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Abstract 

 
Loglinear modeling methods have become quite 
straightforward to apply to discrete data X.  A 
good-fitting loglinear model can be used to 
generate synthetic copies of X1, …, Xn of X that 
preserve analytic properties but may allow re-
identification of small cells.  With fitting 
algorithms that use more general convex constraints 
and are designed to deal with missing data, we are 
able to disperse the counts associated with small 
cells over other cells in a manner that reduces re-
identification risk while still maintaining most 
analytic properties.  
 
Keywords: Data Quality, Loglinear Model Fit, 
Missing Data, Convex Constraints 
 
 

1.  Introduction 
 
   A primary purpose of collecting data is to 
produce a data file that can be used for two or more 
analytic purposes.  The methods for ‘cleaning up’ 
the data include edit/imputation for removing 
‘implausible combinations of values of fields’ and 
for imputing values that are consistent with 
underlying uses of the data.  The intention of the 
‘clean-up’ procedures is to produce data that are ‘fit 
for use.’  In an ideal world, a final data file that has 
gone through extensive ‘clean-up’ could be used for 
several (or all) sets of analyses. 
   Original, ‘cleaned-up’ microdata are considered 
much more useful for analytic purposes, 
particularly ad hoc ones, than tabulations from 
microdata that are in publications.  There is an 
extensive literature on methods for producing 
public-use microdata.  The methods are subdivided 
into two subsets: (1) those that are easy to 
implement (typically performed in statistical 
agencies) and (2) those that are more difficult to 
implement due to the need for greater modeling 
skills and sophisticated programming algorithms.  
Few, if any, of the easy-to-implement methods have 
been justified in terms of producing analytically 
valid data (Winkler 2004, 2007b).  By an 
analytically valid file, we mean a file that will 
allow the approximate reproduction of two or more 
sets of analyses that could be produced from 
original data. 

   If the data are discrete and there are a moderate 
number of variables (10-20), then it is 
straightforward to apply loglinear modeling 
methods to obtain a good fitting model.  If synthetic 
data are drawn from the model, then most analytic 
properties will be maintained in the synthetic data.  
For the analytic properties, we are most concerned 
with the larger cells and largest margins.  If small 
cells are varied slightly in a manner that does not 
substantially distort most margins, then the analytic 
properties may not change much.  We make the 
assumption that small cells (say those having 
counts below three) are where re-identification is 
easiest.   
   We need an overall modeling/edit/imputation 
framework that includes that standard loglinear 
methods, standard methods for dealing with 
missing data (Little and Rubin 2002), methods of 
dealing with structural zeros, and methods of 
general convex constraints.  Structural zeros are 
cells that edit restraints force to have counts of 
zero.  As an example, we do not want to have cells 
for which a child of less than 15 is married.  In 
creating the framework, Winkler (2007a) used 
general discrete editing methods (Winkler 1997) to 
create a structure into which the missing-data-
modeling methods of Little and Rubin (2002) could 
be imbedded.  Winkler (1993) showed that similar 
methods and algorithms for unsupervised learning 
of mixture models under a variety of constraints 
could be used for record linkage.  D’Orazio, Di Zio, 
and Scanu (2006) demonstrated that the basic 
algorithms of Winkler (1993) could also be used for 
statistical matching under convex constraints.  The 
framework can be used for creating better quality 
data that meets a variety of analytic constraints 
(Winkler 2003, 2007a; D’Orazio, Di Zio, and 
Scanu 2006).  In this paper we use the framework 
for the special case of creating the desired models 
from which synthetic data can be created.  If we use 
these generalized methods and software for the 
creation, clean-up, and understanding of the 
original non-public data X, then it is quite 
straightforward to use the methods and software for 
the creation of the models for the synthetic data. 
    We create a model M2 from which we can draw 
synthetic data X2 in several steps.  In the first step, 
we merely create a model M with the set of key 
interactions that fits the original data X well.  
Synthetic data X0 drawn from M will likely 



