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Abstract

Linear filters used in seasonal adjustment (model-based or from the X-11 method)

contain unit root factors in the form of differencing operators and seasonal summa-

tion operators. The extent to which the various filters (seasonal, seasonal adjustment,

trend, and irregular) contain these unit root factors determines whether the filters

reproduce or annihilate (i) fixed seasonal effects, and (ii) polynomial functions of

time. This paper catalogs which unit root factors are contained by the various fil-

ters for the most common approaches to model-based seasonal adjustment, and for

X-11 seasonal adjustment with or without forecast extension. Both symmetric and

asymmetric filters are considered.
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1 Introduction

Common approaches to model-based seasonal adjustment are based on linear filters.

The same is true of the widely used X-11 method of seasonal adjustment in either

the additive or log-additive modes (Ladiray and Quenneville 2001), and Young (1968)

asserted this can be regarded as approximately true for X-11’s multiplicative mode.

These linear filters contain unit root factors in two forms that are of interest here.

One is differencing operators, (1−) for some integer  ≥ 1, where  is the backshift
operator ( = −1). The other is the seasonal summation operator, denoted here
as () = 1 +  + · · · + −1, where  is the seasonal period. Filters could also
include one or more of the individual polynomial factors of (). Those for monthly

( = 12) filters are 1−√3 +2, 1 +
√
3 +2, 1− +2, 1 + +2, 1 +2,

and 1 +. Those for quarterly filters are 1 +2 and 1 +.

Interest in the presence of unit root factors in filters stems from the fact that this

determines whether given filters annihilate or reproduce polynomial functions of time

(e.g., 0 + 1) or fixed seasonal effects. For polynomial functions of time, suppose

() =
P

 
 is a seasonal filter and  () = 1 − () is the complemen-

tary seasonal adjustment filter. If, for example, () contains (1 − )(1 −  ) =

− (1−)2, where  = −1 is the forward shift operator, then () annihilates a

linear time trend (since (1−)2[0 + 1] = 0), while  () reproduces this func-

tion. More generally, if () contains (1 − ) for   0, then it will annihilate

polynomials of degree up to − 1, and () will reproduce them.

Fixed seasonal effects constitute a deterministic pattern that repeats itself every

year and also sums to 0 over any consecutive 12 months (or 4 quarters) of data.

For monthly series this pattern can be expressed as
P11

=1  where the  are the

seasonal contrast variables defined as 1 = 1 when  is a January, −1 when  is a

December, and 0 otherwise; . . . ; 11 = 1 when  is a November, −1 when  is a

December, and 0 otherwise. Here 1     11 are the January, . . . , November effects,

and 12 = −(1 + · · · + 11) is the December effect, which is defined so that the

sum over any 12 months of the seasonal effects is 0. The fixed seasonal pattern can

also be defined equivalently as
P5

=1[1 cos(212)+2 sin(212)]+6 cos().

Both of these parameterizations of fixed seasonal effects are available in the X-12-

ARIMA seasonal adjustment program (Findley, et al. 1998; U.S. Census Bureau

2009). Analogous definitions are made for quarterly series.

For fixed seasonal effects the relevant question is whether a seasonal adjustment

filter  () annihilates these effects, so that the corresponding seasonal filter ()

reproduces them. This will be the case if  () contains (). As will be seen, some

seasonal adjustment filters contain not just (), but ()( ) = ()() 11,

i.e., they, in effect, contain () twice. Such seasonal adjustment filters anni-

hilate not just fixed seasonal effects, but any deterministic function  such that

()() = 0. The nature of such a  follows from results on solutions to ho-

mogeneous difference equations (Goldberg 1986), and in this case  can be shown

to be a seasonal pattern whose amplitude grows linearly over time. As models to

account for such a pattern have been very uncommon in the time series literature

(Kitagawa and Gersch (1984) being one exception), we shall not elaborate further
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on such patterns, though we will note when seasonal adjustment filters do, in fact,

include ()( ) rather than just (). There are also seasonal adjustment filters

(X-11 symmetric filters) that contain () and an additional factor of ( ), but

not the full ()( ).

Trend and irregular filters generally include the () operator and, in some cases,

( ) or some of its factors. Irregular filters generally also include (1−) for some

  0.

This paper catalogs results on unit root factors in seasonal, seasonal adjustment,

trend, and irregular filters used by various proposed model-based approaches to sea-

sonal adjustment, and in such filters used by the X-11 method. Both symmetric

and asymmetric filters are considered. The results are presented in a series of tables

listing the unit root factors in the various filters along with the deterministic func-

tions (polynomials of what degree or fixed seasonal effects) that are annihilated and

that are reproduced by these filters. Some of the results have no doubt been noted

before for specific cases, and the results for model-based filters are obvious from their

formulas. The general results given here for X-11 filters appear to be new. The focus

here, though, is not so much on derivation of the new results, but rather on collecting

the complete set of results for all these filters.

Section 2 reviews the general form of seasonal time series models that have

been used both for developing model-based seasonal adjustment methods and for

forecast extension in the X-11-ARIMA (Dagum 1980) and X-12-ARIMA programs.

The key feature of these models that is of interest here is their use of nonseasonal

and seasonal differencing operators, yielding differencing of the observed series by

(1 − )−1(1 − ) = (1 − )() for some   0. Section 2 also provides two

theorems on reproduction of deterministic functions (polynomials and fixed seasonal

effects) when forecasting from such models. These results are used in the subsequent

sections to obtain results on unit root properties of asymmetric filters.

Section 3 presents results on unit root factors in model-based filters, both sym-

metric and asymmetric, and based on either infinite or finite amounts of data. Section

4 considers symmetric X-11 filters, Section 5 considers asymmetric filters obtained by

applying X-11 symmetric filters to a series with full forecast and backcast extension,

and Section 6 considers the original X-11 asymmetric filters. Section 7 provides an

illustration of the results for X-11 filters, while Section 8 summarizes the general

conclusions. Two appendices provide derivations of the results for X-11 filters.

In what follows we usually assume the case of a monthly time series ( = 12).

Corresponding results for quarterly series are generally either the same as those for

monthly series, or follow from the latter with obvious modifications (e.g., replace 12

by 4). When the modifications needed for quarterly series are not obvious, they will

be noted.
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2 Time Series Models Used in Seasonal Adjustment

The additive decomposition used for seasonal adjustment is

 =  +  +  (1)

where  is the observed time series (possibly after transformation, e.g., taking log-

arithms), and , , and  are the seasonal, trend, and irregular components. We

also let  =  +  =  −  denote the nonseasonal component, the estimate of

which is known as the seasonally adjusted series. Most of the models that have been

proposed for model-based seasonal adjustment use component models that can be

written in the following form:

() = 

(1−) =  (2)

 ∼  (0 2)

where  and  have mean zero for all  and are independent of each other and

of . Typically,  and  follow stationary autoregressive-moving average (ARMA)

Gaussian models (Box and Jenkins 1970), though particulars of the models for  and

 are not needed here, for the most part. We require only that  and  be station-

ary with autocovariance functions () = Cov( +) and () = Cov( +)

that are absolutely summable, i.e.,
P∞

=−∞ |()|  ∞ and
P∞

=−∞ |()|  ∞.
This summability condition is satisfied by stationary ARMA models. We let () =P∞

=−∞ ()
 and () =

P∞
=−∞ ()

 denote the autocovariance generat-

ing functions (ACGFs) of  and . The ACGF of  is just 
2
 . For results on

estimation of , we also define

 ≡ (1−) =  + (1−)

which has ACGF () = () + (1−)(1−  )2 .

The Gaussian assumption made above is not essential. Without it, forecasting

and signal extraction results given later are interpretable as linear projections, though

not as conditional expectations. Also, we could extend (2) to let  follow a stationary

and invertible ARMA model (instead of requiring it to be white noise, i.e., indepen-

dent and identically distributed over ). This extension would not alter the results

presented here.

With the component models as given in (2), we can write the general model for

 as

 ≡ (1−)−1(1−12) = (1−)()

= (1−) + () + (1−)() (3)

where  is the differenced observed series, with autocovariances () =Cov(  +)

and ACGF () =
P∞

=−∞ ()
 given by

() = (1−)(1− )()+()( )()+ (1−)()(1− )( )2 
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The model framework of equations (1)—(3) covers the canonical ARIMA

(autoregressive-integrated-moving average) model-based approach to seasonal adjust-

ment as developed in Hillmer and Tiao (1982) and Burman (1980), and implemented

in the TRAMO-SEATS software of Gomez and Maravall (1997). (Note that this is

the most widely used among model-based procedures used for official seasonal adjust-

ments.) It also covers the structural components models of Harvey (1989), Durbin

and Koopman (2001), and Kitagawa and Gersch (1984) (apart from the slight ex-

tension in the latter that was mentioned in the Introduction). Also, the ARIMA

models used for forecast extension in the X-11-ARIMA and X-12-ARIMA programs

are of the general form of (3). Regression terms are often added to these models to

account for trading-day and other effects. This leads to the RegARIMA models used

by X-12-ARIMA (Findley et al. 1998) and the RegComponent models discussed in

Bell (2004). As regression effects do not usually affect the unit root properties of

the seasonal adjustment methods examined here, we shall not, with one exception,

bother including them in the models we present here. The one exception involves

trend constants–an overall nonzero mean for the differenced series, . Trend con-

stants do affect the degree of polynomials annihilated and reproduced by some of the

various filters, so these are explicitly considered.

