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Abstract

The paper provides general matrix formulas for minimum mean squared error signal extrac-

tion, for a finitely sampled time series whose signal and noise components are nonstationary

ARIMA processes. These formulas are quite practical; as well as being simple to implement on

a computer, they make it possible to easily derive important general properties of the signal

extraction filters. We also extend these formulas to estimates of future values of the unobserved

signal, and show how this result combines signal extraction and forecasting.

Keywords. ARIMA model, forecasting, linear filter, nonstationary time series, seasonal adjust-

ment.

1 Introduction

We consider signal extraction for finitely-sampled nonstationary time series data that can be

transformed to a mean zero, covariance stationary process by differencing operators. We suppose

that the signal and noise components are nonstationary, and that differencing operators exist which

transform the signal and noise components into weakly stationary time series. Signal extraction

for infinitely large samples of such series has a long history, including Hannan (1967), Sobel (1967),

Cleveland and Tiao (1976), Bell (1984), and Bell and Martin (2004). The unpublished report Bell

and Hillmer (1988) – whose basic results are summarized in Bell (2004) – treats the finite sample

case, presenting matrix formulas for the mean square optimal time-varying filters. One drawback

of Bell and Hillmer’s approach is its need for the separate estimation of initial values of nonstation-

ary signal and noise components, resulting in formulas that are awkward to implement. Pollock

(2001) also relies upon estimation of these initial values (and assumes that the noise component

is stationary). McElroy and Sutcliffe (2006) furnishes an improvement over the Bell and Hillmer

(1988) formulas, but only for a specific type of unobserved components model. Assuming that the

signal extraction problem is formulated as ARIMA signal plus ARIMA noise (we later describe how

a multiple unobserved ARIMA components model can be recast into a two-component model), we

show in this paper an especially simple formula that does not involve the estimation of initial val-

ues. This novel result is the main content of the paper at hand. This and other formulas discussed
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below are quite practical, in that they can be used to derive important general properties of the

filters, while also being simple to implement on a computer.

In the context of finite sample model-based signal extraction, one popular approach – that utilized

in SEATS (see the TSW Manual by Maravall and Caparello (2004) available at www.bde.es) – has

been to apply the bi-infinite filters of Bell (1984) (which are the generalizations of the Wiener-

Kolmogorov signal extraction filters to the nonstationary case) to the finite sample extended with

infinitely many forecasts and backcasts. The result can be calculated exactly with the aid of an

algorithm of Tunnicliffe-Wilson (see Burman, 1980). While being easy to implement, this method

does not readily reveal properties of finite sample filters. Moreover, it cannot produce correct finite-

sample Mean Squared Errors (MSEs) for the signal estimates. Another approach is to construct the

signal plus noise model in State Space Form (Durbin and Koopman, 2001) and apply the appropriate

state space smoother (Kailath, Sayed, and Hassibi, 2000) to extract the signal. Efficient algorithms

exist to obtain the time-varying signal extraction filters from the state space smoother, if desired

(Koopman and Harvey, 2003); of course, these methods provide recursive formulas rather than

explicit algebraic formulas. Thus, the state space approach cannot reveal certain fundamental

properties of the signal extraction filters that are obvious from the matrix formulas; see Section

4.1 and 4.2. In addition, the matrix approach readily provides the full covariance matrix of the

signal error, a quantity that is useful in certain applications; see Findley, McElroy, and Wills

(2004). Hence, there is both need and appeal for having explicit, readily implemented matrix

formulas for nonstationary signal extraction. Note also that one of the original motivations for

the matrix approach to signal extraction of Bell and Hillmer (1988), was to provide a method of

signal extraction for models that could not be put into state space form, e.g., long memory models.

Although our results are presented in the ARIMA-model based framework, generalizations to long

memory or heteroscedastic models are discussed as well.

We first present background material on signal extraction. The main theoretical results are in

Section 2. Section 3 extends these results to estimating an unobserved signal at future times. Some

applications of the matrix formulas are provided in Section 4. Examples of optimal finite sample

seasonal adjustment and trend filters, along with their gain functions, are discussed in Section 5.

Derivations of the basic formulas are contained in the appendix.

2 Matrix Formulas

Consider a nonstationary time series Yt that can be written as the sum of two possibly nonsta-

tionary components St and Nt, the signal and the noise:

Yt = St + Nt (1)
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Following Bell (1984), we let Yt be an integrated process such that Wt = δ(B)Yt is weakly stationary.

Here B is the backshift operator and δ(z) is a polynomial with all roots located on the unit circle

of the complex plane (also, δ(0) = 1 by convention). This δ(z) is referred to as the differencing

operator of the series, and we assume it can be factored into relatively prime polynomials δS(z)

and δN (z) (i.e., polynomials with no common zeroes), such that the series

Ut = δS(B)St Vt = δN (B)Nt (2)

are mean zero weakly stationary time series, which are uncorrelated with one another. Note that

δS = 1 and/or δN = 1 are included as special cases. (In these cases either the signal or the noise

or both are stationary.) We let d be the order of δ, and dS and dN are the orders of δS and δN ;

since the latter operators are relatively prime, δ = δS · δN and d = dS + dN .

