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Abstract

We develop a Bayesian procedure for analyzing stationary long-range dependent processes.

Specifically, we consider the fractional exponential model (FEXP) to estimate the memory

parameter of a stationary long-memory Gaussian time series. Further, the method we propose

is hierarchical and integrates over all possible models, thus reducing underestimation of un-

certainty at the model-selection stage. Additionally, we establish Bayesian consistency of the

memory parameter under mild conditions on the data process. Finally the suggested procedure

is investigated on simulated and real data.
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1 Introduction

Motivated by applications in econometrics, hydrology and other scientific disciplines, fractionally

differenced models have been the subject of extensive research over the past two decades. The

differencing parameter characterizes the long-memory behavior of a time series and thus has far-

reaching utility in areas such as telecommunications, economics, finance, and geophysics among

others. Therefore, it is of considerable interest to provide estimators of the memory parameter that

have good asymptotic properties, while remaining practical for use in finite samples.
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The long memory process that we consider is Gaussian and has spectral density

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π). (1)

Further, we say that the stationary time series {xt} is long range dependent or long memory if there

exists a d ∈ (0, .5) such that

lim
λ→0+

f(λ)
λ−2d

= k

for some constant k > 0. Likewise for d = 0 we say that the process is short range dependent or

short memory. We assume that the function f∗(λ) is even, continuous, and bounded away from

zero on [−π, π]. Thus d and f∗ respectively govern the long-term and short-term behavior of the

process.

Although several methods have been proposed for estimating d, two main methods have emerged.

The first method is the so-called parametric approach. One example of the parametric approach

was introduced by Fox and Taqqu (1986) where the authors provide a fully parametric maximum

likelihood procedure for the case where {xt} is strictly Gaussian. Subsequently this method was

developed in greater detail by Giraitis and Taqqu (1999). Geweke and Porter-Hudak (1983) sug-

gested a regression approach to the estimation of the long memory parameter using the spectral

domain, while Beran (1993) introduced a procedure based on generalized linear regression. The

second method commonly used employs semiparametric estimators and has been the subject of

extensive research. Some examples are Robinson (1995a, 1995b) and Giraitis and Surgailis (1990),

where both authors justified the use of semiparametric inferential procedures. For a comprehen-

sive discussion on long memory time series and fractionally differenced models see Beran (1994),

Robinson (2003), and Palma (2007) and the references therein.

In order to estimate the long memory parameter d we develop a Bayesian approach. Although

some research on long memory has taken a Bayesian viewpoint, the literature is very heavily

frequentist (see Robinson, 2003 for a discussion). The majority of the Bayesian literature consists

of parametric characterizations of long-range dependence based on a class of models. Perhaps

the most popular approach is to consider the class of all finite order stationary and invertible

ARFIMA (Auto Regressive Fractionally Integrated Moving Average) processes (Hosking, 1981).

For example, Ravishanker and Ray (1997), Pai and Ravinshanker (1998), and Ko and Vannucci

(2006), all consider Bayesian parametric models.

The first nonparametric Bayesian analysis of long memory data was considered by Petris (1997).

This work is posed under the assumption that, for λ ∈ [0, π],

f(λ) ∝ λ−2d exp{g(λ)}, (2)

where g(λ) is meant to capture the short-range dependence in {xt}. Further, at the Fourier fre-

quencies, λj , the prior probability measure on g(·) is defined by a centered autoregressive process
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of order p with parameters having a Beta prior distribution. As noted in Liseo, Marinucci, and

Petrella (2001), in order for the two components λ−2d and g(λ) in (2) to be identifiable, appropriate

conditions on g(λ) need to be imposed.

In this paper we consider an explicitly defined semiparametric estimator of d based on fitting

potentially misspecified parametric models. Specifically, the models we fit are from the FEXP class

described by Beran (1993, 1994). The FEXP estimator was originally proposed by Janacek (1982)

and later discussed by Robinson (1994). The spectral density of the FEXP model has the form of

(1) with f∗(λ) given by the exponential model of Bloomfield (1973), i.e.,

log f∗(λ) =
m∑

k=0

bk cos(kλ), (3)

where b0, . . . , bm are real constants and m is a positive integer.

The approach we suggest is similar to the Bayesian semiparametric approach of Liseo et al.

(2001) to the extent that they consider a spectral method with the short-range dependent portion

of the model related (but not equal) to the class of fractional exponential processes introduced

by Beran (1993) and to the work of Bloomfield (1973) in the short memory case. However, the

method we propose differs from Liseo et al. (2001) in several ways. One distinction between the two

methods is that our method is broad-band in that the spectral model we impose for the short-range

dependent process is modelled on the frequency band [0, π]; in contrast, the work of Liseo et al.

(2001) considers a narrow-band estimator of the short memory process by restricting this process

to the frequency band [λ∗, π]. This representation induces a model selection problem on the choice

of λ∗. The authors suggest treating λ∗ as a hyperparameter whose value is ultimately determined

by the data. The selection procedure is facilitated via comparison of prior predictive distributions

of the observed data set. Further, the method they propose uses a periodogram based Whittle

likelihood approximation to the true likelihood (Palma, 2007), while we consider both a “time

domain” Whittle likelihood (TD Whittle) as well as the exact Gaussian likelihood. Although the

Whittle form we use still constitutes an approximation we denote it as TD Whittle to emphasize

the fact that we do not appeal to the periodogram directly. Using the TD Whittle likelihood as

well as the exact Gaussian likelihood provides a significant distinction between our models and

other models in the FEXP class, as the Toeplitz autocovariance matrix is difficult to deal with

computationally. Toward this direction we provide explicit details of algorithms that facilitate its

use. Further by avoiding a periodogram based approximation to the likelihood, using both the

TD Whittle and the exact Gaussian likelihood, our method can accommodate missing data with

relatively little extra computational burden.

Another striking advantage of the method we suggest is that model selection (i.e., the order m in

(3)) is embedded in our estimation procedure by making the model order a random parameter to be

estimated in the model. This transdimensional approach (Sisson, 2005) provides added flexibility
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and reduces uncertainty at the model-selection stage by integrating over all possible models from

the FEXP class (up to a given finite order). This procedure can be seen as a type of Bayesian

model averaging (Hoeting, Madigan, Raferty and Volinsky, 1999). Thus, we consider m a nuisance

parameter. Finally, allowing the dimension of the parameter space to change requires a non-trivial

extension to the proof of the asymptotic properties.

This paper is organized as follows. In Section 2 we describe the modelling framework, including

choice of priors and discussion of implementation of the likelihood calculations. Section 3 provides

the details of the Markov Chain Monte Carlo (MCMC) and Reversible Jump Markov Chain Monte

Carlo procedures used for estimation. Specifically we present algorithms for both the fixed dimen-

sional and transdimensional cases. Section 4 develops the asymptotic properties of the a posteriori

estimates of the parameters. In Section 5 our methodology is investigated through Monte Carlo

experiments and application to a real data set, the Nile River minima data (Beran, 1994). Finally,

Section 6 contains discussion. For convenience of exposition all proofs and derivations are left to

the appendix.