approximately reproduce many small cells.  The 
next model M1 uses the same interactions as model 
M but ‘disperses’ the observed counts from the 
small cells across both the small cells and the 
sampling zero cells.  A cell that is zero in an 
observed file (sample) but may be nonzero in a 
large corresponding population file is referred to as 
a sampling zero.  In creating M1, we use standard 
missing data methods (Little and Rubin 2002) that 
keep the total count for the set of small cells and 
sampling zero cells approximately fixed.  This is 
intended to better preserve overall analytic 
properties.  Because resultant model M1 (from the 
final fitted solution) may still yield synthetic data 
X1 that allows some re-identification, we fit a 
second model that has convex constraints that 
control the size of the fitted counts in the final 
model M2.  The convex constraints can allow us to 
specify upper and lower bounds on the originally 
observed small cells and the original sampling 
zeros.  The model M2 still preserves overall 
analytic properties but significantly reduces the risk 
of re-identification with any synthetic data X2 that 
is drawn from M2. 
   The outline of this paper is as follows.  Following 
this introduction, we provide background on basic 
loglinear modeling and missing data methods and 
their extensions for general edit/imputation.  In the 
third (data and methods) section, we describe the 
extended loglinear methods for modeling with 
discrete data and how we can use convex 
constraints to restrict the upper and lower bounds in 
certain cells.  In the fourth section, we provide 
results demonstrating that the new methods yield 
models and synthetic data that quite accurately 
reproduce properties of the original, confidential 
data while reducing re-identification risk. The fifth 
section consists of discussion and the sixth section 
is concluding remarks.  
 

2.  Background 
 
   In this section we provide background on 
methods of creating loglinear model M (Bishop, 
Fienberg and Holland 1975) that are 
straightforward to apply to general discrete data.  
We also provide background on general methods of 
imputation and editing for missing data under 
convex constraints that extend the basic methods 
and can also be straightforward to apply.  By 
straightforward to apply we mean that the general 
methods and software can be applied without any 
modifications that are specific to a particular data 
file or analytic use. 
 

3.1  Loglinear Modeling and Creating Synthetic 
Data 
 
Standard references for loglinear modeling and 
categorical data analysis are Agresti (2007) and 
Bishop, Fienberg, and Holland (1975).   If Xi is a 
table of cell counts from a discrete population, then 
we are interested in finding a more parsimonious 
representation iX̂  of the table.  If table Xi has n = I 
× J × K cells, then we fit models via an iterative 
proportional fitting procedure (IPF) in which we fit 
to specific observed margins in cyclic order.  In this 
case, the general index i = (i, j, k).  The procedure 
is assured to increase likelihood and typically 
increases to a maximum likelihood estimate under a 
multinomial or Poisson model.  We will assume 
multinomial.   
   The original table has I × J × K-1 degrees of 
freedom.  The different fitted models will have 
fewer degrees of freedom.  If we fit an 
independence model, then we successively fit to the 
observed margins for each single variable and 
repeat until convergence.  If we fit using an all 2-
way interaction model, we fit successively to the set 
of margins determined by I × J, then I × K, then J × 
K and repeat in a cyclic manner.  In the original 
table Xi we can have sampling or structural zeros.  
A structural zero must stay at zero in any fitted 
model (Winkler 1990) whereas a sampling zero can 
become non-zero in the fitted model.  Instead of 
using counts for Xi , we might divide every cell 
count by the total to obtain a probability. 
   If the original table Xi has many cells with small 
counts, then we would expect any good-fitting 
model iX̂  to also have many cells with small 
counts.   If we draw a set of ‘synthetic’ records 
from the model iX̂ , then we expect that the 
synthetic data would allow reproduction of many 
analyses.  Because small counts may yield a few re-
identifications, the statistical agency may have a 
policy that every nonzero cell must have a count 
above a lower bound (say 3 or 5).  To a fitted model 
that that satisfies the basic interaction model and 
also lower bounds of cells, we might use convex 
constraints on complementary cells.  If the set of 
convex constraints is consistent with the interaction 
model and the set of structural zeros, then we 
would necessarily have a solution (Winkler 1990). 
   As an example, assume that I, J, K each take 
values 0 and 1 and that we have fit a 2-way 
interaction model.  In obtaining iX̂ , successively fit 