We now establish two results on forecasting with models of the general form given

by (3). Let () = 1− 1 − · · · − +11
+11 = (1− )−1(1− 12). Bell (2004,

Section 12.3.3) notes that minimum mean squared error (MMSE) forecasts ̂| of 
for    from finite data y = (1     )

0 satisfy

̂| = 1̂−1| + · · ·+ +11̂−−11| + ̂| (4)

where ̂| =  for  = 1     , and ̂| = (|w) is the MMSE forecast of 

under the model (3) given the differenced observed series w = (+12     )
0. The

result (4) follows under Assumption A of Bell (1984) about starting values for the

series , and is consistent with the standard approach to forecasting nonstationary

time series used, for example, in Box and Jenkins (1970). (Though Bell (2004)

presents the result (4) for forecasting from RegComponent models with finite data,

this result, and thus Theorems 1 and 2 below, apply to more general models of the

form of (3). They also apply to forecasting from semi-infinite data { for  ≤ },
subject to additional assumptions given in Bell (2004) about how the  extending

into the infinite past were generated.) Theorem 1 establishes what happens if the

forecast procedure defined by (4) is applied to any deterministic function  that is

annihilated by (). Note that in doing this the model (3) is taken as given, so the

forecast procedure does not involve fitting (3) to  taken as data.

Theorem 1: Forecasting via (4) with the model given by (3) reproduces any deter-

ministic function  that is annihilated by (). For () = (1−)(), these 
include (a) polynomials in  of degree less than , (b) fixed seasonal effects, and (c)

linear combinations of these two. Furthermore, higher order deterministic functions,

such as polynomials of degree  or more, are not reproduced.

Proof : To check if forecasting reproduces a deterministic function , we set 
∗
 = ,
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apply (4) to y∗ = (∗1     
∗
)
0, and see if ̂∗

| =  for   . Notice that (4)

is the difference equation ()̂∗
| = ̂∗

| with starting values ̂
∗
| = ∗ ≡  for

 =  −  − 10     . We also set ∗ = ()∗ = () for all , which can be

thought of as a difference equation that determines  for    given ∗ for   

and starting values  for  = − − 10     . Since these two difference equations
have the same form, with the same operator (), and the same starting values, their

solutions for    will be the same, and hence forecasting via (4) will reproduce 
if and only if ̂∗

| ≡ () for   , i.e., if and only if forecasting ∗ reproduces
(). From standard results on conditional expectation in a multivariate normal

distribution, (|w) = [(− 1)     (− )]Σ−1 w where Σ = Var(w). So we

need to check if

[(− 1)     (− )]Σ−1 w
∗ = ∗ ≡ () for   ? (5)

where w∗ = (∗+12     
∗
)
0. Notice that Σ−1 w∗ is a vector with finite entries that

do not depend on . By the assumed summability of (), () → 0 as  → ∞,
so that the left-hand-side of (5) goes to 0 as  →∞. Hence, for (5) to hold, it must
be the case that ∗ ≡ () → 0 as →∞.

Suppose first that  is such that 
∗
 ≡ () = 0 for all . Then, (5) is satisfied,

and such  are reproduced in forecasting. This establishes results (a)—(c).

Now suppose that  =  for  ≥ . From results given in Conte (1965, pp.

84-85), (1 − ) is a polynomial of degree  −  with leading term !
(−)!

−. If
 = , () = ()(1−) = 12! for all , which does not go to 0, so (5) will

not hold. If   , then () = ()(1−) is a polynomial in  of degree −
with leading term 12!

(−)!
−, so ∗ ≡ () → ∞ as  → ∞, and again (5) will

not hold. Thus, polynomials of degree  or more are not reproduced in forecasting

from (4). An analogous argument applies for deterministic functions  such that

()2 = 0 but () 6= 0 (or similarly for individual factors of ()). Thus, the
theorem is established.

Since the backward model for  has the same form as the usual (forward) model,

just with  replacing  in the AR, differencing, and MA operators (Box and Jenkins

1970, pp. 197-198), the results of the theorem also hold for MMSE backcasting.

Models of the general form (3) can be extended by addition of a trend constant,

which is a nonzero mean  for the differenced series :

(1−)() ≡  =  + ̃ (6)

where ̃ =  −  has (̃) = 0, and now ̃ follows the model given for  by

(3). To obtain forecasts from this model, we modify (4) to

̂| =  + 1̂−1| + · · ·+ +11̂−−11| + ̃| (7)

where ̃| = (̃|w). We also need to substitute an estimate of  into (7). We
could use the sample mean, ̄, of , or a generalized least squares (GLS) estimate

̂ = (1
0Σ−1w)(10Σ−11) (8)
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where 10 = (1     1) and Σ is any positive definite covariance matrix. Setting Σ ∝ 

gives the least squares estimate, ̄. Setting Σ = Σ gives the optimal GLS estimate

under model (6).

For the model (6), we have the following analog to Theorem 1. Note that the

model defined by (6) and (3) is taken as given except for the estimation of  by (8),

which is regarded as part of the forecast procedure. (The use of (8) is for finite data;

with data extending into the infinite past,  would be taken as known.)

Theorem 2: Forecasting via (7) with the model given by (6) reproduces (a) poly-

nomials in  up to degree , (b) fixed seasonal effects, and (c) linear combinations of

these two.

Proof : Let  = 0+1+· · ·+ and set ∗ = . From results of Conte (1965) cited

earlier, ∗ ≡ () = ()(1 − ) = 12(!) for all . Thus, ∗ = 12(!),

∗=12(!)1, and, for any positive definite Σ, (8) gives ̂∗ = 12(!) = ∗ . Since

̃∗ ≡ ∗ − ∗ = 0 for all , ̃
∗
| = 0 for all . Analogous to the proof of Theorem

1, we now have ()̂∗
| = ∗ and () ≡ ∗ = ∗ for   , two difference

equations of the same form and with the same starting values (̂∗
| = ∗ =  for

 =  −  − 10     ). So ̂∗
| =  for    and result (a) holds. If, instead, 

is a sequence of fixed seasonal effects (() = 0), then ∗ = 0 for all  and the

above argument holds with ̂∗ = 0. Thus, result (b) holds. If  = 1 + 2, where

1 = 0 + 1 + · · · + 
 and ()2 = 0, then ∗ = 12(!) for all , and the

above argument implies that result (c) holds.

Theorem 2 can be extended to a model where () = 0 + 1+ · · ·+ 
 to

show that forecasting with this model reproduces polynomials up to degree  + .

The simplest version of this would have  =  = 1, which implies a quadratic time

trend in the data. As use of quadratic or higher order polynomial trends should be

very unusual in practice, we shall not pursue this additional generality here.

3 Unit Root Properties of Model-Based Filters

These results follow directly from expressions for the signal extraction estimates that

form the basis of model-based seasonal adjustment. We consider the results for three

cases defined by the amount of data used in the signal extraction: the doubly infinite

realization { for  = −∞    ∞}; the semi-infinite realization { for  ≤ } for
some finite ; and the finite vector of observations y = (1     )

0. The first of
these leads to symmetric infinite filters, the second to asymmetric infinite filters, and

the third to finite filters (of which at most one will be symmetric).

Bell (1984) presents results on signal extraction with a doubly infinite realization

of  for models of the form of (1)—(3). The MMSE linear signal extraction estimate

of  given { for  = −∞    ∞} is

̂ = () where () =
()

()
(1−)(1−  ). (9)
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Analogous to (9), the linear filters for the MMSE estimates of , , and  are

 () =
()

()
()( ) (10)

 () =
()

()
()( ) (11)

() =
2

()
()( )(1−)(1−  ) (12)

It can be shown that  () = 1− () =  () + ().

The unit root factors appearing in the model-based filters given in (9)—(12), and

their implications, are summarized in Table 1 below.

Table 1. Unit Root Factors in Symmetric Infinite Model-Based Filters

Filter Unit root factors Annihilates Reproduces

() (1−)(1−  ) polynomials of
degree 2

fixed seasonal
effects

() ()( ) fixed seasonal
effects

polynomials of
degree 2

 () ()( ) fixed seasonal
effects

polynomials of
degree 2

() ()( )(1−)(1−  ) fixed seasonal effects and
polynomials of degree 2

–

As noted in the Introduction, we could replace “fixed seasonal effects” in Table 1 by

the more general “deterministic functions  such that ()() = 0,” but this

additional generality is not of much interest.

The most common case in model-based seasonal adjustment has  = 2. For

this case we see from Table 1 that the symmetric nonseasonal and trend filters will

reproduce cubic polynomials of . For the less common case of  = 1, the symmetric

nonseasonal and trend filters will reproduce only linear functions of time. Other

values of  are extremely uncommon.

Notice from Table 1 that the various filters all include double the unit root fac-

tors needed to remove nonstationarities present in the other components according

to the model (2). Thus, () contains not just the (1 − ) needed to remove

the nonstationarities in the trend component, it contains (1 − )(1 −  ). Simi-

larly, () and  () contain not just the () needed to remove the seasonal

component nonstationarities, they contain ()( ). Finally, while ()(1−)

alone would remove both the seasonal and trend nonstationarities, () contains

()( )(1−)(1−  ).

In the context of time series modeling, application of more differences than needed

to render a series stationary is termed “overdifferencing” (Harvey 1981). The overdif-

ferenced series follows a model that includes (1 − ) as an MA polynomial, where

 is the excessive number of differences applied. Application of an extra () fac-

tor produces () as an MA polynomial in the model for the filtered series. This

overdifferencing by symmetric filters is worth noting if one considers time series mod-

eling of estimated components. (Such modeling faces other issues, however, including
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nonstationarities induced by end effects from the different asymmetric filters applied

at different time points. See Bell (1995) for related discussion.)

