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   This chapter covers stratification and sample allocation for one-variable and multi-
variable selection schemes.   The purpose of sampling is to reduce cost by taking a subset 
of a population while assuring that the accuracy of one or more estimates are preserved.  
Stratification and clustering are methods for subdividing a population into subsets in 
which efficient sampling can be performed.  Two implicit assumptions are typically 
made.  The first is that the population file contains all members of the desired population 
and is free of duplicates.  The second is that the quantitative and other variables used in 
the scientific design are accurately recorded in computer files and represent information 
that correspond to the desired population estimates.  These assumptions can be relaxed in 
some situations. 
    The outline of this chapter is as follows.  In the first section, we describe univariate 
methods of stratifying and sampling for one variable.  These methods are due to Dalenius 
and Hodges (1959) and Ekman (1959).  Lavallée and Hidiroglou (1988) and Winkler 
(1998) have given extensions for situations in which the underlying population 
distribution for continuous variables has significant gaps.  The gaps can affect the 
stratification procedures of Dalenius and Hodges in particular.  In the second section, we 
cover methods of stratification for more than one variable.  The stratification ideas begin 
with independent stratification of two or more variables that are extended to a two or 
more way stratification of a population.  The original ideas are due to Tepping, Hurwitz, 
and Demming (1943) with extensions by Goodman and Kish (1950) and Bryant, Hartley, 
and Jessen (1960).  Modern extensions using non-trivial computational methods are due 
to Rao and Nigam (1990, 1992), Sitter and Skinner (1994), and Winkler (2001).  In the 
final section, we give concluding remarks. 
 
1.  Univariate Stratification and Sampling 
   In this section, we describe methods for one-way stratification and sampling.  The first 
three subsections consist of background notation, a description of several methods for 
one-way stratification, and an empirical comparison of the methods on highly skewed 
populations.  The fourth subsection consists of remarks giving relationships to other 
closely related concepts in the literature.  The fifth subsection describes additional 
concepts that are often used for grouping a population into subsets for sampling and are 
not closely related to methods for stratification. 
 
1.1 Notation and Definitions 
     In this section, we summarize notation that is standard in sampling theory (e.g., 
Cochran 1977).  A population of size N is partitioned into subsets called strata.  The 
subscript h denotes the stratum and the subscript i denotes the unit within the stratum.  
The following all refer to stratum h: 
 
Nh, total number of units, 
nh, number of units in sample from stratum h, 
yhi, value obtained for ith unit of stratum h, 



yh, breakpoint between stratum h and stratum h+1, 
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In most situations, we will only consider simple random sampling within each stratum.       
We always assume nh > 1.  If L is the number of strata, then the population total is given 
by 
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   In many situations, we wish to allocate the sample to strata to minimize variance under 
a fixed sample size or minimize sample size under a fixed variance.  We define the terms  
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The unvariate stratification problem is to minimize the variance V under the fixed cost C.  
Alternatively, we may keep the variance V below a fixed bound while minimizing the 
total sample size or cost C.  If the number of strata L and stratum boundaries given by the 
breakpoints yh are fixed, then Neyman allocation (e.g., Cochran 1977, p. 97) can 
minimize C for fixed V or minimize V for fixed C.  The sample size nh is determined by 
the formula 
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Because the underlying population distribution is discrete rather than continuous, the 
terms nh /n on the left hand of the equation can only be approximately equal to the terms 
on the right hand side.  If the population distribution is quite skewed, then a number of 
sample units can be allocated to a certainty stratum.  The finite population correction 
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(fpc) is given by hhh NnN /)( − .  In the certainty stratum, nh = Nh.  For the variance 
component of V associated with the certainty stratum, the fpc causes the variance 
component to be zero.  How the sample is allocated to the certainty stratum and 
noncertainty strata will cause further complications in the use of the Neyman and other 
allocation formulas. 
   We always use Neyman allocation.  Although proportional allocation (allocating in 
proportion to the number of units Nh in stratum h) has often been used, we do not use it.  
Neyman allocation is known to be theoretically optimal in comparison with proportional 
allocation.  In some empirical work, proportional allocation often yields results that are 
similar to those from Neyman allocation (Kish, 1965, pp. 82-92).  Proportional allocation 
is easier for hand calculation.  Because the stratum variances 2

hS  are easily computed in 
modern computing environments, we prefer Neyman allocation that needs the stratum 
variances 2

hS .  We note that the general problem of stratification necessitates that we 
simultaneously determine stratum boundaries yh and the allocations nh.  A problem that is 
equivalent to the problem to minimizing variance for a given sample size is minimizing 
the coefficient of variation (cv) for the fixed sample size.  For our purposes of bounding 
variances, we also use the coefficient of variation YVcv /= .  The cv is practical 
because it removes dependence on the scale (or range) of the values associated with the 
y-variables. 
 
1.2  Univariate (one-way) Stratification Methods 
     To assure proper understanding of the empirical comparisons, we summarize the 
methods of Dalenius and Hodges and of Ekman (see e.g., Cochran 1977, pp. 127-131).    
We assume that the population of values is sorted (here, decreasing).  To simplify 
notation slightly, we denote population values by zi.  Then the decreasing sorted values 
are Nzzz ≥≥≥ L21 where N is the size of the population.  We divide the population into 
L strata by finding stratum breakpoints yh.  If we let y0 = z1 and yL = zN , then  
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where hhi niy ,,1L=  is an enumeration of the zis that are between yh-1 and yh under the 
restriction that each zi  and yhi  is only counted in one stratum h. 
   Dalenius and Hodges (1959) stratify to make the quantities 
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approximately equal where the number of strata L are decided a priori. 
     Ekman (1959) stratifies to make the quantities 
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approximately equal. 