There are many examples from econometrics and engineering that conform to this scheme. In the

context of component estimation for seasonal time series, for example, the data typically consist of

seasonal, trend, and irregular components (Gómez and Maravall, 2001):

Yt = St + Tt + It. (3)

Alternatively, a cycle component (Durbin and Koopman, 2001) is included as well:

Yt = St + Tt + Ct + It. (4)

Now although there are three or four unobserved components, we can always rewrite the models

in terms of two components (signal and noise). For example, if we are interested in seasonally

adjusting the series, we identify the seasonal component with the noise and the sum of the remaining

components becomes the signal of interest. That is, Nt = St and St = Tt + It or St = Tt + Ct +

It, depending on whether (3) or (4) holds respectively. Typically, the seasonal component is

nonstationary with δN (z) = 1+ z + z2 + · · · z11 for monthly data, and the trend is nonstationary as

well. For a twice-integrated trend (and assuming that the irregular and cycle are stationary, which

is usually the case) δS(z) = (1− z)2. If instead we assume (4) (with the same ARIMA component

models) and are interested in estimating the business cycle, then St = Ct and Nt = St + Tt + It;

in this case δS(z) = 1 and δN (z) = (1 − z)(1 − z12). In this fashion, any number of multiple

unobserved components can be reduced to two components, where the signal is defined as the sum

of those components that are of interest, and the noise consists of the rest. We will see below in

Section 5.2 that one can apply the matrix formulas for signal extraction without having to derive

new ARIMA models for each separate combination of components. It shares this property with the

Wiener-Kolmogorov approach of SEATS, which only requires a partitioning of the autocovariance

generating function for the observed series.
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As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds for the component

decomposition, and we treat the case of a finite sample with t = 1, 2, · · · , n for n > d. Assumption

A states that the initial d values of Yt, i.e., the variables Y∗ = (Y1, Y2, · · · , Yd), are independent of

{Ut} and {Vt}. For a discussion of the implications of this assumption, see Bell (1984) and Bell

and Hillmer (1988); in particular Bell (1984) discusses how the initial values for both the signal

and noise components may be generated such that Assumption A holds. Note that mean square

optimal signal extraction filters derived under Assumption A agree exactly with the filters implicitly

used by a properly initialized state space smoother, see Bell and Hillmer (1991, 1992). A further

assumption made is that {Ut} and {Vt} are uncorrelated with one another.

Now we can write (2) in a matrix form, as follows. Let ∆ be a (n − d) × n matrix with entries

given by ∆ij = δi−j+d (with the convention that δk = 0 if k < 0 or k > d). The analogously defined

matrices ∆S and ∆N have entries given by the coefficients of δS(z) and δN (z), but are (n−dS)×n

and (n− dN )× n dimensional respectively. This means that each row of these matrices consists of

the coefficients of the corresponding differencing polynomial, horizontally shifted in an appropriate

fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where Y is the transpose of (Y1, Y2, · · · , Yn), and W , U , V , S, and N are analogously defined. We

will denote the transpose of Y by Y
′
. To express

Wt = δN (B)Ut + δS(B)Vt (5)

in matrix form we need to define further differencing matrices ∆N and ∆S with row entries δN
i−j+dN

and δS
i−j+dS

given by the coefficients of δN (z) and δS(z) respectively, which are (n− d)× (n− dS)

and (n− d)× (n− dN ) dimensional. It follows from Lemma 1 of McElroy and Sutcliffe (2006) that

∆ = ∆N∆S = ∆S∆N . (6)

Then we can write down the matrix version of (5):

W = ∆NU + ∆SV (7)

For each 1 ≤ t ≤ n, the minimum mean squared error signal extraction estimate is Ŝt = E[St|Y ].

This can be expressed as a certain linear function of the data vector Y when the data are Gaussian.

This estimate is also the minimum mean squared error linear estimate when the data is non-

Gaussian. For the remainder of the paper, we do not assume Gaussianity, and by optimality we

always refer to the minimum mean squared error linear estimate. Writing Ŝ = (Ŝ1, Ŝ2, · · · , Ŝn)
′
,

the coefficients of these linear functions form the rows of a matrix F :

Ŝ = FY

4



The last row of F , for example, corresponds to the concurrent filter, i.e., the one-sided filter used

to extract a signal at “time present.” Due to symmetry properties of F (discussed in Section 4.1

below), this concurrent filter is the reverse of the first row of F .

For any random vector X, let ΣX denote its covariance matrix. If the process {Xt} is weakly

stationary, then the covariance matrix ΣX is symmetric Toeplitz, i.e., the ijth entry only depends

on i− j. With this notation, we can now state the signal extraction formulas.

