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Abstract

Statistical agencies commonly release ranking tables in which a collection
of entities such as states are ranked based on an estimate of some quantity
of interest. We have a particular interest in assessing the U.S. Census
Bureau’s current methodology for producing ranking tables based on data
from the American Community Survey. Taking such ranking tables as our
motivation, this paper presents several methods for obtaining a complete
ranking of several normal populations with respect to the unknown means.
Most of the methods are derived from a Bayesian perspective. We explore
the computational aspects of each ranking method, and we use simulation
to compare the various methods under several scenarios. The procedures
are then applied to a dataset from the American Community Survey of
the Census Bureau. We demonstrate a use of the parametric bootstrap
to quantify uncertainty in the empirical ranking. In our empirical studies,
we find that the rankings produced by the various methods, including the
Census Bureau’s current method, are largely in agreement.
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1 Introduction

The American Community Survey (ACS) of the U.S. Census Bureau seeks to collect
data from a sample of approximately 250,000 randomly selected households and from
group quarters (e.g., college and university dormitories, health care facilities, prisons,
etc.) distributed across the United States each month. The data from the ACS are
used to produce estimates of various parameters over a one-year period, a three-year
period, or a five-year period for a number of different demographic characteristics. In
addition to national level estimates, estimates are produced for various lower levels
of geography, including the fifty states and the District of Columbia. When the true
values of parameters θi for i = 1, . . . , 51 are known for the states and the District of
Columbia (e.g., average annual income or proportion below poverty level), it is possible
to rank the states from smallest to largest. When θi are unknown, sample data are
used to produce sample estimates xi, and a ranking can be based on the observed
estimates xi which are subject to sampling error.

In this paper we present and compare several procedures for obtaining a complete
ranking of k normal populations with respect to the unknown means when the vari-
ances are assumed to be known. Our motivation for this problem lies in the ranking
tables that are commonly released by the Census Bureau in which the fifty states and
the District of Columbia are ranked according to a sample estimate of some quantity of
interest. A series of such tables is provided from the ACS as a portion of the released
data products. The ranking procedure used in these released tables is the straightfor-
ward one in which the 51 estimates for the states and the District of Columbia are
ordered to obtain a complete ranking.

The primary objective of this paper is an assessment of the Census Bureau’s rank-
ing procedure for the ACS produced estimates through an empirical comparison with
alternative Bayesian procedures. The Census Bureau’s current method is to obtain a
ranking by sorting the frequentist based point estimates of the θi. From the Bayesian
perspective, one can devise several methods to go from the joint posterior distribution
of the θi to a complete ranking of the populations. In this paper we develop Bayesian
procedures from several different points of view: ranking through posterior probabil-
ities, ranking by sorting a Bayes estimate of the parameter of interest, and ranking
by using characteristics of the posterior distribution of the ranks themselves. We then
compare all of the procedures. Alternative frequentist based ranking methods can also
be developed and included in the comparison, but we do not pursue this task here. We
are attracted to the Bayesian approach because, with the Bayesian approach “... once
the basic step of describing uncertainty through probability is admitted, we have a
formal procedure for solving all inference problems; and it is a procedure that works”
(Lindley, 2006). A secondary focus of the present paper is in providing a statement of
the uncertainty in a released ranking.

Typically rankings are based on the model

xi |θ ind∼ N(θi, σ
2
i ), i = 1, . . . , k, (1)
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where θ = (θ1, . . . , θk) is the vector of unknown population means and the information
available to us is the estimate vector x = (x1, . . . , xk) along with the known standard
deviations σ = (σ1, . . . , σk). More specifically, xi is the sample estimate of θi, σi is the
standard error of xi, and the sampling distribution of xi is assumed to be normal, for
i = 1, . . . , 51. The straightforward or simple (SI) ranking in Table 2, which is obtained
by sorting the estimates x1, . . . , xk, ignores the known values of σ. The goal then is
to use the information (x and σ), to obtain estimates of the unknown true ranks ri,
of the populations i = 1, . . . , k, which would be obtained by ordering the θi. The true
ranks can then be defined formally by

ri = rank(θi) =

k
∑

j=1

I(θj ≤ θi) = 1 +
∑

j : j 6=i

I(θj ≤ θi), for i = 1, . . . , k, (2)

where I(·) denotes the indicator function. Thus the rank of the smallest θi is 1, the rank
of the second smallest θi is 2, and so on. An estimated ranking, computed using the
observed data x and the known standard deviations σ, is denoted by r̂1, . . . , r̂k. Note
that the SI ranking method is defined by r̂i = 1+

∑

j : j 6=i I(xj ≤ xi), for i = 1, . . . , k. As
indicated previously, the primary purpose of this paper is to evaluate the performance
of various methods for computing r̂1, . . . , r̂k.

We choose to judge the estimated rankings based on probabilities of the form
P (|r̂i − ri| ≤ c0), i = 1, . . . , k, for some fixed c0. This choice of evaluation criteria is
based on the fact that these probabilities are simple and straightforward to interpret.
For instance, one can construct the confidence interval [r̂i− c0, r̂i+ c0] for ri, and then
the probability P (|r̂i− ri| ≤ c0) would represent the individual confidence level of this
interval.

There is a large body of literature on ranking and selection (Gibbons, Olkin, and
Sobel, 1999; Gupta and Panchapakesan, 2002). Much of this literature considers the
probability that the largest population is chosen correctly as the criterion of interest.
Other authors such as Goldstein and Spiegelhalter (1996), Hall and Miller (2009),
Laird and Louis (1989), and Xie et al. (2009) study intervals and other one at a time
criteria for individual ranks, with some extensions for making multiple comparisons.
As these authors indicate, there are certainly other possible criteria of interest. For
instance, if one is interested in assessing multiple comparisons, then a probability such
as P (|r̂i − ri| ≤ c0, ∀ i = 1, . . . , k) would be a relevant criterion. We do not pursue
such a multiple comparison criterion in the present paper, but instead choose to focus
on the one at a time criteria P (|r̂i − ri| ≤ c0), i = 1, . . . , k.

The outline of the rest of the paper is as follows. In Section 2 we discuss Bayesian
approaches to ranking, and we outline details of the empirical and hierarchical Bayes
models that we will consider. Section 3 introduces several ranking procedures and
addresses the relevant computational issues for each one. The section concludes with
a simulation based comparison of all the procedures. Section 4 provides an example
to illustrate the application of each of the ranking procedures to a publicly available
dataset from the ACS. Section 4 also illustrates the use of the parametric bootstrap to
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assess the uncertainty in the empirical rankings. Section 5 concludes the paper with
some discussion of our results, and topics for future research.

Ranking or comparing overlapping populations is a challenging task. Here we work
under the premise of ordering several normal populations with respect to their un-
known means, when the standard deviation of each population is known. To conclude
this section, we note that we use the statistical computing software R (R Development
Core Team, 2010) to obtain the empirical results presented in this paper.