2 Hierarchical Bayesian FEXP Model

2.1 Bayesian FEXP

Suppose that the time series of interest follows the model

f(λ) = |1− e−iλ|−2d
exp

{
m∑

l=0

bl cos λl

}
(4)

for λ ∈ [−π, π]. Here f is the spectral density of the stationary process, d is the long memory

parameter, and the coefficients bl parametrize the short memory aspects of the process. Stationarity

is maintained by considering d < 1/2; since we focus on long memory, we also assume that d ≥ 0.

Note that when d = 0, f reduces to the spectral density of an EXP(m) process, which has short

memory (Bloomfield, 1973). We start by defining the parameter space Θm = [0, .5)×Rm+1, which

explicitly depends on the order m. We use the notation

θm = (d, b0, b1, · · · , bm)

for a typical element of Θm. Henceforth we use the notation fθm to denote the spectral density given

in (4) whenever we wish to make the dependence on model parameters explicit. Conditional on m

being known, it is simple to write down the Gaussian likelihood for a sample x(n) = {x1, x2, · · · , xn}
of size n:

p(x(n)|θm) = (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
. (5)

We use the following notation for covariance matrices: the Toeplitz covariance matrix of dimension

n of a stationary process with spectral density f is written Σ(f). Its jkth entry is the autocovariance
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function at lag j − k given by

Σjk(f) =
1
2π

∫ π

−π
f(λ) eiλ(j−k) dλ.

Perhaps one of the most salient features of our approach arises in the choice of the model order

m. In a frequentist setting it is most common to choose the order of a FEXP model through order

selection criteria (see Hurvich, 2001). Similarly, in the Bayesian context one could maintain the

model selection approach and choose m using Bayes factor (Gelman, Carlin, Stern, and Rubin,

2003). However, a more flexible approach takes full advantage of the Bayesian paradigm by putting

a prior on m and selecting the number of terms to be included in the model adaptively. Since

the main goal of our analysis is estimation of d, we embed the choice of m into the modelling

framework. This added layer of flexibility in terms of m enhances the accuracy of the estimate of

d by reducing the underestimation of uncertainty at the model-selection stage.

2.2 Likelihood Calculations

Implementation of the Bayesian approach under the exact Gaussian likelihood poses several chal-

lenges. First one must form the Toeplitz autocovaraince matrix Σ(fθm) in (5). This requires

calculation of the autocovariances of lag L, {cL}n−1
L=0, given only knowledge of fθm . Further,

once the autocovariance matrix is constructed there is still a need to calculate both |Σ(fθm)| and

x(n)′Σ−1(fθm)x(n). These quantities present computational difficulties because here the autocovari-

ances decline slowly (at a power law rate) and Σ(fθm) is quite ill-conditioned (Chen, Hurvich, and

Lu, 2006).

Calculation of the autocovariances proceeds via a spectral factorization method on the short

memory portion of (1) (Pourahmadi, 1983; Hurvich, 2002). Specifically, given b0, . . . , bn one can

write down an equivalent MA(∞) representation (under mild conditions) using the formula

βj =
1
2j

j∑
k=1

kbkβj−k,

with β0 ≡ 1 and βj (j = 1, 2, 3, . . .) equal to the MA(∞) coefficients. Furthermore, the innovation

variance, σ2
ε can be expressed as σ2

ε = 2π exp(b0). Next, let c̃h denote the theoretical autocovariance

associated with a specific short memory EXP(m) model. Here,

c̃h = σ2
ε

∞∑
j=h

βjβj−h (h ≥ 0).

Since βj decay exponentially fast, a good approximation to c̃h can be obtained using the trun-

cated version c̃h,N for N sufficiently large. Note that c̃h,N may be efficiently calculated by taking

advantage of the FFT (Fast Fourier Transform); see Hurvich (2002) for a comprehensive discussion.
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Similarly, let {c∗s} denote the autocovariances of an ARFIMA(0, d, 0) process with unit in-

novation variance. Again, since c̃h decay exponentially fast, cL can be approximated accurately

(cL,Approx.) using {c∗s} and c̃h,N in a “splitting method” (Hurvich, 2002; Bertelli and Caporin, 2002).

Additionally, as suggested by Hurvich (2002) the sequence {cL,Approx.}n−1
L=0 can be used to simulate

a zero-mean Gaussian realization x1, . . . , xn from the FEXP process {xt} using the Davies-Harte

algorithm (Davies and Harte, 1987). The algorithm is exact, in the sense that the autocovariances

of the simulated time series exactly match those used as inputs to the algorithm. This algorithm

will be used is Section 5 where our methodology is demonstrated on simulated data. Finally, the

Toeplitz matrix Σ(fθm) can be constructed using {cL,Approx.}n−1
L=0.

Ultimately the likelihood will be embedded in an MCMC procedure, Gibbs sampling with

Metropolis-Hasting steps (Robert and Casella, 2004). For this purpose it is more convenient to

work with the log likelihood rather than the likelihood itself. Thus the quantities needed to cal-

culate log p(x(n)|θm) are the quadratic form x(n)′Σ−1(fθm)x(n) and log |Σ(fθm)|. The first of these

quantities, the quadratic form, can be accurately calculated to any desired degree of precision

using conjugate gradient (CG) or preconditioned conjugate gradient algorithms (PCG) (Chen et

al., 2006). Similarly log |Σ(fθm)| can be accurately approximated (numerically) in O(1) opera-

tions (Bötcher and Silberman, 1999; Chen et al., 2006). Therefore we can calculate the exact log

likelihood with a high degree of precision. For a detailed discussion see Chen et al. (2006).

2.3 Hierarchical Priors and Posteriors

We now fix ideas by setting out some specific hierarchical priors. Let b = (b0, b1, b2, · · · ) and

σ2 = (σ2
0, σ

2
1, σ

2
2, · · · ) be infinite sequences. Then we assign hierarchical priors on the unknown

parameters as follows:

bk|m,σ2
k ∼

N (0, σ2
k); if k ≤ m,

∆0; if k > m,

d ∼ Uniform(0, 1/2),

σ2
k|m ∼

IG(α, β); if k ≤ m,

∆0; if k > m,

m ∼ Discrete Uniform{1,M}.

Alternatively, if one has prior information on the order of the model, this information can be

incorporated easily into this framework by choosing a Truncated Poisson{η, M} prior for m. We

denote the point mass at zero via ∆0, the issue being that bk and σ2
k for k exceeding a given m

must be defined to be identically zero. As usual IG denotes the inverse gamma distribution, so
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that σ2
k has pdf

p(σ2
k) ∝ exp

(
− β

σ2
k

)
(σ2

k)
−(α+1).