Theorem 1 Suppose that Assumption A holds for the model decomposition (1), that δN and δS

share no common zeroes, and that {Ut} and {Vt} are mean zero weakly stationary, uncorrelated with

one another, and purely nondeterministic. Then the minimum mean square error linear estimate

of S is given by Ŝ = FY , where

F =
(
∆S

′
Σ−1

U ∆S + ∆N
′
Σ−1

V ∆N

)−1
∆N

′
Σ−1

V ∆N . (8)

The covariance matrix of Ŝ − S is given by M−1, where

M = ∆S
′
Σ−1

U ∆S + ∆N
′
Σ−1

V ∆N . (9)

It also follows from our assumptions that all matrix inverses exist.

Remark 1 When the signal is stationary these formulas reduce to (so ∆N = ∆N = ∆)

F = ΣS∆
′
Σ−1

W ∆

M−1 = ΣS − ΣS∆
′
Σ−1

W ∆ΣS

(cf. Bell and Hillmer (1988) and Bell (2004)). Likewise, when the noise is stationary we have

F = ΣN∆
′
Σ−1

W ∆

M−1 = ΣN − ΣN∆
′
Σ−1

W ∆ΣN

and ∆S = ∆S = ∆. These formulas are proved by simply manipulating (8) and (9), using the fact

that

(1 + ΣS∆
′
Σ−1

V ∆)
−1

= 1− ΣS∆
′
Σ−1

W ∆.

Remark 2 The assumption that {Ut} and {Vt} are weakly stationary in Theorem 1 can be relaxed

somewhat. In order to implement (8) and (9) it is not necessary that ΣU and ΣV be Toeplitz, only

invertible. For example, Nguyen, Bell, and Gomish (2004) discuss models for a sampling error

component with variances that evolve over time, yielding a non-Toeplitz covariance matrix. In

particular, suppose that the noise is a sampling error component given by Nt = htet, where ht is a

positive deterministic quantity that generates a heteroscedastic effect, and et is a stationary time
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series, e.g., an AR(2). Then we can write ΣN = D(h)Σe D(h), where D(h) denotes a diagonal

matrix with entries given by h1, h2, · · · , hn, and Σe is the Toeplitz covariance matrix of {et}. Then

ΣN is invertible, with inverse given by

Σ−1
N = D(h)−1 Σ−1

e D(h)−1.

Bell (2004) also discusses seasonal heteroscedasticity models, where the differenced seasonal com-

ponent has a non-Toeplitz covariance matrix. Theorem 1 still applies in these sorts of situations.

Since the matrices in M are roughly of dimension equal to the sample size, their inversion will

not be overly burdensome. More precisely, the computation of Σ−1
U involves the inversion of a

(n− dS)-dimensional matrix; when {Ut} is stationary, the Toeplitz structure of ΣU can be utilized

so that its inversion requires order n2 operations – see Golub and Van Loan (1996). Then to find a

particular entry of M−1, we can use the LU decomposition (Golub and Van Loan (1996), p.121),

obtaining the result in O(n3) operations. Hence, the error covariance matrix M−1 can be computed

fairly quickly, and the procedure is easy to implement on a computer (see the discussion in Section

5.1). In contrast, a state space approach will usually be faster (as will be the implementation of

the Wiener-Kolmogorov filter in SEATS), which is important for large sample sizes (see de Jong

and MacKinnon (1988) and Durbin and Quenneville (1997) for details). The main advantage in

the matrix approach lies in the ease of implementation.

Note that if we have any new “signal” defined by HS, where H is a 1 × n dimensional matrix,

then it will be estimated by the matrix HF , and will have error covariance matrix HM−1H
′
.

This calculation will potentially involve all the entries of M−1, not just the near-diagonal entries

that state space smoothing algorithms are capable of producing. Applications that require a full

knowledge of M−1 are benchmarking (Durbin and Quenneville, 1997), revision statistics, growth

rates, and signal extraction diagnostics (Findley, McElroy, and Wills, 2004).

3 Component Forecasts

We now present an extension of these matrix formulas to the forecasting of an unobserved com-

ponent. More precisely, suppose that it is desired to estimate some future values of the signal,

denoted by Sf = (Sn+1, · · · , Sn+h)
′
(the f subscript denotes the “future”), but as before only the

data Y = (Y1, · · · , Yn)
′
are available. As a related problem, we first consider the linear projection

of Sf onto S = (S1, · · · , Sn)
′
, following Bell (2004). The optimal (as always, this signifies the

minimum mean squared error among linear estimates) estimate is given by

Ŝf = DS. (10)
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Here D is the h × n matrix defined by (11) below. We arrive at the formula for D through the

following discussion, which introduces some notation that we need for Theorem 2. As in Bell (2004),

we first consider the equation

∆̃S

[
Sp

Sf

]
=

[
Sp

Uf

]
,

where Sp = (Sn+1−dS
, · · · , Sn)

′
and Uf = (Un+1, · · · , Un+h)

′
(here the p subscript refers to the

“present”). The matrix ∆̃S is a lower triangular matrix defined by

∆̃S =

[
1dS

0dS×h

∆S

]
,

where ∆S is h × (dS + h) dimensional. Thus ∆̃S is square of dimension dS + h, and is invertible

(because it is unit lower-triangular). Next we compute the optimal estimate of Uf given U , which

will be denoted by Ûf . Let the covariance matrix of (U
′
, U

′
f ) be subdivided into four portions:

Σ(U,Uf ) =

[
ΣU ΣUUf

ΣUf U ΣUf

]
,

where ΣUUf
denotes E[UU

′
f ], and so forth. Then Ûf is given by (cf. formula (12.28) of Bell (2004))

Ûf = ΣUf UΣ−1
U U.