2 Bayesian Approaches To Ranking

In this paper we consider both frequentist and Bayesian settings. The frequentist
setting is described by (1) with θ fixed and unknown. The Bayesian setting involves
placing a prior distribution on θ and utilizing the posterior distribution to obtain
a ranking of the populations conditional on x. One can employ various procedures
to obtain a ranking from the posterior distribution. For instance, a ranking can be
obtained by sorting an appropriate Bayes estimate of θ such as the posterior mean.
Alternatively one could select the ranking based on evaluation of posterior probabili-
ties, for example, choose the ranking that is most probable. By defining the ranks as
in (2), one can even look at the posterior distribution of the ranks themselves. More
generally, if one specifies a loss function that depends on a ranking and on θ, then
an optimal ranking procedure is obtained by minimizing the posterior expected loss.
A theoretical development of this approach is provided by Govindarajulu and Harvey
(1971). In our Bayesian modeling we specify the prior distribution on θ by

θ1, . . . , θk |µ, τ iid∼ N(µ, τ2). (3)

In this application it is desirable for the analysis to be data driven as much as possible,
and hence we do not wish to make any subjective specification of the hyper-parameters
µ and τ . Hence empirical and hierarchical Bayes (Berger, 1985) are viable approaches,
and we consider and compare both. We now briefly describe each approach.

1. Empirical Bayes. Under the empirical Bayes approach, the prior parameters µ
and τ2 can be estimated using the marginal density of x, which is given by

p(x |µ, τ) =
(

k
∏

i=1

[2π(σ2
i + τ2)]−1/2

)

exp

{

−1

2

k
∑

i=1

(xi − µ)2

σ2
i + τ2

}

. (4)

Estimates of µ and τ2 can then be found by maximizing p(x |µ, τ) with respect
to µ and τ2. The estimates can be computed by numerically solving the following
system of nonlinear equations:

g1(µ, τ
2) ≡ µ−

∑k
i=1

xi

σ2

i +τ2

∑k
i=1

1
σ2

i +τ2

= 0, g2(µ, τ
2) ≡ τ2 −

∑k
i=1

(xi−µ)2−σ2

i

(σ2

i +τ2)2

∑k
i=1

1
(σ2

i +τ2)2

= 0. (5)
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To solve these equations, we use the R library ‘nleqslv’ (Hasselman, 2010) along
with the explicit expressions for the derivatives of g1(µ, τ

2) and g2(µ, τ
2) with

respect to µ and τ2. Letting µ̂ and τ̂2 denote the solution to (5), we then set
µ = µ̂, τ2 = τ̂2, and proceed with the analysis. The posterior density of θ is
given by

p(θ |x, µ, τ) =
(

k
∏

i=1

[

2π

1/σ2
i + 1/τ2

]−1/2
)

exp











−1

2

k
∑

i=1

(

θi − xiτ2+µσ2

i

τ2+σ2

i

)2

1
1/σ2

i +1/τ2











,

and hence
θi |x, µ, τ ind∼ N

[

δi(xi, µ, τ), ω
2
i (τ)

]

(6)

where

δi(xi, µ, τ) =
xiτ

2 + µσ2
i

τ2 + σ2
i

, ω2
i (τ) =

1

1/σ2
i + 1/τ2

.

2. Hierarchical Bayes. Under the hierarchical Bayes approach, we place a second
stage prior density p(µ, τ) on the hyperparameters (µ, τ). In this paper, we
assume that

p(µ, τ) = p(µ | τ)p(τ) ∝ 1, (7)

for −∞ < µ < ∞ and 0 < τ < ∞. Hence we assume independent and non-
informative uniform prior distributions on µ and τ . Next we briefly discuss the
posterior distribution of θ, µ, and τ obtained under this hierarchical model. For
details, see Gelman et al. (2004).

Under this model it can be shown that

µ | τ,x ∼ N(µ̂τ , Vτ ) (8)

where

µ̂τ =

∑k
i=1

xi

σ2

i +τ2

∑k
i=1

1
σ2

i +τ2

and V −1
τ =

k
∑

i=1

1

σ2
i + τ2

.

It is also true that

p(τ |x) ∝ p(τ)V 1/2
τ

[

k
∏

i=1

(σ2
i + τ2)−1/2

]

exp

(

−1

2

k
∑

i=1

(xi − µ̂τ )
2

σ2
i + τ2

)

.

One can then take random draws from the posterior distribution of (θ, µ, τ) by
making use of the factorization

p(θ, µ, τ |x) = p(τ |x) p(µ | τ,x) p(θ |µ, τ,x). (9)

Hence in order to simulate from the posterior distribution of θ, one can proceed
as follows (Gelman et al., 2004).
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(i) Draw from the density p(τ |x) numerically using the inverse cumulative
distribution function method.

(ii) Draw µ | τ,x ∼ N(µ̂τ , Vτ ).

(iii) Draw θi |µ, τ,x ∼ N
(

xiτ
2+µσ2

i

τ2+σ2

i

, 1
1/σ2

i +1/τ2

)

independently for i = 1, . . . , k.

In the sequel, we will make use of the following fact which follows from (6) and
(8):

θ | τ,x ∼ Nk

[

a(τ,x) + µ̂τb(τ), Σ(τ) + Vτb(τ)b
′(τ)

]

, (10)

where

a(τ,x) =









x1τ2

τ2+σ2

1

...
xkτ

2

τ2+σ2

k









, b(τ) =











σ2

1

τ2+σ2

1

...
σ2

k

τ2+σ2

k











,

Σ(τ) = diag

(

1

1/σ2
1 + 1/τ2

, . . . ,
1

1/σ2
k + 1/τ2

)

.

3 Ranking Procedures

In this section, we introduce several different procedures for obtaining a complete
ranking of the populations based upon the observed data x. In subsection 3.1 we
introduce two ranking procedures that make explicit use of posterior probabilities, in
subsection 3.2 we discuss some ranking procedures that result by sorting certain point
estimates of θ1, . . . , θk, and in subsection 3.3 we discuss ranking procedures based on
the posterior distribution of the ranks. Throughout, we address the relevant compu-
tational issues for each ranking procedure. A summary and short-hand notation for
each method is provided in subsection 3.4. In subsection 3.5 we present a comparison
of the procedures.

3.1 Ranking Based on Posterior Probabilities

Below we define a ranking procedure that sequentially determines the population with
rank 1, population with rank 2, and so on, by maximizing certain posterior probabil-
ities. The posterior probabilities appearing in each step are computed with respect
to the distribution (6) if we adopt the empirical Bayes model, or (9) if we adopt the
hierarchical Bayes model.

Step 1. For each s ∈ I1 = {1, . . . , k}, compute the joint posterior probability

p1,s(x) = P [θs ≤ θj , j ∈ I1 \ {s} |x]. (11)

Determine q̂1 such that p1,q̂1(x) = max{p1,s(x) : s ∈ I1} and associate popu-
lation q̂1 with the smallest rank. That is, r̂q̂1 = 1.
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Step 2. We next look for the population with the second smallest rank. For each
s ∈ I2 = {1, . . . , k} \ {q̂1}, compute the joint posterior probability

p2,s(x) = P [θs ≤ θj , j ∈ I2 \ {s} |x]. (12)

Determine q̂2 such that p2,q̂2(x) = max{p2,s(x) : s ∈ I2} and associate popu-
lation q̂2 with the second smallest rank. That is, r̂q̂2 = 2.

Step 3. We next look for the population with the third smallest rank. For each s ∈
I3 = {1, . . . , k} \ {q̂1, q̂2}, compute the joint posterior probability

p3,s(x) = P [θs ≤ θj , j ∈ I3 \ {s} |x]. (13)

Determine q̂3 such that p3,q̂3(x) = max{p3,s(x) : s ∈ I3} and associate popu-
lation q̂3 with the third smallest rank. That is, r̂q̂3 = 3.

Continue in this fashion to get a complete estimated ranking of the populations.
One can easily modify this procedure so that it instead sequentially computes the

population with rank k, then the population with rank k−1, and so on. In the sequel,
we refer to these two procedures as Procedure 1 and Procedure 2, respectively.