In the context of seasonal adjustment, the overdifferencing implicit in the results

of Table 1 implies that the spectral densities of ̂ and ̂ will have zeros at frequency

zero, while the spectra of ̂, ̂, and ̂ will have zeros at the seasonal frequencies

(212 for  = 1     6). The latter can be called “overadjustment,” a term that

refers more generally to dips at the seasonal frequencies (not necessarily to zero) in the

spectra of ̂, ̂, or ̂. Evidence of overadjustment (from examination of estimated

spectra of estimated components) has long been considered as potentially indicative

of problems with the seasonal adjustment. For example, Granger (1978a) proposed

absence of dips or peaks in the spectrum of ̂ as one criterion for a good seasonal

adjustment. However, Sims (1978) and Tukey (1978), in discussing Granger’s paper,

both pointed out that this was an unrealistic criterion because such “overadjustment”

simply follows (for model-based adjustment) as a consequence of MMSE prediction (as

reflected by the results in Table 1). This led Granger (1978b), in response, to reverse

himself and agree with their conclusion that overadjustment does not necessarily

indicate a problem. In any case, any assessment of the spectral properties of the

estimated components from a model-based adjustment should take into account the

results of Table 1. In doing this, note that estimated components from long but

finite series will (approximately) show properties of symmetric infinite filtering in the

center of the series, but will show properties of asymmetric infinite filtering nearer

the ends (see Table 2 below), so that the estimated spectra of ̂, ̂, or ̂ will show

a mixture of these properties. This may produce dips, though not actual zeros, at

the seasonal frequencies.

Something not obvious from the filter expressions in (9)—(12) is whether the filters

contain additional unit root factors beyond those listed in Table 1. From (12), the

only additional factors in the numerator of () would come from factors in the

denominator of (). These would be AR operators in the model for , for which

unit root factors are ruled out by the stationarity assumption. Thus, the only unit

root factors in () are ()( )(1 − )(1 −  ). For (),  (), and

 (), additional unit root factors are possible if they appear in the MA polynomials

of the ARIMA models for , , or . For example, Hillmer and Tiao (1982,

p. 67) examine a model for which the canonical trend component indeed has a

factor of (1 + ) in its MA polynomial. On the other hand, the spectral density of

 = (1 − ), which is given by (2)
−1() = (2)−1{() + |1 − |22}

for  ∈ [− ], will be positive for all  as long as (1)  0 and 2  0. This

would imply no additional unit roots in  (). Apart from these results, potential

additional unit root factors in the filters considered can obviously be examined for

any particular model, but as general results are difficult to give, we shall not seek

further results of this sort here or in the subsequent sections.

Bell and Martin (2004) obtained expressions for asymmetric MMSE signal extrac-

tion filters with a semi-infinite sample for ARIMA component models. For estimating

− and − using data { for  ≤ }, the optimal filters can be written (Bell
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and Martin 2004, eq. (10))


()
 () = (1−)21

()
 ()

2()
(13)


()
 () = ()22

()
 ()

2()

where 21 and 22 are the innovation variances in the ARIMA models for  and ,

and () and 2 are the MA polynomial and innovation variance in the ARIMA

model for . Also, 
()
 () and 

()
 () are finite polynomials in  that depend on

, the distance from the time point of interest to the end of the series. They can

be determined as discussed by Bell and Martin. We see that 
()
 () includes the

factor (1 − ), while 
()
 () includes the factor (). The analogous results for

the asymmetric trend and irregular filters show that these include as factors (1−)
and (1−)(), respectively. Note that these results all apply for any value of .

Kohn and Ansley (1987) and Bell and Hillmer (1988) (see also Bell (2004)) pro-

vided signal extraction results with a finite sample for models of the form of (1)—(3).

Kohn and Ansley developed results for use with a modified Kalman filter and a

smoother, while Bell and Hillmer provided results in the form of matrix expressions.

McElroy (2005) simplified Bell and Hillmer’s results to provide explicit expressions for

the “filter matrix,” each of whose rows provides the weights for the filter producing

the signal extraction estimate at a particular time point. Let the signal extraction es-

timate of the vector S = (1     )
0 using y = (1     )0 be Ŝ = Ωy. McElroy’s

results show that

Ω =
£
∆0Σ

−1
 ∆ +∆

0
Σ

−1
 ∆

¤−1
∆0Σ

−1
 ∆ (14)

where Σ =Var(u), Σ =Var(z), ∆ is the ( − 11) ×  matrix such that ∆S =

u = (12     )
0 (i.e., the rows of ∆ contain the coefficients of (), which are 12

ones, in positions that shift left to right as one goes down the rows), and ∆ is the

(− ) ×  differencing matrix such that ∆N = z = (+1     )
0 (i.e., the rows

of ∆ contain the coefficients of the expansion of (1−)).

Since the last matrix in (14) is ∆ , the finite filter for signal extraction estima-

tion of  for any  = 1      contains (1 − ). Analogous results for the other

components show that the finite filters for estimating  and  both contain (),

while those for estimating  contain (1−)(). These results on unit root factors
in the finite signal extraction filters agree with those obtained by Bell and Martin

(2004) for semi-infinite signal extraction filters. These results and their implications

are summarized in Table 2.
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Table 2. Unit Root Factors in Asymmetric Model-Based Filters

Filter Unit root factors Annihilates Reproduces


()
 () (1−) polynomials of

degree 
fixed seasonal

effects


()
 () () fixed seasonal

effects
polynomials of
degree 


()
 () () fixed seasonal

effects
polynomials of
degree 


()
 () ()(1−) fixed seasonal effects and

polynomials of degree 
–

Contrasting these results with those of Table 1, we see that the asymmetric and

finite filters contain only half the unit root factors of the symmetric filters. Thus,


()
 (), 

()
 (), and 

()
 () annihilate, while 

()
 () reproduces, fixed seasonal

effects, but not the more general deterministic function  such that ()
2 = 0

that was noted for the corresponding symmetric filters. Also, 
()

 () and 
()

 ()

annihilate, while 
()
 () and 

()
 () reproduce, polynomials only up to degree

 − 1, rather than polynomials of degree up to 2 − 1 as for the corresponding
symmetric filters. Thus, for  = 2 these are linear functions of time (rather than

cubic polynomials in ), and for  = 1 these are just the constant function (rather

than linear functions of ).

The unit root factors shown in Table 2 are just those needed to remove nonstation-

arities present in the other components according to the model (2). Thus, in contrast

to the results for symmetric infinite filters, no “overdifferencing” or “overadjustment”

occurs with the asymmetric model-based filters.

A couple additional points are worth noting. One is that the results in Table

2 cover the case of symmetric finite filters, i.e., the filters used to produce signal

extraction estimates at  = (+ 1)2 for  odd, though with one qualification. The

one qualification comes from an observation by Findley and Martin (2006, p. 29) that

symmetric finite filters that include a 1 + factor must also include a 1 +  factor

(1 +  twice). Thus, for this particular case, the () factors in Table 2 become

()(1 + ). Another possible exception to the results of Table 2 could occur if the

“infinite” filters given by (9)—(12) actually turned out to be finite, but this would

require unusual and unrealistic restrictions on the models (including no MA operator

in the model (3), a condition violated by all the common model-based approaches

to seasonal adjustment). Thus, the reduction in unit root factors from Table 1 to

Table 2 is essentially due to the fact that the symmetric infinite filters given by (9)—

(12) extend beyond the reach of the data (which is also what leads to asymmetry of

filters.) This point leads us to consider an alternative approach to doing asymmetric

signal extraction with semi-infinite or finite samples.

Unit root factors in finite model-based filters follow from matrix expressions given

by McElroy (2009). These results turn out to be the same as in Table 2 (with one

qualification noted shortly), so all the remarks of the preceding paragraph apply.

Thus, the reduction in unit root factors from Table 1 to Table 2 is essentially due to

the fact that the symmetric infinite filters extend beyond the reach of the data (which
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is also what leads to asymmetric filters.) The one qualification involves the case of

symmetric finite filters, i.e., the filters used to produce signal extraction estimates at

 = ( + 1)2 for  odd. For this particular case, Findley and Martin (2006, p. 29)

observe that such filters that include a 1 + factor must also include a 1 +  factor

(1 + twice), so that the () factors in Table 2 then become ()(1 +  ).

The alternative approach to asymmetric signal extraction is to forecast (and back-

cast) extend the series as far as necessary to apply the symmetric filters given by (9)—

(12). This approach was proposed by Cleveland (1972), who noted that it produces

(|y), etc., the MMSE estimators based on the finite data y. As the symmetric
model-based filters can generally be assumed to be infinite, this approach would seem

to require an infinite number of forecasts and backcasts for exact calculations. How-

ever, an algorithm suggested by G. Tunnicliffe-Wilson (reported in Burman (1980))

provides a way to get the exact results with a finite set of calculations. We now

review how consideration of this alternative approach can be used to infer the results

in Table 2. We do so because this is fairly instructive, and because this approach is

also used with X-11 filters in Section 5.

Consider asymmetric signal extraction to estimate . From Theorem 1 given in

Section 2, forecast extension via (4) reproduces fixed seasonal effects. Subsequent

application of the symmetric seasonal filter () also reproduces fixed seasonal

effects, hence, the combination of the two procedures, which performs asymmetric

signal extraction to estimate , reproduces fixed seasonal effects. Similarly, while

application of the symmetric seasonal adjustment filter  () reproduces polynomi-

als up to degree 2− 1, forecast extension via (4) reproduces polynomials only up to
degree −1  2−1. Hence, the combination of these two procedures will reproduce
polynomials only up to degree  − 1. The other results in Table 2 can be similarly
inferred. Notice that the limiting factor here is what is reproduced by the forecast ex-

tension, since the symmetric signal extraction filters reproduce polynomials of higher

degree (and the more general version of fixed seasonal effects discussed earlier) than

does the forecast extension. This fact will be relevant to the derivation in Section

5 of unit root properties of asymmetric filters obtained from X-11 symmetric filters

with full forecast and backcast extension.

