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Abstract 
The U.S. Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program 

produces model-based estimates for small geographic areas using household survey data, 

administrative records, postcensal population estimates and decennial census data.  This 

paper proposes and evaluates a method for making year-to-year statistical comparisons of 

poverty at the county level.  The method uses aggregations of regression residuals in 

order to estimate the underlying serial correlation in SAIPE county-level estimates.  

Three residual-based estimators for the model error correlation are considered, with 

alternative weights used for each.  The estimators are evaluated using simulations under 

the assumed error specification, and the effect of a heteroscedastic departure from these 

assumptions is discussed. 
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1. Background 
 

The SAIPE program produces model-based estimates of poverty that combine direct 

estimates from the American Community Survey (ACS) with regression predictions 

based on administrative records, postcensal population estimates and decennial census 

data.  For both the survey data and the explanatory data, individual units are aggregated 

for the specified geographic area and year, producing inputs and estimates that are 

interpreted as single-year or annual data.  The modeling techniques allow the SAIPE 

program to produce annual estimates of child poverty for all school districts and all 

counties, regardless of population size. 

 

There is an interest to determine which areas in the SAIPE dataset have statistically 

significant changes in child poverty rate between pairs of years.  In order to make these 
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statistical comparisons, the correlation in model errors between pairs of years must be 

estimated.  This document discusses a method to estimate this year-to-year model error 

correlation for county-level estimates. 

 

The layout of the paper is as follows.  First, we introduce the structure of the model in 

Section 2.  In Section 3, we motivate a general formula for the estimator of the year-to-

year covariance and propose three alternative estimators using different weighting 

matrices.  In Section 4, we present results from a simulation study of the three estimators.  

Section 5 reports empirical results for the years 2005-2008 and discusses the potential 

effect of one type of misspecification on the estimator.  We give concluding remarks in 

Section 6.  

 
2. Structure of the Model 

 

In general, the SAIPE program’s county poverty model follows a Fay-Herriot, or 

shrinkage, approach, by specifying both a sampling model and a regression model for the 

true value of log(poverty) (Fay and Herriot, 1979; Bell, 1999).  The empirical-Bayes, best 

linear unbiased predictor (EBLUP) is then a weighted average of the direct estimate from 

the ACS sample and the predictions from the regression model.  For a single year, the 

specification of this model is given in (1) below. 

 
For i = 1,2, …, m areas,  
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where log(yi) represents the direct survey estimate  of log(poverty) from a single-year 
sample of the ACS, log(Yi) is the logarithm of the unobservable true value of poverty, and 
xi is a k x 1 vector of explanatory variables on the log scale.  The model errors, ui, are 
assumed i.i.d., and the sampling errors, ei, are assumed independent.  The ACS sampling 
variance for a given county is estimated directly from the sample using a successive 
difference replication method described in the ACS documentation (U.S. Census Bureau, 
2009), and then are assumed known.  For current SAIPE production, both the model and 
sampling error terms are assumed normally distributed in the log scale, and both the 
regression parameters and the model error variance are estimated by maximum 
likelihood.   
 
For a final estimate of the SAIPE poverty in the native, or exponentiated scale, there are 
three more steps.  First, the direct and indirect estimates are combined using an efficient 
weighting described in Bell (1999), producing the EBLUP on the log-scale.  Then, the 
shrinkage estimates are transformed to the native scale, using the properties of the log-
normal distribution to adjust the point estimates and associated standard errors.  Finally, 



 

 

the resulting estimates are controlled to state-level estimates produced by a separate 
model.  Under the log-normal assumption, however, the standard errors and all cross-area 
and cross-time correlations are completely specified by the variance components for the 
errors in the log-scale equation (1).  So for the purposes of this paper, we focus only on 
specifying these components in the log-scale and evaluating alternative estimators for 
them.  
 
For estimation of the parameters in the current SAIPE production model, the two models 
in (1) are combined by substituting the regression specification into the sampling model.  
Also for notational convenience, we define zi ≡ log(yi).  With this, the two-year 
specification of this model is given in (2) below.   
 