We now discuss some computational methods for the evaluation of the probabilities
that appear in the Procedures 1 and 2. For ease of exposition, we focus on the form
of the probabilities as they appear in Step 1. It is straightforward to generalize these
computational methods for the probabilities in an arbitrary Step ℓ of each procedure.

Implementation of the above procedures requires one to compute probabilities of
the form

P (θs ≤ θ1, . . . , θs ≤ θs−1, θs ≤ θs+1, . . . , θs ≤ θk |x) [Procedure 1] (14)

and
P (θs ≥ θ1, . . . , θs ≥ θs−1, θs ≥ θs+1, . . . , θs ≥ θk |x) [Procedure 2]. (15)

A simple Monte Carlo estimator of these probabilities is obtained by independently
drawing several vectors θ(1), . . . ,θ(m) from the posterior distribution of θ, and approx-
imating the probabilities (14) and (15) by

1

m

m
∑

j=1

I(θ(j)s ≤ θ
(j)
1 , . . . , θ(j)s ≤ θ

(j)
s−1, θ

(j)
s ≤ θ

(j)
s+1, . . . , θ

(j)
s ≤ θ

(j)
k ) (16)

and
1

m

m
∑

j=1

I(θ(j)s ≥ θ
(j)
1 , . . . , θ(j)s ≥ θ

(j)
s−1, θ

(j)
s ≥ θ

(j)
s+1, . . . , θ

(j)
s ≥ θ

(j)
k ), (17)

respectively. Under both the empirical and hierarchical Bayes models, we may use
Rao-Blackwellization (Givens and Hoeting, 2005) to obtain more efficient Monte Carlo
estimators of (14) and (15).
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Consider the empirical Bayes model in which the posterior distribution of θ is given
by (6), with µ = µ̂ and τ = τ̂ , the solutions to (5). To obtain a Rao-Blackwellized
version of (14), we note the following:

E[I(θs ≤ θ1, . . . , θs ≤ θs−1, θs ≤ θs+1, . . . , θs ≤ θk) | θs = ν,x]

= P [θs ≤ θ1, . . . , θs ≤ θs−1, θs ≤ θs+1, . . . , θs ≤ θk | θs = ν,x]

= P

(

θs − δi(xi, µ, τ)

ωi(τ)
≤ θi − δi(xi, µ, τ)

ωi(τ)
, i 6= s

∣

∣

∣ θs = ν,x

)

=
∏

i : i 6=s

P

[

ν − δi(xi, µ, τ)

ωi(τ)
≤ θi − δi(xi, µ, τ)

ωi(τ)

∣

∣

∣
x

]

=
∏

i : i 6=s

[

1− Φ

(

ν − δi(xi, µ, τ)

ωi(τ)

)]

, (18)

where Φ(·) denotes the standard normal cumulative distribution function, and the
third equality above followed from independence of the θi in the posterior distribution.
Thus a Rao-Blackwellized version of the Monte Carlo estimator (16), obtained by
conditioning on θs, is given by

1

m

m
∑

j=1

{
∏

i : i 6=s

[1− Φ

(

θ
(j)
s − δi(xi, µ, τ)

ωi(τ)

)

]}, (19)

where θ
(1)
s , . . . , θ

(m)
s are iid as N [δs(xs, µ, τ), ω

2
s (τ)]. An analogous argument leads to

the following Rao-Blackwellized version of the Monte Carlo estimator (17):

1

m

m
∑

j=1

{
∏

i : i 6=s

[Φ

(

θ
(j)
s − δi(xi, µ, τ)

ωi(τ)

)

]}, (20)

where again, θ
(1)
s , . . . , θ

(m)
s are iid as N [δs(xs, µ, τ), ω

2
s (τ)].

Next consider the hierarchical Bayes model in which the joint posterior density of
(θ, µ, τ) can be expressed as in (9). To obtain a Rao-Blackwellized version of (14),
we can apply a similar logic as in the case of empirical Bayes. However, in order to
get a result similar to (18), we must also condition on µ and τ . Thus, we obtain the
expression:

E[I(θs ≤ θ1, . . . , θs ≤ θs−1, θs ≤ θs+1, . . . , θs ≤ θk) | θs = ν, µ, τ,x]

=
∏

i : i 6=s

[

1− Φ

(

ν − δi(xi, µ, τ)

ωi(τ)

)]

,

and therefore a Rao-Blackwellized version of (16) is now given by

1

m

m
∑

j=1

{
∏

i : i 6=s

[1− Φ

(

θ
(j)
s − δi(xi, µ

(j), τ (j))

ωi(τ (j))

)

]}, (21)
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where {(θ(j)s , µ(j), τ (j)), j = 1, . . . ,m} are drawn as iid from the posterior density of
(θs, µ, τ) which is obtained from (9). The Rao-Blackwellized version of (17) is obtained
in a similar fashion as

1

m

m
∑

j=1

{
∏

i : i 6=s

[Φ

(

θ
(j)
s − δi(xi, µ

(j), τ (j))

ωi(τ (j))

)

]}, (22)

where again, {(θ(j)s , µ(j), τ (j)), j = 1, . . . ,m} are drawn as iid according to the posterior
density of (θs, µ, τ) which is obtained from (9).

The Rao-Blackwellized estimators above are more efficient than the respective sim-
ple Monte Carlo estimators in (16) and (17) in terms of possessing smaller mean
squared error. They are also more efficient in the sense that a total of m (empirical
Bayes) or 3m (hierarchical Bayes) random draws are needed as opposed to m× k.

3.2 Ranking Based on Estimates of θ

Once we have estimates x1, . . . , xk of θ1, . . . , θk, a ranking can be easily obtained
by sorting the estimated values. We consider the ranking obtained by sorting the
components of the posterior mean of θ. Under empirical Bayes, the posterior mean is
given by (6) with µ and τ2 replaced by the appropriate estimates. Under hierarchical
Bayes, an expression for the posterior mean can be obtained as follows:

E(θi |x) =
∫ ∞

0

∫ ∞

−∞

∫

Rk

θi p(θ, µ, τ |x) dθ dµ dτ

=

∫ ∞

0

∫ ∞

−∞

∫

Rk

θi p(τ |x) p(µ | τ,x) p(θ |µ, τ,x) dθ dµ dτ

=

∫ ∞

0

∫ ∞

−∞
p(τ |x) p(µ | τ,x)

(

xiτ
2 + µσ2

i

τ2 + σ2
i

)

dµ dτ

=

∫ ∞

0

xiτ
2 + µ̂τσ

2
i

τ2 + σ2
i

p(τ |x) dτ. (23)

Thus, for the hierarchical Bayes model, (23) provides an expression for the posterior
mean of each component of θ that can be evaluated using one dimensional Monte
Carlo or numerical integration.