     To minimize the variance when sample size is fixed, Winkler (1998) tries to assure 
that the quantities 
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are approximately equal.  Equation (3) implicitly accounts for the range of values in the 
hth stratum by using the square root of the population variance given by Sh.  It also 
explicitly makes use of the finite population correction (fpc). 
    As the underlying population distributions are discrete, we choose the stratification 
among a finite number of stratifications for which approximate equality in (3) holds.      
The chief differences between method of Winkler and the methods of Dalenius and 
Hodges and of Ekman are: 
 
(a) Winkler accounts for the finite population correction 
(b) Winkler uses the standard deviation Sh instead of the surrogate (yh – yh-1), and  
(c) Winkler allows a choice among a finite number of stratifications for which 
approximate equality in (3) holds. 
 
In actual practice, statisticians using the methods of Dalenius and Hodges and of Ekman 
also allow choice among stratifications approximately satisfying formulas (1) and (2), 
respectively. 
   Winkler provides a second stratification: 
 

)4(,,1),/()( 2/12/12/1 LhnSnNN hhhhh L=−  
 
for which each term must be approximately equal.  Equality in (3) assures that each of the 
terms in the variance V are equal.  If each nh is equal, then the stratification yielding 
equalities in (3) agrees with the stratification yielding equalities in (4).  We denote the 
first Winkler stratification method by S1 and the second by S2.  We denote the Dalenius-
Hodges method by D-H and the Ekman method by Ek.   
   If we allow the number of strata L to vary, then the minimum cv for a fixed sample size 
n is obtained when each noncertainty stratum has a sample allocation of two units.  In the 
following, we will assume that the sample allocation scheme has one certainty stratum 
and L-1 noncertainty strata. With very skewed population distributions, optimization can 
primarily depend on determining the number of units sampled with certainty.  The 
procedure for finding the minimum cv consists of a straightforward grid search for the L 
strata with corresponding break points obtained using the method of the theorem.  If we 
increase L (i.e., decrease the size of the certainty stratum) and the cv increases, then we 
reverse the direction of our search (i.e., decrease L).  There are necessarily n-2(L-1) units 
in the certainty stratum.  With skewed populations, the L yielding a minimum cv is 
generally obtained when the first noncertainty stratum is sampled at a rate less than 50 
percent. 
 
1.3  Empirical Results 
     The database used in the empirical analyses consists of 1106 records, each having 
three quantitative data elements.  The empirical data are an anonymized version of actual 



economic survey data.  The distribution of each variable is quite skewed.  Nonzero 
quantitative values vary from 61,000 to 1 for the first variable, from 76,000 to 1 for the 
second, and from 241,000 to 1 for the third.  For each variable, a small number of values 
cover a moderate proportion of the population total.  In each case, the number of strata 
and the sample size within strata are fixed.  Strata boundaries are then chosen that 
approximately minimize the variance. 
     The empirical results show that the two methods of Winkler are roughly equivalent 
and slightly better than the method of Ekman.  All three methods are better than the 
method of Dalenius and Hodges (Table 1) because they yield lower cvs.  With three 
exceptions, method S1 of this paper performs best.  The first two exceptions are 
associated with stratification C for variable 1 and stratification A with variable 3.  
Method S2 of this paper performs slightly better (.1518 versus .1541 and .1985 versus 
.2065, respectively).  In the footnote to Table 1, the numbers following the word 
'certainty' indicate the number of noncertainty strata and the sample allocations within 
each.  For instance, ‘2,2,2,2,2’ indicates that there are five noncertainty strata and that the 
sample allocations to each are 2 units. 
 
 
Table 1.  Comparison of cvs 
               Different Stratifying Methods 
 
Method |                  Variable and Stratification 
  |   1A    |   1B   |   1C   |   2A   |   2B   |   2C   |   3A   |   3B  
  
  S1   .0810   .0965  .1541  .0793   .0832   .1468   .2065  .1041 
  S2  .0810   .1007  .1518  .0796   .0833   .1478   .1985  .1052 
 EK       .0815   .1091   .1556  .0801  .0818   .1575    .2081  .1144 
D-H      .1147   .1023   .1720  .1048  .1462   .1620    .2207  .1285 
 
1A- Var 1 Sample: 8 certainty 2,2,2,2,2 noncertainty, total-18. 
1B- Var 1 Sample: 3 certainty, 2,2,4,8 noncertainty, total-19. 
1C- Var 1 Sample: 4 certainty, 2,3,5 noncertainty, total-14. 
2A- Var 2 Sample: 8 certainty, 2,2,2,2,2 noncertainty, total-18. 
2B- Var 2 Sample: 6 certainty, 4,4,8 noncertainty, total-16. 
2C- Var 2 Sample: 3 certainty, 4,4,8 noncertainty, total-19. 
3A- Var 3 Sample: 4 certainty, 4,8 noncertainty, total-16. 
3B- Var 3 Sample: 4 certainty, 3,4,5 noncertainty, total 16. 
 
 
   For general skewed populations, we would use either the stratification methods of 
Winkler or of Ekman.  With the exception of 1B in which D-H does better than EK but 
worse than S1 and S2, D-H does worse than the other three methods.  As each of the 
methods is easy to program, we prefer having printouts that give a side-by-side 
comparison.  The method of Dalenius and Hodges performs poorly primarily because the 
underlying probability density function is not constant in stratification intervals and the 
finite population correction cannot be ignored. 