Note that the choices of α, β, M , and η (if appropriate) are determined by the practitioner. The

selection of priors is usually problem-specific. Ideally, one would like to elicit these priors from

past history. However, for most practical applications, such information is unavailable. In such

cases it seems reasonable, at least from robustness considerations, to use near-diffuse priors for the

hyperparameters of the hierarchical model. Although this would provide a reasonable approach

under a fairly broad range of settings we find that FEXP model coefficients tend to be “relatively”

small. For this reason one appropriate strategy is to consider a tighter set of priors. Further

this choice can be justified by the heuristic argument that typically in long memory settings one

requires long time series in order to be able to adequately estimate quantities of interest. Therefore

under most prior specifications there is enough data to overcome the effect due to the prior. As

we will find in the next section, we have taken “non-informative” priors for bk, d, σ2
k, and m, in the

sense that on the scale of typical FEXP coefficients the prior provides relatively little information.

Finally, if the joint prior is proper, then the posterior is also proper. The present study is based on

proper priors; hence, impropriety of the posterior is not an issue in our case. Note that in Section

4 we present asymptotic results under relaxed specification of the the hierarchical priors.

The approach we take is hierarchical Bayes. This type of model has its virtues in that it is richer

than a one-stage model, and automatically produces shrinkage estimators of parameters. These

shrinkage estimators, by borrowing strength, usually perform better than the regular estimators.

Additionally, taking m random we have increased the precision as well as added flexibility to our

model by allowing the data to choose the order of the model adaptively given the data. This will

be revealed in Section 5, when we illustrate our methodology using both simulated data and an

actual data analysis. Below, we consider the joint posterior distribution of the parameters. Noting

that b and σ2 do not depend on d, and the distribution of d does not depend on m, we have

p(b, σ2, d,m|x(n)) ∝ p(x(n)|b, σ2, d,m)p(b|σ2,m)p(σ2|m)p(d)p(m)

∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
×

m∏
k=0

(σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}

×
m∏

k=0

exp
{
− β

2σ2
k

}
(σ2

k)
−(α+1)

× 1[0,1/2)(d)

× 1
M

. (6)
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Our primary objective is to find the posterior distribution of d given x(n), and use the posterior

mean to obtain an estimate for d. The exact posterior distribution p(d|x(n)) is given in (14) of

Section 4, and the posterior mean is

d̂ =
∫

dp(d|x(n))dν(d), (7)

where ν(dx) denotes Lebesque measure on the real line. Asymptotic properties of this estimate

are considered in Section 4. In practice, the posterior p(d|x(n)) is intractable, as its evaluation

requires high dimensional numerical integration. Thus we adopt the popular alternative approach

of MCMC, which requires generating samples from the full conditionals of the different parameters

given the remaining parameters and the data. Some further details in this direction are provided

in Section 3 below.

3 Estimation

3.1 Full Conditionals and Fixed Dimensional MCMC

Some of the full conditionals are not in standard form and thus we have used a Metropolis within

Gibbs algorithm (Robert and Casella, 2004). Below we list these full conditionals; for convenience

of exposition a full derivation can be found in Appendix B. Our general proposed model makes

adaptive selection of m (the model order). However, in this section we take m to be fixed and

describe our implementation procedure. Subsequently in Section 3.2 we describe a RJMCMC

approach (Green, 1995) for the case in which m is random.

First, since σ2 does not depend on d, and the distribution of d does not depend on m, it is easy

to see that the full conditional of σ2
k is conjugate. As a result, it is straight forward to show that

the full conditional of σ2
k is IG and is given by

p(σ2
k|d,m, b0, b1, . . . , bk, . . . , bm) ∼ IG

{
(α + 1/2), (b2

k/2 + β)
}

. (8)

Although the full conditional of b = (b0, . . . , bk) is not conjugate under this model it is equally

straight forward to derive and is given by

p(b|m,σ2, d, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
×

m∏
k=0

(σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}
. (9)

Finally, the full conditional of d can be expressed as

p(d|σ2,m, b, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
× 1[0,1/2)(d). (10)
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In the case of fixed model dimension implementation, MCMC is relatively straightforward given

the calculated likelihood. Therefore we begin with this case and proceed with m held fixed for

any given model. The general algorithm we use is a Gibbs sampler (Gelfand and Smith, 1990),

although several Metropolis-Hastings (M-H) steps will be required. The pdf given in (8) is standard

and so can be sampled from directly. Unfortunately, generating samples from (9) and (10) is more

complicated and requires M-H updates. The algorithm proceeds as follows:

Step 1: Set initial values for all parameter values.

Step 2: Generate samples from (8).

Step 3: Using a Random-Walk, M-H sample the bk’s one at a time from (9) holding all bj fixed for

j 6= k. Additionally, since the bk’s are conditionally independent we need only to include the

second term of (9) associated with the specific bk being sampled.

Step 4: Using an Independent M-H step sample from (10).

Step 5: Repeat.

For the implementation of the M-H algorithm, one needs a candidate generating density. Chib

and Greenberg (1995) have several proposals in this regard. For specificity, let bk denote the

current state for the parameter bk; we then draw a candidate value b∗k using a N (bk, δ
2
k) proposal

distribution, where the δk are user defined tuning parameters. The algorithm accepts b∗k as a new

value of bk with acceptance probability

αbk
= min

{
1,

p(b∗k|m,σ2, d, x(n))
p(bk|m,σ2, d, x(n))

}
,

where p(bk|m, σ2, d, x(n)) is given in (9). Similarly for d∗ draw a candidate value from a U(0, 1/2)

proposal distribution and accept d∗ as a new value of d with acceptance probability

αd = min

{
1,

p(d∗|σ2,m, b, x(n))
p(d|σ2,m, b, x(n))

}
,

where p(d|σ2,m, b, x(n)) is given in (10). Note that in practice it is often easier to compute α• by

making appropriate transformations to the log scale.

In the case where the model dimension is fixed a priori it is natural to estimate models using

several different orders (values of m). Then with these models in hand one can choose a final model

through the use of Bayes factor or DIC; see Gelman et al. (2003) for further discussion. Since we

propose transdimensional modeling of d, where the order m is taken as a model parameter we do

not pursue discussion of order selection further.
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3.2 Adaptive Model Procedure and RJMCMC

The transdimensional case is substantially more difficult to sample from as we are potentially

changing dimensions on each MCMC iteration. Specifically, in this case m is a random parameter to

be adaptively estimated from the data. To facilitate model estimation we require the full conditional

distribution of m. Thus, for m = 0, . . . ,M , the full conditional of m can be written as

p(m|b, σ2, d, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
×

m∏
k=0

(σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}

×
m∏

k=0

exp
{
− β

σ2
k

}
(σ2

k)
−(α+1)

× 1
M

. (11)

Now, for notational convenience, let Θ denote the collection of parameters in our model. To sample

from p(Θ|x(n)) we can use the reversible jump algorithm (Green, 1995). Here we outline the steps

we employ to traverse the posterior probability surface; see Denison et al. (1998) and Denison et

al. (2002) and references therein for a general discussion. We allow three types of moves: BIRTH

(B), DEATH (D), and MOVE (S), where these moves are defined by

B: propose with probability pb
m to increase model dimension by 1,

D: propose with probability pd
m to decrease model dimension by 1,

S: propose with probability ps
m to move in the same model dimension.

