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Abstract

Variance estimation for estimators of state and county income and
poverty characteristics derived from the Census 2000 long form are
discussed. The variance estimator must account for (1) uncertainty
due to imputation, and (2) raking to census population controls. An
imputation procedure that imputes more than one value for each miss-
ing item using donors that are neighbors is described and the proce-
dure using two nearest neighbors is considered in detail. The Kim
and Fuller (2004) method for variance estimation under fractional hot
deck imputation is adapted to this problem. Numerical results from
the 2000 long form data are presented.
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1 Introduction

Imputation is often used to handle item nonresponse in which some items,

but not all, are observed for particular survey respondents. Imputation error

can be an important part of survey estimation error and should, ideally, be

reflected in the estimated variances of survey estimates. Treating the imputed

values as if they are observed and applying a standard variance formula often

leads to underestimation of the true variance. Variance estimation methods

accounting for the effect of imputation have been studied by Rubin (1987),

Rao and Shao (1992), Shao and Steel (1998), and Kim and Fuller (2004),

among others.

In this paper, we propose a new approach to produce variance estimates

accounting for the effect of nearest neighbor imputation (NNI). NNI is a type

of hot deck imputation that selects the respondent closest, in some metric,

to the nonrespondent, and inserts the respondent value for the missing item.

The respondent providing the value is called the donor and the nonrespondent

is called the recipient. Sande (1983) reviewed the NNI approach. Rancourt,

Särndal, and Lee (1994) studied NNI under a linear regression model, and

Fay (1999) considered variance estimation in a simple situation. Chen and

Shao (2000) gave conditions under which the bias is small relative to the

standard error and proposed a model-based variance estimator. Chen and

Shao (2001) described a jackknife variance estimator.

Our approach to estimating variances accounting for NNI uses the frac-

tional imputation approach. Fractional imputation is a procedure in which

multiple donors, say M , are chosen for each recipient. The value for each

donor is given a weight equal to a fraction of the original weight, where the
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fraction is typically M−1. Fractional imputation was suggested by Kalton and

Kish (1984) and studied by Kim and Fuller (2004). We combine fractional

imputation with the nearest neighbor criterion of selecting donors, modify-

ing the variance estimation method described in Kim and Fuller (2004) to

estimate the variance due to nearest neighbor imputation.

The proposed variance estimation method is applied to state and county

income and poverty estimates from the Census 2000 long form sample. The

particular estimates considered have been used in various ways by the Census

Bureau’s Small Area Income and Poverty Estimates (SAIPE) program. The

imputation rates for income items in the Census 2000 long form data were

somewhat high, mostly being at least double the corresponding imputation

rates from the 1990 census (Schneider 2004, pp. 17-18 and Table 1, p. 27).

For example, the Census 2000 imputation rate for wage and salary income

was 20% while in 1990 it was 10%, and for interest and dividend income the

imputation rates were 20.8% in 2000 and 8.1% in 1990. Overall, 29.7% of long

form records in 2000 had at least some income imputed, compared to 13.4%

in 1990. Given the 2000 imputation rates, it is of interest to examine variance

estimates for income and poverty statistics that reflect the uncertainty related

to the imputation of income items.

The application poses some challenges for dealing with imputations in

variance estimation. The Census 2000 long form had eight questions collect-

ing different types of income on each individual in a household. (For details,

see Table 1 in Section 5.) While total household income is a simple aggrega-

tion over the income items and across persons in a household, and average

household income (for states and counties) is a simple linear function of these
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quantities, here we consider (i) median household income, and (ii) numbers

of persons in poverty for various age groups. Poverty status is determined

by comparing total family income against the appropriate poverty threshold,

with all persons in a family either in poverty or not according to the poverty

status of the family. For such complicated functions of the data as these two,

the potential effects of imputation on variances is, a priori, quite unclear.

The paper is organized as follows. In Section 2, the model for the NNI

method and the properties of the NNI estimator are discussed. In Section 3,

a variance estimation method for the NNI estimator is proposed. In Section

4, the proposed method is extended to stratified cluster sampling. In Section

5, application of the approach to the Census 2000 long form income and

poverty estimates is described.

2 Model and estimator properties

Assume that a finite universe U is generated by a stochastic mechanism and

that a distance measure is defined for the elements. Let a neighborhood of

element g be composed of elements that are close to element g, and let

µg = E {yj | j ∈ Bg}
σ2

g = E
{
(yj − µg)

2 | j ∈ Bg

}
,

where Bg is the set of indices for the elements in the neighborhood of el-

ement g. One might suppose that there would be some correlation among

elements in the neighborhood, with elements that are close having a positive

correlation. We will assume that neighborhoods are small enough so that the

correlation can be ignored. We assume that an adequate approximation for
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the distribution of elements in the neighborhood is

yj
i.i.d.∼ (

µg, σ
2
g

)
j ∈ Bg, (1)

where
i.i.d.∼ denotes independently and identically distributed. We assume that

response is independent of the y-values so that the distribution (1) holds for

both recipients and donors.

Let a probability sample be selected from the finite universe U with selec-

tion probabilities πj. Let θ̂n be an estimator based on the full sample. Our

primary interest is in estimators that are linear in y, which we write as

θ̂n =
∑
i∈A

wiyi, (2)

where A is the set of indices in the sample and the wi do not depend on yi.