 
1.4  Remarks on One-way Stratification 
    Cochran (1977, Chapter 5A) observed that, for a fixed and sufficiently large sample 
size, increasing the number of strata from a small number to a somewhat larger number 
will generally cause the overall cv (coefficient of variation) to decrease.  He assumed that 
a minimum of two units would be allocated (sampled) in each of the individual strata.  In 
the single-variable situation, he observed that, if the number of individual strata were 
increased, then there was a point at which further increase in the number of strata yielded 
a negligible decrease in the estimated cv.  Cochran’s (1977, p. 133) heuristic rule for the 
single-variable situation was that increasing the number of strata beyond six would yield 
little benefit. 
    Cochran (1977) also observed that when the distribution of a single variable was quite 
skewed, then it was always advantageous to put the largest units in a certainty stratum.  
Because the largest units are sampled with certainty, the finite population correction (fpc) 
yields a variance term for the certainty stratum that contributes zero to the cv.  Because 
the largest units can contribute significantly to the population total, the decrease in the 
overall cv for a given sample size can be substantial.  In actual skewed populations, there 
can be substantial gaps between the values of the largest units.  For a given fixed sample 
size, Lavallée and Hidiroglou (1988) gave an algorithm for automatically finding the 
number of units to put in the certainty stratum.  Later work by Chen (1989), Slanta and 
Krenzke (1994), and Rivest (2002) indicated that the algorithm does not always work 
well in practice.  The basic reasons are due to numeric instability of the programmed 
versions of the algorithm and convergence to local minima in distributions that were 
often multimodal.  We can also observe that Lavallée and Hidiroglou (1988) made 
distributional assumptions similar to those of Dalenius and Hodges (1959).  It is possible 
that a straightforward grid search based on the Ekman ideas (equation (2)) or the Winkler 
ideas (equation (3)) may yield more suitable results. 
    Another issue that typically occurs is that several variables in a survey must be 
estimated.  If that is the case, then a method of Jarque (1981) for creating a new variable 
that is a linear combination of the existing variables and applying one of the one-way 
stratification methods may be effective.  If we only consider two variables that each have 
skewed distributions and are uncorrelated, then a linear combination of the two variables 
may not be highly correlated with either variable.  In those situations, it may be useful to 
consider alternative methods.  We note that stratifying on one skewed variable may do 
little to reduce the cv of a second variable that is uncorrelated with the first.  Cochran 
(1977, p. 132) provides a concise mathematical justification. 
 
1.5.  Additional concepts 
   This subsection considers three ideas (1) post-stratification, (2) cluster sampling, and 
(3) two stage sampling with psus (primary sampling units) versus stratification.  First, 
post-stratification is a method for stratifying a sample (possibly simple random) after the 
sample has been selected.  For instance, for some variables such as age, the stratum to 
which a unit belongs may not be known.  As the age is obtained, units are post-stratified 
into strata where the strata sizes Nh may be obtained from another survey such as a 
census.  If the sample size in stratum h is given by nh > 0, then, we can get a population 
estimate for the mean 
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where hhh nYy /ˆ=  is the arithmetic mean of the sample units in stratum h.  If we ignore 
the fpc, then we get that the variance is 
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where )(2

hh yS  is the variance of  hy .  If each of the nh is large, then Cochran (1977, p. 
134) indicates that the increase in the variance due to post-stratification can be small in 
contrast to a (pre-)stratification where the strata are known prior to sampling and 
proportional allocation is the standard for comparison.  For further reading on post-
stratification, see Holt and Smith (1979) or Little (1993). 
   Second, cluster sampling divides a population of N units into M subpopulations 
consisting of groups of units that are then sampled.  In the situation of housing surveys or 
surveys of areas, cluster sampling is a means of sampling that is intended to reduce costs 
where traveling may be expensive.  If we wish to select a sample of 1000 households in a 
city, then rather than draw a random sample, we may cluster the city by blocks having 
approximately 50 units per block.  Then, our sample would consist of 20 blocks.  The 
idea is to reduce travel costs significantly.  Rather than make clusters as homogeneous as 
possible as in one-way stratification, it is often helpful to have clusters be as 
heterogeneous as possible (Jessen 1978, p. 192).  If the intraclass correlation coefficient ρ 
is negative, then it is possible that the overall variance can be reduced when compared to 
simple random sampling.  Cochran (1977), Hansen et al. (1953), and Jessen (1978) are 
good references on clustering and the intraclass correlation coefficient ρ.   
   Third, two-stage sampling divides a population of N units into M subpopulations 
consisting of groups of units that that are sampled in the first stage.  We refer to the M 
subpopulation groups as primary sampling units (psus).  In the second stage, we sample 
units within each of the psus.   If we wish to sample 200 households in a city, then we 
might first cluster the households in the city by blocks consisting of approximately 50 
units each.  At the first stage, we could sample 20 blocks (psus) and then subsample 10 
units (households) per block.  This type of sampling is suitable if the characteristics of the 
units within blocks that we wish to estimate are reasonably homogeneous.  Sampling 
within psus can be done using a variety of methods (e.g., Cochran 1977, Chapters 10 and 
11). 
 
2.  Multivariate Stratification and Sampling 
   The method of this section involves multi-way stratification where single-way designs 
are combined into a multi-way design.  Overall sample size is kept relatively small by not 
allocating the sample to every multi-way cell.  The sample allocation has similarity to 
Latin Square designs as was observed by Tepping et al. (1943). 
   In most survey settings, we wish to control the cvs of several variables.  With single 
variables, the single-way methods of stratification work well.  If we stratify on p ≥ 2 



variables, then we can stratify the population with the p-way stratification induced by the 
p single-way designs.  If this type of design is naively used, then sample must be 
allocated to every p-way cell and sample size can become very large (e.g., Cochran 1977, 
pp. 124-126).  One alternative is to define a new variable that is a linear combination of 
the p variables and apply a single-way design to all of the p-way cells.  This alternative 
strategy will only partially control the cvs of the p-variables. 
    Another alternative p-way stratification strategy is to develop a Latin-Squares type of 
sampling strategy that does not require the sample to be allocated to every p-way cell.  
The earliest such strategy for two-way designs was introduced by Tepping et al. (1943) 
for use in population sampling in which the underlying distributions were not too skewed.  
Bryant et al. (1960) extended the two-way designs to populations that were slightly more 
skewed.  Since the two-way method of Bryant et al. (1960, hereafter BHJ) gives crucial 
insights and is a special case of more general methods, we cover it detail.  BHJ 
considered the 2-dimensional situation when two single-variable stratifications F = (ni ⋅), 
1 ≤ i ≤ nf, and G = (n⋅ j), 1 ≤ j ≤ ng, have been created.  The (ni ⋅), 1 ≤ i ≤ nf, and (n⋅ j), 1 ≤ j 
≤ ng, are the counts associated with the one-way samples. We assume that the two one-
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stratification with population cells having proportions of the total population size Pij, 1 ≤ i 
≤ nf, 1 ≤ j ≤ ng.  We wish to devise a sampling strategy that assigns two-way sample size 
(nij), 1 ≤ i ≤ nf, 1 ≤ j ≤ ng, so that its marginal counts (ni ⋅), 1 ≤ i ≤ nf , and (n⋅ j), 1 ≤ j ≤ ng, 
agree with the original two one-way sample sizes.  The two-way stratification has nf⋅ ⋅ ng 
two-way cells.  If we were to use naïve sampling, then we might assign a minimum 
sample size of 2 in each two-way cell for a total sample size of at least 2 nf ⋅ ng.  We wish 
to develop a method of allocating a sample such as in Latin-squares in which we do not 
need to sample in each two-way cell.  The overall sample sizes are controlled by the 
marginal values F and G.  
   BHJ developed a method in which the (nij), 1 ≤ i ≤ nf, 1 ≤ j ≤ ng, are randomly allocated 
in an allocation step for which  
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where the first-stage expectation E1 is taken with respect to the randomization that is 
associated with ijn̂  , ∑=⋅ j iji PP , and ∑=⋅ i ijj PP .  Here Pi⋅ is the proportion of the 