to the I × J, I × K, and J × K margins.  If P̂ (1,1,1), 



the probability associated with fitted cell (1,1,1), 
must be above a lower bound, then we can place 
restrictions (convex upper bound constraints) on P̂  
(1,1,0), P̂  (1,0,1), and P̂  (0,1,1) because P̂  
(1,1,1)+ P̂  (1,1,0) is fitted to the observed margin 
P(1,1,1)+P(1,1,0), and so on.  If certain fitted cells 
cannot be forced above an upper bound, then we 
might use a slightly ad hoc procedure of setting the 
fitted cell to zero and forcing certain 
complementary cells upward so that we still have a 
probability measure.  The synthetic data can be 
drawn from the resultant model.  We observe that 
the procedures allow us to place upper and lower 
bounds on the fitted values associated with certain 
cells or combinations of cells.   
 
2.2  Missing Data Imputation, Editing, and 
Convex Constraints 
 
   In this section we describe standard methods of 
creating a loglinear model Y (Bishop, Fienberg and 
Holland 1975) that is straightforward to extend to 
models that take account of edit restraints (Fellegi 
and Holt 1976).  If X is original data and Xi is a 
specific cell, then Xi is a structural zero or cell 
forbidden by an edit if its count must be zero.  With 
discrete data, Xi might be associated with a child of 
less than 16 years of age in a household who is 
married or a child of less than 22 who has a college 
postgraduate degree.  The theoretical justification 
connecting editing (structural zeros) with 
imputation as in Little and Rubin 2002 or general 
loglinear modeling is given in Winkler (2003, 1993, 
1990).   
   As a closely related case, original microdata X0 
might have been subject to a missing data modeling 
procedure to obtain completed data X1a (Little and 
Rubin 2002, section 13.4) or edit/imputation 
modeling procedure to obtain data X1b (Winkler 
2003) that represent original ‘cleaned-up’ 
microdata X.  The models are created under a 

missing-at-random assumption that is also assumed 
by hot-deck imputation methods.  The basic 
methods involve imputation only using the EM or 
various generalizations of EM (Meng and Rubin 
1993, Winkler 1993) that have been applied for 
modeling in the context of statistical matching 
(D’Orazio, Di Zio, and Scanu 2006) or 
edit/imputation (Winkler 2003) under either the 
linear constraints of loglinear modeling or more 
general convex constraints (Winkler 1990, 1993).  
New modeling and imputation software (Winkler 
2007a) can facilitate the modeling and imputation 
under a variety of constraints.  
  The missing data procedures allow us to disperse 
counts associated with ‘small’ cells to the small 
cells and the sampling-zero cells.  In the simplest 
situation, we may take the ‘observed’ count from 
the set of small cells and disperse it over all the 
small cells and the sampling-zero cells with 
straightforward missing data procedures as in Little 
and Rubin (2002).  We can associate given 
‘observed’ counts with a set of small cells with 
different sets of cells.  If we use the convex 
constraints, then we can place upper and lower 
bounds on the cells to which we are dispersing the 
observed counts. 
 

3.  Data and Methods 
 
In this section we describe the data of D’Orazio et 
al. and the modified methods that we use in 
creating a model M2 from which to create synthetic 
data X2. 
 
3.1  The Data of D’Orazio et al.   
 
    The data of D’Orazio, Di Zio, and Scanu (2006) 
is a sample of records from a large Italian survey 
for which only three fields were considered.  The 
fields are AGE, PRO (profession), and EDU 
(education).   