Note that in the models we consider we require at least one term always in the model (in addition

to b0, i.e. b0 and b1). Therefore, the probabilities are given as follows:

pb
m = pd

m = ps
m = 1/3; for m = 2, . . . ,M − 1,

pb
1 = ps

1 = pd
M = ps

M = 1/2,

pb
M = pd

1 = 0.

Note that pb
m + pd

m + ps
m = 1, for all m. The algorithm proceeds as follows:

1. Set starting values.

2. Generate u1 ∼ U(0, 1)

• if u1 < pb
m then goto B step and obtain Θ′

• otherwise if pb
m ≤ u1 ≤ pb

m + pd
m goto D step and obtain Θ′
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• otherwise goto S step and obtain Θ′.

3. Suppose we goto B step

(i.) generate bm+1 ∼ N (0, 1)

(ii.) generate entire (m + 1 dimensional) σ2 vector

(iii.) complete a MCMC iteration as in fixed dimensional case.

3′. Similar steps occur in D and S steps with the appropriate modifications.

4. Generate u2 ∼ U(0, 1)

• if u2 < min{1, BF (Θ′,Θ(t))×R} then Θ(t+1) = Θ′

• else Θ(t+1) = Θ(t).

5. Repeat.

Here,

R =


pd

m+1/pb
m; if B step,

pb
m−1/pd

m; if D step,

1; if S step,

(12)

and

BF (Θ′,Θ(t)) =

∫
σ2 p(Θ′|x(n))dσ2∫

σ2 p(Θ(t)|x(n))dσ2
. (13)

where R and BF denote the proposal ratio and Bayes factor (integrating out the nuisance parameter

σ2
k for k = 0, . . . ,m) respectively. An analytic form for BF and a related discussion regarding its

consistency as an order selector in our setting can be found in Appendix C. Note that in the case

where a Truncated Poisson{η, M} prior is imposed on m, R requires slight modification and is

given by

RTPois =


pd

m+1

pb
m

η
m+1 ; if B step,

pb
m−1

pd
m

m
η ; if D step,

1; if S step.
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Remark 1 Although our algorithm does not appear to be explicitly sampling from the full condi-

tional of m, it is straight-forward to show that p(Θ′|x(n)) is equivalent to (11). Thus the comparison

made in Step 4 is implicitly acting as an M-H step for the parameter m (after integrating out the

effects of the nuisance parameter σ2) with our proposal distribution equal to the birth/death pro-

cess.

Although all of the estimation in this section was presented under the exact Gaussian likelihood

specification, estimation can equally be conducted using the TD Whittle likelihood representation

(16), subsequently presented in Section 4. Essentially what this amounts to is calculating the

autocovariance structure associated with f−θm (an inverse FEXP model having negative coefficients

of the original FEXP model under consideration). This is completely analogous to the first step

in our estimation of the exact Gaussian likelihood. The only benefit in using the TD Whittle

representation given in (16) is that matrix inversion can be avoided.

3.3 Missing Data

One feature of our approach is that missing data can be handled with relative ease. In previous

studies involving the FEXP model there has been a tendency to use Whittle approximations to the

exact Gaussian likelihood. Most of these approximations do not facilitate estimation in settings

where there is missing data. The reason for this is that usually estimation is based on periodogram

estimates obtained from the full data. In both the TD Whittle likelihood and exact Gaussian

likelihood that we consider estimation is facilitated via the autocovariance structure and not a

periodogram based estimate. Therefore, we can tackle missing data with little added effort.

The method we propose only requires initial (starting) values for the missing data point (in

addition to starting values from the algorithm). With these values in hand we can obtain estimates

for xmis based on the predictive distribution. Using obvious notation this can be expressed as

f(xmis|xobs) =
∫

Θ
f(xmis|xobs)p(Θ|xobs)dΘ.

Although we do not pursue such estimation here, this simply amounts to adding an extra step to

the RJMCMC algorithm proposed in Section 3.2. That is, suppose after step t we have a sample

Θ̃(t) of the parameter vector. Then we may obtain a sample x
(t)
mis by drawing from the distribution

f(xmis|xobs, Θ̃(t)); see Palma (2007) and Gelman et al. (2003) for further details.

4 Asymptotic Properties

Here we assume the general setup of Section 2.1, so that the priors on the parameters are allowed to

be more general than the specific choices of Section 2.2. The prior on m is some discrete distribution

that is compactly supported, denoted by p(m). We also have priors p(bk|σ2,m) and p(σ2
k|m) for all
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k ≥ 0, but with these distributions equalling the point mass at zero if k > m. From these we define

the joint priors p(b|σ2,m) and p(σ2|m). We also have a prior p(d) on d, but this does not depend

on m (this can be relaxed in the proof). So the posterior distribution of all the parameters is

p(b, σ2, d,m|x(n)) ∝ p(x(n)|b, σ2, d,m)p(b|σ2,m)p(σ2|m)p(d)p(m).

The last four quantities on the right hand side are known priors, and the first quantity is just the

likelihood function. The posterior distribution for d is given by

p(d|x(n)) =
∑

m p(d)
∫

R2m+2 p(x(n)|b, σ2, d,m)p(b|σ2,m)p(σ2|m)dνm+1(b)dνm+1(σ2)p(m)∑
m

∫
R2m+3 p(d)p(x(n)|b, σ2, d,m)p(b|σ2,m)p(σ2|m)dν1(d)dνm+1(b)dνm+1(σ2)p(m)

.

(14)

Here dνj(x) denotes j-dimensional Lebesque measure. For notational convenience – since p(b|σ2,m)×
p(σ2|m) = p(b, σ2|m) anyways – let φ = (b, σ2) denote the joint variable, with distribution p(φ|m).

