers in parentheses
correspond to the default method wherein the quantiles for the β = 0 case are implicitly used no matter what
the true β is.

β ∈ B, and compute the corresponding quantile for the specified taper and value
of b. This procedure is not optimal, due to the discrete grid of βs that are avail-
able, and yet it may have superior size to the naı̈ve procedure wherein the β = 0
quantiles are utilized.

There is a large literature on the estimation of the memory parameter
β; available methods are either parametric (e.g., Giraitis and Taqqu, 1999),
semiparametric (Giraitis and Surgailis, 1990; Hurvich, 2002), or even non-
parametric (McElroy and Politis, 2007). We here implement an estimator
suggested by the rate estimation framework of the latter reference, namely
β̂ = log V�,M/ logn. Supposing that Vn ∼ C̃ L(n)nβ+1 (cf. Thm. 5.2.1 of
Taniguchi and Kakizawa, 2000) follows from (1), we have log(n−1Vn)/ log
n ∼ β since log L(n)/ logn → 0 for any slowly varying function (Embrechts et al.

1997). Then, with nV�,M/Vn
L=⇒ Q(b), we have

β̂ = log
(
nV�,M/Vn

)
logn

+ log(Vn/n)

logn
= β + OP(1/ logn)+o(1).

We implemented this procedure in simulation, examining Gaussian time series
with β ∈ {−.8,−.4,0, .4, .8}, for various tapers and sample sizes. Table 1 sum-
marizes the empirical performance for a nominal 95% two-sided interval, for
sample size n = 1,000 and the Bartlett or trapezoidal (c = .5) tapers, with
b ∈ {.2, .4, .6, .8,1.0}. Even this crude procedure produces some advantages over
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the default method, which assumes that β = 0, except in the case where β is truly
zero. Our proposed method is less effective for positive β than negative β, which
seems to be due to the inferior performance of β̂ and the heavier tails of the limit
distribution in the LM case.

4. CONCLUSION

This paper investigates the distribution of the studentized sample mean in the con-
text of NM and LM time series dynamics, adopting the fixed-bandwidth approach
now popular in the econometrics literature. We derive the limiting distribution in
Theorems 1 and 2, thus generalizing the results of Sun (2004) and Kiefer and
Vogelsang (2005) to antipersistence and flat-top tapers. Our results highlight the
influence of the kernel—e.g., whether or not the kernel is nonzero at the boundary
of its support—and the influence of the DGP’s type of memory. A main finding is
that utilization of the SM fixed-bandwidth quantiles when NM or LM is present
will imperil inference, whether b is small, moderate, or large. This assertion is
further supported by our modest empirical studies; improved coverage can be ob-
tained by using a plug-in estimator of β.

In practice, then, it is essential to have some estimate of β, whether one takes
the approach of Robinson (2005) or the fixed-bandwidth approach discussed here.
Once an estimate β̂ is obtained, one needs to compute the corresponding quantiles
(via simulation, or by using a look-up table). However, this distribution will be
distorted by the variability in β̂ (see Table 1 for an example); although the FLT
of Theorem 2 is continuous in β, and hence a plug-in approach has theoretical
merit, common estimators of β are notorious for having high variance, and this
will likely have a large impact on inference. Future work should further study the
finite-sample performance of a plug-in approach, and make comparisons with the
alternative approach of Robinson (2005).

REFERENCES

Beran, J. (1993) Fitting long-memory models by generalized linear regression. Biometrika 80, 817–
822.

Beran, J. (1994) Statistics for Long Memory Processes. Chapman and Hall.
Brockwell, P. & R. Davis (1991) Time Series: Theory and Methods, 2nd ed. Springer.
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APPENDIX

Proof of Proposition 1. For shorthand let Wt = Yt −Y . Then, using summation by parts
as in Kiefer and Vogelsang (2002, 2005),

nV�,M = ∑
|h|<n

�(h/M)
n−|h|
∑
t=1

Wt Wt+|h|

=
n

∑
i, j=1

Wi Wj �

( |i − j |
bn

)

=
n

∑
i=1

Wi

[
n−1

∑
j=1

(
�

(
i − j

bn

)
−�

(
i − j −1

bn

))
Ŝj

]

=
n

∑
i, j=1

Ŝi Ŝj

(
2�

(
i − j

bn

)
−�

(
i − j +1

bn

)
−�

(
i − j −1

bn

))
.

Consider 2�
(

h
bn

)
− �
(

h+1
bn

)
− �
(

h−1
bn

)
. If [cbn] < h < [bn], then the approxima-

tion −b−2n−2�̈
(

h
bn

)
holds. If h = [cbn], we obtain 2�(c)−�(c + 1/bn)− 1 + o(1) =
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−�̇+(c)/bn − �̈(c)/(2b2n2)+ O(n−3). Finally, if h = [bn] we obtain −�(1 − 1/bn)+
o(1) = �̇−(1)/bn + O(n−2). This completes the proof of the proposition. n

Proof of Theorem 1. This follows at once from Proposition 1 and (3), noting that

V −1/2
n (Sn − nμ)

L=⇒ B(1) jointly with V −1/2
n Ŝi tending to B̃(i/n). The second-order

terms in nV�,M in Proposition 1 drop out, and the summations become integrals. In the
case that �̇+(c) = 0, we can apply Remark 1 and extend the integral to |r − s| = cb. Since
this set has measure zero, it has no impact on the final limit Q(b). n

Proof of Theorem 2. First we consider the FBM process B(s), which is a random func-
tion with values in H , such that it induces a probability measure; it is in this sense that we
write B ∈ H . Then it is a tedious exercise to show that Q(b) =< K B, B >. Let W be an-
other Gaussian process that is mean zero with covariance kernel K and that is independent
of B. Then the FLT is

Eexp{iθ B(1)−φQ(b)} = Eexp{iθ B(1)+ i
√

2φ < B,W >},
which follows by use of conditional expectations, i.e., the characteristic function of
< B,W > conditional on B is given by the scaled Laplace transform of < K B, B >.
Next, let Z = θ�1 +√

2φW , which is another Gaussian process with mean element θ�1
and covariance kernel 2φK . So our FLT is just Eexp{− 1

2 < T Z , Z >}, obtained this time
by conditioning on Z (i.e., on W ). Note that T satisfies the conditions of Proposition 1 of
Tziritas (1987), which we apply to get the stated result; also, we use formula (8) of that
paper, which applies to the case of real-valued Gaussian processes. The nth cumulant of
< T Z , Z > is

κn = 2n−1
(
(n −1)!tr[(2φK T )n]+ θ2n! < T (2φK T )n−1�1,�1 >

)
.

The FLT is then just exp{∑n≥1 (−1/2)nκn/n!}, which upon manipulation easily produces
the stated formula. The cumulant formula can also be used to obtain the moments of Q(b).
The symmetry assertion is proved as follows: The FLT is even in its first argument, so that
(B(1), Q(b)) is equal in distribution to (−B(1), Q(b)), since the FLT characterizes the
bivariate distribution (Fitzsimmons and McElroy, 2010, Thm. 1(i)). From the symmetry
of the joint density function in its first argument follows the symmetry of the density of
B(1)/

√
Q(b). For continuity in β ∈ (−1,1), we first show weak converge of any sequence

of pairs (B(1), Q(b)) depending on a sequence of βns using Theorem 1 (ii) of Fitzsimmons
and McElroy (2010); then continuity of the cumulative distribution functions follows. n


