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Abstract
In small area income and poverty estimates program of the U.S. Census Bureau (SAIPE),
one of the challenges is the estimation of sampling variances of the direct survey weighted es-
timators for the counties. Design-based methods can be highly unreliable primarily because
of small sample sizes in the area. Generalized variance function (GVF) methods have been
previously used in the SAIPE and other small area estimation projects to obtain smoothed
variance estimates. In the context of county level estimation of the number of school-age
(5-17 year old) children in poverty using the American Community Survey (ACS) data,
we propose a new approach in which a person level working model is used to motivate a
GVF. The model fitting and model comparison are done at the state level where the design-
based estimates and the corresponding standard direct design-based variance estimates are
assumed to be reliable. The proposed GVF model is an important component of a larger
multilevel model that can be used in the future to produce improved estimates of different
parameters of interest.

1. Introduction

Survey statisticians have long been interested in modeling design-based variance of a survey
estimator as a function of its design-based expectation. The researchers at the U.S. Census
Bureau have been using such variance modeling for the Current Population Survey (CPS)
since 1947 (see Hansen, Hurwitz, and Madow 1953). The main use of such variance model,
referred to as the Generalized Variance Function (GVF) in the sample survey literature,
has been in reducing the computational and publication burden in variance estimation from
large scale sample surveys in which the users are interested in many different survey items
for many subgroups of the survey population. The model is often assumed based on visual
inspection of plots of design-based sampling variance estimates against the survey-weighted
estimates for a few items or by gaining some insight from the design-based sampling variance
formula. The model parameters are estimated for certain groups of items with similar intra-
class correlation or design effects. For a good review of the GVF method, the readers are
referred to Wolter (1985, Chapter 5).
The use of the GVF in small area estimation has a relatively shorter history. Fay and Herriot
(1979) are probably the first to introduce such a method in a complex survey setting in order
to motivate the sampling error component of their two-level Bayesian model. Their area
level model, used to estimate the per-capita income for small places, can be described as
follows:
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The Fay-Herriot Model:

For area i = 1, · · · ,m,

Level 1: θ̂i|θi
ind∼ [θi, Di] ,

Level 2: θi
ind∼
[
xT
i β, A

]
,

where θ̂i = log(yi), θi = log(µi); yi is the survey-weighted estimate of the true per-capita
income µi; Di = 9/Ni, where Ni is the known population size; xi is a p× 1 vector of known
fixed auxiliary variables; β and A are unknown model parameters. In the above model, Level
1 was used to describe the sampling error distribution of the the log-transformed per-capita
survey-weighted estimates. Level 2 was used to borrow strength by relating logarithm of the
true per-capita income θi to various area level administrative and census data contained in
xi.
The assumption of known sampling variances Di was motivated using a GVF obtained
empirically. Using data from eight states, Fay and Herriot (1979) first obtained an empirical
relationship: cvi ≈ 3/

√
Ni, where cvi is the estimated coefficient of variation of yi with its

variance estimated using a standard design-based variance estimation technique. They then
made a synthetic assumption that the slope of the regression, i.e. 3, remains the same
for all small areas, small or large, and concluded that the true sampling variance of yi is
given by Diµ

2
i , which suggested their log-transformation of yi to stabilize the variance. Fay