 
 
Table 1.   Response Categories for Fields 
_____________________________________________________________________ 
Fields                                     Transformed Response Categories 
_____________________________________________________________________ 
Age (AGE)                            “0”=15-17 years old; “1”=18-22; “2”=23-64; “4”=65+; 
 
Profession (PRO)                   “0”=Manager; “1”=Clerk; “2”=Worker 
 
Education (EDU)                  “0”=None or compulsory school; “1”=Vocational school; 
                                               “2”=Secondary school; “3”=Degree 
______________________________________________________________________ 



 
There are 48 (=4x3x4) data patterns of which many 
are structural zeros.  For instance, a person of age 
15-17 cannot have a college degree.  The sample 
size is 2313 that we give as a table of counts and 
then as a table of probabilities.   In Tables 2-10, we 
use a lexigraphic ordering in which (0,0,0)=0, 

(0.0,1)=1, …, (3,2,3)=47.  We obtain this with the 
mapping (a1,a2, a3)=a1*12+a2*4+a3*1.  The first 
row of the table is the set of cells 0-7; the second 
row is the set of cells 8-15, and so on.  We use ‘z’ 
to represent a structural zero that always has 
probability zero of being a positive value. 

 
 
Table 2.  Population Counts from Sample File 
        ________________________________________________________________ 
      z      z       z      z      z      z      z      z 
     15      0       z      z      z      z      z      z 
      z      1       8      z     27      7     12      z 
      z      z     142    220      z    123    653     87 
    759     90     143      2      z      z      4      5  
      z      0       3      0     12      0      0      0 
        ________________________________________________________________ 
 
 
Table 3.  Probabilities for Cells from Sample File 
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00649 0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00043 0.00346 0.0     0.01167 0.00303 0.00519  0.0 
  0.0     0.0     0.06139 0.09511 0.0     0.05318 0.28232  0.03761 
  0.32815 0.03891 0.06182 0.00086 0.0     0.0     0.00173  0.00216 
  0.0     0.0     0.00130 0.0     0.00519 0.0     0.0      0.0     
    _____________________________________________________________________________ 
 
The empirical data are useful due to having only 
three variables and 48 cells.  Because there are 23 
structural zeros, we do not have much flexibility in 
the fitting procedures.  With larger, more realistic 
situations the much smaller proportion of structural 
zeros will make the fitting much easier.  In table 3, 
the three small (risky) cells (17, 35 and 43) are 
marked in bold and the sampling-zero cells (9, 41, 
43, 45, 46, and 47) are marked in italics. 
   As a simple alternative that applies conventional 
loglinear software rather than the more general 
software used below, we modify cell counts in a 
manner that gives proportions that are similar to 
those in the original table, obtain a fitted solution, 
and can use the fitted solution in generating 
synthetic data.  We generate the synthetic data by 
drawing records from a table like Table 3 with 
probability proportional to the size of the 
probabilities in the table. 
 
3.2  Application of Methods of Edit/Imputation 
under Convex Constraints  
 
   In Table 2, we assume that there are three cells 
(each having count 3 or less) that we wish to 

protect from re-identification.  A simplistic method 
of protecting confidentiality might be to take the 
total of 6 from the three cells and disperse it equally 
among the three small cells and the six structural 
zeros.  If an intruder cannot decide which cells were 
small in the original, non-public file, then the 
intruder might not be able to re-identify.   
   In larger situations, we might wish to disperse 
each small cell over several cells in an overlapping 
manner.  To preserve analytic properties, we might 
use the ‘first dispersed’ array as the starting point in 
a general fitting procedure that fits the original 
interactions from the model for the original, non-
public data.  The intent is to better preserve analytic 
properties.  The general fitting procedure associates 
the total of six with the appropriate nine cells in a 
straightforward missing data fashion as in Little and 
Rubin (2002, Chapter 13) or more generally 
Winkler (1993, 2003, 2007a). 
    If the resultant fitted model still has small cells 
that correspond to small cells in the original data, 
then we may wish to use convex constraints to 
place a priori upper bounds on certain cells.  The 
main issue is whether the fitted model under the 
convex constraints still preserves the analytic 



properties quite well.  We observe that, if the 
initial, simple convex constraints do no preserve the 
analytic properties as well as we would wish, then 
we have considerable flexibility in applying more 
sophisticated convex constraints that may better 
preserve analytic properties (D’Orazio et al. 2006; 
Winkler 1993, 2007a). 
 