If the model with a trend constant, (6), is used, we would revise (2) to (1−) ≡
 = +̃, and note that  = () = [()+(1−)()] = ()() =

12. We can then think of () = [(12(!))]
, since this gives [()] =

()(1−)() =  as desired. We could add lower degree polynomial terms to

(), but these are not identifiable in the model (6) since they get differenced out.

We can write the semi-infinite sample signal extraction estimate of  from (13) as

̂ = (1−)21
()
 ()

2()
[ −()]

= 21
()
 ()

2()
[(1−) − 12] (15)

since (1−)() = 12. If we apply (15) setting  ≡  = 0+1+ · · ·+
,

then we have (1 − ) = (!) and  = 12(!) (note proof of Theorem 2 in
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Section 2), so ̂ = 0. Similar reasoning applies to finite sample signal extraction. So

asymmetric model-based signal extraction estimation of  (and similarly ) from

the trend constant model (6) annihilates polynomials up to degree , not just degree

− 1, while the corresponding signal extraction estimation of  and  reproduces

polynomials of degree . Hence, for the trend constant model (6), in Table 2 we can

replace  by  + 1 everywhere. Symmetric signal extraction estimation of  and 
(from a doubly infinite realization of ) with model (6) still annihilates polynomials

up to degree 2− 1 ≥ , since the symmetric filter () contains (1−)(1−  )

(and hence () = [(12(!))]
 is simply annihilated by () in computing ̂.)

4 Unit Root Properties of X-11 Symmetric Filters

Wallis (1974) lists the filtering steps used in X-11 seasonal adjustment with the ad-

ditive decomposition (1) (and the log-additive decomposition when  is a logged

series). See also Ladiray and Quenneville (2001, Section 2.4). For monthly series

these are:

1. Detrend  by subtracting a 2× 12 MA (a 2-term MA of a 12-term MA).

2. Take a first seasonal MA (e.g., a 3× 3) of the result as a preliminary estimate
of 

3. Adjust the preliminary seasonal to sum more nearly to 0 over 12 months by

subtracting a 2× 12 MA.
4. Subtract the result of step 3 from  to get a preliminary seasonally adjusted

series.

5. Subtract a Henderson trend MA of this from  for a more refined detrending

than at step 1.

6. Apply a second seasonal MA (e.g., a 3× 5) to the result of step 5.
7. Adjust the result of step 6 as in step 3 by subtracting a 2×12 MA — the result,

̂11
 , estimates 

8. The seasonally adjusted series is ̂11
 =  − ̂11

 ; the trend estimate, ̂11
 ,

is obtained by applying a Henderson trend MA to ̂11
 ; and the irregular

estimate is ̂11 = ̂11
 − ̂11

 .

The above sequence of steps is potentially applied three times, but the first two cycles

of this are used only as part of adjusting the series for extreme values and for trading-

day variation. Thus, the above gives the basic X-11 filtering steps as implemented in

the X-11-ARIMA program (Dagum 1980) and in the X-12-ARIMA program (Findley

et al. 1998, U.S. Census Bureau 2009). The example seasonal MAs mentioned at

steps 3 and 6 are the default choices of the original X-11 program (Shiskin, Young,
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and Musgrave 1967), though the default option in X-11-ARIMA and X-12-ARIMA

is to determine the seasonal MAs empirically. As the particular choices of MAs will

not affect the unit root results of interest here, we shall not go into details of this (for

which, see Ladiray and Quenneville 2001, Chapter 3).

Bell and Monsell (1992) note that the above steps can be expressed symbolically

to produce the following expression for the X-11 symmetric seasonal filter, 11 ():

11 () = [1− ()]2() [1−(){1− [1− ()]1()[1− ()]}] (16)

where

() = 2× 12 trend MA =
1

24
 6(1 +)() =

1

24
( 6 + 2 5 + · · ·+ 25 +6)

1() = first seasonal MA, e.g.,
1

9
( 12 + 1 +12)( 12 + 1 +12)

2() = second seasonal MA, e.g.,
1

15
( 12 + 1 +12)( 24 +  12 + 1 +12 +24)

() = Henderson trend MA.

For quarterly series we change 12 to 4 and 24 to 8 in the above expressions, and

the  6(1 + ) to  2(1 + ) in the definition of (). The Henderson trend MAs

are discussed by Macaulay (1931, p. 54), Kenny and Durbin (1982), Dagum (1985),

and Ladiray and Quenneville (2001, Chapter 3). Given the symmetric seasonal filter

11 (), the X-11 symmetric filters for estimating the remaining components are as

follows:

11 () = 1− 11 () (17)

11 () = ()11 () (18)

11 () = [1−()]11 () (19)

Bell and Monsell (1992) take the expressions (16)—(19) and use polynomial multi-

plication routines to determine the symmetric filter weights for most of the available

choices of the seasonal and Henderson trend MAs. They then plot the filter weights

along with the squared gains of the corresponding transfer functions. To determine

unit root properties of the filters 11 (), 11 (), 11 (), and 11 (), one

might take their filter weights and attempt to find the zeros of the corresponding

polynomials numerically. Because of the high degree of the polynomials, however

(168 for the seasonal adjustment filter with the X-11 default seasonal MAs as above

and a 13-term Henderson trend MA), such an approach may not work or would at

least leave some doubts about numerical precision. Instead, unit root properties of

the X-11 filters can be inferred from the expressions (16)—(19) using knowledge of

the unit root properties of (), the seasonal MAs, and the Henderson trend MAs.

The latter properties can be determined via numerical zero finding, or by polynomial

division (by (1−)  times to check for a (1−) factor, or by (1−12) or ()

to check for these factors). This was done and the results are stated as Lemma 1.
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Lemma 1: The moving averages used in the X-11 symmetric filters have the following

unit root properties (for monthly data):

(a) (), the 2× 12 MA, contains (1 +)()

(b) 1− () contains (1−)(1−  )

(c) 1− () contains (1−12)(1−  12) = (1−)(1−  )()( ) for any

of the X-11 seasonal MAs ()

(d) 1−() contains (1−)2(1− )2 for any of the Henderson trend MAs,

().

No other factors of (), nor additional (1−) factors, are contained by these MAs
or their complements. For quarterly series change 12 to 4 in (a) and (c).

Note that result (a) follows directly from the definition of (). Also, since the

Henderson trend MAs are explicitly designed to reproduce cubic polynomials (Kenny

and Durbin 1982), result (d) must hold.

By manipulating the expressions (16)—(19) and using the results of Lemma 1, we

can establish the unit root properties of the X-11 symmetric filters. These are listed

in Table 3. Derivation of these results is deferred to Appendix A.

Table 3. Unit Root Factors in Symmetric X-11 Linear Filters

Filter Unit root factors Annihilates Reproduces

11 () (1−)3(1−  )3 polynomials of
degree ≤5

fixed seasonal
effects

11 () ()(1 +  ) fixed seasonal
effects

polynomials of
degree ≤5

11 () ()(1 +  ) fixed seasonal
effects

polynomials of
degree ≤3

11 () ()(1 +  )(1−)2(1−  )2 fixed seasonal effects and
polynomials of degree ≤3 –

Comparing Tables 1 and 3, several interesting differences emerge.

First, since it would be very unusual to have a value of  greater than 2 in model

(2), we see that 11 () contains more 1 −  factors (effectively 6) than would a

symmetric model-based seasonal filter, (). Consequently, the X-11 symmetric

seasonal adjustment filters will reproduce polynomials up to degree 5, while symmet-

ric model-based adjustment filters will only reproduce polynomials up to degree 3 (if

 = 2) or 1 (if  = 1).

Second, unlike the model-based symmetric filters, the X-11 symmetric seasonal

adjustment, trend, and irregular filters do not include ()( ). Instead, they in-

clude only ()(1+ ) (∝ ()). In fact, no symmetric infinite model-based MMSE

filter can produce this result, which is one reason that no models can be found that

will exactly reproduce the X-11 symmetric filters. However, if one computes transfer

functions of the filters 11 ()() (i.e., the adjustment filter with its () factor
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removed), one finds that these transfer functions very nearly reach 0 at all the sea-

sonal frequencies. (They are exactly 0 at the frequency  due to 11 () containing

the additional 1 +  factor, whose zero is at  = −1 = .) This shows that the

X-11 symmetric seasonal adjustment filters, and thus the X-11 symmetric trend and

irregular filters as well, very nearly include ()( ). This may be partly why

Cleveland and Tiao (1976), Burridge and Wallis (1984), and Planas and Depoutot

(2002) were successful at finding models that could well-approximate X-11 symmetric

filters.

Third, note that 11 () includes (1 − )2(1 −  )2, whereas 11 () includes

(1 − )3(1 −  )3. Though not shown in Table 3, 1 − 11 () also includes just

(1−)2(1− )2. This contrasts with the results in Table 1, where (), (), and
1− () all include the same (1−)(1− ) factors. Hence, for X-11, the symmetric
trend filter reproduces, and the symmetric irregular filter annihilates, polynomials of

lower degree than are annihilated by the symmetric seasonal filter, whereas for model-

based filters the degrees of the polynomials annihilated or reproduced by these filters

are all the same.

Fourth, because 11 () and 11 () contain as many or more (1 − ) fac-

tors as do the corresponding symmetric model-based filters, the remarks of Section 3

about “overdifferencing” by the symmetric model-based filters apply also to 11 ()

and 11 (). Also, since 11 (), 11 (), and 11 () very nearly include

()( ), the remarks of Section 3 about “overadjustment” apply to these X-11

filters. Though, as noted in Section 3, such overadjustment does not necessarily pose

a problem, these results should nevertheless be kept in mind when analyzing X-11

component estimates such as X-11 seasonally adjusted series. (For short-to-medium

length series, depending on the effective length of the X-11 filters used, the proper-

ties of the X-11 component estimates will also be strongly affected by the different

properties of the asymmetric X-11 linear filters given later in Tables 4—6.)