In the empirical Bayes setting, we also consider a ranking obtained by sorting the
Bayes estimate of θ presented by Louis (1984). The estimator has the form

θ̂Li = ζ +Ai(xi − ζ) (24)

where

Ai =
Di

1 +Diσ2
i λ

, Di =
τ2

σ2
i + τ2

,
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and the values of ζ and λ are obtained by solving the system of equations:

f1(ζ, λ) ≡ ζ +
1

k

k
∑

i=1

Ai(xi − ζ)− µ− 1

k

k
∑

i=1

Yi(µ) = 0, (25)

f2(ζ, λ) ≡
k
∑

i=1

[Ai(xi − ζ)− 1

k

k
∑

j=1

Aj(xj − ζ)]2 − k − 1

k

k
∑

i=1

Diσ
2
i

−
k
∑

i=1

[Yi(µ)−
1

k

k
∑

j=1

Yj(µ)]
2 = 0, (26)

where Yi(µ) = Di(xi − µ). The estimator (24) is designed so that the empirical

distribution of the estimates θ̂L1 , . . . , θ̂
L
k closely resembles the empirical distribution of

the unobserved θ1, . . . , θk. More precisely, the equations (25) and (26) ensure that the

sample mean and sample variance of the estimators θ̂L1 , . . . , θ̂
L
k match the posterior

expectation of the sample mean and sample variance of θ1, . . . , θk, respectively. That
is, (25) and (26) ensure that (and are equivalent to):

1

k

k
∑

i=1

θ̂Li = E

[

1

k

k
∑

i=1

θi

∣

∣

∣
x

]

,

1

k − 1

k
∑

i=1

(θ̂Li − 1

k

k
∑

j=1

θ̂Lj )
2 = E





1

k − 1

k
∑

i=1

(θi −
1

k

k
∑

j=1

θj)
2
∣

∣

∣
x



 ,

under the independent normal posterior given by (6). Louis’ (1984) estimator (24) may
be more appropriate for ranking than the posterior mean since it leads to estimates
that are more representative of the parameter ensemble, i.e., the empirical distribution
of θ1, . . . , θk. Just as we did to solve (5), to solve the nonlinear system of equations
defined by (25) and (26), we use the R library ‘nleqslv’ (Hasselman, 2010) along with
the explicit expressions for the derivatives of f1(ζ, λ) and f2(ζ, λ) with respect to ζ
and λ.

3.3 Ranking Based on the Posterior Distribution of the Ranks

Laird and Louis (1989) look directly at the posterior distribution of the ranks. Because
the ranks can be formally defined by (2), it becomes clear that the ranks themselves are
random variables in the Bayesian setting. Thus we may use the posterior distribution
of the ri to obtain a ranking, for instance, by sorting the posterior mean ranks:

r̂i = E(ri |x) = 1 +
∑

j : j 6=i

P (θj ≤ θi |x). (27)
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The expression above clearly shows how a ranking based on sorting the posterior mean
ranks can be interpreted as an ordering of sums of certain posterior probabilities. A
ranking based on the posterior distribution of the ranks has the advantage of providing
a straightforward way to quantify uncertainty in the ranking from a Bayesian point of
view. For instance, by computing a 95% posterior interval on each ri.

In the case of empirical Bayes, the posterior mean (27) of each rank easily simplifies
to

r̂i = 1 +
∑

j : j 6=i

Φ

(

δi(xi, µ, τ)− δj(xj , µ, τ)

[ω2
i (τ) + ω2

j (τ)]
1/2

)

.

In the case of hierarchical Bayes, it follows from (10) (after some simplification) that
for i 6= j,

(θj − θi) | τ,x ∼ N
[

µ[θj−θi](τ, xj , xi), σ
2
[θj−θi]

(τ)
]

where

µ[θj−θi](τ, xj , xi) =
xjτ

2 + µ̂τσ
2
j

τ2 + σ2
j

− xiτ
2 + µ̂τσ

2
i

τ2 + σ2
i

,

σ2
[θj−θi]

(τ) =
1

1/σ2
j + 1/τ2

+
1

1/σ2
i + 1/τ2

+ Vτ

τ4(σ2
j − σ2

i )
2

[(τ2 + σ2
j )(τ

2 + σ2
i )]

2
.

Therefore, in this case we have:

P [θj ≤ θi |x] = E[P (θj − θi ≤ 0 | τ,x) |x]

= E

[

Φ

(

−µ[θj−θi](τ, xj , xi)

σ[θj−θi](τ)

)

|x
]

=

∫ ∞

0
Φ

(

−µ[θj−θi](τ, xj , xi)

σ[θj−θi](τ)

)

p(τ |x) dτ

which provides an expression that can be evaluated using one dimensional Monte Carlo
or numerical integration. The resulting Monte Carlo estimator of P (θj ≤ θi |x) is

1

m

m
∑

ℓ=1

Φ

(

−µ[θj−θi](τ
(ℓ), xj, xi)

σ[θj−θi](τ
(ℓ))

)

where τ (1), . . . , τ (m) iid∼ p(τ |x), which is a Rao-Blackwellization of the simple Monte
Carlo estimator:

1

m

m
∑

ℓ=1

I(θ
(ℓ)
j ≤ θ

(ℓ)
i ),

with (θ
(1)
j , θ

(1)
i ), . . . , (θ

(m)
j , θ

(m)
i ) drawn as iid from the posterior distribution of (θj, θi).

Thus we have convenient and efficient methods of computing the posterior mean
rank (27) in both the empirical and hierarchical Bayes models.
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3.4 Summary of the Procedures

At this point we have introduced a number of ranking procedures. For convenience,
we provide a list of the procedures below, along with a short-hand name that we use
in the sequel.

SI: The ranking obtained by replacing the unknown θi in (2) with the estimates xi.

P1EB: Procedure 1 defined in subsection 3.1 under empirical Bayes.

P1HB: Procedure 1 defined in subsection 3.1 under hierarchical Bayes.

P2EB: Procedure 2 defined in subsection 3.1 under empirical Bayes.

P2HB: Procedure 2 defined in subsection 3.1 under hierarchical Bayes.

PMEB: Ranking by sorting the posterior means of the θi under empirical Bayes.

PMHB: Ranking by sorting the posterior means of the θi under hierarchical Bayes.

LEB: Ranking by sorting Louis’ (1984) estimator (24) under empirical Bayes.

PREB: Ranking by sorting the posterior mean ranks (27) under empirical Bayes.

PRHB: Ranking by sorting the posterior mean ranks (27) under hierarchical Bayes.

3.5 Comparison of the Procedures

In this section, we turn to a simulation based comparison of the ten ranking procedures
from the frequentist perspective. In each case we simulate from the normal model (1),
and we consider five different settings, each time taking k = 5:

(i) θ =(10.0, 10.2, 10.4, 10.6, 10.8), σ =(0.07, 0.07, 0.07, 0.07, 0.07);

(ii) θ =(10.0, 10.2, 10.4, 10.6, 10.8), σ =(0.05, 0.05, 0.2, 0.2, 0.2);

(iii) θ =(10.0, 10.2, 10.7, 11.2, 11.4), σ =(0.15, 0.15, 0.25, 0.15, 0.15);

(iv) θ =(10.0, 10.5, 10.7, 11.0, 11.2), σ =(0.1, 0.3, 0.3, 0.1, 0.5);

(v) θ =(9.8, 10.5, 10.7, 10.9, 11.6), σ =(0.5, 0.1, 0.1, 0.1, 0.5).

In each case the true value of each rank is obviously ri = i. Plots of the normal
density curves for each of these simulation settings are provided in Figure 1. Our goal
is to examine various cases such as when the sampling distributions of x1, . . . , x5 are
equally spaced with equal dispersion as in setting (i); ranks r1 and r2 relatively easy
to estimate while r3, r4, and r5 are difficult to distinguish as in setting (ii); upper two
and lower two ranks difficult to distinguish while center rank is easier to distinguish
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as in setting (iii); the case where the populations overlap very much making nearly all
ranks difficult to distinguish as in setting (iv); and finally, the case where r1 and r5
are fairly easy to determine while the center ranks are more difficult to distinguish as
in setting (v).