An example is the estimated total

T̂y =
∑
i∈A

π−1
i yi. (3)

Let V
(
θ̂n

)
be the variance of the full sample estimator. Under model (1)

we can write

yi = µi + ei,

where the ei are independent (0, σ2
i ) random variables and µi is the neigh-

borhood mean. Thus, µi = µg and σ2
i = σ2

g for i ∈ Bg. Then, under model

(1) and assuming that the sampling design is ignorable under the model in

the sense of Rubin (1976), the variance of a linear estimator of the total

Ty =
∑

i∈U yi can be written

V

{∑
i∈A

wiyi − Ty

}
= V

{∑
i∈A

wiµi −
∑
i∈U

µi

}
+E

{∑
i∈A

(
w2

i − wi

)
σ2

i

}
. (4)
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Assume that y is missing for some elements and assume there are always

at least M observations on y in the neighborhood of each missing value. Let

an imputation procedure be used to assign M donors to each recipient. Let

w∗
ij be the fraction of the original weight allocated to donor i for recipient j.

We consider only procedures with
∑

i w
∗
ij = 1. If we define

dij =

{
1 if yi is used as a donor for yj

0 otherwise,

then one common choice is w∗
ij = M−1dij for i 6= j. Then

αi =
∑
j∈A

wjw
∗
ij (5)

is the total weight for donor i, where it is understood that w∗
ii = 1 for a donor

donating to itself. Thus the imputed linear estimator is

θ̂I =
∑
j∈A

wjyIj =
∑
i∈AR

αiyi, (6)

where AR is the set of indices for the respondents and the mean imputed

value for recipient j is

yIj =
∑
i∈A

w∗
ijyi. (7)

Note that yIj = yi if j is a respondent. Then, under model (1),

V
(
θ̂I − Ty

)
= V

{∑
i∈A

wiµi −
∑
i∈U

µi

}
+ E

{∑
i∈AR

(
α2

i − αi

)
σ2

i

}
, (8)

where AR is the set of indices of respondents. See Kim and Fuller (2004).

The increase in variance due to imputation is, from (4),

∑
i∈AR

(
α2

i − αi

)
σ2

i −
∑
i∈A

(
w2

i − wi

)
σ2

i .
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3 Variance estimation

Assume replicates are to be used to estimate the variance and let the repli-

cation variance estimator for the complete sample be

V̂
(
θ̂
)

=
L∑

k=1

ck

(
θ̂(k) − θ̂

)2

, (9)

where θ̂ is the full sample estimator, θ̂(k) is the k-th estimate of θN based on

the observations included in the k-th replicate, L is the number of replicates,

and ck is a factor associated with replicate k determined by the replication

method. Assume that the variance estimator V̂
(
θ̂
)

is design unbiased for

the sampling variance of θ̂. If the missing yi are replaced in (9) with yIj of

(7), and the result called V̂naive

(
θ̂
)
,

E
{

V̂naive

(
θ̂
)}

= V

{∑
i∈A

wiµi −
∑
i∈U

µi

}
+E

{
L∑

k=1

∑
i∈AR

ck

(
α

(k)
i1 − αi

)2

σ2
i

}
,

(10)

where α
(k)
i1 =

∑
j w

(k)
j w∗

ij and w
(k)
j is the weight for element j in replicate k.

The weights α
(k)
i1 are called the naive replication weights.

We consider a procedure in which the individual w∗
ij are modified for the

replicates, with the objective of creating an unbiased variance estimator. Let

w
∗(k)
ij be the replicated fractional weights of unit j assigned to donor i at the

k-th replication. Letting

θ̂
(k)
I =

∑
i∈AR

α
(k)
i yi,

where α
(k)
i =

∑
j w

(k)
j w

∗(k)
ij , define a variance estimator by

V̂
(
θ̂I

)
=

L∑

k=1

ck

(
θ̂

(k)
I − θ̂I

)2

. (11)
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The expectation of the variance estimator V̂ (θ̂I) is

E
{

V̂
(
θ̂I

)}
= E





L∑

k=1

[∑
i∈AR

(
α

(k)
i − αi

)
µi

]2


+E

{∑
i∈AR

[
L∑

k=1

ck

(
α

(k)
i − αi

)2
]

σ2
i

}
.

(12)

Because the w
∗(k)
ij satisfy

∑
i∈AR

w
∗(k)
ij = 1 (13)

for all j, then, under the model (1),

E





L∑

k=1

[∑
i∈AR

(
α

(k)
i − αi

)
µi

]2


 = E





L∑

k=1

[∑
i∈A

(
w

(k)
i − wi

)
µi

]2




= V

(∑
i∈A

wiµ−
∑
i∈U

µi

)
.

Thus, the bias of the variance estimator V̂ (θ̂I) is

Bias
{

V̂
(
θ̂I

)}
= E

{∑
i∈AR

[
L∑

k=1

ck

(
α

(k)
i − αi

)2

− (
α2

i − αi

)
]

σ2
i

}
.

If the replicated fractional weights were to satisfy

L∑

k=1

ck

(
α

(k)
i − αi

)2

= α2
i − αi, (14)

for all i ∈ AR, then the bias would be zero. However, it is difficult to define

replicate weights that satisfy (14). Therefore we consider the requirement

L∑

k=1

ck

{(
α

(k)
i − αi

)2

+
∑

t∈DRi

(
α

(k)
t − αt

)2
}

= α2
i − αi +

∑
t∈DRi

(
α2

t − αt

)
,

(15)

where DRi =
{

t ;
∑

j∈AM
dijdtj = 1, t 6= i

}
is the set of donors, other than i,

to recipients from donor i. Under assumption (1), the variances of recipients
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from donor i are in the neighborhood of donor i and have common variance,

and (15) is a sufficient condition for unbiasedness.