For i = 1,2, …, m areas, and two arbitrary years, labeled s and t,  
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The sampling errors are assumed independent across both areas and time, while the 
model errors are assumed i.i.d. for a given year and with a constant year-to-year 
covariance for given i.  Sampling errors are assumed independent from model errors, for 
any combination of i, j, s and t.  Thus, for the n x 1 vectors es, et, us and ut, 
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where Vs = diag{vis} is the ACS sampling variance for each area, i.  As discussed earlier, 

these sampling variances are estimated directly from the sample and are then assumed 

known.   

 

For derivations and exposition, it can be simpler to stack the model into a single matrix 

form, keeping in mind that the serial structure is not utilized in estimating the single-year 

parameters.  So we define z = {zs´, zt´}´, and similarly for β and u + e, and we define X as 

block diagonal {Xs , 0 // 0 , Xt }, where 1 ,colr i m i r X x for r = s or t.  The framework 

then simplifies to: 

 

 

  

     (4) 















IVI

IIV

tttst

stsss
2

2

},{~     where, 




 0NeueuXz



 

 

 

This is a similar structure to the seemingly-unrelated regression (SUR) model originally 

proposed by Zellner; see for example, Amemiya (1985), p. 197.  There are two primary 

differences between the usual estimation procedures for that model and the approach 

taken in this paper.  Contemporaneous heteroscedasticity is a fairly uncommon 

assumption for that model.  Furthermore, in SAIPE production, the parameter estimates 

for each year are obtained from single-year data only, with no consideration of the 

potential serial information contained in the above structure.  The β and σs
2 are estimated 

by their marginal (i.e. single-year) likelihoods, and so are still consistent for the 

parameters of the multiyear model, but they are not asymptotically efficient.  In this case, 

maximum likelihood estimates are obtained for each year.  For year s, for example: 

 

   

      (5) 

 

 

3. Estimation of σst 
 
A natural form for the estimator of σst, obtained from a method-of-moments approach, is: 

 

     (6) 

 
where W(A) is an alternative weighting matrix.  For this paper, all the choices of W are 
diagonal matrices.  If one chooses W such that the cross-product terms for each 
individual area, i, are unbiased for σst, then the properties of the normal distribution 
assumed in (3) would imply finite variance for the sum of the cross-products over the 
sample.  And thus convergence of (1/m)W(A) would suffice to imply consistency and 
asymptotic normality for the general estimator for σst in (6).  Without the normality 
assumption stated in (3), some additional assumptions regarding finiteness and 
convergence of the third and fourth moments would be needed.  So the first criterion for a 
candidate W is the unbiasedness property.  We note that: 

                 (7) 

where Ms is the generalized projection matrix for year s, and similarly for Mt.  So our 
first alternative is to set (1/m)W(A) equal to the constant value defined by the inverse of 
the trace in (7).  Note that the assumptions necessary to ensure convergence of (1/m)W(A) 
essentially ensure that the trace of the projection matrices defined in (7) converge to m.  
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Thus, for large sample this simplest weighting converges to the simple average, (1/m).  
For the SAIPE 2007-to-2008 covariance estimator described in Section 6, m = 2,845 and 
the trace defined in (7) equals 2,844.8. 

This basic W(A) is the weighting matrix used for one alternative that we consider, labeled 

Estimator III in the listing below (8.3).  This is unlikely to be the most efficient estimator, 

however, since it weights all observations equally, even though we know there are 

substantial differences in their variances. 

 

An intuitive weighting, labeled Estimator II in the listing (8.2), would be to pre-multiply 

each residual by the square-root of the error variance matrix, approximately standardizing 

the residuals.  As a final weighting alternative, we define Estimator I in the listing (8.1) 

by pre-multiplying each residual by a full power of the error variance matrix, which 

allows for wider variation in the relative weights. 