So we define the matrix D by the formula

D = [0h×dS
1h]∆̃−1

S

[
0dS×(n−dS) 1dS

ΣUf UΣ−1
U ∆S

]
. (11)

This is a simple matrix approach to forecasting nonstationary processes. With this notation, we

can state the main theorem for estimating future values of an unobserved component.

Theorem 2 Suppose that Assumption A holds for the model decomposition (1), that δN and δS

share no common zeroes, and that {Ut} and {Vt} are mean zero weakly stationary, uncorrelated with

one another, and purely nondeterministic. Then the minimum mean square error linear estimate

of Sf given Y is Ŝf = DFY , where F is given by (8) and D is given by (11). In addition,

[
Ŝ

Ŝf

]
=

[
1n

D

]
FY

has error covariance matrix [
1n

D

]
M−1

[
1n D

′]
+

[
0 0

0 G

]

where G is the covariance matrix of DS − Sf , which is given in (20) below.
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Remark 3 Similar approaches can yield backcast formulas, as well as estimates of unobserved

components at time points where some of the observed data is missing. For the backcasting case,

it is convenient to place the initial values at the end of the series and reverse the discussion. For

both of these problems, the derivation is quite a bit more complicated.

The method of Theorem 2 allows for the forecasting of future values of an estimated signal.

For example, if one is interested in future values of an unobserved trend or cycle or nonseasonal

component, its optimal forecasts can be estimated in this way. A quite particular application comes

from the literature on growth rates, where the growth rate over an interval p of a signal of interest

is defined by St+p − St−p, for example. This can be considered a “centered” measure of the rate

of growth of the signal at time t (whereas St − St−p would be an off-center measure of the growth

rate of the signal at time t). In the econometrics literature, interest often focuses on growth rates

at the concurrent time point n, in which case the quantity of interest is Sn+p − Sn−p, where data

up to time n is available. This would be estimated (setting h = p) via

Ŝn+p − Ŝn−p = (en+p − en−p)
′
[

1n

D

]
FY

where ej is the vector with jth coordinate 1 and 0 elsewhere. The error covariance matrix is easily

obtained from this formula.

4 Theoretical Applications of (8)

The matrix formula (8) shows us, writing F = Q∆N for Q = M−1∆
′
NΣ−1

V , that filtering with

F first involves applying the noise differencing matrix ∆N to the data Y . This reduces the noise

component N to stationarity, but the signal will not be transformed to stationarity, since no zeroes

of δS are shared by δN . It is intuitive that the signal extraction filters for every time point t

involve differencing the noise component and passing the signal component; of course, the signal is

altered by the filtering, but its nonstationarity is preserved. Below, some concrete applications of

the matrix approach are given.

4.1 Symmetry Properties

When {Ut} and {Vt} are weakly stationary, both F and M−1 have an interesting symmetry

property; namely, the ith row is the reverse of row n− i + 1. Define the transverse transpose of a

square matrix to be the matrix obtained by flipping the entries about the diagonal running from

lower left to upper right. For any n-dimensional square matrix A, this transverse transpose is given

by A∗ij = An−j+1,n−i+1. It is easy to show that (i) (AB)∗ = B∗A∗ and (ii) (A−1)∗ = (A∗)−1. Then
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the above symmetry property is simply the statement that F ∗ = F
′
(and similarly for M−1). But

this is easily verified using the above two properties of transverse transpose, along with
(
∆
′
NΣ−1

V ∆N

)∗
= ∆

′
NΣ−1

V ∆N (12)

(and similarly for ∆
′
SΣ−1

U ∆S). This identity (12) relies on the special properties of the matrices ∆N .

Consider the n× n matrix ∆̃N with entry ij given by δN
i−j , so that [0(n−dN )×dN

1n−dN
]∆̃N = ∆N .

The dimension subscripts will be left off for brevity. Now ∆̃N is Toeplitz, and note that A∗ = A

for any Toeplitz matrix (as mentioned in Remark 2 above, (8) may hold when ΣU and ΣV are not

Toeplitz, and in this case the above symmetry properties of F and M−1 need not be true). We can

write

∆
′
NΣ−1

V ∆N = ∆̃
′
N

[
0 0

0 Σ−1
V

]
∆̃N .

Applying the ∗ operator yields

(
∆
′
NΣ−1

V ∆N

)∗
= ∆̃∗

N

[
Σ−1

V

∗ 0

0 0

]
(∆̃

′
N )

∗
= ∆

′
NΣ−1

V ∆N ,

where in the last equality we have used the properties (i) and (ii) above, and the easily verified

property that [1 0]∆̃
′
N = ∆N . This verifies (12).