We outline a replication variance estimator closely related to that of Kim

and Fuller (2004) that assigns fractional replicate weights such that (13) and

(15) are satisfied. There are three types of observations in the data set: (1)

respondents that act as donors for at least one recipient, (2) respondents

that are never used as donors and (3) recipients. The naive replicate weights

defined in (10) will be used for the last two types. For donors, the fractional

weights w∗
ij in replicate k will be modified to satisfy (13) and (15).

We first consider replicates formed by deleting a single element. Let the

superscript k denote the replicate where element k is deleted. First the

replicates for the naive variance estimator (10) are computed, and the sum

of squares for element i is computed as

L∑

k=1

ck

(
α

(k)
i1 − αi

)2

= φi, i ∈ AR, (16)

where α
(k)
i1 is defined following (10).

In the second step the fractions for replicates for donors are modified. Let

the new fractional weight in replicate k for the value donated by k to j be

w
∗(k)
kj = w∗

kj (1− bk) , (17)

where bk is to be determined. Let t be one of the other M − 1 donors, other

than k, that donate to j. Then, the new fractional weight for donor t is

w
∗(k)
tj = w∗

tj + (M − 1)−1 bkw
∗
kj. (18)

For M = 2 with w∗
kj = w∗

tj = 0.5, w
∗(k)
kj = 0.5 (1− bk) and w

∗(k)
tj =

0.5 (1 + bk).
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For any choice of bk, condition (13) is satisfied. The variance estimator

will be unbiased if bk satisfies

ck

(
α

(k)
k1 − αk − bk

∑
j∈AM

w
(k)
j w∗

kj

)2

− ck

(
α

(k)
k1 − αk

)2

+
∑

t∈DRk

ck

[
α

(k)
t1 − αt + bk (M − 1)−1

∑
j∈AM

w
(k)
j w∗

kjdtj

]2

−
∑

t∈DRk

ck

(
α

(k)
t1 − αt

)2

= α2
k − αk − φk, (19)

where DRk is defined following (15). The difference α2
k − αk − φk is the

difference between the desired sum of squares for observation k and the sum

of squares for the naive estimator. Under the assumption of a common

variance in a neighborhood and the assumption that the variance estimator

V̂ (θ̂) of (9) is unbiased for the full sample, the resulting variance estimator

with w
∗(k)
ij defined by (17)-(19) is unbiased for the imputed sample.

4 Extension

The proposed method can be extended to a more general replication method.

Assume that we have a sample composed of primary sampling units (PSUs)

that may contain several elements. Let PSU k be deleted to form a replicate.

Let Pk be the indices of the set of donors in PSU k that donate to a recipient

in a different PSU. For fractional imputation of size M , let the fractional

replication weight in replicate k for the value donated by element i in PSU

k to j be

w
∗(k)
ij = w∗

ij (1− bk) if i ∈ Pk and M 6= Mjk, (20)

where bk is to be determined and Mjk =
∑

i∈Pk
dij is the number of donors

to recipient j that are in PSU k. Note that (20) is a generalization of (17).
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The corresponding replication fraction for a donor to a recipient j, where the

donor is not in PSU k, is

w
∗(k)
tj = w∗

tj (1 + ∆jkbkdij) for t ∈ Pc
k and i ∈ Pk, (21)

where

∆jk =

∑
i∈Pk

w∗
ij∑

i∈Pc
k
w∗

ij

.

The determining equation for bk is

∑
i∈Pk

ck





(
α

(k)
i1 − αi − bk

∑
j∈AM

w
(k)
j w∗

ij

)2

−
(
α

(k)
i1 − αi

)2





+
∑
i∈Pk

∑
t∈Pc

k

ck




{
α

(k)
t1 − αt + bk

∑
j∈AM

w
(k)
j dij∆jkw

∗
tj

}2

−
(
α

(k)
t1 − αt

)2




=
∑
i∈Pk

{
α2

i − αi − φi

}
, (22)

which generalizes (19). Here, we assume common variances for the units in

the same PSU.

We extend the fractional nearest neighbor imputation to the case of M1

fractions for point estimation and M2(> M1) fractions for variance estima-

tion. The motivation for this extension is the application to the Census long

form where the official estimates are based on a single imputed value. A sec-

ond imputed value was generated to be used only in variance estimation. Let

d1ij and d2ij be the donor-recipient relationship indicator function used for

point estimation and for variance estimation, respectively. Also, let w∗
1ij and

w∗
2ij be the fractional weights of recipient j from donor i that are computed

from d1ij and d2ij, respectively. For missing unit j, one common choice is

w∗
1ij = d1ijM

−1
1 and w∗

2ij = d2ijM
−1
2 . Of particular interest is the case where

M1 = 1 and M2 = 2.
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If M1 6= M2, the variance estimator is defined by

V̂
(
θ̂I

)
=

L∑

k=1

ck

(
θ̂

(k)
I − θ̂I

)2

, (23)

where (
θ̂

(k)
I , θ̂I

)
=

(∑
i∈AR

α
(k)
i2 yi,

∑
i∈AR

αi1yi

)

with α
(k)
i2 =

∑
j w

(k)
j w

∗(k)
2ij and αi1 =

∑
j wjw

∗
1ij. Here, w

∗(k)
2ij is the replicated

fractional weight of unit j assigned to donor i in the k-th replication. Note

that θ̂I is based on the point estimation weights and α
(k)
i2 is based on the

variance estimation weights. If w
∗(k)
2ij satisfy (13), the bias of the variance

estimator (23) is

Bias
{

V̂
}

= E

{∑
i∈AR

[
L∑

k=1

ck

(
α

(k)
i2 − αi1

)2

− (
α2

i1 − αi1

)
]

σ2
i

}
.