population associated with the sample stratification of the first variable and P⋅ j is the 
proportion of the population associated with the sample stratification of the second 
variable.  For each realization of )(ˆ snij , we obtain a fixed integer array nij (s).  Here s 
refers to a particular sample.  After the fixed integer nij(s) array is determined, we can use 
simple random sampling within two-way cells.  The second stage of sampling is denoted 
with expectation E2.  BHJ gave formulas for estimates of the population means and 
divided the variance (using E1 and E2 with some algebra) into two components.  BHJ 
observed that their estimates could be biased due to the fact that their expected sample 
proportions for which E1( ijn̂ ) = Pi⋅ P⋅ j n could deviate significantly from observed 



population proportions associated with the sample that are given by Pij n.  Although BHJ 
gave some adjustment procedures for the biases, we need to consider allocation 
procedures that are somewhat similar to the BHJ procedure related to equation (5) but 
better correspond to observed population proportions Pij.  The allocation procedures and 
associated probability models for creating ijn̂  must also generalize to dimensions higher 
than 2. 
   The natural way to extend BHJ is to use standard iterative proportional fitting (IPF) 
procedures (Bishop et al. 1975) to allocate two single-way designs to two-way population 
cells and that can generalize to higher dimensions.  Winkler (1990, also 2001) showed 
that standard IPF procedures that allocated two single-way designs to two-way 
population cells could yield two-way sample sizes that exceed observed population sizes 
in certain cells.  We also use Dykstra’s Generalized Iterative Fitting Procedure (GIFP, 
Dykstra 1985) that holds for any dimension and allows convex constraints in addition to 
the linear constraints of classical IPF.  With both IPF and GIFP, the starting point of the 
fitting procedure can be an array of population counts given in Table 2.  We observe that 
the structural zero in population cell (3,1) of Table 2 is preserved in the fitted solutions 
given in Tables 3 and 4.  The classical IPF yields the fitted solution given in Table 3 and 
Dykstra’s GIFP yields the fitted solution given in Table 4.  The classic IPF provides a 
fitted value in cell (1,1) of Table 3 that exceeds the population value of 2 that is in Table 
2.  The GIFP that also allows convex constraints gives a solution for which none of the 
fitted sample values exceed the corresponding population values.  The convex constraint 
in this example is that the value in cell (1,1) restricted to be less than or equal 2.  If there 
are structural zeros, then, by Lemma 1 of Winkler (1990), the GIFP procedure is 
guaranteed to converge to the correct unique limiting solution provided that the marginal 
constraints, the interactions that are fit, and the structural zeros are consistent (i.e., have 
at least one solution).  In two dimensions, there are no interactions terms.  The advantage 
of interaction terms in higher dimensions is that the fitted array may correspond much 
more closely to the population proportions Pij.  The output of the GIFP is the non-integer 
fitted array Mij = (nij). 
   The second component of the p-way stratification procedure is an allocation step in 
which we define a random variable ijn̂  such that E1( ijn̂ ) = (nij) = Mij where the right- 
hand-side is the output of the GIFP.  In higher dimension (3 or greater), we use i to 
denote a general index. With equation (5), BHJ essentially found a convex sum  
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Here Mij is the non-integer array (nij) by GIFP fitting.  Each Mijt is an integer array having 
margins that agree with the original one-way stratifications and samples.  In the situation 
of BHJ, the fact that each pt = (1/n!) is due to their method of determining ijn̂  in the 
sample design.  For 2-dimensions, Causey, Cox, Ernst (1985, hereafter CCE) gave an 
algorithm for finding a set of integer arrays Mijt that was extended to higher dimensions 
by Winkler (2001).  The inductive algorithm iterates through steps where at each step t an 
integer array Mijt is found.  The algorithms of CCE and Winkler are similar.  The bound 
on the 
number of terms in the equation (6) is the number of p-way cells.  At each stage of the  



Table 2.  Population Counts N Induced by Two 
          Single-Criteria Stratifications  1/ 
 
Var 1            Variable 2 Strata  
Strata       1    2    3    4     5  Total 
        
   1         2    7    4    1    11 |  25 
   2         3    5    7   17    31 |  63 
   3         0   10   16   47    85 | 158 
   4         2    3   10   78   257 | 350 
   5         3    5   29   67   551 | 655 
            ----------------------------- 
            10   30   66  210   935 |1251 
 
1/  The quantitative measures of size associated with 
the variables, by strata, are: 
Variable 1- 1 : 20589-8116, 2 : 8115-3501, 3 : 3500-1501, 
            4 : 1500-501, and 5 : 500-0; and 
Variable 2- 1 : 16423-5195, 2 : 5194-2260, 3 : 2259-648, 
            4 : 647-152, and 5 : 150-0. 
 