 

The three estimators are shown below.  We will test these three estimators through 

simulations in the next section.  
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4. Simulation Results 
 

The setup described in the prior section yields consistent estimators, under the assumed 

error structure, but we did not derive an efficient weighting matrix.  So to evaluate the 

performance of the three estimators above, we generated simulations using the data 

process as defined in (3) and (4).  All simulation and empirical results pertain to 

estimators for the log of the number of children, ages 5 to 17 in families, in poverty. 

 

 
Figure 1:  Estimated Density of ̂ , showing RMSE  ̂  and Percentage of 1ˆ   

For Three Alternative Estimators, when the true  =0.4 (repetitions=1000). 

 

We simulate the observed z = log(y) using the design matrix X of the k = 5 explanatory 

variables (for a description of these variables, see Bell, et. al. (2007)) for the years 2005 

and 2006, treating these design matrices as fixed.  For these years, m = 2,886.  For the 

parameters of the model, apart from σst, namely βs, βt, Vs, Vt and the model error 



 

 

variances, we use those from the published SAIPE estimates from the corresponding 

years, treating them as “true” values.  We then generate simulations for each of several 

values of tsst  / .  Figure 1 displays the summary results for 1000 such 

simulations for the three alternative estimators, for a true value of  = 0.4.  
 

 
Figure 2:  Estimated Density of ̂ , showing RMSE  ̂  and Percentage of 1ˆ   

For Alternative True Values of   (repetitions = 100) 

 

Despite the different shapes of the densities of the three estimators, the mean values are 

fairly similar to one another, confirming the theoretical consistency of the three 

estimators.  The spread differs considerably, however.  Estimator I, which uses a full 

power of the error variance matrix as its weights, has the lowest root mean-squared error 



 

 

(RMSE) of 0.08.  Estimator II, using the square-root of the error-variance matrix, 

displays somewhat higher dispersion with a RMSE of 0.12.   Estimator III, which is un-

weighted, is considerably worse, with an MSE of 0.45 and with 9% of the occurrences 

falling outside the parameter space of [-1, 1].  Under the assumption that (3) correctly 

specifies the error structure, the un-weighted Estimator III is a poor choice. 
 

Figure 2 displays the simulated distributions for the three estimators under three 

alternative values of  , 0.2, 0.4 and 0.6, using 100 simulated repetitions.  The estimators 

remain unbiased, with similar dispersion to one another, for all values of the true 

parameter near our prior expectations. 
 

5. Empirical Results 
 

The single-year ACS-based SAIPE estimator defined in (5) was applied at the county 

level, for children ages 5 to 17 in families, to four ACS survey years:  2005, 2006, 2007 

and 2008.  The year-to-year covariance Estimators I, II and III defined in Section 3 were 

then calculated directly for each of the six intervals defined by these four single-year 

estimates:  2005 to 2006, 2006 to 2007, 2007 to 2008, 2005 to 2007, 2006 to 2008, 2005 

to 2008.  The explanatory variables in the SAIPE county model are the logarithms of tax-

based child exemptions and child exemptions in poverty, SNAP (Supplemental Nutrition 

Assistance Program) participants, child population estimates, and the decennial census 

estimate of poverty for the age group.  Additional information about these variables is 

available in Bell, et. al. (2007). 

 

The resulting estimates for year-to-year correlation ( tsst  / ) in the model error 

for log-poverty of related children ages 5 to 17 are reported for Estimator I in Table 1.  

The assumed error structure for these estimates is as defined in (3) and as used for the 

simulations reported in the previous section.  Note that the correlations reported for 

intervals longer than one year were estimated directly from the residual-based approach 

defined by Estimator I, and not calculated from the one-year intervals estimates using any 

assumed time-series model. 
 

 2005 2006 2007 2008 
2005 1 0.34 0.27 0.26 
2006 0.34 1 0.46 0.40 
2007 0.27 0.46 1 0.40 
2008 0.26 0.40 0.40 1 

Table 1:  Year-to-year Correlation Coefficient Estimates of the SAIPE Model Error 
Log-poverty of Related Children, ages 5 to 17 (from Estimator I) 

 



 

 

All three of the one-year interval estimates for the correlation coefficient were between 

0.3 and 0.5.  The multi-year interval estimates did not quickly decay, indicating some 

persistence in model errors over time.  We did expect fairly high year-to-year correlation 

and some degree of persistence in the model errors, due to the relative stability of the 

explanatory variables in the model, particularly when compared to the apparent trends in 

true poverty levels during this period. 