Thus, condition (15) for the unbiasedness of the variance estimator is changed

to
L∑

k=1

ck

{(
α

(k)
i2 − αi1

)2

+
∑

t∈DRi

(
α

(k)
t2 − αt1

)2
}

= α2
i1 − αi1 +

∑
t∈DRi

(
α2

t1 − αt1

)
.

(24)

To create the replicated fractional weights satisfying (13) and (24), the

sum of squares of the naive replication weights is first computed,

L∑

k=1

ck

(
α

(k)
i1 − αi1

)2

= φi1, i ∈ AR, (25)

where α
(k)
i1 =

∑
j∈A w

(k)
j w∗

1ij. In the second step the fractions for replicates for

donors in the point estimation are modified. Let the new fractional weight

in replicate k for the value donated by i ∈ Pk to j be

w
∗(k)
2ij = w∗

1ij (1− bk) , if i ∈ Pk and M2 6= M2jk, (26)
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where bk is to be determined and M2jk =
∑

i∈Pk
d2ij. Now, M2(> M1) donors

are identified for variance estimation. The new fractional weight for the other

M2 − 1 donors to recipient j, denoted by t, is

w
∗(k)
2tj = w∗

1tj + ∆jkbkd1ijw
∗
2tj for t ∈ Pc

k and i ∈ Pk, (27)

where

∆jk =

∑
i∈Pk

w∗
1ij∑

i∈Pc
k
w∗

2ij

.

Then the bk that gives the correct sum of squares is the solution to the

quadratic equation

∑
i∈Pk

ck





(
α

(k)
i1 − αi1 − bk

∑
j∈AM

w
(k)
j w∗

1ij

)2

−
(
α

(k)
i1 − αi1

)2





+
∑
i∈Pk

∑
t∈Pc

k

ck




{
α

(k)
t1 − αt1 + bk

∑
j∈AM

w
(k)
j ∆jkd1ijw

∗
2tj

}2

−
(
α

(k)
t1 − αt1

)2




=
∑
i∈Pk

{
α2

1i − α1i − φ1i

}
. (28)

If M1 = 1, the adjustment in the replication fractional weights can be

made at the individual level. Let the new fractional weight in replicate k for

the value donated by i ∈ Pk to j, j ∈ Pc
k, be

w
∗(k)
2ij = w∗

1ij (1− bi) , if i ∈ Pk and M2 6= M2jk, (29)

where bi is to be determined. The new fractional weight for each of the other

M2 − 1 donors to recipient j, denoted by t, is

w
∗(k)
2tj = w∗

1tj + ∆jkbid1ijw
∗
2tj for t ∈ Pc

k and i ∈ Pk, (30)
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where ∆jk is defined following (27). Then the bi that gives the correct sum

of squares is the solution to the quadratic equation

ck





(
α

(k)
i1 − αi1 − bi

∑
j∈AM

w
(k)
j w∗

1ij

)2

−
(
α

(k)
i1 − αi1

)2





+
∑
t∈Pc

k

ck




{
α

(k)
t1 − αt1 + bi

∑
j∈AM

w
(k)
j ∆jkd1ijw

∗
2tj

}2

−
(
α

(k)
t1 − αt1

)2




= α2
1i − α1i − φ1i. (31)

5 Application to U.S. Census long form data

5.1 Introduction

In Census 2000 income data were collected on the long form that was used

for about 1 out of every 6 households. These data were used to produce

various income and poverty estimates for the U.S., and for its states, coun-

ties, and other small areas. In this section we apply the variance estimation

methods just developed to produce variance estimates accounting for impu-

tation to certain state and county income and poverty estimates used by the

SAIPE program. We use data from the states of Delaware and Michigan for

examples. As noted in the Introduction, imputation rates for income items

in the Census 2000 long form were somewhat high. Table 1 shows the indi-

vidual income items and their state level imputation rates for Delaware and

Michigan.

The sampling design for the Census 2000 long form used stratified sys-

tematic sampling of households, with four strata in each state. Sampling

rates varied from 1 in 2 for very small counties and small places to 1 in 8 for
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Table 1: Imputation rate and the person-level average income for each income
item ( age ≥ 15) for two states, Delaware (n = 87, 280) and Michigan (n =
1, 412, 339).

Delaware Michigan
Income Item Imputation Average Imputation Average

Rate (%) Income Rate (%) Income
Wage 20 21,892 21 20,438

Self Employment 10 1,286 10 1,234
Interest 22 1,989 22 1,569

Social Security 20 1,768 20 1,672
Supplemental Security 20 125 20 148

Public Assistance 19 38 19 47
Retirement 20 2,018 20 1,664

Other 19 543 19 529
Total 31 29,659 31 27,301

very populous areas. Details of the long form sampling design can be found

in Hefter (1999).

The weighting procedure for the Census 2000 long form was performed

separately for person estimates and for housing unit estimates. For the in-

come and poverty estimates considered here, only the person weights are

needed. Details of the long form weighting procedure can be found in Hefter

(2002a).