Recall that our implementation of Procedures 1 and 2 requires us to determine the
maximum of several probabilities that are computed through a Monte Carlo approach.
Therefore, in order to ensure the quality of our results, it is important that m, the
number of replications appearing in the Monte Carlo estimator, be sufficiently large.
To determine an appropriate m, we use the following approach which provides an
m that is independent of x. Obviously, the data x will be replicated many times
throughout the simulation, therefore it is very convenient to have an m that does
not depend on x. Consider Step ℓ of Procedure 1, and suppose that we are using
a simple Monte Carlo estimator along the lines of (16) to compute the probabilities
{pℓ,s(x) : s ∈ Iℓ}. Notice that under the Bayesian model,

∑

s∈Iℓ pℓ,s(x) = 1, which

implies that max{pℓ,s(x) : s ∈ Iℓ} ≥ 1
k−ℓ+1 . Note that the simple Monte Carlo

estimator has standard deviation

√
pℓ,s(x)(1−pℓ,s(x))√

m
≤ 1

2
√
m
. Let us take a small ǫ > 0.

Then by choosing m to satisfy

1

2
√
m

≤ ǫ

k − ℓ+ 1
, (28)

we ensure that the standard deviation of the Monte Carlo estimator of max{pℓ,s(x) :
s ∈ Iℓ} is less than or equal to ǫ·max{pℓ,s(x) : s ∈ Iℓ}. It is essential that max{pℓ,s(x) :
s ∈ Iℓ} be computed precisely since it is this probability that we must locate at
Step ℓ. If there are multiple probabilities that are fairly large, we need each of their
Monte Carlo estimators to be precise so that we can correctly determine which of
these probabilities is largest. Choosing m according to (28) should suffice since it will
provide an upper bound of ǫ · pℓ,s(x) (actually, ǫ

k−ℓ+1) for the standard deviation of

the Monte Carlo estimator for any pℓ,s(x) ≥ 1
k−ℓ+1 . If a Rao-Blackwellized version

of (16) is used instead, the bound (28) can still be applied, although it is likely to
give an m that is much larger than needed. This method is designed to work well
in our simulation settings where k is not too large, and we require a general method
for selecting m that does not require additional tuning. In data analysis situations
where k is fairly large, the inequality (28) can naturally lead to a huge m which may
be infeasible. Note that the above reasoning is applicable to Procedure 2 as well.

The simulation results are provided in Table 1 which displays the marginal prob-
ability P (r̂i = ri), i = 1, . . . , k, for each method. In these results, the m at each step
of Procedures 1 and 2 is chosen to satisfy (28) with ǫ = 0.05. Throughout subsections
3.1 - 3.3, we presented several Rao-Blackwellized/improved estimators of the various
probabilities/expectations needed in the ranking procedures. The simulation results
shown here make use of each of these improved estimators. In particular, we use Rao-
Blackwellized estimators of the probabilities of Procedures 1 and 2, and therefore the
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Monte Carlo standard deviation is likely to be substantially less than the guaranteed
bound provided by (28). We consider the one at a time correct ranking probabilities
P (r̂i = ri), i = 1, . . . , k, as the criteria of comparison. We choose to focus on these
individual correct ranking probabilities because they are simple and straightforward
to interpret. We now provide a summary of the results.

1. In setting (i) where σ1, . . . , σk are equal, all of the ranking procedures give equiv-
alent results. Under each procedure, each estimated rank has a high probability
of being correct. The probability that the center rank is correct is 0.96 which is
slightly less than 0.98, the probability that the largest (or smallest) estimated
rank is correct.

2. The empirical Bayes procedures P1EB, P2EB, PMEB, and PREB provide com-
parable results. The hierarchical Bayes procedures P1HB, P2HB, and PMHB,
provide comparable results, however, in setting (v), the correct ranking proba-
bilities under PRHB are noticeably lower than those from the other hierarchical
Bayes methods. In setting (v), P1EB, P2EB, and PMEB perform somewhat
poorly in comparison to several of the other methods; in this setting LEB seems
to outperform the other empirical Bayes methods to some extent.

3. In settings (ii) and (iii) the Bayes procedures generally (with a few exceptions)
provide equal or larger correct ranking probabilities than the simple procedure.
In setting (v), however, we notice that SI noticeably outperforms the other pro-
cedures. In setting (iv) the Bayes procedures provide a slightly higher correct
ranking probability for r̂1 and r̂2 in comparison with SI; the probabilities are
essentially equal across procedures for r̂3; and for r̂4 and r̂5 the probabilities are
largest for SI.

4. Based on the simulation study and the discussion above, we cannot claim any
procedure to be uniformly the best in terms of the probabilities P (r̂i = ri),
i = 1, . . . , k.

4 Example from the American Community Survey

In this section we apply each of the ranking methods to an example dataset. The data
considered here provide the estimated percent of people below the poverty level for each
state in the United States and the District of Columbia, along with the estimated stan-
dard deviation of the percentage. The data are based on 2008 American Community
Survey 1-year estimates, and they are available from http://factfinder.census.gov, Ta-
ble R1701. For more information about these data, we refer to the U.S. Census Bureau
document titled 2008 ACS Accuracy of the Data (US), available from http://www.

census.gov/acs/www/data_documentation/documentation_main/. In the context
of this example, xi denotes the estimate for the percentage of people below the poverty
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level in state i. The states are indexed alphabetically, i = 1 corresponds to Alabama,
i = 2 to Alaska, etc. We note that because of large sample sizes within each state,
it is reasonable to assume that each xi is approximately normally distributed with a
known standard deviation (2008 ACS Accuracy of the Data (US)). Table 2 presents the
rankings obtained by applying each of the ranking procedures. To obtain these data
analysis results, we make use of each of the Rao-Blackwellized/improved estimators
discussed in subsections 3.1 - 3.3. Note that in this example, the values of xi and σi
have been rounded before applying the ranking procedures. As a result, there are two
pairs of states, (Missouri and Ohio), (Alabama and South Carolina), with the same
estimated percentage of people below the poverty level, and the same standard error
for the estimate. For these states the estimated ranks produced by SI, PMEB, PMHB,
LEB, PREB, and PRHB, will be tied. Of course, the procedure SI will produce tied
rankings for any states with equal values of xi.

Under our frequentist model (1), a parametric bootstrap can be used to estimate
the frequentist properties of the empirical ranks from each procedure. To describe the
parametric bootstrap in this setting, suppose that from the data we have the estimated
ranks r̂1, . . . , r̂k. The parametric bootstrap can then be applied as follows.

1. Generate x∗i ∼ N(xi, σ
2
i ), independently for i = 1, . . . , k.

2. Use x∗1, . . . , x
∗
k to arrive at a ranking r̂∗1, . . . , r̂

∗
k. To obtain r̂∗1, . . . , r̂

∗
k from

x∗1, . . . , x
∗
k, one should use the same procedure as was used originally to obtain

r̂1, . . . , r̂k from x1, . . . , xk.

3. Repeat Steps (1) and (2) B times to get (r̂∗1,1, . . . , r̂
∗
k,1), . . . , (r̂

∗
1,B , . . . , r̂

∗
k,B), a col-

lection of bootstrap replications of the ranks. We can then use these replications
to estimate the distribution of r̂1, . . . , r̂k and its properties.

The results of applying the bootstrap procedure to the example dataset are displayed
in Tables 3 and 4, which respectively provide the bootstrap estimates of P (|ri−r̂i| ≤ 1)
and P (|ri − r̂i| ≤ 2), for each procedure. For a given value c0, a bootstrap estimate of

P (|ri − r̂i| ≤ c0) can be computed as 1
B

∑B
b=1 I(|r̂i − r̂∗i,b| ≤ c0).