4.  Results 
 
In this section, we present results from fitting 
various loglinear models to the data of section 3.  
At the first level, it is straightforward to create 
synthetic data by drawing records from the model.  
The number of records in the synthetic data need 
not agree with the number of records in the original 
data used in creating the model.  Because our 

primary emphasis is on creating synthetic data that 
allows valid analysis (approximate recreation of the 
same models and important sufficient statistics), re-
identification can still be straightforward because 
some of the small cells in the synthetic data 
correspond exactly to small cells in the original, 
confidential data. 
   Tables 4 and 5 are obtained by fitting the (starting 
point) data of Table 3 using 2-way interactions and 
independence, respectively.  By cursory inspection, 
it is easy to see that the fit of Table 4 is quite close 
to Table 3 and the fit of Table 5 is quite poor.  The 
approximate Chi-square fits of table 4 are both 
slightly less than 1 which indicates a good fit (with 
the caveat that the Chi-square approximation is not 
always accurate when there are many small cells).    
 

 
 
Table 4.  Probabilities for Cells after 2-way Interaction Fitting 
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00649 0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00055 0.00335 0.0     0.01167 0.00291 0.00530  0.0 
  0.0     0.0     0.06128 0.09523 0.0     0.05306 0.28254  0.03750 
  0.32815 0.03902 0.06171 0.00086 0.0     0.0     0.00184  0.00205 
  0.0     0.0     0.00118 0.00011 0.00519 0.0     0.0      0.0     
    _____________________________________________________________________________ 
 
 
Table 5.  Probabilities for Cells after Independent Fitting 
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00611 0.00038 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00238 0.00743 0.0     0.01114 0.00069 0.00215  0.0 
  0.0     0.0     0.11904 0.03964 0.0     0.07607 0.22046  0.07342 
  0.33067 0.02044 0.06378 0.02124 0.0     0.0     0.00129  0.00043 
  0.0     0.00076 0.00238 0.00079 0.00358 0.00022 0.00069  0.00023     
    _____________________________________________________________________________ 
 
 
   Using either model (Table 4 or Table 5), we could 
draw 2313 records with a probability proportion to 
size.  In the first situation, analytic properties would 
be quite well preserved whereas, in the second 
situation, the analytic properties of the synthetic 
data would be very different from the original data.  
On average, the sampling mechanism preserves the 
probabilities in the cells.  The original data have 
substantial structural zeros (23 of 48 cells) that 
restrict the range of the solutions in certain cells.   
As an instance, cell 8=(0,1,3) has fitted value of 
0.0649 that equals the original population value. 
   By sampling probability proportional to size, we 
can approximately reproduce the probabilities in 

individual cells.  In particular, cell 39=(3,0,2) when 
sampled from either Table 4 or Table 5 will 
typically yield four or less records (0.00129*2313 ≈ 
3 0.00184*2313 ≈ 4).  If the statistical agency 
considers cells of size less than 5 a disclosure, then 
a disclosure occurs whether the synthetic data 
provide good analytical properties or not. 
   If the agency decides that all probabilities must be 
above 0.00173 (corresponding to 4 or more in every 
cell), then fitting can be done using convex 
constraints.  In particular, we need that 
P(17)=P(1,1,1)>=0.00173 and 
P(35)=P(2,2,3)>=0.00173 that are the two small, 
nonzero cells from the original population.  To do 