The census long form person weights are created in two steps. In the

first step, the initial weights are computed as the ratio of the population

size (obtained from the 100% population counts) to the sample size in each

cell of a cross-classification of final weighting areas (FWAs) by person types

(Housing unit person, Service Based Enumeration (SBE) person, other Group

Quarters (GQ) person). Thus, the initial weights take the form of post-
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stratification weights. The second step in the weighting is raking where, for

person weights, there are four dimensions in the raking.

1. Household Type and Size : 21 categories

2. Sampling Type : 3 categories

3. Householder classification : 2 categories

4. Hispanic Origin/Race/Sex/Age : 312 categories

Therefore, the total number of possible cells is 39,312, although many

cells in a FWA will be empty. The raking procedure is performed within

each FWA. There are about 60,000 FWAs in the whole country and the

FWAs are nested within counties.

5.2 Computational Details

The variance estimation methodology is based on the grouped jackknife,

where the method described in Section 3 is used to estimate the variance

due to imputation. We summarize the main steps of variance estimation and

then discuss the steps in more detail:

[Step 1] Create groups and then define initial replication weights for the

grouped jackknife method. The elements within a stratum are sys-

tematically divided into groups. A replicate is created by deleting a

group.

[Step 2] Using the initial replication weights, repeat the weighting procedure

to compute the final weights for each replicate.
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[Step 3] Using fractional weighting, modify the replicate weights to account

for the imputation effect on the variance. In the process, a replicate

imputed total income variable is created for each person with missing

data.

[Step 4] Using the replicate total income variables, compute the jackknife

variance estimates for parameters such as the number of poor people

by age group and the median household income.

In Step 1, the sample households in a final weighting area are sorted by

their identification numbers, called MAFIDs. Let n be the sample number

of households in a final weighting area. The first n/50 sample households

are assigned to variance stratum 1, the next n/50 sample households are as-

signed to variance stratum 2, and so on, to create 50 variance strata. Within

each variance stratum, the sample households are further grouped into two

groups by a systematic sample of households arranged in a half-ascending-

half-descending order based on the MAFID. Using the two groups in each of

the 50 strata, L = 100 replication factors are assigned to each unit in the

sample. For unit i in variance stratum h, (h = 1, 2, · · · , 50), the replication

factor for the replicate formed by deleting group k in variance stratum h is

F
(hk)
i =





1 if unit i does not belong to variance stratum h

2− δi if unit i belongs to variance stratum h and i /∈ Phk

δi if unit i ∈ Phk,
(32)

where δi = 1 − {(1− 1/IWi) 0.5}1/2, IWi is the initial weight of unit i, and

Phk is the set of sample indices in group k in variance stratum h. With this
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replication factor, ck of (9) is one.

In Step 2, the Step 1 replication weights are modified using the production

raking operation. The weighting procedure consists of two parts. The first

part is a poststratification in each final weighting area and the second part

is raking ratio estimation using the short form population totals as controls.

If the raking was carried to convergence the estimated variance for controls

would be zero. In the actual operation, the replicated final weights produce

very small variance estimates for the estimates of the population controls.

In Step 3, a second nearest neighbor is identified for each nonrespondent

for each income item. There are eight income items – see Table 1 given

earlier. A fractional weight of one is assigned to the imputed value from the

first donor and a fractional weight of zero is assigned to the imputed value

from the second donor for production estimation. The fractional weights are

changed for the replicate, when the jackknife group containing the first donor

is deleted. The amount of change is determined so that conditions (13) and

(15) are satisfied. Replicate fractional weights are constructed separately for

each income item.

Once the replicated fractional weights are computed, replicates of the

person-level total income are constructed. Let Ytis be the s-th income item

for person i in family t and let Rtis be the response indicator function for

Ytis. For the k-th replicate, the replicated total income for person i in family

t is

TINC
(k)
ti =

8∑
s=1

{
RtisYtis + (1−Rtis) Y

∗(k)
tis

}
(33)

where Y
∗(k)
tis is the k-th replicate of the imputed value for Ytis, defined by

Y
∗(k)
tis = w

∗(k)
tisa Y ∗

tisa + w
∗(k)
tisb Y ∗

tisb,
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(
w
∗(k)
tisa , w

∗(k)
tisb

)
is the vector of the two k-th replicate fractional weights, one

for the first donor and one for the second donor, for the s-th income item,

and (Y ∗
tisa, Y

∗
tisb) is the vector of the imputed values of Ytis from the first and

second donor, respectively. The k-th replicate of total family income for

family t is

TINC
(k)
t =

mt∑
i=1

TINC
(k)
ti , (34)

where mt is the number of people in family t and TINC
(k)
ti is defined in (33).

For the age group poverty estimates, a poverty status indicator function

is defined for the family, and applies to all family members. That is, all

family members are either in poverty or all are not in poverty. The poverty

status indicator for family t is defined as

ζt =

{
1 if TINCt < ct

0 if TINCt ≥ ct,

where, as with the replicates in (33),

TINCt =
mt∑
i=1

8∑
s=1

{RtisYtis + (1−Rtis) Y ∗
tisa} (35)

is the total income of family t, where Y ∗
tisa is the imputed value for Ytis using

the first nearest donor, and ct is the poverty threshold value for family t.

The threshold is a function of the number of related children under 18 years

of age, the size of the family unit, and the age of the householder. (Poverty

thresholds for all recent years are available on the Census Bureau web site

at http://www.census.gov/hhes/www/poverty/threshld.html.)

To compute the replicate of ζt, we use the following procedure.

1. For person i in family t, compute two total incomes, TINCtia and
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TINCtib, by

TINCtia =
8∑

s=1

{RtisYtis + (1−Rtis) Y ∗
tisa}

TINCtib =
8∑

s=1

{RtisYtis + (1−Rtis) Y ∗
tisb} .