Conditional on m, φ takes values in Rm+1 × Rm+1 (though the variance parameters σ2 are always

non-negative). Denote this space by Φm, so that

p(d|x(n)) ∝
∑
m

p(d)
∫

Φm

p(x(n)|φ, d,m)p(φ|m)dν2m+2(φ)p(m). (15)

As mentioned in Section 2, the posterior mean is d̂ =
∫

R dp(d|x(n))dν1(d). We next present a

theoretical result for the asymptotics of d̂. In the discussion below, we replace the Gaussian

likelihood p(x(n)|θm) by the Whittle likelihood pw(x(n)|θm), which is an approximation. The formula

is given by

pw(x(n)|θm) = exp{−n

2

(
log 2π +

1
2π

∫ π

−π
log fθm(λ)dλ +

1
n

x(n)′Σ(1/fθm)x(n)

)
}. (16)

The data itself is generated from a Gaussian process with spectral density given by (4), with fixed

parameters m̃ and θ̃m̃ that are unknown to the practitioner (here θ̃m = (d̃, b̃0, b̃1, · · · , b̃m) for any

m). We next establish asymptotic consistency of d̂ for the true parameter d̃; our method follows

that of Liseo, Marinucci, and Petrella (2001), appropriately generalized to our hierarchical model.

Theorem 1 Under the conditions discussed in this section, d̂ converges to d̃ almost surely.

Remark 2 The proof shows that d̂ is consistent even when the true model order m̃ lies outside

the support of the prior on m. This is because m and (b0, b1, · · · , bm) are essentially nuisance

parameters that have a more limited effect on the distribution of d.

5 Case Studies

In this section we illustrate our proposed Bayesian FEXP model for estimation of the long memory

parameter d. We first begin with fixed dimension estimation for both simulated data and the
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benchmark Nile River Minima data (Beran, 1994). Note that for the purpose of this illustration

we use the exact Gaussian likelihood (5), results for the TD Whittle likelihood are similar in

terms of estimation for d and are thus not pursued here. For model fitting with the simulated

data we run a MCMC chain for 10,000 iterations, while for the Nile River data we run a MCMC

chain for 6325 iterations, in both cases discarding the first half for burn in. The exact starting

parameters and tuning parameters are detailed below. Convergence is assessed through careful

monitoring of the chains along with Geweke’s diagnostic as implemented in the coda contributed

package in R (2007); for convenience we only display the trace plots for d. In the case of the

transdimensional model, convergence is extremely difficult to assess (Sisson, 2005). Therefore we

assess convergence through the trace plot of d, as the other parameters are considered nuisance

parameters. Lastly, since the posterior expectation (7) is approximated by MCMC method, in

actuality, we report a MCMC approximation of (15). In particular, the posterior expectation is

approximated by d̂ = R−1
∑R

i=1 d(i), where d(i) are generated from the ith MCMC sample, and R

denotes the number of such samples used to estimate the parameters.

5.1 Simulation Study

To illustrate the performance of our methodology we consider a simulated example. For this

simulated example we generated data from a FEXP(3) (n = 663) model using the Davies-Harte

algorithm (Davies and Harte, 1987). The parameter values chosen for this model were obtained by

taking the values of a FEXP(3) fit to the Nile River data (to be analyzed in Section 5.2) using log

periodogram regression (Hurvich, 2002). The values of the parameters along with their estimated

values can be found in Table 1. In conducting this analysis we chose starting values for b0, . . . , b3

by generating from N (0, 1) random variables, the initial value d was taken to be .25, and the

initial value for all σ2
k was equal to 1. Finally the parameters α and β from the IG were fixed

at 2.333 and 1.333 respectively. As can be seen from Table 1 and Figure 1 the estimates appear

quite good. Although the point estimate for d is experiencing a slight departure from the input

value to the simulation the 95% highest posterior density (hpd) covers the “true” value (Figure

1). Similarly even though our estimates for b0, . . . , b3 are good, we emphasize that our objective

here is effective estimation of d. Graphically, using the hpd - Figure 2, we see that our model is

performing satisfactorily concentrating mass around the psuedo-true value. Furthermore, the trace

plots - Figure 2, are consistent with the MCMC chains converging to their target distributions.

Finally, in both the fixed and transdimensional cases we thinned the MCMC sequence, retaining

every 5th value.
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5.2 Nile River Data

We now illustrate our proposed methodology with the bench mark Nile River minima data (Beran,

1994). This data set contains yearly minimal water levels of the Nile river for the years 622 to

1281 (n = 663). Detailed description about the data is obtained from Beran (1994). The first

model we estimate has m fixed a priori equal to 3. Further, the starting values for b0, . . . , b3 and

d are taken as the psuedo-true values and are equal to the input values of the simulated data (i.e.,

the log periodogram regression coefficients). The remaining initial parameters were set identical

to the initial parameters from the simulated example. This analysis produces interesting results.

That is, when we generate a process using coefficients equal to the log periodogram coefficients

(Section 5.1) (via the Davies-Harte algorithm) we find very close agreement between d̂ and d, with

similar results for the other model parameters. However, the parameter estimates obtained in our

analysis, especially for d, differ from those obtained from log periodogram regression. This leads

us to believe that, for this data set (with m = 3), the estimate of d based on a FEXP model via log

periodogram regression is perhaps overstated. However, it should be noted that this conclusion is

not entirely clear cut as the hpd’s from both analysis overlap slightly. In short, this phenomenon

may due in part to having fixed the model order a priori. One way around this peculiarity is to let

m be a model parameter to be estimated from the data and estimate d via our transdimensional

approach (Section 3.2).

In order to demonstrate the utility of our transdimensional approach we re-analyzed the Nile

River data using the reversible jump algorithm of Section 3.2 with p(m) = DU(1, 6). As starting

parameters we set m = 3 and let all other parameters be the same as in the fixed dimensional case

(i.e. log periodogram regression). In terms of estimating d, the results obtained from this analysis

are consistent with the results from the fixed dimension case, see Table 3. Furthermore, even

though we chose a non-informative prior on m, we obtained parsimonious models from our MCMC

samples. This aspect of our approach is notable as it exemplifies the fact that the data is driving

the model rather than the prior distribution. However, in the setting where it is advantageous to

incorporate prior knowledge about m into the model we can choose the Truncated Poisson prior

for m. This prior imposes a penalty for selecting higher order models. Thus, our method is quite

flexible and can be implemented on a broad range of long range dependent processes.

6 Discussion

The model we propose extends the current long memory literature in several ways. First we provide

a Bayesian estimate of the FEXP model based on the exact Gaussian likelihood. Additionally we

provide the details for algorithms that facilitate quick computation. Moreover, our approach uses a

Whittle formulation based on a time domain estimate of the quadratic form in the likelihood, thus
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dispensing with the need for calculating periodogram estimates. Further, we allow the dimension

of our parameter space to take the form of a random parameter to be estimated in the model.

Therefore, the method we propose is hierarchical and integrates over all possible models, thus

reducing underestimation of uncertainty at the model-selection stage.

The hierarchical structure we propose can be implemented with two different goals in mind.