Young (1968) provided alternative approximations to X-11 symmetric filters. For

the seasonal filter, Young (1968, eq. (4)) omitted steps 3 and 7 from the steps outlined

by Wallis (1974), yielding the following approximation obtained by omitting the first

two 1− () terms from (16). We denote this filter  ():

 () = 2() [1−(){1− 1()[1− ()]}]  (20)

Corresponding approximations to the X-11 symmetric seasonal adjustment, trend,

and irregular filters start with  () and follow as in (17)—(19). Young argued for

considering these filters when applied to logged data as an approximation to X-11’s

multiplicative decomposition. Though Wallis’s (1974) representation of X-11 linear

filters is exact, it is so only for additive and log-additive decompositions, and it

appears that whether Young’s approximation (20), or Wallis’s exact version with a

log-additive decomposition, provides a better approximation to multiplicative X-11

has not been studied.

Unit root results for Young’s approximate filters differ some from the results of

Table 3. First,  () contains only (1−)(1− ), so  () annihilates, and ()
reproduces, only linear polynomials in  (not the polynomials up to degree 5 of the
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Wallis representation). Second, 1 −  () also contains (1 − )(1 −  ), and while

this is less than the (1−)2(1− )2 contained by 1−11 (), it is consistent with

the result for  (), as is the case for model-based symmetric filters. (Note also

that the model-based symmetric seasonal and irregular filters for  = 1 also contain

just the factors (1−)(1− ).) Third, due to the presence of 1−() (note (19)),

 () includes (1−)2(1− )2, and so annihilates cubic polynomials in , matching
the result in Table 3, but differing from the result for  (). Fourth, 


 (), 


 (),

and  () all include ()(1 +), matching the corresponding results of Table 3.

5 Unit Root Properties of X-11 Asymmetric Filters with

Full Forecast Extension

To deal with the issue of symmetric X-11 filters not being applicable near the ends

of time series, Dagum (1975) proposed extending series with forecasts and backcasts

from ARIMA models, leading to the X-11-ARIMA method (Dagum 1980). Pierce

(1980) and Geweke (1978) pointed out that extending series with optimal (MMSE)

forecasts and backcasts, i.e., appending sufficient forecasts and backcasts to the se-

ries so the symmetric filters could be applied at  = 1     , would minimize mean

squared revisions of the seasonally adjusted data. In practice, the true model for a

series is unknown, so optimal forecasts cannot be achieved, but the motivating idea

behind these papers was that one could find a model good enough that using its

forecasts and backcasts could at least reduce the size of the revisions. (As noted in

Section 2, the programs X-11-ARIMA and X-12-ARIMA use models of the form of

(3) or (6).) As implemented in X-11-ARIMA and X-12-ARIMA, the default option is

not full forecast extension, but rather extension with one year of forecasts. (Backcast

extension is usually of less concern. It can be requested in X-12, but the default

is no backcast extension.) With this approach, the original X-11 asymmetric filters

still play a role. In this section, we consider unit root properties of X-11 filters ob-

tained using full forecast and backcast extension. Unit root properties of X-11 filters

obtained with partial forecast and backcast extension will be discussed in Section 6.

Unit root properties of X-11 filters obtained using full forecast extension follow

from the results of Table 3, Theorem 1 of Section 2, and the approach described at the

end of Section 3. Thus, (1−) and () factors occur in the various filters according
to the lesser of (i) the degree to which they occur in the corresponding symmetric

X-11 filter, and (ii) the degree to which polynomials or fixed seasonal effects are

reproduced in forecasting by the model used. The results are given in Table 4 below.

We use a tilde to distinguish these asymmetric X-11 filters from the X-11 symmetric

filters considered in the previous section, e.g., we write ̃11 () instead of 11 ().

Notice that the results in Table 4 are the same as those in Table 2 for asymmetric

model-based filters, with just the noted exceptions that would occur for large values

of  that should never occur in practice anyway. This is because the X-11 symmetric

filters 11 () and 11 () contain as many or more 1 −  factors (see Table 3)

than are ordinarily contained by the symmetric model-based signal extraction fil-

ters (Table 1), and so the forecasting results are what limit the number of (1 − )
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factors in both the asymmetric model-based and asymmetric X-11 filters with full

forecast extension. Also, notice that the X-11 symmetric filters 11 (), 11 (),

and 11 () contain ().

Table 4. Unit Root Factors in Asymmetric X-11 Linear Filters

with Full Forecast Extension

Filter Unit root factors∗ Annihilates∗ Reproduces∗

̃11 () (1−) polynomials of
degree 

fixed seasonal
effects

̃11 () () fixed seasonal
effects

polynomials of
degree 

̃11 () () fixed seasonal
effects

polynomials of
degree 

̃11 () ()(1−) fixed seasonal effects and
polynomials of degree 

–

∗ For ̃11 () and ̃11 () the results for 1− factors and polynomials assume
that  ≤ 6 ; for   6 change  to 6 in these rows of the table. For ̃11 ()

and ̃11 () the results for 1−  factors and polynomials assume that  ≤ 4;
for   4 change  to 4 in these rows of the table.

As was the case for asymmetric model-based filters, the unit root factors shown

in Table 4 are just those needed to remove nonstationarities present in the other

components according to the model (2). Thus, in contrast to the results for symmetric

X-11 filters, no “overdifferencing” or “overadjustment” occurs with the asymmetric

X-11 filters with full forecast extension.

The same reasoning applies to models (6) with trend constants. From Theorem 2

of Section 2, adding the trend constant to the model increases the degree of polyno-

mials reproduced by forecasting by 1. Hence, when full forecast extension uses model

(6), we can increase  to +1 in Table 4. Per the note to Table 4, this assumes that

 ≤ 5 for the first two rows of the table, and  ≤ 3 for the last two rows.
Note that the results in Table 4 apply only at those time points for which the

symmetric filters cannot be applied and forecast extension is needed. Let the sym-

metric seasonal filter be written as 11 () =
P

=− 
11
  with the 2 + 1 sym-

metric weights 11 = 11− . We call  the “half-length” of the symmetric filter.
Then, the results in Table 4 for ̃11 () and ̃11 () apply for  = 1      and

 =  + 1 −      , while for  =  + 1      − , the symmetric seasonal and

adjustment filters are used (so the results given in Table 3 apply). For ̃11 () and

̃11 (), the results in Table 4 apply for  = 1     + and  = +1− −     ,
where  is the half-length of () =

P
=−

 , the symmetric Henderson trend

MA. The value of  varies with alternative choices of the seasonal and Henderson

trend MAs, a point we discuss further in the next section.
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6 Unit Root Properties of Original X-11 Asymmetric

Filters

To deal with the inapplicability of the symmetric filters except in the middle of suf-

ficiently long time series, the original X-11 program (Shiskin, Young, and Musgrave

1967) provided families of asymmetric seasonal and trend MAs used in place of the

symmetric versions of 1(), 2(), and () in equation (16). Ladiray and Quen-

neville (2001, Chapter 3) discuss these asymmetric MAs and give their filter weights.

There is also need for an “asymmetric version” of (); we discuss this in Appendix

B. The asymmetric seasonal and trend MAs are also needed by the X-11 procedures

of X-11-ARIMA and X-12-ARIMA for use when there is no or only partial forecast

extension.

The asymmetric X-11 filters carry out the same sequence of operations listed at

the start of Section 4 (Wallis 1982), and so can still be loosely represented by the

expressions (16)—(19). However, the MAs in the asymmetric filters are generally time-

varying, in that when insufficient observations are available to apply a symmetric MA

at a given time point, the appropriate asymmetric MA is used. Because of this, we

cannot simply expand (16)—(19) as polynomials in  with fixed weights. Therefore,

while the unit root properties of the asymmetric filters do indeed depend on the unit

root properties of the asymmetric MAs, we cannot simply examine (16)—(19) for the

presence of (1−) factors, etc., in the asymmetric MAs to directly determine their

degree in the asymmetric X-11 filters. We instead examine (in Appendix B) what

results from applying X-11 asymmetric filters to sequences  representing either fixed

seasonal effects or polynomial functions of time (1, , 2, etc.).

The unit root factors in the asymmetric versions of X-11’s 3-term, 3 × 3, 3 × 5,
3 × 9, and 3 × 15 seasonal MAs were found numerically. Filter weights were taken
from the X-11 code in the X-12-ARIMA program. Ladiray and Quenneville (2001,

p.45) give weights for the asymmetric 3 × 3, 3 × 5, and 3 × 9 MAs, though, for the
3× 9, the weights given are approximations that do not quite preserve the unit root
factors of the MAs actually used in the program. Ladiray and Quenneville (2001, pp.

40—44) also provide weights for the asymmetric Henderson trend MAs, and note that

these MAs reproduce only constants, not linear functions. Collecting these results

gives the following lemma:

Lemma 2: The asymmetric seasonal (()) and Henderson trend (()) moving

averages used in X-11 have the following unit root properties (for monthly series):

(a) 1−() contains (1−12) = (1−)() for any of the X-11 asymmetric
seasonal MAs, ().

(b) 1 − () contains (1 − ) for any of the asymmetric Henderson trend

MAs, ().

No other factors of (), nor additional (1−) factors, are contained by the 1−()
and 1−(). For quarterly series change 12 to 4 in (a).
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Using Lemma 2, Appendix B derives the unit root factors in the original

X-11 asymmetric filters (denoted as 11
(), etc.) Table 5 below gives the results

for the concurrent filters ( = ).