Also, compute the two total family incomes

(TINCta, T INCtb) =
mt∑
i=1

(TINCtia, T INCtib) .

Using the replicated total family income TINC
(k)
t defined in (34), de-

fine

α
(k)
t =

{
TINC

(k)
t −TINCtb

TINCta−TINCtb
if TINCta 6= TINCtb

1 otherwise.
(36)

The α
(k)
t is the weight satisfying

TINC
(k)
t = α

(k)
t TINCta +

(
1− α

(k)
t

)
TINCtb.

2. The replicated poverty status variable is now computed by

ζ
(k)
t = α

(k)
t POVta +

(
1− α

(k)
t

)
POVtb (37)

where POVta is computed by

POVta =

{
1 if TINCta < ct

0 if TINCta ≥ ct

and POVtb is computed similarly using TINCtib.

The replication adjustment α
(k)
t is computed from family-level total income

and is applied in (37) to get a replicated poverty estimate.
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The estimated variance for the estimated total number of people in

poverty is

V̂p =
L∑

k=1

(
θ̂(k)

p − θ̂(·)
p

)2

, (38)

where L is the number of replications (here L = 100),

θ̂(k)
p =

n∑
t=1

mt∑
i=1

w
(k)
tj ζ

(k)
t ,

θ̂(·)
p =

1

L

L∑

k=1

θ̂(k)
p ,

ζ
(k)
t is defined in (37), and w

(k)
ti is the person level replication weight after

the raking operation.

The number of people in poverty in a given age group can be estimated

by

θ̂pz =
n∑

t=1

mt∑
i=1

wtizti ζt,

where zti = 1 if the person i in family t belongs to the age group and zti = 0

otherwise. The k-th replicate of the estimate is

θ̂(k)
pz =

n∑
t=1

mt∑
i=1

w
(k)
ti ztiζ

(k)
t

and the variance is estimated by (38) using θ̂
(k)
pz defined above.

The variance estimation for median household income estimates is based

on the test-inversion methodology described in Francisco and Fuller (1991).

Also, see Woodruff (1952). Let MED be the estimated median household

income defined by MED = F̂−1 (0.5) where F̂ (·) is the estimated cumulative

distribution function of total income of the household,

F̂ (u) =

(
n∑

t=1

wtt

)−1 n∑
t=1

wttI (TINCt ≤ u) ,
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wtt is the householder’s person weight in household t, and TINCt is the

total income of household t. (Note that households differ from fami-

lies. The former includes all persons living in a given housing unit;

the latter includes only related persons living in a housing unit. See

www.census.gov/population/www/cps/cpsdef.html for further discussion.)

To apply the test-inversion method, first create the replicated indicator

variable

INV
(k)
t = α

(k)
t INVta +

(
1− α

(k)
t

)
INVtb,

where α
(k)
t is defined in (36) and

INVta =

{
1 if

∑mt

i=1 TINCtia < MED
0 if

∑mt

i=1 TINCtia ≥ MED

and INVtb is computed similarly, using TINCtib instead of TINCtia in the

above expressions.

The estimated variance of the estimated proportion F̂ (MED) = 0.5 is

computed by applying the variance formula (38) using INV
(k)
t instead of ζ

(k)
t

to get V̂inv. Define

(p̂1, p̂2) =

(
0.5− 2

√
V̂inv, 0.5 + 2

√
V̂inv

)

to be an approximate 95% confidence interval for the estimated proportion

F̂ (MED) = 0.5. The estimated variance of the estimated median is

V̂med =
{

F̂−1 (p̂2)− F̂−1 (p̂1)
}2

/16. (39)

5.3 Numerical results

Variance estimates for the long form income and poverty estimates used by

SAIPE were computed for all 50 states of the U.S. and their counties. The

21



estimates we consider here are the total number of people in poverty, the

number of children under age 5 in poverty, the number of related children

age 5 to 17 in families in poverty, the number of children under age 18 in

poverty, and the median household income.

Table 2: Variance estimation results for Delaware and Michigan

Parameter Method Delaware Michigan
Est. SE Std. SE Est. SE Std. SE

θ1 Naive 870 100 3,217 100
(Total in poverty) Imputation 1,161 133 4,096 127

θ2 Naive 221 100 776 100
(0-4 in poverty) Imputation 260 118 897 116

θ3 Naive 366 100 1,314 100
(5-17 related in poverty) Imputation 467 128 1,640 125

θ4 Naive 458 100 1,608 100
(0-17 in poverty) Imputation 592 129 2,062 128

Median Naive 177 100 70 100
HH income Imputation 207 117 85 121

Tables 2 contains variance estimation results (the estimated standard de-

viations) for the income and poverty statistics for the states of Delaware and

Michigan. The variance estimator labeled “naive” treats the imputed values

as observed values. The “imputation” variance estimator is that of Section

3 and reflects the imputation effects. Both variance estimators account for

the raking in the estimator. Because Michigan is much larger than Delaware

its estimated numbers of persons in poverty (not shown) are much larger,

and thus, due to the scale effects, so are the corresponding standard errors.

The standardized standard errors in the table are computed by dividing the
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estimated standard error computed by the “imputation” procedure by the es-

timated standard error computed by the “naive” procedure and multiplying

by 100.