 
 
Table 3.  Fitted Sample Matrix A Obtained by Classical IPF     
          Marginal Totals are Fixed 
 
Variable 1            Variable 2 Strata                 
Strata         1       2       3       4       5    Total 
 
    1        2.172   2.393   0.997   0.097   0.341 |  6. 
    2        2.098   1.101   1.124   1.059   0.618 |  6. 
    3        0.0     1.641   1.914   2.182   1.263 |  7. 
    4        0.820   0.387   0.941   2.848   3.004 |  8. 
    5        0.910   0.478   2.024   1.814   4.774 | 10. 
             ------------------------------------------- 
             6.      6.      7.      8.     10.    | 37. 
 
 
 
Table 4.  Fitted Sample Matrix B Obtained by Dykstra's GIFP 
          Marginal Totals are Fixed 
 
Variable 1            Variable 2 Strata                 
Strata         1       2       3       4       5    Total 
       
    1        2.000   2.483   1.052   0.103   0.362 |  6. 
    2        2.182   1.061   1.101   1.046   0.610 |  6. 
    3        0.0     1.614   1.914   2.200   1.272 |  7. 
    4        0.860   0.377   0.930   2.840   2.993 |  8. 
    5        0.958   0.465   2.003   1.811   4.763 | 10. 
             ------------------------------------------- 
             6.      6.      7.      8.     10.    | 37. 
 
 
 
 



algorithm, we need to be able to obtain the integer array Mijt with the properties that it 
preserves the one-way sample sizes and the row and column entries add to the 
corresponding integer margins.  In 2-dimensions, Cox and Ernst (1982) demonstrated that 
zero-controlled roundings (to base 1) always exist.  If we round a number x to integer 
base b, then we either round to the largest multiple of b that is less than x or to the 
smallest multiple of b that is larger than x.  A zero-controlled rounding of x to base b 
keeps x at any multiple of b.  If the base is 1, then controlled integer rounding to base 1 
assures that the marginal values (the one-way sample sizes) are preserved. 
    Ernst (1989) provided a counter example showing that neither roundings nor zero 
controlled roundings to base 1 generally exist in dimensions higher than 2.  If the desired 
rounding base is b, then he further provided a proof that showed that in 3-dimensions, 
controlled roundings to base 2b always exist.  His proof can be extended to show that 
controlled roundings to base 2p-1b always exist in p dimensions.  Further, it is 
straightforward to show in Ernst’s 3-dimensional situation and in general p-way 
situations that the margins are preserved to base b.  This result means that if the rounding 
is to base 1, then the original one-way sample sizes (i.e., margins) can be preserved in 
any p-way stratification.  Ernst’s result seems to suggest that the p-way stratification 
problem may be unsolvable because in 3-dimensions, the best that his lemma can yield is 
that 0.5 (in interior cells) can be rounded to –1, 0, 1, or 2.  Clearly, we cannot have a 
negative sample size.  If a rounding to 2 exceeds the margin, then the sample allocation 
may exceed the available population size in a cell. 
    In practice, we do not need the existence of a controlled rounding to base b for every 
cell.  Winkler’s implementation of the algorithm for p-way tables uses the SAS LP 
procedure with capacities that allow specified lower and upper bounds on the rounding in 
individual p-way cells.  In a three-way stratification situation with 3 variables from 
skewed and pair-wise uncorrelated populations distributions, he observed that if a few 
three-way cells having nij > 3 were allowed to vary by 2 and the remaining cells to vary 
by one, then the controlled roundings typically existed.  Integer values remained as 
integers.  Most cells were rounded to base 1.  The overall algorithm converged by 
successively completing 20 or more roundings (matrices Mijt).  Further, Winkler observed 
that, if the individual one-way strata boundaries were varied somewhat and the one-way 
sample sizes changed slightly, then the algorithm completed even when the controlled 
roundings were to base 1 in 3-dimensions.  Although Ernst’s work and later work by 
others suggest that there are many situations when controlled roundings cannot be found, 
the empirical work suggests that there are many situations for which controlled roundings 
can be successively found.   
   The final facet of the p-way stratification is a method of estimating means and 
variances analogous to the methods of BHJ.  The theorem of J. N. K. Rao (1975) 
provides a general setting in which variances can be estimated by first taking expectation 
E1 with respect to the allocation mechanism and then taking expectation E2 with respect 
to the selection mechanism given the specific allocation.  For arbitrary dimensions, we 
use an index i ∈ I for the cells in the array and obtain a representation analogous to 
equation (5).   
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At the first stage of the sampling, we choose an array Mis with probability proportion to 
size ps.  This gives the allocation variable )(ˆ sni  associated with the first stage of the 
sampling.  At the second stage, we choose random samples of size nis in cell i ∈ I.  In 
practice, it is possible for the allocation in a cell ni to be 1.  In those situations, we can 
still approximate within-cell variances by collapsing the cell with all other cells across 
the same dimension.  For instance, in two dimensions, we collapse within the same row 
or column.  We still bound respective single-variable variances because they are 
controlled by the one-way stratifications.   BHJ had an analogous strategy for 
approximating the within-cell variances.  We let Yi be the population total in cell i, yij be 
the quantitative value associated with the jth unit in the ith cell, and 1ij be an indicator the 
jth unit in cell i is sampled.  We also let Ni be the population size in cell i and 2

iσ̂  be an 
unbiased estimator of the population variance 2

iσ in cell i.   Our estimator of the 
population total in cell i is given by 
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   Applying the main theorem of Rao (1975), we obtain the unbiased estimator of the 
variance 
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The summations in (10) are over in̂  > 0.  The cells for which 0ˆ =in  have no sample 
allocated.   
   The algorithm giving representation (7) is applied to the fitted 5×5 matrix of Table 4 to 
yield Table 5.  The first matrix M0 is the fitted matrix derived using Dykstra's GIFP.  The 
next fifteen matrices Mk, k = 1, ···, 15, are the nonnegative integer matrices obtained by 
the iterative integer LP procedure.  The final matrix M16 is the convex sum (with the 
entries in the column headed by pk used as the coefficients) of the integer matrices Mk, k 
= 1, ···, 15.  Because of space limitations, we do not present a three-way example of the 
iterated allocation procedure.   
   A key feature observed by Tepping et al. (1943) is that the allocation procedure could 
yield substantial reductions in the across-cell component of the variance in the types of 
distributions (not highly skewed) that they used.  BHJ observed that their allocation 
procedure could also yield (possibly modest) reductions in the across-cell component of  