and Herriot (1979) obtained their empirical Bayes estimator of θi and then used a simple
back-transformation to estimate µi.
In estimating the small area means, Fay and Herriot (1979) used the variance stabilizing
log-transformation primarily to extend the empirical Bayes estimation method proposed
earlier by Efron and Morris (1975) who assumed known sampling variances for the esti-
mates. One potential problem with such a method is the possible bias that may incur from
the back-transformation. The validity of the back-transformation relies on the Taylor series
argument, which may be a problem for many small area estimation problems. To avoid the
problem associated with the back-transformation for the Fay-Herriot model, Chen (2001)
used properties of log-normal distribution in obtaining the Bayes and empirical Bayes esti-
mator of µi directly. An alternative joint modeling and estimation approach that does not
require any variance stabilizing transformation is given in Liu et al. (2007).
There are now many applications of GVF in small area estimation. The U.S. Census Bureau
used GVF in the Small Area Income and Poverty (SAIPE) program using the ideas given in
Otto and Bell (1995). Since then a number of papers on GVF related research for poverty
estimation have been written. See, e.g., Bell (2008) and Maples et al. (2009). Malec and
Maples (2008) presented a related design effect formula in the context of estimating coverage
error in the U.S. decennial census. Fisher (2005) and Bauder et al. (2008) proposed different
GVF functions in the context of Small Area Health Insurance Estimates (SAHIE) program
of the Census Bureau. At the U.S. Bureau of Labor Statistics, different GVF methods were
studied in the context of Consumer Expenditure Survey and Current Employment Statistics
Survey. See Cho et al. (2002), Eltinge et al. (2002), Huff et al. (2002), and Hinrichs (2003).
The choice of a reasonable working GVF model and the estimation of the parameters of the
assumed GVF model are much more difficult for the small areas than for large areas. GVF
models are often intuitively proposed with small area specific random effects and then the
GVF model parameters are estimated using design-based variance estimates for the small
areas. Because of the small area specific random effects, such modeling seems more rea-
sonable than the GVF model with a synthetic assumption on the GVF parameters such as
the slope considered in Fay and Herriot (1979). But, the small area data, especially the
design-based variance estimates, could be very unreliable and noisy making it difficult to
identify a reasonable GVF model with small area specific random effects. Maples et al.
(2009) encountered a problem in estimating small area specific degrees of freedom param-
eters, resulting from Fay’s successive difference replication variance method. Thus, despite



the obvious shortcoming of synthetic assumptions of the Fay and Herriot approach, it may
work reasonably well if the key area specific design and weight variables that influence the
variability in the survey-weighted estimates are included in the GVF model.
In an unpublished manuscript, Lahiri suggested a model-assisted approach to GVF in which
the determination of a reasonable GVF for the small areas is guided by a working model
at the unit level that aims to capture as much variations as possible from all sources of
variations in the survey estimates, including variations from the survey design and the
weighting process, which involves nonresponse adjustment and calibration. Development of
such a model needs a very good understanding of the survey design and all the detailed
steps that lead to the final estimates. The variations not included in such a model is the
variation of the true values around the regression surface given in Level 2. For some special
cases like the one considered in this paper, it may be possible to provide an upper bound
of the model variance. If the design-based variance estimates are reliable and incorporate
all sources of sampling and weight variations at a higher level, one may use those to correct
for the possible overestimation bias in the GVF – this was proposed in the spirit of Fay and
Herriot (1979).
In this paper, we address GVF modeling issues in the context of estimating the number of
school-age (5-17 year old) children in poverty for the U.S. counties using ACS. The proposed
method is meant for the counties, but for now the competing GVF models are compared
using the state level data since some of the design variables that we hope to include in the
GVF model have not been computed at this time. Also, currently it is difficult to compare
GVF models at the county level because of the lack of robust model selection criteria for
small areas. This will be a good research topic for the future.

2. A Table of Notations

The following notation is for a given small area.

U : the set of all persons in the survey population for the small area

N : number of related school-age children in U

For k ∈ U ,

yk =

{
1 if person k is a related school-age child in poverty

0 otherwise

Y =
∑

k∈U yk, total number of school-age children in poverty in U, the main parameter of
interest

P = Y
N , proportion of school-age children in poverty in U , poverty ratio.

s: ACS sample of all persons.

sh: ACS sample of all persons in household (HH) h

s̃: ACS sample of school-age children

s̃h: ACS sample of school-age children in HH h

a: number of households (HH) in s

n: number of persons in s̃

wk: survey weight associated with person k in s

Ŷ =
∑

k∈s wkyk, survey-weighted estimator of Y

V ≡ V (Ŷ ) : true design-based variance that incorporates all sources of sampling variability,
including variability due to design and weighting

V̂ ≡ V̂ (Ŷ ) : Fay’s successive difference replication variance estimator(Fay and Train, 1995)



N̂ =
∑

k∈s wk.