We see that the () operator is included in the X-11 concurrent seasonal adjust-

ment, trend, and irregular filters, as was the case in Table 2 (model-based asymmetric

filters) and Table 4 (asymmetric X-11 filters with full forecast extension). The addi-

tional 1+ factor of the X-11 symmetric filters (Table 3) is not included, nor are any

other additional factors of (). But the main difference from all the previous results

is that the original X-11 concurrent seasonal and irregular filters include only 1−,

and no higher power of this. Thus, these X-11 filters annihilate, and the corresponding

seasonal adjustment and trend filters reproduce, only constants, not polynomials in

Table 5. Unit Root Factors in Original X-11 Concurrent Linear Filters

Filter Unit root factors Annihilates Reproduces

11
() (1−) constants

fixed seasonal

effects

11
() ()

fixed seasonal

effects
constants

11
() ()

fixed seasonal

effects
constants

11
() ()(1−)

fixed seasonal effects

and constants
–

time of degree 1 or higher. From Table 2, this agrees with the results for asymmetric

(and finite) model-based filters when  = 1.

The presence of () in 11
(), 11

(), and 11
() without an additional

1+ factor means that the original X-11 concurrent filters do not “overadjust.” The

presence of just the single 1 −  factor in 11
() and 11

(), however, means

that these filters will under-difference the series unless the appropriate model for the

data has just  = 1. For the more common case where the model assumes  = 2, this

fact precludes some calculations one might wish to do with original X-11 concurrent

filters. Consider, for example, the concurrent seasonal adjustment error, which is

 − 11
() = 11

() − 11
(). This error is nonstationary if  = 2,

since 11
() contains only one difference. Hence, given a model for  with  = 2,

the MSE of a seasonal adjustment using an original X-11 concurrent filter cannot be

calculated. For this reason, Chu, Tiao, and Bell (2007) made seasonal adjustment

MSE calculations, and Bell and Kramer (1999) developed an approximate approach to

computing X-11 seasonal adjustment variances, only for X-11 filters with full forecast

extension.

The results in Tables 4 and 5 leave open the question, “What unit root factors

are contained by the original asymmetric X-11 filters other than the concurrent filters

(i.e., for 1    )?” Appendix B also obtains these results. We show there that all

the original X-11 asymmetric seasonal adjustment, trend, and irregular filters contain

() for every . For 1− factors, the results depend on  and on the half-lengths
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of the seasonal and trend MAs used. Let the half-lengths of the symmetric seasonal

MAs 1() and 2() be 1 and 2, respectively. Note that these MAs involve

21 + 1 and 22 + 1 weights, including many weights that are zero because the

only nonzero weights in the seasonal MAs are at the seasonal lags and leads. Again,

let  denote the half-length of the symmetric (). The half-length, , of the full

symmetric seasonal filter can then be seen from (16) to be  = 18 +1 +2 + .

As noted in Section 5, the symmetric filter 11 () applies for  =  + 1     − ,

and this contains (1−)6. Table 6 shows how the (1−) factors in 11
() vary

across the other values of .

Table 6. (1−) Factors in Original X-11 Asymmetric Seasonal Filters

Time points 11
() contains

11
() annihilates,

11
() reproduces

 = 1     6 +2 + 

 = + 1− (6 +2 + )     
(1−) constants

 = 7 +2 +      

 = + 1−      − (6 +2 + )
(1−)3 polynomials up to degree 2

 =  + 1     − 

(symmetric filter applies)
(1−)6 polynomials up to degree 5

We see that, near the ends of the series ( = 1     6 +2 +  and  =  + 1 −
(6+2+)     ), 11

() contains only 1−, while for  = 7+2+      and

 = +1−      − (6+2+ ), 11
() contains (1−)3. The latter provides a

transition to the (1−)6 contained by the symmetric seasonal filter, which applies

for  =  + 1     − . Such a transition does not occur for model-based filters nor

for X-11 filters with full forecast extension. In both of these cases, all the asymmetric

filters contain the same unit root factors.

For the original asymmetric X-11 trend and irregular filters, we need to extend the

first two ranges of time points in Table 6 by  months. Thus, for  = 1     6+2+2

and for  = +1−(6+2+2)     , 
11


() reproduces, and 11
() annihilates,

only constant polynomials. For  = 7 +2 + 2      +  and for  =  + 1− ( +
)     − (6+2+2), 

11


() reproduces, and 11
() annihilates, polynomials

up to degree 2. For  =  +  + 1      − ( + ), the symmetric filters apply, and

11 () reproduces, and 11 () annihilates, polynomials up to degree 3 (Table 3).

For quarterly series we change 6 to 2 in the ranges of time points in Table 6 (and

7 = 6+1 to 3 = 2+1). At the beginning of the series, the first two time point ranges

for the quarterly trend and irregular asymmetric filters are then  = 1     2+2+2

and  = 3+2+2     + . At the end of the series the corresponding time point

ranges are  = +1−(2+2+2)      and  = +1−(+)     −(2+2+2).

The range where the symmetric quarterly trend and irregular filters apply is still

 =  + + 1     − ( + ).
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When X-11 is applied to a time series partially extended with forecasts and back-

casts, that is, with fewer than  forecasts and backcasts (the number required for

application of the symmetric seasonal and nonseasonal filters to the extended series),

we can infer the unit root properties of the resulting implied asymmetric filters from

the results given above, including Table 6 and the theorems of Section 2. Assume

that the forecasting model is of the form of (3), that is, that the differencing in the

model is () = (1−)−1(1−12) = (1−)(). We will consider  = 1 or 2.

Since (i) from Theorem 1 the forecast extension will reproduce constants and fixed

seasonal effects, and (ii) from the above discussion and Table 6, for every , the filter

11
() will reproduce constants and annihilate fixed seasonal effects, it follows that

X-11 seasonal adjustment with the extended series will also reproduce constants and

annihilate fixed seasonal effects (with either  = 1 or  = 2). In fact, for  = 1 the

forecast extension will reproduce only constants, not polynomials of higher degree,

and so in this case X-11 seasonal adjustment with the extended series will also not

reproduce polynomials of degree one or higher.

Consider now the case of  = 2 and assume one year of both forecast and back-

cast extension. (One year forecast extension, but no backcast extension, is the default

choice in X-11-ARIMA and X-12-ARIMA.) For simplicity, we’ll consider what hap-

pens at the beginning of the time series. Parallel results hold at the end. Theorem

1 of Section 2 says that forecast and backcast extension reproduce linear functions

of time, but not higher order polynomials. With the one-year backcast extension,

the adjustment filters that apply at  = 1 2    are 11+12
(). (The filters 11

(),

and conversely, 11
(), for  = 1     12 would apply only for producing (back)

projected seasonal factors, which is not of concern here.) The results of Table 6 then

provide the unit root properties of the seasonal and seasonal adjustment filters, but

with the time point ranges (at the beginning of the series) shifted by subtracting 12.

We thus see the following. (i) For  = 1    2 +  − 6, 11+12
() contains 1 − ,

so that seasonal adjustment for these time points reproduces only constants. (ii) For

 = 2+−5     −12, 11+12
() contains (1−)3, which annihilates quadratics,

but since forecasting only reproduces linear functions, seasonal adjustment for these

time points reproduces only linear functions. (iii) For  = −11     , the symmetric
filter 11 () is applied to the extended series. While it contains (1−)6, again the
limiting factor is the forecast and backcast extension, so seasonal adjustment for these

time points still reproduces only linear functions. Note the corresponding results in

the first two rows of Table 4 for the case of  = 2. (iv) For  =  + 1      − ,

the symmetric seasonal and seasonal adjustment filters apply using only observed

data (no forecast or backcast extension needed), and seasonal adjustment reproduces

polynomials up to degree 5.

Similar reasoning can be used to infer properties of the X-11 trend and irregular

filters when applied with limited forecast and backcast extension, as well as to infer

unit root properties of X-11 filters when applied to series extended with more or fewer

forecasts (and backcasts). We could also obtain results for values of   2, but as

noted earlier such results would be of little practical relevance.

Finally, it should be noted that the effective half-length of an X-11 symmetric
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seasonal filter is, in practical terms, much less than the  = 18 +1 +2 +  on

which the results given here are based. This is because the X-11 filter weights are

quite small beyond a certain point much less than . From the plots given in Bell

and Monsell (1992) of X-11 symmetric filter weights (covering filters generated from

the 3 × 1, 3 × 3, default 3 × 5, and 3 × 9 seasonal MAs, and the 9-, 13-, and 23-
term Henderson trend MAs), one might judge that the effective half-length of an

X-11 symmetric seasonal filter is about 2, or perhaps, to be safe, 2 + 12 (2 + 4

for quarterly series). Thus, while the “asymmetric” X-11 seasonal filters 11
()

include (1 − )6 only for  =  + 1      − , they may come close to doing so for

 = 2 + 1      and  = −  + 1     −2.

7 Illustration

We illustrate the results of Section 6 on reproduction of polynomials for X-11 sea-

sonal adjustment and trend filters with no forecast extension. For simplicity, quar-

terly rather than monthly seasonal adjustment was done. The input series to X-11

were polynomials of degrees 1 through 5 covering 15 years plus one quarter, or 61

observations. These were of the form  = 30 × [( − 31)30] for  = 1     61 and
 = 1     5. The series values thus ranged from −30     30 for odd powers, and
from 30 down to 0 and then back up to 30 for even powers. This makes the aver-

age absolute quarter-to-quarter change equal to 1 in all cases, so that errors in the

seasonal adjustments and trend estimates — the differences between these values and

the input polynomial trends — generally reflect errors relative to average absolute

quarter-to-quarter changes.