Table 5.  Example of Iterative Integer LP Procedure 
 
                              Cell of Matrix Mk 
             ------------------------------------------------------  
 k     pk   (1,1)  (1,2)  (1,3)  (1,4)  (1,5)  (2,1)  (2,2)  (2,3) 
 -----------------------------------------------------------------  
  0  0.000  2.000  2.483  1.052  0.103  0.362  2.182  1.061  1.101  
  1  0.140  2.000  3.000  1.000  0.000  0.000  3.000  1.000  1.000 
  2  0.042  2.000  3.000  1.000  0.000  0.000  3.000  1.000  1.000   
  3  0.007  2.000  2.000  1.000  0.000  1.000  2.000  2.000  1.000   
  4  0.054  2.000  3.000  1.000  0.000  0.000  2.000  2.000  1.000   
  5  0.029  2.000  3.000  1.000  0.000  0.000  2.000  1.000  2.000   
  6  0.114  2.000  3.000  1.000  0.000  0.000  2.000  1.000  1.000   
  7  0.104  2.000  3.000  1.000  0.000  0.000  2.000  1.000  1.000   
  8  0.017  2.000  2.000  2.000  0.000  0.000  2.000  1.000  1.000   
  9  0.035  2.000  2.000  2.000  0.000  0.000  2.000  1.000  1.000   
 10  0.003  2.000  2.000  1.000  0.000  1.000  2.000  1.000  1.000   
 11  0.032  2.000  2.000  1.000  0.000  1.000  2.000  1.000  2.000   
 12  0.043  2.000  2.000  1.000  0.000  1.000  2.000  1.000  1.000   
 13  0.237  2.000  2.000  1.000  0.000  1.000  2.000  1.000  1.000   
 14  0.040  2.000  2.000  1.000  0.000  1.000  2.000  1.000  2.000   
 15  0.103  2.000  2.000  1.000  1.000  0.000  2.000  1.000  1.000   
 16  1.000  2.000  2.483  1.052  0.103  0.362  2.182  1.061  1.101 
 
 
                             Cell of Matrix Mk 
     -------------------------------------------------------------  
 k   (2,4)  (2,5)  (3,1)  (3,2)  (3,3)  (3,4)  (3,5)  (4,1)  (4,2)  
------------------------------------------------------------------  
  0  1.046  0.610  0.000  1.614  1.914  2.200  1.272  0.860  0.377   
  1  1.000  0.000  0.000  1.000  2.000  2.000  2.000  0.000  1.000   
  2  1.000  0.000  0.000  1.000  2.000  2.000  2.000  1.000  0.000   
  3  1.000  0.000  0.000  1.000  2.000  2.000  2.000  1.000  1.000   
  4  1.000  0.000  0.000  1.000  2.000  2.000  2.000  1.000  0.000   
  5  1.000  0.000  0.000  1.000  1.000  3.000  2.000  1.000  1.000   
  6  1.000  1.000  0.000  1.000  2.000  3.000  1.000  1.000  1.000   
  7  1.000  1.000  0.000  2.000  2.000  2.000  1.000  1.000  0.000   
  8  1.000  1.000  0.000  2.000  1.000  3.000  1.000  1.000  1.000   
  9  1.000  1.000  0.000  2.000  2.000  2.000  1.000  1.000  1.000   
 10  2.000  0.000  0.000  2.000  2.000  2.000  1.000  1.000  1.000  
 11  1.000  0.000  0.000  2.000  2.000  2.000  1.000  1.000  1.000   
 12  2.000  0.000  0.000  2.000  2.000  2.000  1.000  1.000  0.000   
 13  1.000  1.000  0.000  2.000  2.000  2.000  1.000  1.000  0.000   
 14  1.000  0.000  0.000  2.000  1.000  3.000  1.000  1.000  0.000   
 15  1.000  1.000  0.000  2.000  2.000  2.000  1.000  1.000  0.000   
 16  1.046  0.610  0.000  1.614  1.914  2.200  1.272  0.860  0.377 



Table 5.  Example of Iterative Integer LP Procedure 
(continued) 
 
                          Cell of Matrix Mk 
     ------------------------------------------------------  
 k   (4,3)  (4,4)  (4,5)  (5,1)  (5,2)  (5,3)  (5,4)  (5,5)   
-----------------------------------------------------------  
  0  0.930  2.840  2.993  0.958  0.465  2.003  1.811  4.763   
  1  1.000  3.000  3.000  1.000  0.000  2.000  2.000  5.000   
  2  1.000  3.000  3.000  0.000  1.000  2.000  2.000  5.000   
  3  1.000  3.000  2.000  1.000  0.000  2.000  2.000  5.000   
  4  1.000  3.000  3.000  1.000  0.000  2.000  2.000  5.000   
  5  1.000  2.000  3.000  1.000  0.000  2.000  2.000  5.000   
  6  1.000  2.000  3.000  1.000  0.000  2.000  2.000  5.000   
  7  1.000  3.000  3.000  1.000  0.000  2.000  2.000  5.000   
  8  1.000  2.000  3.000  1.000  0.000  2.000  2.000  5.000   
  9  0.000  3.000  3.000  1.000  0.000  2.000  2.000  5.000   
 10  0.000  3.000  3.000  1.000  0.000  3.000  1.000  5.000   
 11  0.000  3.000  3.000  1.000  0.000  2.000  2.000  5.000   
 12  1.000  3.000  3.000  1.000  1.000  2.000  1.000  5.000   
 13  1.000  3.000  3.000  1.000  1.000  2.000  2.000  4.000   
 14  1.000  3.000  3.000  1.000  1.000  2.000  1.000  5.000   
 15  1.000  3.000  3.000  1.000  1.000  2.000  1.000  5.000   
 16  0.930  2.840  2.993  0.958  0.465  2.003  1.811  4.763 
 