P̂ = Ŷ /N̂ .

We shall use lower case letters to indicate the value of a given estimator from a given sample.
For example, we shall obtain p̂ from P̂ for a given sample. The theoretical properties of
the Fay’s successive difference replication method have not been investigated thoroughly.
Recently, for simple random sampling, Huang and Bell (2009) attempted to understand the
sampling distribution of the Fay’s variance estimator using Monte Carlo simulations.

3. Model-Assisted GVF

In this paper, we shall find a model-assisted GVF for state level estimation using ideas
contained in an unpublished manuscript by Lahiri. To this end, we shall first propose the
following working model that is intended to approximate the ACS sample design. For any
k, k′ ∈ s̃,

M :CovM (yk, yk′) =

{
σ2
h if school-age children k and k′ are both in HH h,

0 otherwise.

The above model is reasonable since all HH members share an identical poor status, implying
that CorrM (yk, yk′) = 1. Because of the binary nature of the variable, it is reasonable to
assume σ2

h = πh(1−πh), where πh is a superpopulation true proportion of school-age children
in poverty in HH h.
Under model M, it can be shown that

VM (Ŷ ) = V arM

(∑
k∈s

wkyk

)

=

[∑
h

πh(1− πh)

]∑
h

γh(
∑
k∈s̃h

wk)2,

where

γh =
πh(1− πh)∑
h πh(1− πh)

.

Using the concavity of the function f(x) = x(1−x), 0 ≤ x ≤ 1, and the Jensen’s inequality,
we obtain

VM (Ŷ ) ≤ aπ̄(1− π̄)
∑
h

γh(
∑
k∈s̃h

wk)2,

where π̄ = a−1
∑

h πh.
In the above upper limit, if we replace the weighted average of (

∑
k∈s̃h wk)2 by an unweighted

average, we get the following variance function

Vupper = π̄(1− π̄)d,

where d =
∑

h(
∑

k∈s̃h wk)2. The above variance function motivates the following GVF:

Vapprox = P (1− P )d.

Note that the model M does not incorporate the possible variability due to the weighting
process. The upper limit may take care of this additional variation, but it may still over-
estimate the true design-based variance. Bell (2008) examined the sensitivity of small area
inference to uncertainty about sampling error variances. His research suggests that overesti-
mation of the sampling variances is possibly less severe than underestimation. Note that in



the above GVF, equivalently written as Vapprox = P (1−P )n d
n , d

n can be interpreted as the
design effects. In the context of design effects, Gabler et al. (1999) used similar approach
for a different survey design. Liu et al. (2007) obtained a design effect formula for stratified
simple random sampling by using a synthetic assumption in the true design effect formula.
For a given sample, we get

v̂approx = p̂(1− p̂)d,
We would like to understand the extent of bias of Vapprox as an estimator of the design-
based variance V that incorporates all sources of sampling variability. Since V and Vapprox
are unknown, we shall use the state level Fay’s successive difference replication variance
estimates v̂ for V and survey-weighted estimates p̂ for P appearing in the expression for
Vapprox.

Figure 1: Vapprox vs. Fay’s estimate

Figure 1 probably indicates that Vapprox overestimates V , if the Fay’s successive difference
variance estimator is reliable in estimating V at the state level. Ideally, to find a suitable
bias-correction factor, we may want to regress the factors bi = v̂i/v̂i,approx, for each state
i, against all ACS design factors that were left out (e.g., response rate, CAPI rate (or rate
of households that were assigned to a Computer Assisted Personal Interview), population
benchmarking and sampling fraction as was done in Maples et al. (2009). In this paper,
we studied the variability of the factors bi. The next figure shows that the bis do not
vary too much across the states, especially in relation to the ACS estimate of the number
of households. The graph also suggests that on the average v̂approx is about 2.5 times
of v. Based on this limited numerical work and using Bell (2008), we do not feel very
uncomfortable about the possible overestimation bias of Vapprox as an estimator of V . In
any case, to correct the possible overestimation bias, we used a single adjustment factor
b̄ = m−1