Table 3: Imputation rates by income level (age ≥ 15)

Total Income Imputation Rate (%)
Delaware Michigan

0 - 9,999 34 34
10,000 - 19,999 36 35
20,000 - 49,999 28 29
50,000 - 69,999 25 25
70,000 and over 25 25

Generally speaking, imputation increases the variance so the naive vari-

ance estimator underestimates the true variance. The relative increase is

similar for Michigan and Delaware. A result worth noting is that the increase

in variance due to imputation is higher for the poverty parameters than for

the income parameters. This is because in both states the imputation rate

is higher for persons with low imputed income. (See Table 3.)

Table 4 contains some numerical results for the estimated standard errors

for the county estimates in Delaware. The age groups in the table are those

used by SAIPE at the county level, which does not include 0 to 4. As

with state estimates, imputation increases the variance. However, the effect

of imputation is much smaller for county estimates than for state estimates.

County level estimation is an example of domain estimation, where the values

used for imputation can come from donors outside the domain. Donors from

outside the domain contribute less to the imputation variance of the domain
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Table 4: County variance estimates for Delaware

County Parameter Method Est. SE Std. SE
θ1 Naive 409 100

(Total poor) Imputation 444 109
θ3 Naive 183 100

001 (5-17 related poor ) Imputation 203 111
θ4 Naive 219 100

(0-17 poor) Imputation 241 110
Median Naive 323 100

HH income Imputation 336 104
θ1 Naive 687 100

(Total poor) Imputation 838 122
θ3 Naive 317 100

003 (5-17 related poor) Imputation 351 111
θ4 Naive 365 100

(0-17 poor) Imputation 417 114
Median Naive 200 100

HH income Imputation 226 113
θ1 Naive 518 100

(Total poor) Imputation 608 117
θ3 Naive 197 100

005 (5-17 related poor) Imputation 217 110
θ4 Naive 270 100

(0-17 poor) Imputation 300 111
Median Naive 361 100

HH income Imputation 389 108
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Table 5: Donor distribution for wage income in Delaware (age ≥ 15)

County Number of donors Number of donors Number of donors
from county 1 from county 3 from county 5

1 1,271 1,512 325
(n = 15, 735) (41%) (49%) (10%)

3 1,142 7,374 1,343
(n = 51, 869) (11%) (75%) (14%)

5 847 1,137 2,045
(n = 19, 661) (21%) (28%) (51%)

total than donors in the domain because the imputed value from outside the

domain is uncorrelated with the values observed in the domain. In effect,

imputations from outside the domain increase the sample size on which the

estimates are based, whereas imputations from inside the domain change the

weights given to the observations in the estimates. Because the proportions

of outside donors differ across counties, the effect of imputation on county

variances is not uniform across counties. In Delaware, the overall imputation

rates for total income (the percent of records with at least one income item

imputed) are 30.7 %, 29.5%, and 34.5 % for county 1, county 3, and county

5, respectively. Table 5 presents the distribution of donors for wage income

in Delaware. In county 1, about 59% of the donors are from outside the

county, whereas in county 3, only about 25% of the donors are from outside

the county. Thus, the variance inflation due to imputation, as reflected in

the standardized standard error, is greater for county 3 than for county 1.
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Appendix

A. Illustrated calculations

We illustrate the construction of replicates for variance estimation with a

simple example. Table A.1 contains the original weights and the naive repli-

cate weights for a simple random sample of original size six with two missing

values and two donors per missing value. Observations two and four act as

donors for missing observation three and observations four and five act as

donors for missing observation six. The weights for six naive jackknife repli-

cates are given in the table, where the weights are constructed as if the sample

were complete. The two imputed values are treated as two observations from

a primary sampling unit. We assume the finite population correction can be

ignored. Then ck = 5/6. The naive replicate weights for the respondents are

given in Table A.2. We have

L∑

k=1

(
α

(k)
i1 − αi

)2

= (0.0333̄, 0.0350, 0.0333̄, 0.0350)
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for i = 1, 2, 4, 5, respectively. The sum of squares multiplied by 5/6 is 0.1139

while
∑

α2
i = 0.2637. The use of the naive replicates severely underestimates

the multiplier for σ2
i . Only for observation one, the observation not used as

a donor, is the sum of squares of the naive replicates equal to α2
i .

Table A.1: Jackknife Illustration

Naive replicate Weights
Obs Donor Weight 1 2 3 4 5 6
1 0.166 0 0.2 0.2 0.2 0.2 0.2
2 0.166 0.2 0 0.2 0.2 0.2 0.2
3 2 0.083 0.1 0.1 0 0.1 0.1 0.1

4 0.083 0.1 0.1 0 0.1 0.1 0.1
4 0.166 0.2 0.2 0.2 0 0.2 0.2
5 0.166 0.2 0.2 0.2 0.2 0 0.2
6 4 0.083 0.1 0.1 0.1 0.1 0.1 0

5 0.083 0.1 0.1 0.1 0.1 0.1 0

Table A.2: Illustration - Naive Weights for Respondents

Naive replicate Weights

Obs αi α
(1)
1i α

(2)
1i α

(3)
1i α

(4)
1i α

(5)
1i α

(6)
1i

1 0.1666̄ 0.0 0.2 0.2 0.2 0.2 0.2
2 0.250 0.3 0.1 0.2 0.3 0.3 0.3
4 0.333̄ 0.4 0.4 0.3 0.2 0.4 0.3
5 0.250 0.3 0.3 0.3 0.3 0.1 0.2

Using φ2 and the definition of w∗
ij, the quadratic equation for b2 is

[0.1− 0.1b2 − 0.25]2 + [0.4 + 0.1b2 − 0.3333]2

− [0.1− 0.25]2 − [0.4− 0.3333]2 = 0.0750− 0.0350,

where 0.075 = c−1
2 α2

2, and c−1
2 φ2 = 0.0350. The simplified quadratic equation
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is

0.02b2
2 + 0.04333b2 − 0.04 = 0

and b2 = 0.70. The equation for b5 is the same as that for b2. The quadratic

equation for b4 is

[0.2− 2 (0.1) b4 − 0.3333]2 + 2 [0.3 + 0.1b4 − 0.25]2

− [0.2− 0.3333]2 − 2 [0.3− 0.25]2 = (6/5)(0.3333)2 − 0.0333.