It follows that if n is odd, the “central” filter for row (n+1)/2 is a reverse of itself, which implies

that it is symmetric. Also since M−1 is the covariance matrix of the signal extraction errors, it

follows from (9) that the mean squared errors (which are the diagonal entries of M−1) have the

symmetry property E(Ŝt − St)
2

= E(Ŝn−t+1 − Sn−t+1)
2

for each t (see Figures 2 and 6). It is not

clear that these symmetry properties can be easily obtained from state space algorithms.

4.2 Fundamental Zeroes of the Filter Transfer Functions

The formula (8) for the signal extraction filter matrix F allows us to derive some important

properties in the frequency domain. The lth row of F contains the coefficients of the filter that

produces Ŝl. The frequency response function of this filter is

Hl(λ) =
n∑

j=1

Flje
−i(l−j)λ = e−ilλ

n∑

j=1

Flje
ijλ (13)

for λ ∈ [−π, π] and i =
√−1 (see Pollock, 1999). From Hl, one can easily obtain the gain

Gl(λ) = |Hl(λ)| and phase function φl(λ) = tan−1(ImHl(λ)/ReHl(λ)), which is well-defined when

Hl(λ) 6= 0 (see Findley and Martin (2006) for a similar treatment). Writing F = Q∆N as above,

we have

Hl(λ) =
n∑

k=1

Qlk

n∑

j=1

δN
k−j+dN

ei(j−l)λ = e−ilλ
n∑

k=1

Qlke
ikλδN (e−iλ).
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In other words, the frequency response for row l of F is given by the product of the frequency

responses for δN (z) and row l of Q. Hence Gl is given by the product of the gain functions for

δN (z) and row l of Q, and φl is given by the sum of the corresponding phase functions. In this

manner, Appendix D of Findley and Martin (2006) computes continuous phase and phase delay

functions for model-based concurrent seasonal adjustment and trend filters. In the examples that

Findley and Martin (2006) consider, the phase function for δN (e−iλ) is simple to write down, and

can be continuously defined at the noise frequencies corresponding to the zeroes of δN (z) on the unit

circle. The phase function for row l of Q is well-defined everywhere for many examples, and hence

can be separately calculated and added to the phase function of δN (e−iλ), yielding a continuous

phase function at all frequencies.

The calculations required to produce the phase functions of Findley and Martin (2006) depend

on knowing Q in the product F = Q∆N . But Q cannot be obtained from the other approaches

discussed in this paper. That is, neither the state space approach nor the method of SEATS

(i.e., application of the method of Tunnicliffe-Wilson to obtain the same filter as that of the bi-

infinite sample Wiener-Kolmogorov signal extraction filter applied to data extended by forecasts

and backcasts) can produce the matrix Q.

5 Empirical Illustrations

5.1 A Note on Efficient Computation of F and M

An alternative “square root information” approach to the formulas for F and M−1 is given here,

which has certain computational advantages. Let TU = Σ−1/2
U and TV = Σ−1/2

V be square matrices

obtained from Cholesky decompositions of Σ−1
U and Σ−1

V respectively. Then define the 2n−(dU +dV )

by 2n-dimensional matrix T by

T =

[
TU ∆S 0

−TV ∆N TV ∆N

]
,

for which T [S
′
Y
′
]
′
consists of linear combinations of U and V . Next, form the QR decomposition

of T (Golub and Van Loan, 1996), where Q is square and orthonormal, and R is upper triangular.

Writing R in block form, we have

R =

[
R11 R12

0 R22

]
.

Then it is easy to show that F = −R−1
11 R12 and M = R

′
11R11. Since R11 is upper triangular, both

F and M−1 can be speedily computed once R is determined. The matrices TU and TV are readily

determined (e.g., use of the Durbin-Levinson algorithm – Brockwell and Davis, 1991). The QR
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decomposition takes about n3 operations, and is quite stable numerically. Thus for computational

purposes, this approach is to be recommended (an alternative proof of Theorem 1 can also be

derived). In summary, the procedure is:

1. Obtain TU and TV

2. Construct T

3. Get R from the QR decomposition of T

4. Set F = −R−1
11 R12 and M = R

′
11R11.

This approach can also be generalized to handle forecasting and backcasting.

5.2 Estimating Component Models

In order to implement the results of Theorem 1, it is necessary to obtain the component models

for St and Nt from the data. Together with (2), specifying ARMA models for Ut and Vt will fully

specify an ARIMA model for St and Nt. In the structural approach of Harvey (1989), the ARMA

model for Wt is determined by the component models. The Gaussian likelihood for Wt depends

directly on ΣW , which in turn depends on the ARMA models for Ut and Vt. Therefore maximization

of the likelihood provides estimates of the ARMA parameters for both Ut and Vt. This approach

differs from the canonical decomposition technique of Hillmer and Tiao (1982), where an ARMA

model for Wt is specified first; one estimates the ARMA parameters for Wt, and then one tries to

decompose the model for Wt into component models, using (5).