 

For any given county, the difference between the log-linear fitted value based on these 

variables and the true poverty value will be due either to failure of the model structure 

(due to non-linearity, variability of the relation over counties, etc.), or to county-specific 

variations in the explanatory variables (tax-filing behavior, SNAP participation, or the 

relations of other variables).  This second factor would likely persist over time since the 

explanatory variables are relatively stable over time. 

 

The empirical results for Estimator II corresponding to the results reported in Table I 

were similar, but they yielded higher actual values of the correlation in all cases.  For 

example, the value of Estimator II for the 2007-2008 model error correlation was 0.59, 

compared to the value of 0.40 reported in Table 1 for Estimator I.  This difference is 

more than what was expected from the simulations.  For Estimator III, the resulting 

values for the estimates were all higher than one, some by a large amount.  From the 

simulation results, we expected a higher probability of out-of-range results for Estimator 

III, but the actual empirical results were beyond the extremes noted in the simulations.  

Furthermore, this wide range of results was repeated for all the other single-year 

intervals.  These results indicate likely misspecification of the model, with the departure 

substantially affecting the estimates of year-to-year correlation.   

 

The homoscedasticity assumption for the model error implied by (3) is known not to hold 

for the SAIPE model.  Most tests of heteroscedasticity remaining after adjusting for the 

assumed structure fail to support the structure specified in (3).  A modeled adjustment for 

the remaining heteroscedasticity has not been applied to the production version of the 

SAIPE model in the past for two primary reasons.  First, the regression coefficients, and 

thus the resulting predictions of Z, remain consistent and asymptotically normal despite 

misspecification of the error structure.  So the impact on the final SAIPE estimates is 

small.  The second reason is that the weights of the Fay-Herriot shrinkage estimate 

require a precise decomposition of the overall error variance into sampling error variance 

and model error variance.  There is some evidence that the replicate weight method for 

estimating the sampling variance may yield inconsistent estimates for small, unpublished, 

areas on the log scale.  So it is not known whether the evidence of remaining 

heteroscedasticity is a result of non-constant model error variance or of poor estimation 



 

 

of the sampling variance.  For this reason, ongoing research efforts have concentrated on 

developing a generalized variance function to improve the precision of the sampling 

variance estimates (Maples, Bell and Huang, 2009).   

 

6. Conclusions and Further Research 
 

In this work we examined three estimators for the year-to-year SAIPE model error 

correlation, st .  We determined the most efficient among three alternatives, within the 

assumed error structure, using simulations.  For the most efficient among the three 

(Estimator I), we empirically estimated   for all combinations of years between 2005 

and 2008.  We observed that   declines with greater time lag, but we do not yet have a 

sufficient number of time periods to confidently model a structure to the serial behavior.  

However, these empirical estimates of   can potentially be used to support statistical 

comparisons of SAIPE data between pairs of years for individual counties. 

 

The likely misspecification of the error variance structure may have a substantial impact 

on the estimated year-to-year model error correlation estimates.  This might be indicated 

by the large deviation between the simulation results and the actual empirical estimates of 

the three alternatives.  One potential type of misspecification of the error variance 

structure was discussed in more detail, namely heteroscedasticity.  In theory, such 

misspecification has little impact on the Fay-Herriot model predictions, but a large 

impact on estimates of the standard errors and inter-year covariance.  

 

Ongoing research is currently focused on specifying a model in the rate scale, rather than 

the log-level scale.  This approach should yield more reliable sampling variance estimates 

for the smallest, unpublished counties since rate transformations of variables tend to be 

more stable across population size categories.  Use of a generalized variance function for 

the sampling variance in the rate scale could help further.  With more reliable sampling 

variance estimates, a more realistic error structure could be assumed for the model errors.  

As this research continues, the possibility of non-constant serial correlation will also be 

considered. 
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