It turns out that except for a few cases of minor discrepancies, all the ranking
procedures are mostly in agreement with each other.

5 Concluding Remarks

Recall that the primary objective of the paper is to assess the U.S. Census Bureau’s
ranking methodology, while a secondary interest is in providing a statement of un-
certainty for a released ranking. We are reluctant to make strong general statements
beyond the numerical information that we have generated. We do believe that con-
clusion (1) of subsection 3.5 is a generalizable result, and will pursue it in our future
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research. At this point we do not see substantial differences among the ranking meth-
ods. Therefore we do not see a strong reason to deviate from SI, the Census Bureau’s
current ranking method, in cases where one does not wish to incorporate prior knowl-
edge into the analysis. There are certainly many other Bayesian and non-Bayesian
ranking methods which could be introduced into the comparison. Apart from the SI
method, in this paper we have chosen to focus on procedures that are motivated from a
Bayesian perspective. It is certainly possible to devise additional non-Bayesian ranking
methods, including classical ranking and selection procedures based on other criterion
such as the indifference zone and subset selection approaches (Gibbons, Olkin, and
Sobel, 1999). Within the Bayesian perspective, we have tried to incorporate proce-
dures from several different points of view: ranking through posterior probabilities,
ranking by sorting a Bayes estimate of the parameter of interest, and ranking by using
characteristics of the posterior distribution of the ranks themselves. It is possible that
a hybrid of two or more methods could outperform those that we have studied. We
have also focused on situations in which prior knowledge about the populations is not
brought into the analysis. We have used empirical and hierarchical Bayes methods
in order to achieve a strongly data driven analysis. It is easy to imagine a situation
where prior knowledge is available so that a priori, we would not want to assume that
θ1, . . . , θk are identically distributed. The Bayesian perspective provides a straightfor-
ward way to incorporate this prior knowledge into the ranking procedure, which could
lead to improved results.

We have identified several areas which we intend to pursue in future research.
These include (i) a careful study of how to provide a simple and accurate statement
of the uncertainty in a released ranking; (ii) generalizations of the conclusions of
our empirical studies; and (iii) comparisons of additional ranking methods, including
those Bayesian procedures which incorporate informative prior knowledge, additional
frequentist based ranking methods, and the comparison of various methods using mul-
tiple comparison style criteria such as P (|r̂i − ri| ≤ c0, ∀i = 1, . . . , k). In a future
communication, we also intend to present a thorough review and evaluation of rank-
ing methods used by other statistical agencies in the United States and throughout
the world.
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Figure 1: Normal populations to be ranked in the five simulation settings
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Table 1: Simulated P (r̂i = ri) for estimated rank r̂i for each procedure

P1 P1 P2 P2 PM PM L PR PR
SI EB HB EB HB EB HB EB EB HB

S
et
ti
n
g
(i
) r̂1 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98

r̂2 .96 .96 .96 .96 .96 .96 .96 .96 .96 .96
r̂3 .96 .96 .96 .96 .96 .96 .96 .96 .96 .96
r̂4 .97 .97 .97 .97 .97 .97 .97 .97 .97 .97
r̂5 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98

S
et
ti
n
g
(i
i)

r̂1 .96 .98 .98 .99 .98 .98 .98 .98 .99 .98
r̂2 .78 .83 .81 .85 .83 .85 .83 .74 .84 .81
r̂3 .56 .60 .57 .62 .59 .61 .59 .52 .61 .58
r̂4 .53 .53 .52 .54 .54 .53 .53 .53 .53 .53
r̂5 .72 .72 .72 .72 .73 .72 .72 .72 .72 .72

S
et
ti
n
g
(i
ii
) r̂1 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82

r̂2 .79 .79 .79 .80 .79 .80 .79 .81 .79 .79
r̂3 .91 .94 .93 .94 .93 .93 .93 .94 .93 .92
r̂4 .78 .79 .79 .79 .79 .79 .79 .79 .79 .78
r̂5 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82

S
et
ti
n
g
(i
v
) r̂1 .93 .98 .97 .98 .97 .98 .97 .96 .98 .97

r̂2 .56 .59 .58 .60 .59 .59 .59 .57 .60 .59
r̂3 .43 .44 .43 .43 .44 .43 .44 .45 .43 .43
r̂4 .56 .34 .46 .36 .48 .32 .46 .49 .29 .37
r̂5 .63 .31 .46 .35 .50 .31 .48 .47 .27 .37

S
et
ti
n
g
(v
) r̂1 .91 .37 .78 .34 .74 .35 .80 .51 .30 .62

r̂2 .84 .36 .72 .34 .68 .34 .73 .48 .29 .57
r̂3 .80 .63 .75 .63 .74 .64 .76 .76 .61 .73
r̂4 .85 .34 .69 .35 .72 .34 .74 .48 .30 .56
r̂5 .92 .34 .74 .37 .78 .35 .80 .51 .30 .61
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Table 2: State rankings by estimated percent of population below poverty level in 2008