To keep the X-11 filters relatively short, we specified a 3 × 3 seasonal MA and

a 5-term Henderson trend MA. For these MA choices, 1 = 2 = 2 × 4 = 8 and

 = 2, so  = 6+1+2+  = 24 is the half-length of the symmetric X-11 seasonal

adjustment filter, which thus (Table 6) reproduces all the polynomials up to degree

5 for time points 25     37 (= 61− 24). From Table 6 (with the modifications noted

for quarterly series), the X-11 asymmetric seasonal adjustment filters will reproduce

polynomials up to degree 2 at time points 3+2+  = 13     24 = , and similarly

at time points 38     49. At time points 1     12 and 50     61, only constants are

exactly reproduced by the X-11 seasonal adjustment filters.

The half-length of our X-11 trend filter is  +  = 26, so it reproduces polyno-

mials up to degree 3 (note Table 3) for time points 27     35. It reproduces linear

and quadratic polynomials at time points 15     26 and 36     47. At time points

1     14 and 48     61, the trend filters reproduce only constants.

Figure 1 displays the results. The seasonal adjustment errors are displayed in the

left column of plots for the input polynomials of degrees 1 to 5. The corresponding

trend estimation errors are displayed in the right column of plots. The dotted vertical

lines in the plots are the limits of the intervals over which the filters reproduce the

respective polynomials. No dotted vertical lines appear in the last two plots in the

right column, since for these cases none of the input polynomial values are reproduced.
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Figure 1: Seasonal adjustment and trend estimation errors for X-11 quarterly filters

with no forecast extension applied to polynomials of degrees one through five. The X-

11 filters use 3×3 seasonal MAs and a 5-term Henderson trend MA. The polynomials
are of the form  = 30× [(− 31)30] for  = 1     61 and  = 1     5. The errors

are zero within the spans denoted by the dotted vertical lines.
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Though many of the plotted points outside the region denoted by the dotted vertical

lines appear to fall on the horizontal axis, these values are not exactly zero, just too

small to visually detect their differences from zero on the plots.

For the linear trend plots in the first row, we see the magnitude of the errors in

both the seasonally adjusted values and trend estimates is quite small, even at the

very ends of the series. This illustrates the point made in Section 6 that while the

X-11 asymmetric filters exactly reproduce only constants near the ends of the series,

they come very close to reproducing linear polynomials. As we look down the rows

of plots we notice that the magnitude of the errors increases with the degree of the

input polynomial, and, especially for the higher degrees, the errors are not so trivial

as they were for the linear trend. There is generally a seasonal pattern to the errors

and, apart from this, the magnitude of the errors tends to be larger nearer to the ends

of the series. This latter point is unsurprising given that, for polynomials of degree 2

and higher, the absolute rates of change in the series increase as one approaches either

end of the series.

8 Conclusions

We have presented here an essentially complete catalog of results on unit root factors

in commonly used seasonal, seasonal adjustment, trend, and irregular linear filters,

both model-based and from X-11 with or without forecast extension (full or partial).

The unit root factors of interest are differencing operators ((1−) for some   0)

and seasonal summation operators (() = 1 +  + · · · + 11 for monthly data),

as these determine the extent to which the various filters annihilate or reproduce

(i) polynomials in time and (ii) fixed seasonal effects. Differences between the results

for various cases were noted. For example, symmetric filters include more (higher

order) unit root factors than do the corresponding asymmetric filters. Also, X-11

asymmetric seasonal filters obtained with full forecast extension from a model with

both a seasonal and nonseasonal difference contain (1 − )2, as do model-based

asymmetric seasonal filters, but X-11 asymmetric seasonal filters with partial or no

forecast extension have only a single (1−) factor.

We can summarize the results related to fixed seasonal effects by saying that all

the seasonal filters examined here, both symmetric and asymmetric, would repro-

duce fixed seasonal effects (and so the corresponding seasonal adjustment, trend, and

irregular filters would annihilate them). Symmetric model-based seasonal filters go

further and reproduce deterministic functions  such that ()
2 = 0, but this

extension is of little relevance for practice. For polynomial functions of time, model-

based symmetric filters from models with both a seasonal and nonseasonal difference

reproduce cubics, as do X-11 symmetric trend filters, while X-11 symmetric sea-

sonal adjustment filters reproduce quintic (fifth degree) polynomials. Corresponding

asymmetric model-based and X-11 filters with full forecast extension reproduce just

linear time trends, while X-11 filters with partial or no forecast extension reproduce

only constants. For models with only a seasonal difference, symmetric model-based

adjustment and trend filters reproduce linear time trends, while the corresponding
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asymmetric model-based and X-11 filters (with or without forecast extension) repro-

duce only constants.

It is difficult to draw any general conclusions about whether the differences that

exist in unit root factors between model-based and X-11 filters favor one or the

other, or are generally neutral. Such conclusions, when possible, would presumably

depend on the properties of the time series being seasonally adjusted. We can say,

however, that while the relation between unit root factors for model-based symmetric

and asymmetric filters stems from established statistical principles of MMSE linear

projection, the relation between unit root factors for X-11 symmetric and asymmetric

filters (with or without forecast extension) is ad-hoc. This could raise concerns for

some X-11 filters in certain specific instances. On the other hand, the illustration

of Section 7, showing that X-11 asymmetric seasonal adjustment and trend filters

without forecast extension come very close to reproducing linear polynomials (though

exactly reproducing only constants), means we must be cautious in how we interpret

the exact results.

This last remark also reminds us that the exact results presented should nonethe-

less hold approximately in other settings where one filter approximates another. For

example, the results on unit roots of model-based symmetric filters strictly apply only

to the case of seasonal adjustment using a doubly infinite realization of a time series

({ for  = −∞    ∞}), a situation never exactly realized in practice. However,
model-based filter weights from the models considered here die out with increasing

lead or lag, so that in the middle of a sufficiently long series the symmetric filters

nearly apply, and then we can expect the unit root results for symmetric filters to

hold approximately. Similarly, X-11 filters tend to be rather long, so that a rather

large number of forecasts and backcasts would be needed to exactly achieve full fore-

cast extension. However, the ends of X-11 symmetric filters contain a large number

of very small (in magnitude) weights, so that the effective length of the filters is

considerably less than their exact length. Hence, the results on unit roots in X-11

filters with full forecast extension will apply approximately with much less forecast

extension than is required for the results to apply exactly. Precisely how long a series

needs to be in order to be considered “sufficiently long,” or how many forecasts are

really needed to approximate “full forecast extension,” will depend on the particular

fitted models and filters being used, so this must be judged on a case-by-case basis.

9 Appendix A: Derivation of Unit Root Properties of

X-11 Symmetric Filters

We start with 11 (). From (16) we may rewrite it as

11 () = [1− ()]2()[1−()] + [1− ()]32()()1() (21)

Using Lemma 1 (b) and (d) we see that 11 () contains (1−)3(1−  )3. Hence,

it annihilates polynomials up to degree 5, and 11 () = 1 − 11 () reproduces

polynomials up to degree 5. To see if 11 () contains (), we manipulate it using
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(21) as follows:

11 () = [1− 2()] + ()2() + [1− ()]2()()

−[1− ()][1− 2() + ()2]2()()1()

= [1− 2()] + ()2() + [1− ()]2()()[1− 1()]

+[1− ()][2()− ()2]2()()1()

= [1− 2()] + [1− ()][1− 1()]2()()

+()2()[1 + 2()1()]

−2()()1(){2()2 + [1− ()]()2}
= [1− 2()] + [1− ()][1− 1()]2()()

+()2()[1 + 2()1()]− ()22()()1()[3− ()]

From Lemma 1 (a) and (c), all four terms above contain (). In fact, all but

the third term clearly contain ()( ). Whether or not the third term contains

()( ) (equivalently, contains ()2) comes down to whether 1 + 2()1()

contains (). This can be checked by seeing if  = 212 for  = 1     6, the

zeroes of (), are also zeroes of 1 + 2()1(). (This is for monthly filters. For

quarterly filters consider only  = 3 6.) Since 1(
212) = 1 for  = 1     6 for any

of the X-11 seasonal MAs 1(), the result depends on whether (
212) = −5.

In fact, for none of the Henderson MAs does the transfer function go as low as −5,
therefore, 1 + 2()1() contains no factors of (). This shows that 

11
 ()

contains () but not ()( ), though it does contain an additional (1 +  )

factor since this is part of (). Since 11 () contains (), it annihilates fixed

seasonals, and 11 () = 1− 11 () reproduces fixed seasonals.

Considering now 11 () = ()11 (), from the immediately preceding re-

sults 11 () contains ()(1 +  ), but, from Lemma 1 (which notes that ()

contains no factors of ()), it does not contain ()( ). Since

1− 11 () = [1−()] +()[1− 11 ()] = [1−()] +()11 ()

from Lemma 1 (d) and the above results for 11 (), 1 − 11 () contains

(1 − )2(1 −  )2, but no higher powers of (1 − ). Thus, 11 () reproduces

polynomials up to degree 3.

Finally, for 11 () = [1 − ()]11 (), using Lemma 1 (d) and the above

results for 11 (), we see that 11 () contains (1 − )2(1 −  )2 but no higher

powers of (1−), and also that 11 () contains ()(1+ ) but not ()( ).