 
variance provided that the fitted array (ni ) had proportions that corresponded to the 
population proportions Pi.  Because the procedure of Winkler (1990) can yield (ni) that 
correspond quite closely to the population proportions Pi, it also has the potential to 
reduce the across-cell variances.   
   We are concerned about how the p-way stratification may improve the one-way 
stratifications in terms of reduced cvs for a given fixed sample size.  We use the database 
of Tables 2-4.  Each record contains synthetic data corresponding to volumetric data 
representing the sales of distillate fuel oil in residential and nonresidential end-use 
sectors.  We use Winkler method S1 for the one-way stratification.  The one-way designs 
are highly non-proportional.  The magnitudes of the nonzero values range from 72,000 to 
1 for the first variable and from 85,000 to 1 for the second.  The second variable only 
takes nonzero values for 60 percent of the records. 
   To reduce cvs, each one-way design allocates the same 13 records with certainty.  The 
remaining 1251 records are stratified into two different sets of five strata having a total 
sample allocation of 37.  Each design has strata sample allocations of 6, 6, 7, 8, and 10.  
The cvs are 0.044 and 0.028, respectively.   The first 13 records are also allocated with 
certainty under the two-way design.  Single-criteria strata boundaries apportion the 
remaining 1251 records into a 5×5 array. 
   The results of the two single-criteria stratifications and the corresponding two-way 
design are compared with two optimal single-criteria designs (Table 6).  Given the 
sample size of 50, the optimal designs yield minimal cvs for exactly one variable.  To do 
this, the  
 
 



 
Table 6.  CVs for Single-Criteria Designs and two-way Design  1/ 
 
                                        CVs      |  Total 
                                  ---------------|Variation 
                                   Var 1 | Var 2 |    2/ 
         ================================================== 
         Optimal Single-Criteria       
           Stratifying Var 1       .012    .334     .334 
           Stratifying Var 2       .407    .009     .407 
                                          
         Single-Criteria Designs  
          for Multi-Way Design 
           Stratifying Var 1       .044    .289     .292 
           Stratifying Var 2       .282    .028     .283 
 
         Multi-Way Design          .104    .041     .112 
         -------------------------------------------------- 
      1/ Each of the second set of single-criteria designs and   
         the two-way design allocate the same 13 population members  
         with certainty and 37 randomly to the strata containing 
         the remaining 1251 population members. 
      2/ Square root of the sum of squares of two cv columns. 
 
 
optimal designs allocate fewer than 13 records with certainty.  Sufficiently many 
noncertainty strata are created so that only two sample elements are allocated in each. 
   The first set of four cvs is for optimal univariate designs in which the stratifying 
variable agrees with one of the variables being estimated.  Diagonal elements are low  
(0.012 and 0.009).   Off-diagonal elements (0.334 and 0.407) are dramatically higher 
because the stratifying variables are not highly correlated with the variables for which the 
cvs are computed.  Regression using the two variables yields an R-square value less than 
0.2.  If, however, we apply standard contingency table techniques (Bishop, Fienberg, and  
Holland 1975) to the underlying population matrix N (Table 2), we reject independence 
at the 95 percent level of confidence. 
   The second set of numbers is for one-way designs used in creating the two-way 
stratification.  Diagonal elements (0.044 and 0.028) are higher than the diagonal elements 
in the first matrix.  Off-diagonal entries, 0.289 and 0.282, are lower.  The final set 
consists of the cvs 0.104 and 0.041 for the two-way design.  They are also higher than the 
diagonal entries in the first matrix and approximately 1.5 times as high the diagonal 
entries in the second matrix.  They are substantially lower than the highest of the off-
diagonal entries for the respective variables (0.334 and 0.407).  Using the stratification 
given by the first row of the first matrix, we have total variation 0.334 while the p-way 
design yields total variation 0.112.  Ignoring the finite population correction (fpc), sample 
size must increase by a factor greater than 6 to equal the total variation and cvs of the p-
way case. 
   We provide an example of estimation from a three-way design.  This example involves 
a three-way design using three single-criteria stratifications.  The database and 
procedures are similar to those in the previous example (Table 6) except that a third 
variable is included.   



The third variable is both uncorrelated with the first two variables and even more highly 
skewed.  The one-way designs had the same 15 units allocated with certainty and a 
 
Table 7.  CVs for Single-Criteria Designs and three-way Design  1/ 
 
                                         CVs         |  Total  
                              -----------------------|Variation 
                               Var 1 | Var 2 | Var 3 |    2/ 
     ==========================================================  
     Optimal Single-Criteria 
       Stratifying Var 1       .001    .490    .372      .615  
       Stratifying Var 2       .306    .001    .351      .466 
       Stratifying Var 3       .604    .884    .001     1.071 
     
     Single-Criteria Designs  
      for Multi-Way Design 
       Stratifying Var 1       .047    .291    .221      .368    
       Stratifying Var 2       .178    .043    .194      .267  
       Stratifying Var 3       .207    .272    .065      .349  
 
     Multi-Way Design          .071    .055    .071      .115  
     ---------------------------------------------------------- 
     1/ Each of the second set of single-criteria designs and the  
        three-way design allocate the same 15 population members  
        with certainty and 50 randomly to the strata containing 
        the remaining population members. 
     2/ Square root of the sum of squares of three cv columns.  
 