The simplified equation is

0.06b2
4 + 0.0733b4 − 0.10 = 0

and b4 = 0.83. The final jackknife replicates are given in Table A.3 and the

respondent weights in Table A.4.

Table A.3: Jackknife Weights for Fractional Imputation

Weights for unbiased Variance Estimator
Obs Donor Weight 1 2 3 4 5 6
1 0.166 0 0.2 0.2 0.2 0.2 0.2
2 0.166 0.2 0 0.2 0.2 0.2 0.2
3 2 0.083 0.1 0.030 0 0.183 0.1 0.1

4 0.083 0.1 0.170 0 0.017 0.1 0.1
4 0.166 0.2 0.2 0.2 0 0.2 0.2
5 0.166 0.2 0.2 0.2 0.2 0 0.2
6 4 0.083 0.1 0.1 0.1 0.017 0.170 0

5 0.083 0.1 0.1 0.1 0.183 0.030 0

B. Approximations to replicated fractional weights

We consider an approximate method of computing the replicated fractional

weights. The approximation provides some computational advantage over the

original method in Section 3 when the sampling weights are nearly equal.
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Table A.4: Illustration - Final Weights for Respondents

Final replicate Weights

Obs αi α
(1)
1i α

(2)
1i α

(3)
1i α

(4)
1i α

(5)
1i α

(6)
1i

1 0.166̄ 0.0 0.2000 0.2 0.2000 0.2000 0.2
2 0.250 0.3 0.0303 0.2 0.3817 0.3000 0.3
4 0.333̄ 0.4 0.4697 0.3 0.0366 0.4697 0.3
5 0.250 0.3 0.3000 0.3 0.3817 0.0303 0.2

To develop an approximation to the w
∗(k)
ij , assume differences among the

original weights, wj, can be ignored and assume two donors per recipient with

fractional weight of 0.5 for each. Consider a jackknife procedure in which a

primary sampling unit (PSU) is deleted to form a replicate. Let h = hk be

the relative modification in the fractional weight of element k for recipients

when element k is in the deleted PSU. The new fractional weight for element

k donating to element j is 0.5 (1− h). The weight for the other donor to

element j is 0.5 (1 + h). We assume c−1
k wj is the weight of element j when

element k is deleted. The squared deviations associated with element k when

k is deleted are (for w
(k)
k = 0 and original wj = 1 )

(
1 + 0.5rsu,k + 0.5c−1

k hr∗K
)2

+
(
0.5c−1

k hr∗K
)2

+ (r∗k − r∗kt)
(
0.5c−1

k h
)2

,

where r∗k is number of recipients from k that are not in the deleted PSU, rsu,k

is the number of recipients from k, other than k itself, in the PSU containing

k, and r∗kt is the number of recipients from donor t in the set Rk. Donor t is

not in the deleted PSU. It is assumed that all remaining donors to recipients

in Rk donate only once.

Consider the deviations associated with element k in those replicates

31



where a donor in Rk is not deleted. Under our assumptions,

α
(s)
k1−αk =

{
0.5ws − (r∗k − 1) (0.5)

(
c−1
k − 1

)
if s is a recipient,(

c−1
k − 1

)
αk if s is not a recipient from k.

If individual elements are deleted there will be r∗k replicates where a recip-

ient from k is deleted, and L−2r∗−1 replicates where the deleted element is

neither in Rk or a donor to elements in Rk. Then a reasonable approximation

for
L∑

s=1

(
α

(s)
k1 − αk

)2

−
∑
i∈Rk

(
α

(k)
i1 − αi

)2

is

(L− 2r∗k − 1) (ck − 1)2 + r∗k (0.5)2 .

With these approximations, h is defined by the equation

(
1 + 0.5rsu,k + 0.5c−1

k hr∗k
)2

+
(
0.5c−1

k hr∗k
)2

+ (r∗k − r∗kt)
(
0.5c−1

k h
)2

+r∗k (0.5)2 [
1− (r∗k − 1)

(
c−1
k − 1

)]2

= (1 + 0.5rsu,k + 0.5r∗k)
2 c−1

k − (L− 2r∗k − 1) (ck − 1)2 .

This expression assumes that there is no more than one recipient from k in

each of the remaining PSU’s. In a simple case, Rk = {j}, donors k and t to

j are in separate PSU’s, and ck = 1. Then

(1 + 0.5h)2 + (0.5h)2 + 0.25 = (1.5)2

and h = 0.7321. The fractional weight for donor k when k is deleted is 0.1340.

Assume Rk = {j1, j2, j3}, a donor t donates to j1 and j2, the three donors

are in separate PSUs and ck = 1, then

(1 + 1.5h)2 + h2 + 0.25h2 + 3 (0.5)2 = (2.5)2

and h = 0.7836. The fractional weight for donor k when k is deleted is

0.1082.
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