First, if the goal of the analysis is strictly estimation of d, our method can be viewed as Bayesian

model averaging (Hoeting et al. 1999). In this case our estimate of d results in a weighted average

of the estimates of d from our adaptive model, with the weights proportional to the probability

of occurrence of the different selected model orders. This approach improves the precision of our

estimate in contexts where the “true” model order is unknown a priori. Second, if the goal of the

analysis is to produce spectral model then one can appeal to the FEXP(m̂) model, where m̂ denotes

the posterior mode of m. With this model one can also obtain an equivalent AR representation

using the formulas in Hurvich (2002). Since, the goal of our procedure is mainly estimation of d, the

long memory parameter, we do not pursue detailed discussion of this model usage here. However,

both of these uses constitute novel contributions to the current state of FEXP modelling.

Another striking distinction between our FEXP models and most of the methods currently being

implemented for estimation of the long memory parameter is that by using a Bayesian approach we

gain more information about d, since we can obtain the whole posterior distribution rather than

just a point estimate and standard error. This is something log periodogram regression and GPH

(Geweke, and Porter-Hudak, 1983) don’t achieve. This distinction is fundamental and is often one

of the advantages of appealing to the Bayesian paradigm. One illustration of the benefits of having

a posterior density of d arises in Section 5.2 were we analyze the Nile River minima data. In this

setting, examining the posterior density of d (Figure 1), we notice that although we started from

a noninformative prior on d we are able to extract the embedded information about d from the

likelihood. That is, by taking advantage of the Bayesian machinary we ended up with a highly

informative posterior. Therefore having this posterior density definitely provides an added boost

to the performance of our estimate of d.

Additionally, we establish Bayesian consistency of the memory parameter under mild conditions

on the data process. This poses a non-trivial extension to the proof presented in Liseo et al. (2001).

Although our asymptotics rely on the Whittle formulation (16), this quantity can be calculated

with the same level of effort as the exact Gaussian likelihood and provides comparable results.

Therefore, we do not consider this a draw-back to our method. Rather, we view this as a choice to

be made by the practitioner, weighing the benefits of having an exact likelihood estimate versus an

estimate with proven optimal asymptotic behavior. We believe that this should ultimately depend

on the goals of the analysis.

In summary, we have developed a flexible modeling approach for Gaussian long range depen-

dent processes. The algorithms we provide are computationally straight forward and relieve the
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practitioner from the burden of order selection when the main focus is estimation of the memory

parameter. Lastly, we develop asymptotic properties of our estimator under mild conditions on the

data process.

Appendix A - Asymptotics

Proof of Theorem 1. First note that we have

d̂− d̃ =

∑
m

∫
R×Φm

(d− d̃)pw(x(n)|φ, d,m)p(φ|m)p(d)dν2m+2(φ)dν1(d)p(m)∑
m

∫
R×Φm

pw(x(n)|φ, d,m)p(φ|m)p(d)dν2m+2(φ)dν1(d)p(m)
.

Note that we have substituted the Whittle likelihood into this expression. The quadratic form in

the Whittle likelihood can be written as

1
n

x(n)
′
Σ(1/fθm)x(n) =

1
2π

∫ π

−π

In(λ)
fθm(λ)

dλ,

where In(λ) = n−1|
∑n

t=1 xte
−iλt|2 is the periodogram. Adapting Lemma 1 of Fox and Taqqu (1986)

to handle the case of an uncentered periodogram, we have almost sure convergence of the quadratic

form to
1
2π

∫ π

−π

fθ̃m̃
(λ)

fθm(λ)
dλ

uniformly in θm (for each m ≥ 1 fixed). In order for this result to be true, we require that fθm̃
(λ)

be continuous at all (λ, θm̃), λ 6= 0; 1/fθm̃
(λ) is continuous at all (λ, θm̃); fθm̃

(λ) = O(|λ|−(α(θm̃)+δ))

as λ → 0, where 0 < α(θm̃) < 1 and δ > 0; ∂
∂λfθm̃

(λ) is continuous at all (λ, θm̃), λ 6= 0;
∂
∂λfθm̃

(λ) = O(|λ|−(α(θm̃)+1+δ)) as λ → 0; and 1/fθm(λ) is continuous on [−π, π] × Θm for each

m ≥ 1. It is straightforward to see that all of these conditions are met by our specification of f in

(4). Next, let

Kθ̃m̃
(θm) =

1
2π

∫ π

−π

(
fθ̃m̃

(λ)

fθm(λ)
− log

fθ̃m̃
(λ)

fθm(λ)

)
dλ.

Then we have

pw(x(n)|θm) = exp{−n

2

(
log 2π − 1

2π

∫ π

−π
log fθ̃m̃

(λ) dλ + Kθ̃m̃
(θm) + Rn(θm)

)
},

where Rn(θm) is a remainder term that tends to zero a.s., uniformly in θm. Now the first two terms

above do not depend upon the variable θm, nor upon m either. Thus

d̂− d̃ =

∑
m

∫
R×Φm

(d− d̃) exp{−n
2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(φ|m)p(d)dν2m+2(φ)dν1(d)p(m)∑

m

∫
R×Φm

exp{−n
2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(φ|m)p(d)dν2m+2(φ)dν1(d)p(m)

,

noting that
∫ π
−π log fθ̃m̃

(λ) dλ does not depend upon m. Since the exponential integrands do not

depend on σ2, we can effectively integrate out these nuisance parameters so that p(φ|m) reduces
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to p(b|m). Note that p(b|m) cannot be computed in an implementation – since only p(b|σ2,m)

is defined – but for the purposes of our proof, this reduction simplifies the notation. Letting

p(b|m)p(d) = p(θm), we obtain

d̂− d̃ =

∑
m

∫
Θm

(d− d̃) exp{−n
2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(θm)dνm+2(θm)p(m)∑

m

∫
Θm

exp{−n
2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(θm)dνm+2(θm)p(m)

.

Now let ε > 0 and for each m ≥ 1 let εm = ε2−m, and consider the set {θm ∈ Θm : ‖θm− θ̃m‖ < εm}.
This is an εm-neighborhood – with respect to the Euclidean norm ‖ · ‖ – of θ̃m, which is the vector

consisting of the first m + 2 correct parameters (but if m > m̃, pad out with zeroes). Denote this

set by Nεm(θ̃m); we split the numerator integral in the expression for d̂− d̃ into an integration over

Nεm(θ̃m) and its complement. In the former term, we obtain the strict upper bound of
∑

m≥1 εm = ε,

using |d− d̃| ≤ ‖θm − θ̃m‖ ≤ εm. The latter term is bounded by∑
m

∫
Nc

εm (θ̃m)(d− d̃) exp{−n
2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(θm)dνm+2(θm)p(m)∑

m

∫
Nεm/2(θ̃m) exp{−n

2

(
Kθ̃m̃

(θm) + Rn(θm)
)
}p(θm)dνm+2(θm)p(m)

. (A.1)

Here we have made the denominator smaller by restricting the region of integration. The function

Kθ̃m̃
is interpreted as a sequence of functions depending on m; given m, it is a real-valued function

defined on Θm. On this domain it is strictly convex, with a minimum value of 1/2 (misstated in

Liseo et al. (2001)) occurring at θ̃m for each m. To demonstrate this, fix m, and let g(y) = y− log y.