Estimated ranks
P1 P1 P2 P2 PM PM L PR PR

State xi σi SI EB HB EB HB EB HB EB EB HB
New Hampshire 7.6 .36 1.0 1 1 1 1 1.0 1.0 1.0 1.0 1.0
Maryland 8.1 .18 2.0 2 2 2 2 2.0 2.0 2.0 2.0 2.0
Alaska 8.4 .49 3.0 3 3 3 3 3.0 3.0 3.0 3.0 4.0
New Jersey 8.7 .18 4.0 4 4 4 4 4.0 4.0 4.0 4.0 3.0
Hawaii 9.1 .43 5.0 5 5 5 5 5.0 5.0 5.0 5.0 5.0
Connecticut 9.3 .24 6.0 6 6 6 6 6.0 6.0 6.0 6.0 6.0
Wyoming 9.4 .55 7.0 7 7 7 7 7.0 7.0 7.0 7.0 9.0
Minnesota 9.6 .18 8.5 8 8 8 8 8.0 8.0 8.0 8.0 7.0
Utah 9.6 .30 8.5 9 9 9 9 9.0 9.0 9.0 9.0 8.0
Delaware 10.0 .49 10.5 11 11 11 11 11.0 11.0 11.0 11.0 11.0
Massachusetts 10.0 .18 10.5 10 10 10 10 10.0 10.0 10.0 10.0 10.0
Virginia 10.2 .18 12.0 12 12 12 12 12.0 12.0 12.0 12.0 12.0
Wisconsin 10.4 .18 13.0 13 13 13 13 13.0 13.0 13.0 13.0 13.0
Vermont 10.6 .55 14.0 14 14 14 14 14.0 14.0 14.0 14.0 14.0
Nebraska 10.8 .30 15.0 15 15 15 15 15.0 15.0 15.0 15.0 15.0
Kansas 11.3 .30 17.0 17 17 17 17 17.0 17.0 17.0 17.0 16.0
Nevada 11.3 .36 17.0 16 16 18 18 18.0 18.0 18.0 18.0 17.0
Washington 11.3 .18 17.0 18 18 16 16 16.0 16.0 16.0 16.0 18.0
Colorado 11.4 .30 19.0 19 19 19 19 19.0 19.0 19.0 19.0 19.0
Iowa 11.5 .30 20.0 20 20 20 20 20.0 20.0 20.0 20.0 20.0
Rhode Island 11.7 .49 21.0 21 21 21 21 21.0 21.0 21.0 21.0 21.0
North Dakota 12.0 .55 22.0 22 22 22 22 22.0 22.0 22.0 22.0 22.0
Pennsylvania 12.1 .12 23.0 23 23 23 23 23.0 23.0 23.0 23.0 23.0
Illinois 12.2 .12 24.0 24 24 24 24 24.0 24.0 24.0 24.0 24.0
Maine 12.3 .36 25.0 25 25 25 25 25.0 25.0 25.0 25.0 25.0
South Dakota 12.5 .55 26.0 26 26 26 26 26.0 26.0 26.0 26.0 26.0
Idaho 12.6 .55 27.0 27 27 27 27 27.0 27.0 27.0 27.0 27.0
Indiana 13.1 .24 28.0 28 28 28 28 28.0 28.0 28.0 28.0 28.0
Florida 13.2 .12 29.0 29 29 29 29 29.0 29.0 29.0 29.0 29.0
California 13.3 .12 30.0 30 30 30 30 30.0 30.0 30.0 30.0 30.0
Missouri 13.4 .18 31.5 31 31 31 31 31.5 31.5 31.5 31.5 31.5
Ohio 13.4 .18 31.5 32 32 32 32 31.5 31.5 31.5 31.5 31.5
New York 13.6 .12 33.5 34 34 33 33 34.0 34.0 34.0 34.0 34.0
Oregon 13.6 .30 33.5 33 33 34 34 33.0 33.0 33.0 33.0 33.0
Michigan 14.4 .18 35.0 35 35 35 35 35.0 35.0 35.0 35.0 35.0
North Carolina 14.6 .24 36.0 36 36 36 36 36.0 36.0 36.0 36.0 36.0
Arizona 14.7 .24 37.5 38 38 38 38 37.0 37.0 37.0 37.0 38.0
Georgia 14.7 .18 37.5 39 39 37 37 38.0 38.0 38.0 38.0 39.0
Montana 14.8 .55 39.0 37 37 39 39 39.0 39.0 39.0 39.0 37.0
Tennessee 15.5 .24 40.0 40 40 40 40 40.0 40.0 40.0 40.0 40.0
Alabama 15.7 .30 41.5 41 42 42 41 41.5 41.5 41.5 41.5 41.5
South Carolina 15.7 .30 41.5 42 41 41 42 41.5 41.5 41.5 41.5 41.5
Texas 15.8 .12 43.0 43 43 43 43 43.0 43.0 43.0 43.0 43.0
Oklahoma 15.9 .30 44.0 44 44 44 44 44.0 44.0 44.0 44.0 44.0
West Virginia 17.0 .43 45.0 46 46 46 45 46.0 46.0 45.0 46.0 46.0
New Mexico 17.1 .43 46.0 47 47 47 46 47.0 47.0 47.0 47.0 47.0
Washington, DC 17.2 .79 47.0 45 45 45 47 45.0 45.0 46.0 45.0 45.0
Arkansas 17.3 .43 49.0 48 48 50 50 48.0 48.0 48.0 48.0 48.0
Kentucky 17.3 .30 49.0 50 50 48 48 50.0 50.0 50.0 50.0 50.0
Louisiana 17.3 .36 49.0 49 49 49 49 49.0 49.0 49.0 49.0 49.0
Mississippi 21.2 .55 51.0 51 51 51 51 51.0 51.0 51.0 51.0 51.0
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Table 3: Bootstrap estimate of P (|r̂i−ri| ≤ 1) for estimated rank r̂i for each procedure

Bootstrap estimate of P (|r̂i − ri| ≤ 1)
P1 P1 P2 P2 PM PM L PR PR

State xi σi SI EB HB EB HB EB HB EB EB HB
New Hampshire 7.6 .36 .96 .96 .96 .95 .95 .96 .95 .96 .96 .96
Maryland 8.1 .18 .98 .99 .99 1.0 1.0 .99 .98 .99 1.0 1.0
Alaska 8.4 .49 .73 .74 .74 .72 .72 .73 .72 .73 .73 .80
New Jersey 8.7 .18 .96 .97 .97 .98 .98 .98 .97 .97 .98 .92
Hawaii 9.1 .43 .62 .62 .62 .60 .60 .61 .60 .62 .60 .58
Connecticut 9.3 .24 .77 .77 .77 .80 .80 .78 .77 .78 .78 .79
Wyoming 9.4 .55 .43 .44 .44 .37 .37 .41 .40 .41 .41 .42
Minnesota 9.6 .18 .59 .82 .82 .81 .81 .80 .79 .80 .79 .73
Utah 9.6 .30 .43 .58 .58 .56 .55 .57 .56 .56 .56 .62
Delaware 10.0 .49 .30 .43 .43 .42 .42 .44 .43 .44 .46 .50
Massachusetts 10.0 .18 .61 .73 .73 .79 .79 .75 .74 .74 .74 .77
Virginia 10.2 .18 .78 .79 .79 .74 .74 .77 .77 .79 .77 .76
Wisconsin 10.4 .18 .84 .85 .85 .83 .83 .84 .84 .85 .84 .83
Vermont 10.6 .55 .51 .51 .51 .51 .51 .51 .51 .50 .49 .50
Nebraska 10.8 .30 .73 .73 .73 .73 .73 .73 .72 .72 .73 .71
Kansas 11.3 .30 .50 .50 .50 .51 .51 .50 .50 .50 .50 .43
Nevada 11.3 .36 .44 .44 .44 .39 .39 .39 .39 .39 .40 .45
Washington 11.3 .18 .62 .68 .67 .53 .52 .44 .44 .42 .45 .69
Colorado 11.4 .30 .49 .47 .47 .53 .53 .49 .49 .49 .49 .48
Iowa 11.5 .30 .52 .51 .51 .54 .54 .53 .53 .53 .52 .50
Rhode Island 11.7 .49 .42 .42 .41 .41 .41 .42 .41 .42 .42 .40
North Dakota 12.0 .55 .37 .38 .38 .32 .32 .36 .35 .37 .38 .35
Pennsylvania 12.1 .12 .74 .74 .74 .79 .79 .75 .74 .75 .73 .75
Illinois 12.2 .12 .76 .78 .78 .78 .78 .77 .76 .76 .72 .78
Maine 12.3 .36 .57 .56 .55 .61 .61 .57 .57 .58 .58 .62
South Dakota 12.5 .55 .53 .54 .53 .56 .56 .54 .53 .53 .50 .50
Idaho 12.6 .55 .50 .54 .54 .49 .49 .51 .50 .51 .47 .47
Indiana 13.1 .24 .68 .73 .72 .64 .64 .68 .68 .68 .66 .65
Florida 13.2 .12 .77 .76 .76 .78 .78 .77 .76 .77 .74 .72
California 13.3 .12 .71 .71 .72 .73 .73 .71 .70 .71 .69 .69
Missouri 13.4 .18 .42 .56 .56 .55 .55 .42 .42 .42 .41 .41
Ohio 13.4 .18 .43 .59 .59 .57 .57 .43 .43 .43 .44 .43
New York 13.6 .12 .72 .78 .78 .90 .90 .74 .74 .74 .79 .77
Oregon 13.6 .30 .57 .66 .66 .66 .66 .70 .70 .70 .68 .69
Michigan 14.4 .18 .78 .74 .74 .79 .79 .77 .77 .77 .78 .68
North Carolina 14.6 .24 .67 .65 .65 .67 .67 .66 .66 .67 .66 .70
Arizona 14.7 .24 .51 .73 .73 .71 .71 .69 .68 .69 .70 .69
Georgia 14.7 .18 .60 .58 .57 .76 .76 .81 .80 .81 .81 .67
Montana 14.8 .55 .48 .35 .35 .51 .52 .46 .46 .47 .46 .43
Tennessee 15.5 .24 .76 .73 .74 .76 .76 .74 .74 .75 .75 .70
Alabama 15.7 .30 .41 .61 .58 .58 .58 .42 .42 .42 .43 .41
South Carolina 15.7 .30 .41 .60 .61 .57 .59 .43 .43 .42 .44 .42
Texas 15.8 .12 .80 .87 .87 .80 .80 .82 .81 .82 .81 .79
Oklahoma 15.9 .30 .65 .62 .62 .66 .66 .64 .64 .64 .63 .62
West Virginia 17.0 .43 .51 .66 .67 .67 .51 .66 .66 .50 .66 .64
New Mexico 17.1 .43 .58 .56 .56 .53 .58 .54 .54 .53 .55 .67
Washington, DC 17.2 .79 .32 .46 .46 .42 .29 .45 .44 .48 .45 .53
Arkansas 17.3 .43 .58 .57 .56 .40 .40 .56 .56 .56 .56 .63
Kentucky 17.3 .30 .63 .47 .46 .68 .68 .44 .43 .41 .47 .67
Louisiana 17.3 .36 .61 .67 .66 .62 .62 .64 .64 .63 .65 .74
Mississippi 21.2 .55 1.0 1.0 1.0 1.0 1.0 1.0 .99 1.0 1.0 1.0