this, we need that P(1,1,2)<=0.00216, 
P(1,2,1)<=00.173, and P(2,1,1)+P(3,1,1)<=0.5145 
to assure that cell P(17)>=0.00173.  To assure that 
P(35)>=0.0173, we need 
P(2,2,1)+P(2,2,2)<=0.09875, 
P(2,0,3)+P(2,1,3)<=0.13099, and unfortunately 
P(3,2,3)<= -0.00173.  In the original population 
P(2,2,3)+P(3,2,3)=0.00086+0.00000.  Since we 
must fit to margin P(.,2,3)=0.00086 there is no way 
to put an upper bound on P(3,2,3) that assures that 
P(2,2,3)>=0.00173 and P(3,2,3)>=0.00173.  If the 
agency has a rule that all nonzero cells must be 
above 4, then the most suitable alternative ad hoc 
solution would be to restrict  P(3,2,3)=P(2,2,3)=0.0 
rather than restricting both to be greater than 
0.00173.  To maintain the counts of the total table, 
2 (associated with cell (2, 2, 3)) would need to be 
added to a complementary cell or set of cells.  
   To create a ‘pseudo sample’ that is a close 
approximation of the data of Table 3, we multiply 
each cell count by 10 and add 4 to all cells.  The 

resultant probabilities are given in Table 6.  This 
has the effect of maintaining most cell probabilities 
and assuring the ‘sampling’ zeros are raised to non-
zero probabilities. 
   If we draw a synthetic data set of size 2313 (or 
23230 corresponding to the enlarged population of 
Table 6 or the corresponding fitted Table 7), then, 
on average, the synthetic data will allow quite 
accurate reproduction of the analyses that can be 
performed on the original data of population of 
Table 3.  The advantage of the second procedure is 
that the user of the data can be specifically 
informed that a number of the ‘small’ cells contain 
artificial counts that are consistent with the analyses 
that can be performed on the original table.  As the 
user has no way of knowing those cells that have 
artificial non-zero counts or other cells with small 
counts that have been slightly increased or 
decreased, the user has considerably less chance of 
doing re-identification. 

 
 
Table 6.  Probabilities for Cells after Cell Size Adjustment – ‘Pseudo’ Population 
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00663 0.00017 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00060 0.00362 0.0     0.01180 0.00319 0.00534  0.0 
  0.0     0.0     0.06130 0.09488 0.0     0.05312 0.28127  0.03762 
  0.32690 0.03892 0.06173 0.00103 0.0     0.0     0.00189  0.00232 
  0.0     0.00017 0.00146 0.00017 0.00534 0.00017 0.00017  0.00017     
    _____________________________________________________________________________ 
 
 
Table 7.  Probabilities after 2-way Fitting to the Values of Table 6 
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00663 0.00017 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00063 0.00359 0.0     0.01180 0.00316 0.00536  0.0 
  0.0     0.0     0.06146 0.09472 0.0     0.05308 0.28132  0.03762 
  0.32690 0.03896 0.06152 0.00120 0.0     0.0     0.00174  0.00248 
  0.0     0.00019 0.00144 0.00018 0.00534 0.00016 0.00035  0.00001 
    _____________________________________________________________________________ 
 
   The disadvantage of creating synthetic data from 
the model of Table 7 is that it may be quite 
straightforward for an intruder to re-identify by 
‘guessing’ how to reverse the procedures that were 
used in creating Tables 6 and 7. 
   To better protect confidentiality, we create Table 
8 in which the total 6 from the three small cells (17, 
35, and 43) is dispersed among the three small cells 
and the six sampling- zero (9, 41, 43, 45, 46, and 
47) cells.  We use Table 8 is the starting point of an 
EM fitting procedure in which we use standard 

missing data procedures (Little and Rubin 2002) to 
fit using the same interactions that we used on the 
original data of Tables 2 and 3).  Table 9 is the 
limiting solution.  Because we may still be able to 
do re-identification, we reduce the re-identification 
risk when we fit a model in which upper bounds of 
0.0032 in cells 17, 35, and 43.   If we draw 
synthetic data from the fitted solution (Table 10), 
then re-identification risk is reduced. 
   Under the dispersal model in which mass 6 is 
assigned to nine cells, the maximum likelihood is  



-1.911699284574.  The likelihood with dispersal 
without convex constraints is = -1.911699284626 
and the likelihood with dispersal and convex 
constraints is -1.911699284627.  As these fits are 

quite good (approximate Chi-square less than 1), 
any synthetic data produced from the models of 
Tables 9 or 10 will quite well reproduce analytic 
properties.  