This function satisfies ġ(y) = 1−1/y and g̈(y) = 1/y2, so that y = 1 is the global minimizer. Clearly

Kθ̃m̃
(θm) = (2π)−1 ∫ π

−π g
(
fθ̃m̃

(λ)/fθm(λ)
)

dλ, and its derivatives are

∂

∂θj
m

Kθ̃m̃
(θm) =

1
2π

∫ π

−π
ġ

(
fθ̃m̃

(λ)

fθm(λ)

)[
−

fθ̃m̃
(λ)

f2
θm

(λ)
∂

∂θj
m

fθm(λ)

]
dλ

∂2

∂θj
m∂θk

m

Kθ̃m̃
(θm) =

1
2π

∫ π

−π
g̈

(
fθ̃m̃

(λ)

fθm(λ)

)[
−

fθ̃m̃
(λ)

f2
θm

(λ)

]2
∂

∂θj
m

fθm(λ)
∂

∂θk
m

fθm(λ) dλ

+
1
2π

∫ π

−π
ġ

(
fθ̃m̃

(λ)

fθm(λ)

)[
2fθ̃m̃

(λ)

f3
θm

(λ)

(
∂

∂θj
m

fθm(λ)
∂

∂θk
m

fθm(λ)
)
−

fθ̃m̃
(λ)

f2
θm

(λ)
∂2

∂θj
m∂θk

m

fθm(λ)

]
dλ.

In the case that m̃ ≤ m, then we have θ̃m = (θ̃m̃, 0, · · · , 0) where there are m − m̃ zeroes. Then

fθ̃m̃
(λ) = fθ̃m

(λ) and the first derivatives of Kθ̃m̃
are zero at θ̃m; moreover the second derivatives

satisfy
∂2

∂2θj
m

Kθ̃m̃
(θ̃m) =

1
2π

∫ π

−π
f−2

θ̃m
(λ)
(

∂

∂θj
m

fθ̃m
(λ)
)

dλ,

which is strictly positive. Thus θ̃m is a local minimum. More generally (say when m may be less

than m̃), the function Kθ̃m̃
(θm) is convex, which is shown as follows. Using the form (4) for f , we
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have

Kθ̃m̃
(θm) =

1
2π

∫ π

−π
exp{−(d̃− d) log |1− e−iλ|2 +

m∑
l=0

(b̃l − bl) cos λl +
m̃∑

l=m+1

b̃l cos λl}

+

(
(d̃− d) log |1− e−iλ|2 −

m∑
l=0

(b̃l − bl) cos λl −
m̃∑

l=m+1

b̃l cos λl

)
dλ.

This assumes that m̃ > m, but the formula is easily adapted to handle m̃ ≤ m in an obvious

manner. Now in the Taylor Series expansion of log(1− e−iλ) there are no constant terms, and thus

the integral is zero; hence we have

Kθ̃m̃
(θm) =

1
2π

∫ π

−π
exp{−(d̃−d) log |1− e−iλ|2 +

m∑
l=0

(b̃l−bl) cos λl+
m̃∑

l=m+1

b̃l cos λl}−
(
b̃0 − b0

)
dλ.

Using the convexity of the exponential function, it is now straightforward to verify the convexity of

Kθ̃m̃
. Now returning to the case that m̃ ≤ m, we know that the minimum value of Kθ̃m̃

is achieved

at θ̃m, and the value is 1/2 > 0; therefore we can find positive constants c(εm/2) and C(εm) such

that

c(εm/2) = sup
θm∈Nεm/2(θ̃m)

Kθ̃m̃
(θm) < inf

θm∈Nc
εm (θ̃m)

Kθ̃m̃
(θm) = C(εm). (A.2)

But when m̃ > m, we have

Kθ̃m̃
(θ̃m) =

1
2π

∫ π

−π
exp{

m̃∑
l=m+1

b̃l cos λl} dλ,

which is strictly positive. Hence, using the strict convexity, in this case as well we can find positive

constants c(εm/2) and C(εm) satisfying (A.2), making ε smaller if necessary (we may need to

contract each εm in order to ensure that c(εm/2) > 0, but there are only finitely many such m’s to

consider).

Next we consider the remainder terms Rn(θm). For each m fixed, let Ωm be the subset of

the full probability space Ω such that Rn(θm)(ω) → 0 uniformly in θm for every ω ∈ Ωm, with

P[Ωm] = 1. Now for any ω, we have Rn(θm+1)(ω) → 0 implies Rn(θm)(ω) → 0, since in the former

expression we can just set gm+1 = 0 to obtain the latter. Thus Ωm+1 ⊂ Ωm, and P[
⋂

m≥0 Ωm] =

limm→∞ P[Ωm] = 1, using continuity from below of the probability measure P. So on
⋂

m≥0 Ωm, a

set of measure one, we have Rn(θm) → 0 for all m. Then for any δ > 0, there exists N such that

|Rn(θm)| < δ for all m and every n ≥ N . Applying these results to (A.1), we obtain the bound of∑
m

∫
Nc

εm (θ̃m)(d− d̃)p(θm)dνm+2(θm) exp{−n
2 (C(εm)− δ)}p(m)∑

m

∫
Nεm/2(θ̃m) p(θm)dνm+2(θm) exp{−n

2 (c(εm/2) + δ)}p(m)

≤ E|d− d̃|
∑

m exp{−n
2 (C(εm)− δ)}p(m)∑

m

∫
Nεm/2(θ̃m) p(θm)dνm+2(θm) exp{−n

2 (c(εm/2)− δ)}p(m)
.
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Since only finitely-many values of m have p(m) > 0, we can find an ε∗ < εm for all such m’s, such

that C(ε∗) < C(εm) and c(ε∗/2) > c(εm/2) but with c(ε∗/2) < C(ε∗). Then the bound becomes

E|d− d̃|
∑

m p(m) exp{−n
2 (C(ε∗)− c(ε∗/2)− 2δ)}∑

m

∫
Nεm/2(θ̃m) p(θm)dνm+2(θm)p(m)

.