Klein and Wright: Ranking Procedures for Normal Populations 57

Table 4: Bootstrap estimate of P (|r̂i−ri| ≤ 2) for estimated rank r̂i for each procedure

Bootstrap estimate of P (|r̂i − ri| ≤ 2)
P1 P1 P2 P2 PM PM L PR PR

State xi σi SI EB HB EB HB EB HB EB EB HB
New Hampshire 7.6 .36 1.0 1.0 1.0 1.0 1.0 1.0 .99 1.0 1.0 1.0
Maryland 8.1 .18 1.0 1.0 1.0 1.0 1.0 1.0 .99 1.0 1.0 1.0
Alaska 8.4 .49 .93 .93 .93 .92 .92 .92 .92 .92 .92 .92
New Jersey 8.7 .18 1.0 1.0 1.0 1.0 1.0 1.0 .99 1.0 1.0 1.0
Hawaii 9.1 .43 .83 .83 .83 .78 .79 .81 .80 .81 .80 .78
Connecticut 9.3 .24 .92 .92 .92 .94 .94 .93 .93 .93 .94 .94
Wyoming 9.4 .55 .68 .69 .69 .62 .63 .67 .66 .67 .68 .61
Minnesota 9.6 .18 .90 .98 .98 .97 .98 .97 .97 .97 .97 .94
Utah 9.6 .30 .75 .78 .79 .76 .76 .78 .77 .78 .77 .86
Delaware 10.0 .49 .56 .66 .66 .69 .69 .68 .68 .67 .70 .74
Massachusetts 10.0 .18 .90 .93 .93 .96 .96 .95 .94 .94 .94 .94
Virginia 10.2 .18 .96 .96 .96 .94 .94 .95 .94 .95 .94 .95
Wisconsin 10.4 .18 .97 .97 .98 .96 .96 .97 .96 .97 .97 .97
Vermont 10.6 .55 .65 .66 .66 .68 .68 .67 .66 .66 .65 .69
Nebraska 10.8 .30 .88 .87 .87 .88 .88 .88 .88 .88 .88 .87
Kansas 11.3 .30 .73 .71 .71 .74 .74 .72 .72 .72 .72 .63
Nevada 11.3 .36 .66 .61 .60 .68 .68 .67 .67 .68 .67 .66
Washington 11.3 .18 .86 .92 .91 .78 .78 .71 .70 .69 .71 .92
Colorado 11.4 .30 .73 .73 .73 .74 .74 .73 .72 .73 .73 .72
Iowa 11.5 .30 .73 .74 .73 .74 .74 .73 .74 .73 .73 .72
Rhode Island 11.7 .49 .59 .57 .57 .59 .59 .59 .59 .59 .62 .59
North Dakota 12.0 .55 .53 .54 .54 .50 .50 .53 .53 .53 .55 .53
Pennsylvania 12.1 .12 .95 .94 .94 .97 .97 .96 .95 .95 .94 .96
Illinois 12.2 .12 .97 .98 .98 .96 .96 .97 .96 .97 .95 .96
Maine 12.3 .36 .80 .80 .80 .79 .79 .80 .80 .80 .80 .82
South Dakota 12.5 .55 .67 .67 .66 .70 .69 .69 .68 .68 .64 .66
Idaho 12.6 .55 .63 .64 .64 .63 .62 .64 .64 .64 .61 .63
Indiana 13.1 .24 .83 .86 .86 .82 .82 .83 .83 .83 .83 .84
Florida 13.2 .12 .95 .95 .95 .96 .96 .95 .95 .95 .94 .94
California 13.3 .12 .92 .93 .93 .93 .94 .92 .91 .92 .90 .89
Missouri 13.4 .18 .73 .84 .84 .84 .84 .73 .73 .73 .73 .73
Ohio 13.4 .18 .73 .80 .80 .77 .77 .73 .73 .73 .72 .74
New York 13.6 .12 .93 .95 .95 .96 .96 .93 .92 .93 .94 .93
Oregon 13.6 .30 .74 .78 .78 .78 .78 .83 .83 .83 .83 .84
Michigan 14.4 .18 .93 .91 .91 .94 .94 .92 .92 .92 .92 .89
North Carolina 14.6 .24 .87 .86 .86 .87 .87 .86 .86 .86 .86 .88
Arizona 14.7 .24 .90 .92 .92 .92 .91 .98 .97 .98 .98 .88
Georgia 14.7 .18 .95 .83 .83 1.0 1.0 .95 .94 .95 .95 .86
Montana 14.8 .55 .63 .83 .83 .64 .64 .62 .62 .62 .62 .84
Tennessee 15.5 .24 .90 .89 .89 .90 .90 .89 .89 .89 .89 .86
Alabama 15.7 .30 .77 .80 .94 .94 .80 .77 .77 .77 .77 .74
South Carolina 15.7 .30 .77 .92 .81 .80 .94 .78 .77 .78 .78 .73
Texas 15.8 .12 .96 .99 .99 .97 .96 .97 .97 .97 .96 .98
Oklahoma 15.9 .30 .80 .79 .79 .81 .81 .80 .80 .80 .80 .81
West Virginia 17.0 .43 .68 .81 .81 .81 .68 .81 .81 .68 .81 .80
New Mexico 17.1 .43 .73 .85 .86 .86 .73 .86 .86 .86 .86 .86
Washington, DC 17.2 .79 .64 .58 .58 .52 .66 .57 .56 .60 .59 .69
Arkansas 17.3 .43 .74 .91 .91 .58 .58 .91 .90 .91 .91 .96
Kentucky 17.3 .30 .82 .73 .72 .97 .97 .69 .68 .67 .70 .87
Louisiana 17.3 .36 .80 .84 .84 .81 .81 .82 .82 .81 .83 .89
Mississippi 21.2 .55 1.0 1.0 1.0 1.0 1.0 1.0 .99 1.0 1.0 1.0
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