Thus, 11 () annihilates polynomials up to degree 3 as well as fixed seasonal effects.
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10 Appendix B: Derivation of Unit Root Properties of

Original X-11 Asymmetric Filters

We write the original X-11 asymmetric seasonal filter that applies at time point

 ∈ {1     } as

11
() = [1− 

(3)
 ()]2()

h
1−(){1− [1− 

(2)
 ()]1()[1− 

(1)
 ()]}

i
(22)

where the  subscript on the MAs (1(), 2(), (), and 
()
 () for  = 1 2 3)

indicates that, when the symmetric MAs (1(), 2(), (), and ()) cannot

be applied, asymmetric versions of these MAs appropriate for the time point will be

used. We shall examine what happens as the successive parts of 11
() are applied

to a deterministic function  representing either fixed seasonal effects or polynomials

of various degrees. This depends on the unit root properties of the asymmetric MAs

1(), 2(), and () that were given in Lemma 2, as well as on the properties

of the “asymmetric versions” of (), labeled 
()
 (),  = 1 2 3, whose actions we

describe first. For concreteness we do this for the monthly case; an essentially similar

discussion applies to the quarterly case.

Wallis (1982, p. 79), in summarizing the steps of X-11 with asymmetric filters,

noted how the 
()
 () are handled. This occurs at steps 1, 3, and 7 of the asymmetric

analog to the steps listed at the beginning of Section 4 for the symmetric filters. The

actions of the 
()
 () are detailed below in the context of the full set of filtering steps.

Ladiray and Quenneville (2001, Chapter 4) illustrate these actions in the presentation

of an example of X-11 seasonal adjustment.

(i) At step 1, X-11 simply omits computing values of 
(1)
 () for  = 1     6 and

 = −5     , computing only (1) () = () for  = 7     −6 (where
the symmetric () applies). It then computes 

(1)
 ≡ 1()[1− ()] only

for  = 7     − 6, using the asymmetric versions of 1() as needed, where

(1)
 denotes the first “uncentered” estimate of the seasonal. There are thus no

values of 
(1)
 for  = 1     6 and  = − 5     .

(ii) At step 3, X-11 first computes 
(2)
 ()

(1)
 = ()

(1)
 for  = 13      − 12.

Then, to provide a value of 
(2)
 ()

(1)
 for  = 7     12, it substitutes the value

of ()
(1)
13 . It makes the analogous substitution of ()

(1)
−12 for 

(2)
 ()

(1)


at  = − 11     − 6. It then computes the “preliminary seasonal” as () =


(1)
 −(2) ()

(1)
 for  = 7     −6. To provide values of () for  = 1     6,

X-11 substitutes 
()
+12, the value for the same month in the adjacent year. It

makes the analogous substitution of 
()
−12 for 

()
 for  =  − 5     . It

now has values of 
()
 for all , and it then progresses through computation of


(2)
 = 2()

h
 −()( − 

()
 )
i
, the second uncentered estimate of the

seasonal, using asymmetric 2() and () as needed.
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(iii) At step 7, X-11 can now compute the final seasonal estimate for  = 7     −6
as ̂11

 ≡ [1−(3) ()]
(2)
 = 

(2)
 −()(2) . To extend results to  = 1     6,

X-11 substitutes ()
(2)
7 for 

(3)
 ()

(2)
 , and thus computes ̂11

 = 
(2)
 −

()
(2)
7 for  = 1     6. The analogous substitution is made in computing

̂11
 for  =  − 5     . The remaining operations for computing ̂11

 ,

̂11
 , and ̂11 are then carried out.

We now let  be a sequence of fixed seasonal effects and consider what happens

with application of 11
() from (22). First,

[1− 
(1)
 ()] =

½ −  = 1     6 and  = − 5     
  = 7     − 6

The result for  = 7      − 6 follows because there we apply 1 − (), and, from

Lemma 1, () contains (), and () = 0. Then, 
(1)
 ≡ 1()[1−(1) ()] =

 for  = 7      − 6 because each 1() reproduces fixed seasonal effects. Now,

for  = 13      − 12, (2) ()
(1)
 = () = 0, and the zero value for  = 13 is

extended to  = 7     12, and similarly for  =  − 11      − 6. Thus, () ≡
[1 − 

(2)
 ()]

(1)
 = 

(1)
 =  for  = 7      − 6, and then the substitutions for

 = 1     6 and  =  − 5      extend this to all . Now,  − 
()
 = 0 for all ,

and these zeros are reproduced by (), so that −()(−
()
 ) =  for all .

Applying 2() then still yields , as does applying [1− ()] for  = 7     − 6.
For  = 1     6, 

(3)
 () = ()7 = 0, and similarly for  =  − 5     , so

[1 − 
(3)
 ()] =  for all . We thus see that 

11


() reproduces fixed seasonals.

Consequently, 11
() annihilates fixed seasonals, and so do 11

() and 11
().

We now turn to application of 11
() to polynomials of various orders. As

noted earlier, we let 1 and 2 denote the half-lengths of the symmetric seasonal

MAs 1() and 2(), and let  denote the half-length of the symmetric (), so

the half-length of the full symmetric seasonal filter 11 () is  = 18+1+2+ ,

and 11 () has 2+1 weights. Thus, 11 () applies for  = +1     − , and,

from Table 3, for these time points 11 () annihilates polynomials up to degree

5, but not those of degree 6 or higher. We need to consider what happens when

applying 11
() for  = 1      and  = −  + 1     .

To proceed further, we split 11
() into two parts:

11 () = [1− 
(3)
 ()]2()[1−()] (23)

+ [1− 
(3)
 ()]2()()[1− 

(2)
 ()]1()[1− 

(1)
 ()]

and consider application of the two parts separately. First, note that both parts

annihilate constants for all  since both 1−() and [1−(2) ()]1()[1−(1) ()]

(with the substitutions needed at  = 1     12 and  = − 11     ) do so. Hence,
11

() annihilates constants for all . We now consider what both parts of (23) do

when applied to polynomials of degree 1     5.
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Consider the first part of (23). For  = 6 + 2 +  + 1      − (2 +  + 6),

the symmetric version, [1 − ()]2()[1 − ()] applies, which, from Lemma 1,

includes (1 − )3(1 −  )3, and so it annihilates polynomials up to degree 5. Now

consider applying the first part of (23) to  =  for  ≤ 6 + 2 + . First, for

   the symmetric () is used, so that, for these , 1 −() annihilates  =

, but this is not the case for  ≤ . Then, 2()[1 − ()] = 0 for  where

2() does not reach to  = 1     , which is for   2 + ; for  ≤ 2 + ,

2()[1 − ()] 6= 0. Applying 1 − 
(3)
 () to this result yields zero when it

applies only to the zero values, which is for  = 6+2 + +1     − (2 + +6).

Similarly, [1− 
(3)
 ()]2()[1−()] 6= 0 for   − (2 + + 6). So the first

part of 11
() annihilates  only for  = 6+2+ +1     − (2+ +6), where

it actually annihilates polynomials up to degree 5. The same reasoning applies to 

for 2 ≤  ≤ 5.
Consider now the second part of (23). Its half-length is , and for  =  + 1    

− its symmetric version is applied. From Lemma 1, this contains (1−)3(1− )3
and so it annihilates polynomials up to degree 5. For   , consider first the

application of [1 − 
(2)
 ()]1()[1 − 

(1)
 ()] to a polynomial . Since 1 − ()

contains (1−)(1− ), where [1−
(1)
 ()] is computed we get 0 for linear , and

a constant for quadratic . These are reproduced by asymmetric 1() (which is

an MA), yielding a constant for  = 7      − 6. This constant is then annihilated
by 1− 

(2)
 () to give zero for all  (with the substitutions made at the ends of the

series). So [1− 
(2)
 ()]1()[1− 

(1)
 ()] = 0 for up to quadratic . Subsequent

application of [1 − 
(3)
 ()]2()() still yields zero. Similar reasoning applies

for   − . So [1− 
(3)
 ()]2()()[1− 

(2)
 ()]1()[1− 

(1)
 ()] contains

(1−)3 for all .

Now [1 − 
(1)
 ()]

3 = [1 − ()]3 is a linear function where it is computed,

and this is reproduced by symmetric 1() but not (from Lemma 2(a)) by asym-

metric 1(). Hence, we get zero from subsequent application of 1 − 
(2)
 () only

for  = 13 + 1      − (12 + 1). When [1 − 
(3)
 ()]2()() is applied

to the result, we won’t get zero when its weights extend below 13 + 1 (or above

 − (12 + 1)). The half-length of [1 − ()]2()() is 6 + 2 + , and so

we get [1 − 
(3)
 ()]2()()[1 − 

(2)
 ()]1()[1 − 

(1)
 ()]

3 = 0 only for

 ≥ 13 + 1 + 6 + 2 +  =  and    − , which is the range where the

symmetric 11 () applies. Thus, for  = 1      and  =  −  + 1     ,

[1− 
(3)
 ()]2()()[1− 

(2)
 ()]1()[1− 

(1)
 ()] contains only (1−)3.

Putting the results for the two parts of (23) together, we see that (i) for

 = 1     6 + 2 +  and  =  − (5 + 2 + )     , 11
() contains (1 − ),

(ii) for  = 7+2+      and  = −+1     − (6+2+), 11
() contains

(1−)3, and (iii) for  =  + 1     −  + 1, 11
() = 11 (), which contains

(1 − )5. The properties of 11
() = 1 − 11

() for reproducing polynomials

follow immediately from these results.

For 11
() = ()

11


() and 11
() = [1−()]

11


(), note the fol-
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lowing. (i) Asymmetric () will reproduce constants, as will 
11


(), so 11
()

will reproduce, and 11
() will annihilate, constants for all . (ii) Symmetric ()

reproduces cubics, so for  where the () applied last is the symmetric (), and

where 11
() reproduces quadratics, 11

() will reproduce quadratics. This oc-

curs for  = 7 +2 + 2      +  and for  =  + 1 − ( + )      − (6 +2 +

2). For these , 11
() contains (1 − )3 and annihilates quadratics. (iii) For

 =  +  + 1      − ( + ), the symmetric X-11 trend and irregular filters apply,

and from Table 3 11 () reproduces cubics while 11 () contains (1 − )4 and

annihilates cubics.
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