So we choose δ < (C(ε∗) − c(ε∗/2))/2. The denominator in the above formula does not depend

upon n, so the bound tends to zero as n tends to ∞ on the set
⋂

m≥0 Ωm, which establishes strong

consistency. 2

Appendix B - Full Conditionals

p(m|b, σ2, d, x(n)) ∝ p(x(n)|m, b, σ2, d)p(m|b, σ2, d)

∝ p(x(n)|m, b, σ2, d)p(b|m,σ2, d)p(m|σ2, d)

∝ p(x(n)|m, b, σ2, d)p(b|m,σ2)p(σ2|m, d)p(m|d)

∝ p(x(n)|m, b, σ2, d)p(b|m,σ2)p(σ2|m)p(m)

∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
×

m∏
k=0

(σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}

×
m∏

k=0

exp
{
− β

σ2
k

}
(σ2

k)
−(α+1)

× 1
M

.

p(σ2
k|d,m, b0, b1, . . . , bk, . . . , bm) ∝ p(bk|σ2

k)p(σ2
k)

∝ (σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}
exp

{
− β

σ2
k

}
(σ2

k)
−(α+1)

= (σ2
k)
−(α+1/2+1) exp

{
−

b2
k

2σ2
k

− β

σ2
k

}
= (σ2

k)
−(α+1/2+1) exp

{
−

(b2
k/2 + β)

σ2
k

}
∼ IG

{
(α + 1/2), (b2

k/2 + β)
}

.

p(b|m,σ2, d, x(n)) ∝ p(x(n)|b, m, σ2, d)p(b|m,σ2, d)

∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
×

m∏
k=0

(σ2
k)
−1/2 exp

{
−

b2
k

2σ2
k

}
.
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p(d|σ2,m, b, x(n)) ∝ p(x(n)|b, m, σ2, d)p(d|σ2,m, b)

∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
x(n)′Σ−1(fθm)x(n)

}
× 1[0,1/2)(d).

Appendix C - Bayes Factor and BIC

Here we provide justification, in our context, for the reversible jump algorithm as a consistent

method of model selection within each repetition of the chain. First let Q denote BF (Θ′,Θ(t))×R

where R and BF are defined similar to (12) and (13) respectively. First we consider the numerator

of (13) ∫
σ2

p(Θ′|x(n))dσ2 = L(Θ′|x(n))
∏m′

i=1 Γ(α + 1/2)∏m′

i=1(
b2i
2 + β)α+1/2

. (C.1)

Similarly it follows that∫
σ2

p(Θ(t)|x(n))dσ2 = L(Θ(t)|x(n))
∏m

i=1 Γ(α + 1/2)∏m
i=1(

b2i
2 + β)α+1/2

. (C.2)

Taking the logarithms of (C.1) yields the following expression

log
{∫

σ2

p(Θ′|x(n))dσ2

}
= log

{
L(Θ′|x(n))

}
+ m′ log {Γ(α + 1/2)}

− (α + 1/2)
m′∑
i=1

log
(

b2
i

2
+ β

)
, (C.3)

with a similar expression obtained for (C.2). Therefore log{BF (Θ′,Θ(t))} can be expressed as

log{BF (Θ′,Θ(t))} =
[
log
{

L(Θ′|x(n))
}
− log

{
L(Θ′|x(n))

}]
+ (m′ −m) log Γ(α + 1/2)

− (α− 1/2)

{
m′∑
i+1

log
(

b2
i

2
+ β

)
−

m∑
i+1

log
(

b2
i

2
+ β

)}
. (C.4)

Now consider the Bayesian information criterion (BIC) of Θ′ and Θ(t) respectively,

BIC(Θ′) = −2 log
{

L(Θ′|x(n))
}

+ 2p′ log(n),

and

BIC(Θ(t)) = −2 log
{

L(Θ(t)|x(n))
}

+ 2p log(n),
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where p′ = 2m′ + 1 and p = 2m + 1, the number of parameters in the respective models. Now from

the expressions above it follows that

BIC(Θ′)− BIC(Θ(t)) ≈ −2 log
{

BF (Θ′,Θ(t))
}

.

Thus,

BIC(Θ′)− BIC(Θ(t)) = −2 log
{

L(Θ(t)|x(n))
}

+ 2p′ log(n) + 2 log
{

L(Θ(t)|x(n))
}
− 2p log(n)

= −2
[
log
{

BF (Θ′,Θ(t))
}
− (m′ −m) log Γ(α + 1/2)

+(α + 1/2)

{
m′∑
i=1

log
(

b2
i

2
+ β

)
−

m∑
i=1

log
(

b2
i

2
+ β

)}

−2(m′ −m) log
∫

σ2

p(Θ′|x(n))dσ2

]
.

Now by the Laplace approximation (Robert and Casella, 2004) it follows that

log
{∫

Θ−m

p(Θ′|x(n))dΘ
}

' L(Θ′|x(n))
∏m′

i=1 Γ(α + 1/2)∏m′

i=1(
b2i
2 + β)α+1/2

= log L(Θ′|θ̂, m)− p′

2
log(n) + O(1).

Similarly

log
{∫

Θ−m

p(Θ(t)|x(n))dΘ
}

' L(Θ(t)|x(n))
∏m

i=1 Γ(α + 1/2)∏m
i=1(

b2i
2 + β)α+1/2

= log L(Θ(t)|θ̂t,m)− p

2
log(n) + O(1),

where θ̂ and θ̂t are maximum likelihood estimators. Thus we have

−2 log
{

BF (Θ′,Θ(t))
}

= −2 log
[∫

σ2

p(Θ′|x(n))dσ2 −
∫

σ2

p(Θ(t)|x(n))dσ2

]
≈ BIC(Θ′)− BIC(Θ(t)).

Since BIC is asymptotically consistent as an order selection criterion so are the BF’s.
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Posterior Results: Simulated Data - Thin = 5 (simulated)

Param. “Truth” Mean Med. Stdev 95% HPD

b0 6.640 6.615 6.615 .061 (6.504, 6.741)

b1 -.121 -.057 -.059 .094 (-.230,.135)

b2 -.232 -.156 -.157 .079 (-.301,.000)

b3 -.044 .016 .015 .079 (-.141,.157)

d .479 .453 .455 .026 (.406,.498)

Table 1: Posterior for simulated data, thinning imposed = 5. Thinning with 10 and no thinning
were also explored with no appreciable differences. Note n = 663 and number of MCMC iterations
equaled 10,000 with first half being allocated toward burn in. m was chosen a priori equal to 3 for
the purpose of illustration.

Posterior Results: Nile River Data - Thin = 5

Param. Mean Med. Stdev 95% HPD

b0 6.659 6.655 .060 (6.542, 6.781)

b1 .096 -.088 .149 (-.153,.392)

b2 -.070 -.072 .097 (-.266,.114)

b3 .008 .003 .088 (-.140,.186)

d .374 .380 .061 (.248,.469)

Table 2: Posterior for Nile River Data, thinning imposed = 5. Thinning with 10 and no thinning
were also explored with no appreciable differences. Note n = 663 and number of MCMC iterations
equaled 6325 with first half being allocated toward burn in. m was chosen a priori equal to 3 for
the purpose of illustration.
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Figure 1: 95% HPD - d for both the simulated data and Nile River analysis. Note that this plot was
constructed using a default kernel smoother with the bandwidth determined by Nadaraya Watson
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Figure 2: Trace Plots - d for both the simulated data and Nile River analysis. Note that these plots
are consistent with the MCMC chains converging to their target stationary distributions.
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