 
 
Table 8  Modified Probabilities for Cells from Sample File 
    Starting point for EM fitting procedure (initial parameters)  
    _____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00649 0.00029 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00029 0.00346 0.0     0.01167 0.00303 0.00519  0.0 
  0.0     0.0     0.06139 0.09511 0.0     0.05318 0.28232  0.03761 
  0.32815 0.03891 0.06182 0.00029 0.0     0.0     0.00173  0.00216 
  0.0     0.0029  0.00029 0.00029 0.00519 0.00029 0.00029  0.00029 
    _____________________________________________________________________________ 
Starting points ~0.000288 ((6/9)/2313) for small cells (bold - 17, 35, 43) and sampling-zero cells (italic – 
9, 41, 43, 45, 46, and 47) 
 
 
Table 9.  Probabilities for Cells after 2-way Fitting with dispersal 
    ____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00649 0.00015 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00063 0.00352 0.0     0.01167 0.00306 0.00512  0.0 
  0.0     0.0     0.06140 0.09511 0.0     0.05321 0.28225  0.03761 
  0.32815 0.03887 0.06189 0.00032 0.0     0.0     0.00173  0.00216 
  0.0     0.00003 0.00042 0.00005 0.00519 0.00018 0.00077  0.0     
    ____________________________________________________________________________ 
 
 
Table 10.  Probabilities for Cells after 2-way Fitting with dispersal 
               Upper Bounds on Cells 17, 35, 43 
    ____________________________________________________________________________ 
  0.0     0.0     0.0     0.0     0.0     0.0     0.0      0.0 
  0.00649 0.00028 0.0     0.0     0.0     0.0     0.0      0.0 
  0.0     0.00032 0.00346 0.0     0.01167 0.00303 0.00519  0.0 
  0.0     0.0     0.06139 0.09511 0.0     0.05318 0.28232  0.03761 
  0.32815 0.03891 0.06182 0.00032 0.0     0.0     0.00173  0.00216 
  0.0     0.00008 0.00032 0.00009 0.00519 0.00030 0.00087  0.0     
    ____________________________________________________________________________ 
 

4.  Discussion 
 
There is considerable flexibility with the general 
fitting procedures for larger databases having more 
variables.  Typically, the edit restraints (Winkler 
1997, 2003) yield structural zeros that are a much 
smaller proportion of the number of cells that in the 
empirical example of this paper.  The small 
proportion makes the dispersal much more 
straightforward.  The dispersal mechanism is quite 
flexible in that individual small cells can be 
dispersed over relatively small sets of 
‘complementary’ cells.  The cells associated with 
several dispersals can overlap just as they can 

overlap with general missing data procedures 
(Little and Rubin 2002, Winkler 2007a).   
   Although the basic computational procedures are 
far faster (sometimes several orders of magnitude) 
than in commercial software (Winkler 2007a), the 
computational speed is still a major concern in the 
situations having thirty or more variables.  In larger 
situations, various heuristics and approximations 
may be appropriate. 
   If suitable external data are available, then some 
re-identification should still be possible.  If one part 
of a university released a table such as Table 10 and 
another part released all (or most) of the two-way 
tabulations from the original population, then the 



procedures of this paper (or the more general 
procedures of Winkler 2007a) could be adapted to 
create a table using the two sets of constraints that 
is much closer to the original population (Table 2) 
than Table 10.   
 

5.  Concluding Remarks 
 
This paper provides a procedure for providing a 
synthetic data set of discrete data that will allow 
approximate reproduction of analyses from an 
original, confidential data source.  In creating the 
model for the synthetic data, we use additional 
convex constraints that are intended to reduce re-
identification risk. 
 
1/   This report is released to inform interested 
parties of (ongoing) research and to encourage 
discussion (of work in progress).  Any views 
expressed on (statistical, methodological, technical, 
or operational) issues are those of the author(s) and 
not necessarily those of the U.S. Census Bureau.  
The author thanks Philip Steel for a number of 
comments that led to clarification of several points 
and the addition of more background information. 
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