∑m
j=1 bi, an average of all adjustment factors for all the states. Thus one of our

model- assisted GVFs is defined as VMA = b̄Vapprox. For data analysis at the county level,
we might take bi for the state in which the county belongs. A few more model-assisted
GVFs are presented in the next section.

4. Comparison of GVF Models

In this section, we shall consider five different GVF models. If the components of GVF
Vapprox = P (1−P )d, presented in the previous section, are reasonable predictors of the true



Figure 2: b VS. Number of Households

GVF, we may consider a bias-corrected GVF by fitting a multiple linear regression model
(say, Model I) with log(v̂) as the dependent variable and the estimates of the components
of log(V̂ approx), i.e. log p̂, log(1 − p̂), and log d as independent variables. Let the least
squares fitted regression be given by

log(v̂) = b0 + b1 log p̂+ b2 log(1− p̂) + b3 log(d) + ε,

where b0, b1, b2, and b3 are the least squares estimates of the regression coefficients. Then
the GVF motivated from Model I is given by:

V = exp(b0)P b1(1− P )b2db3 .

Model II is obtained from Model I by replacing log d by log a. The corresponding GVF is
given by:

V = exp(b0)P b1(1− P )b2ab3 .

Model II is motivated from Maples et al. (2009).
Note that logP and log(1 − P ) are correlated. So in order to avoid the possible multi-
collinearity problem, we consider Model III where we replace the two independent variables
log p̂ and log(1− p̂) by a single independent variable: log[p̂(1− p̂)]. Model III suggests the
following GVF:

V = exp(b0)[P (1− P )]b1db3 .

Note that in the above b0, b1, b2 and b3 represent different estimates across the three models
(we keep the same notation for simplicity in order to avoid new notations).
Since the above models are all in the same logarithmic scale in the same dependent variable,
we can compare these three models in terms of the usual model selection criteria. Table 1
displays these model selection statistics. For a review of model selection, the readers are
referred to the IMS monograph edited by Lahiri (2001).
From Table 1, we can see that Model I and III are both performing better than Model II in
terms of the model selection statistics considered. Model III appears to be slightly better
than Model I. Thus, the design factor d seems to be a reasonable component of the GVF.
We cannot use the model selection criteria given in Table 1 to compare GVFs motivated
from Model I-III with the GVF commonly used in the CPS: V = aY 2 + bY (Model IV) and
V = b̄V̂approx (Model V) since the dependent variables are in different scales. To compare



Figure 3: b̄Vapprox vs. Fay’s estimate

Table 1: Models on Log (V̂ ) :

Criteria Model I Model II Model III

Adj. R2 0.9735 0.9019 0.9741
AIC −14.90 51.90 −16.88
BIC −5.24 61.56 −9.15
PRESS 2.14 7.82 2.07
RPRESS 0.9709 0.8939 0.9719

all the five models, we compute relative differences from the Fay’s estimate for all the 50
states and the District of Columbia, that is RD = (ṽ − v̂)/v̂, where ṽ is one of the five
variance estimates obtained from the five GVF models. Figure 4 displays the box-plots for
each of the five models. Model I and Model III emerge as the two best performers. Model
II and IV seem to have some underestimation problem (see Figure 4). The simple model-
assisted estimator b̄V̂approx (Figure 3) seems promising, although there is a tendency for
possible overestimation. This conservative approach may be reasonable when we do county
level estimation as we do not know how good the Fay’s variance estimator is in terms of
capturing all sources of variabilities from the sampling and weighting processes. It may
be possible to consider a better bias correction factor that incorporates remaining design
variables.



Figure 4: Comparisons based on Relative Difference
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