Of course, the specification of component models is simply a basic requirement of model-based

signal extraction. Oftentimes, however, the observed data is modeled as the sum of several (i.e.,

more than two) unobserved ARIMA components, and the signal and noise components actually

consist of a partition of these various unobserved components; recall the examples (3) and (4) of

Section 2. At first, it seems that one would have to determine ARIMA models for St and Nt from

all the various ARIMA models for the unobserved components – a procedure that requires spectral

factorization (Hillmer and Tiao (1982) and Burman (1980)) and a substantial amount of program-

ming. However, the actual component models are not needed; rather only their autocovariance

generating functions are required. In SEATS one can obtain the Wiener-Kolmogorov signal ex-

traction filter directly from a knowledge of the component models, and one need not determine an

exact ARIMA model for signal and noise (though SEATS does this for informational purposes).

Similarly in the matrix approach, we see that (8) only depends on the autocovariances of signal

and noise, and these can be quickly obtained directly from the ARIMA models for the unobserved

components, thus circumventing the need to obtain ARIMA models for St and Nt. We illustrate

this through an example.
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Consider the unobserved components model (4) of Section 2, and suppose our signal of interest

is the cycle. For concreteness, suppose that the component models are given by

φ(B)Ct = θC(B)εCt

(1 + B + · · ·+ B11)St = θS(B)εSt

(1−B)2Tt = θT (B)εTt

where the irregular It is white noise, and all the εt sequences are white noise sequences (that are

independent of each other). Since Ct is the signal, the noise is

Nt = St + Tt + It.

The ARIMA model for the noise is determined by multiplying all differencing polynomials from

its constituent parts, and applying this product to Nt. Then its MA polynomial is determined

through algebra and spectral factorization techniques:

(1−B)(1−B12)Nt (14)

= (1−B)2θS(B)εSt + (1 + B + · · ·+ B11)θT (B)εTt + (1−B)(1−B12)It

The right hand side can be re-expressed, using spectral factorization techniques, as a single MA

process, written as θN (B)εN
t . Now in order to avoid the labor of spectral factorization, observe

that we only need to know the autocovariances of Vt = (1−B)(1−B12)Nt, not the entire ARIMA

model for Nt. Re-expressing (14) in matrix form yields the equations

V = ∆NN = ∆T G + ∆SH + ∆NI
G = ∆SS
H = ∆T T .

Here the differencing matrices are defined in a fashion similar to those in Section 2. Now since the

vectors G, H, and I are uncorrelated with each other by assumption, we obtain

ΣV = ∆T ΣG∆
′
T + ∆SΣH∆

′
S + ∆ΣI∆

′
.

Of course since Gt = θS(B)εSt and Ht = θT (B)εTt , their autocovariances are easily obtained by

standard algorithms (see Tunnicliffe-Wilson, 1979). In this way ΣV is determined. This provides

a flexible procedure, because if we now are interested in another signal, we can construct a new F

from only a knowledge of the autocovariances of the differenced unobserved components.

More generally, suppose the noise (though the same argument applies to the signal) can be

expressed as the sum of m unobserved components C(i)
t for 1 ≤ i ≤ m. Suppose that each of these

12



components satisfies δ(i)(B)C(i)
t = ν

(i)
t , where δ(i)(z) is a differencing polynomial and the ν

(i)
t ’s are

mean zero weakly stationary processes that are uncorrelated with one another. If we know the

autocovariance matrix Σν(i) of ν(i) and there is no z such that δ(i)(z) = 0 for all i, then we can

construct the covariance matrix for the differenced noise as follows. Let δ
(i)(z) = Πj 6=iδ

(j)(z); then

we have

Vt = Πn
j=1δ

(j)(B)Nt =
m∑

i=1

δ
(i)(B)ν(i)

t . (15)

Then, letting ∆(i) be defined as previous differencing matrices but with row entries given by δ
(i),

we have

ΣV =
m∑

i=1

∆(i)Σν(i)∆
(i)
′
. (16)

The condition that there is no common zero among the δ(i)(z) polynomials ensures that ΣV is

invertible. Imposing this condition is not restrictive, since the presence of such common factors

could be canceled out of the equation (15). If any of the m components are stationary, then the

corresponding δ(i)(z) = 1.

5.3 Examples

We now describe some examples of the application of formula (8). Consider the series of U.S.

Retail Sales of Shoe Stores data from the monthly Retail Trade Survey, from 1984 to 1998 (so

n = 170). The logarithms of the series can be modeled with an airline model (Brockwell and Davis,

1991). Then applying (3) to the logged time series Yt, we can obtain estimated component models

for seasonal St, trend Tt, and irregular It given as follows:

(1−B)(1−B12)Yt = (1− .57B)(1− .34B12)εY
t , σ2

εY = .00096 (17)

r(B)St = (1 + 1.11B + .96B2 + .74B3 + .47B4 + .20B5 − .03B6 − .23B7

− .36B8 − .47B9 − .51B10 − .68B11)εSt , σ2
εS = .000093

(1−B)2Tt = (1 + .09B − .91B2)εTt , σ2
εT = .000018

σ2
I = .00026

Here the seasonal differencing operator is r(B) = 1 + B + · · · + B11, and the trend differencing

operator is (1−B)2. The εt sequences are white noise innovation series. The parameters for the

data model were found via maximum likelihood, and the component models were found via the

canonical decomposition (Hillmer and Tiao, 1982). If we wish to seasonally adjust the data, the

noise is the seasonal St and the signal is the trend-irregular Tt + It; hence the signal differencing

operator is δS(B) = (1−B)2, and the noise differencing operator is r(B). Then the corresponding

differencing matrices are denoted by ∆T and ∆S respectively. The covariance matrices for differ-

enced signal and noise are Σ∆T (T +I) and Σ∆SS respectively, which can be computed from (17)
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directly. In particular, letting G = ∆T T , we have from (16) Σ∆T (T +I) = ΣG + ∆T ΣI∆
′
T . The

signal extraction matrix is given by

F =
(
∆
′
T Σ−1

∆T (T +I)∆T + ∆
′
SΣ−1

∆SS∆S
)−1

∆
′
SΣ−1

∆SS∆S ,

where all autocovariances can be obtained from (17) via algorithms in Tunnicliffe-Wilson (1979).

In Figure 1 we plot the logged series together with the estimated seasonally adjusted data. The

seasonal adjustment is enclosed by confidence bands, given by plus and minus twice the square

root of the mean squared error at each time point. Figure 2 displays the mean squared error curve

by itself; note the increased error at the beginning and end of the series. Next, Figure 3 displays

seasonal adjustment filters for three time points: t = 86 (denoted by “Central”), t = 158 (denoted

by “Preliminary”), and t = 170 (denoted by “Concurrent”). Now by applying the material from

Section 4.2, the squared gain of the filter at row h is given by

G2
l (λ) =




n∑

j=1

Flj cos(jλ)




2

+




n∑

j=1

Flj sin(jλ)




2

.

Plots of the squared gains over [0, π] for the Central, Preliminary, and Concurrent filters are given

in Figure 4. For a discussion of the gain and phase properties of finite-sample signal extraction

filters, see Findley and Martin (2006). As Section 4.2 establishes, the squared gains are zero at

the zeroes of r(eiλ), which for λ ≥ 0 are at 2πk/12 for k = 1, 2, · · · , 6. Thus the filters suppress

variance components with periods of 12, 6, 4, 3, 2.4, and 2 months.

As a second example we consider the same series, but now our signal of interest is the trend Tt, so

that the noise is the seasonal-irregular St+It. If we wish to estimate the trend the signal differencing

operator is (1−B)2 and the noise differencing operator is r(B). Then the corresponding differencing

matrices are denoted by ∆T and ∆S respectively. The covariance matrices for differenced signal

and noise are Σ∆T T and Σ∆S(S+I) respectively, which can be computed from (17). Indeed, letting

H = ∆SS and using (16) we have Σ∆S(S+I) = ΣH + ∆SΣI∆
′
S . The signal extraction matrix is

given by

F =
(
∆
′
T Σ−1

∆T T ∆T + ∆
′
SΣ−1

∆S(S+I)∆S
)−1

∆
′
SΣ−1

∆S(S+I)∆S ,

where all autocovariances can be obtained from (17) via algorithms in Tunnicliffe-Wilson (1979).

In Figure 5 we plot the logged series together with the trend estimate. This estimate is enclosed by

confidence bands, given by plus and minus twice the square root of the mean squared error at each

time point. Figure 6 displays the mean squared error curve alone. Next, Figure 7 displays Central,

Preliminary, and Concurrent trend filters for three time points. As in the previous example, we

can compute the squared gains, which are displayed in Figure 8.
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In comparing Figures 1 and 5, observe that the trend estimate is much smoother than the sea-

sonally adjusted; this is accounted for by the presence of the irregular component in the seasonally

adjusted component. The symmetry of the mean squared errors is apparent from Figures 2 and 6.

The up-turning of the mean squared error at the beginning and end of the sample is a well-known

effect, and is essentially due to the increased error in estimating the signal at the boundary of the

sample. In both Figures 3 and 7 we see that the filter coefficients contain negative spikes at seasonal

lags, which effect the suppression of the seasonal component. The greater width of the central spike

in the trend filters of Figure 7 allows for inclusion of the component and exclusion of the irregular.