 
remaining 50 units allocated in 4, 4, and 2 strata that were determined by three different 
measures of size, respectively.  Thus, the three-way design array is 4×4×2.  In this 
situation, the allocation procedure used in obtaining equation (7) works with base 1.  As 
we noted earlier, the procedure with a variety of marginal constraints corresponding to 
three one-way designs always converged provided we allowed a few of the population 
cells associated with larger sample sizes to vary by base 2.   
   Total variation ranged from 0.466 (the best in the case of standard single-criteria 
stratification techniques) to 0.115 (multi-way) (Table 7).  Ignoring the fpc, we would 
have to increase the sample size by a factor greater than 16 to equal the total variation 
and cvs given for the multi-way design.  Based on 200 independent samples, the 
empirical biases of the multi-way estimators of the three variables were -0.004, 0.000, 
and -0.004, respectively.  The empirical cvs were 0.070, 0.056, and 0.73, and the biases 
of the estimates of the cvs were 0.001, 0.001, and  -0.002, respectively. 
   For the three-way design example, the within-cell variance component (last summation 
in equation (10) contributes an average of 67, 83, and 86 percent to the total variance for 
variables 1, 2, and 3, respectively (Table 8).  The average is based on fifteen samples.  
The extremes are 41 and 100 percent, 27 and 100 percent, and 45 and 100 percent for 
variables 1, 2, and 3, respectively.  We include Table 8 because it gives results that are 
consistent with Tepping et al. (1943) and Bryant et al. (1959).  The p-way stratification 
method is effective in significantly reducing the across-cell variance component due to 
cancellations.  This is true even though the three individual variables are skewed.  



Because the p-way stratification does a good job of bounding the cvs of several variables, 
it will also work well for any variable that can be expressed as an approximate linear 
 
 
 
Table 8.  Components of Variance for three-way Design Example 
                           Fifteen Samples 
 
      |     Estimated      |        CV        |     Within-Cell 
      |      Total  1/     |                  | Variance Proportion      
      |       Variable     |     Variable     |       Variable  
      |   1  |   2  |   3  |   1  |  2  |  3  |    1  |   2  |  3 
------------------------------------------------------------------- 
       1,423  1,195  1,684   .101  .056  .083    .48    .99    .75 
       1,384  1,297  1,576   .059  .056  .042   1.00    .92    .89 
       1,337  1,269  1,450   .083  .050  .021    .54    .78    .80 
       1,278  1,246  1,469   .060  .045  .035    .82    .81    .97 
       1,387  1,246  1,696   .048  .059  .090    .60    .96   1.00 
       1,345  1,119  1,630   .056  .074  .038    .92    .83    .95 
       1,211  1,194  1,554   .061  .045  .046    .91    .84    .92 
       1,460  1,226  1,636   .104  .049  .061    .50    .79    .98 
       1,355  1,191  1,540   .057  .039  .052    .42   1.00    .72 
       1,428  1,250  1,843   .100  .069  .098    .41    .98    .99 
       1,345  1,259  1,845   .071  .087  .083    .51    .71    .99 
       1,271  1,229  1,808   .063  .075  .089    .76    .62    .86 
       1,424  1,336  1,550   .047  .067  .043    .95    .27    .82 
       1,436  1,115  1,637   .085  .029  .054    .49    .98    .45 
       1,497  1,285  1,833   .051  .066  .095    .81    .97    .88 
------------------------------------------------------------------- 
AVER   1,372  1,230  1,650   .073  .060  .070    .67    .83    .86 
------------------------------------------------------------------- 
 
  1/  True values are 1354, 1254, and 1654. 
 
 
combination of the variables whose cvs are bounded. 
   We now discuss the relationship of the p-way stratification method of this chapter to 
the p-way stratification method of Sitter and Skinner (1994, hereafter SS) that generalizes 
the p-way method of Rao and Nigam (1992, 1990).  We will indicate a reason why their 
method improved over that of BHJ for the type of simulated data that they considered.  
We will also demonstrate why the methods of this paper are more general and 
computationally more tractable in large situations. 
   SS explicitly wanted to restrict their two-way designs to the form: 
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Here Pij = Nij/N, n is the sample size, and Sn are designs having sample size n.   
 



The symbol )(snij represents the integer allocations associated with each sample 
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   Representation (11) corresponds to the representation (7) of this chapter.  A key 
difference and difficulty is that SS needed to know all of the integer arrays nij(s) prior to 
running their LP algorithms.  The integer arrays nij(s) are part of the restraints of the LP 
problem.  As SS indicated, when there are more constraints, equation (11) is difficult to 
solve using the LP method of their paper but should be easier to solve using a method 
similar to the method of CCE.  The method of this paper solves the equivalent situation 
for higher dimensional situations and for populations of variables that are reasonably 
highly skewed.  It should be far faster than the LP method of SS.  The method of CCE 
was not extended beyond two dimensions.  It is not clear how individuals could find all 
integer arrays nij(s) corresponding to a design ni in three or more dimensions.  If we do 
not have all of the integer arrays nij(s) prior to solving (11) using the LP method of SS, 
then we cannot generally solve (11).  Thus, the challenges go beyond the straightforward 
computational difficulties pointed out by SS.  
   SS explicitly minimized a loss function of the form: 
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As SS indicated, there are designs for which the minimal solution of (12) is zero.  The 
designs of this paper (even in higher dimension) yield minimal solution of zero for 
equation (12).  SS (section 2.3 of their paper) indicated how their LP method could be 
extended to higher dimensions using a squared-error loss function for which different 
variables could be weighted by various factors.  Their method does not generally yield a 
minimal solution of zero for the general equations with three or more summations that 
correspond to equation (12).  SS indicated that their method is better at controlling the 
covariances Cov(nij, ni’j’) which directly affect the between-cell variances.  Another 
explanation, as shown in this paper, is that their method was better at controlling the 
allocated proportions nij to be closer to nPij than the method of BHJ. 
 
3.  Concluding Remarks 
   This chapter provides an overview of one-way and p-way stratification methods under 
Neyman (optimal) allocations of samples.  The emphasis is on reducing the cvs of one or 
more variables under fixed sample size constraints.  Other related methods are also 
described. 
 
Disclaimer: This report is released to inform interested parties of research and to encourage discussion. The 
views expressed are those of the authors and not necessarily those of the U. S. Census Bureau.  The author 
wishes to thank the editor, Dr. Lynn Weidman, and Dr. Tommy Wright for a number of detailed comments 
that led to improvements in the exposition. 
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