Finally, the squared gain plots of Figures 4 and 8 show the attenuation of seasonal frequencies; for

the trend filters, this is combined with a low-pass filter effect. In comparing central, preliminary,

and concurrent filters, there is some variation in trough width among the squared gain plots. For

further study of such finite sample filters and their frequency domain properties, see Findley and

Martin (2006).
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6 Appendix

Proof of Theorem 1. First note that all covariance matrices for U , V , and W are invertible,

because the stationary series {Ut}, {Vt}, and {Wt} are assumed to be purely nondeterministic – see

Proposition 5.1.1 of Brockwell and Davis (1991). Let 1n denote the n-dimensional identity matrix,

and let F have the stated form (8). First we show that M is invertible by showing that Mx = 0

implies that x = 0. If a vector x were in the null space of M , then due to its symmetry and non-

negative definiteness, x would have to be in the null space of both ∆S and ∆N . As demonstrated

in Lemma 2 of McElroy and Sutcliffe (2006), x must be zero because δS(z) and δN (z) have no

common zero. Originally, we derived (8) from formulas of Bell and Hillmer (1988). Here, to save

space we simply verify that Ŝ defined by (8) has the defining property of the optimal estimate,

namely that the error process ε = Ŝ−S is orthogonal to all linear combinations of the observations

Y (the original proof is in McElroy (2005)). Now

ε = FY − S = (F − 1n)S + FN = M−1∆
′
NΣ−1

V V −M−1∆
′
SΣ−1

U U, (18)
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and so is uncorrelated with the initial values Y∗ by Assumption A. In addition, by (7) and (6) we

have

E[εW
′
] = M−1∆

′
NΣ−1

V ΣV ∆
′
S −M−1∆

′
SΣ−1

U ΣU∆
′
N = M−1(∆−∆) = 0.

Since Y can be expressed in terms of its initial values Y∗ and W (see Bell (2004), for example), this

shows that ε is orthogonal to any linear combination of Y . Moreover, we can use (18) to compute

E[εε
′
] = M−1. Hence the theorem is proved. 2

Proof of Theorem 2. We will work with the full estimated component (Ŝ
′
, Ŝ

′
f ). As in the proof

of Theorem 1, it suffices to demonstrate that the error process is orthogonal to Y . Now from (18)

and (10)

ε =

[
Ŝ

Ŝf

]
−

[
S

Sf

]

=

[
1n

D

]
M−1∆

′
NΣ−1

V V −
[

1n

D

]
M−1∆

′
SΣ−1

U U +

[
0

DS − Sf

]
. (19)

We next compute the error DS − Sf , using the partition

∆̃−1
S =

[
1dS

0dS×h

A B

]
.

B is a square matrix of dimension h and lower triangular, with entries given by the coefficients of

1/δS(z) (see Bell, 2004). Hence we have

DS − Sf = [0h×dS
1h]

(
∆̃−1

S

[
Sp

ΣUf UΣ−1
U ∆SS

]
−

[
Sp

Sf

])

= [0h×dS
1h]∆̃−1

S

([
Sp

Ûf

]
− ∆̃S

[
Sp

Sf

])

= [AB]

([
Sp

Ûf

]
−

[
Sp

∆SSf

])

= [AB]

[
0

Ûf − Uf

]

= B(Ûf − Uf ).

Note that if the initial values of S, say S∗, were assumed to be uncorrelated with U , then the above

calculation shows that DS is the optimal linear estimate of Sf . However, this assumption on S∗ is

typically not true in our context, so we cannot conclude that DS is an optimal estimate of Sf given

S. However, by Assumption A it is uncorrelated with both Y∗ and W , and thus DS is an optimal

estimate of Sf given Y . Now (19) shows that each of the three terms is mutually orthogonal: as
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in the proof of Theorem 1, W is orthogonal to the sum of the first two terms, and in addition W

is orthogonal to DS − Sf , since Ûf −Uf only depends on {Ut} and is orthogonal to U . Thus W is

uncorrelated with the error process. Finally, since ε is a linear function of only Ut and Vt, it is also

uncorrelated with Y∗ by Assumption A. Since the error process is orthogonal to Y , the filter must

be optimal.

For the mean squared error calculation, we compute E[εε
′
]. The only difficulty is computing the

cross-covariance between the second and third terms of (19). But since DS−Sf = B(Ûf −Uf ), we

see that U is uncorrelated with DS−Sf , so that the second and third terms of (19) are orthogonal.

Hence the error covariance matrix has the stated form, with

G = B
(
ΣUf

− ΣUf UΣ−1
U ΣUUf

)
B
′
, (20)

utilizing (12.30) of Bell (2004). This concludes the proof. 2
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Figure 1: Logarithm of U.S. Retail Sales of Shoe Stores with seasonal adjustment. Error bands are

given by plus and minus two standard deviations.
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Figure 2: Mean squared error of the seasonal adjustment as a function of time in the sample.
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Figure 3: Seasonal adjustment filter coefficients for central, preliminary, and concurrent filters.
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Figure 4: Squared gain plots for seasonal adjustment filters. Top is central, middle is preliminary,

and bottom is concurrent.
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Figure 5: Logarithm of U.S. Retail Sales of Shoe Stores with trend estimate. Error bands are given

by plus and minus two standard deviations.
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Figure 6: Mean squared error of the trend estimate as a function of time in the sample.

Index

0 50 100 150

−0
.1

0.
0

0.
1

0.
2

0.
3

Central
Preliminary
Concurrent

Trend Filter Coefficients

Figure 7: Trend filter coefficients for central, preliminary, and concurrent filters.
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Figure 8: Squared gain plots for trend filters. Top is central, middle is preliminary, and bottom is

concurrent.
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