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Abstract

Heavy tail probability distributions are important in many scientific disciplines, such as hydrol-

ogy, geology, and physics among others. To this end many heavy tail distributions are commonly

used in practice. In order to determine an appropriate family of distributions for a specified

application it is useful to classify the probability law via its tail behavior. Through the use of

Parzen’s density-quantile function, this work proposes a semiparametric estimator of the tail

index. The method we develop is useful when little or nothing is known about the distribution a

priori. Furthermore the approach we develop allows for separate estimates of the left and right

tail indices. In the development of the asymptotic theory of the tail index estimator we provide

results of independent interest that may be used to establish weak convergence of stochastic

processes. Finally, we present theoretical properties for the tail index estimator and explore its

finite sample properties through simulation.

Keywords. Density quantile, Extreme-value theory, Quantile density, Semiparametric, Tail expo-

nent.
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1 Introduction

Heavy tail distributions naturally arise in many areas of science. Often it is impossible to choose

an appropriate distribution for a given application a priori. Thus, it is important to characterize

the probability law by classifying its tail behavior. To this end many tail index estimators have

been proposed.
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Perhaps the most popular estimator is due to Hill (1975). This method provides a robust es-

timator based on the asymptotics of extreme values. However, when applied to stable data this

estimator can give misleading results, see McCulloch (1997) for further discussion. Another widely

used index for classifying tail behavior is the Pickands estimator, see Pickands (1975). Although

this estimator is easy to compute and invariant to certain shift and scale transformations, it suffers

from poor asymptotic efficiency. Several refinements have been suggested for both estimators, see

for example Gomes and Martins (2001) and Drees (1995).

In addition to the Hill and Pickands estimators, and their refinements, many other methods for

classifying tail behavior have been proposed. One example of an alternative method is provided

by Csörgo et al. (1985). In this paper the authors develop an estimate that is expressed as the

convolution of a kernel with the logarithm of the quantile function. Additionally, the estimator

they suggest includes both the Hill estimators and de Haan estimator as special cases. For a

complete discussion of the de Haan estimator see Dekkers et al. (1989). Further, de Haan and

Resnick (1980) and Teugels (1981) provide examples of simple estimators based on order statistics.

Alternatively, Hall and Welsh (1985) propose an estimator that assumes a general nonparametric

model. The estimator that they consider assumes that the only available information is in the

form of asymptotic properties of the distributions tails. Additionally, recent research has provided

many other contributions to the area of tail index estimation; for a comprehensive discussion see

Embrechts et al. (1997) and the references therein.

In contrast to the methods previously described, Parzen (1979) suggests an alternative approach

for determining probability distributions by assessing their tail behavior. Specifically, Parzen in-

troduces the density-quantile function and uses it as a measure of tail orderings. Subsequently,

Schuster (1984) refines Parzen’s classification scheme and provides a connection with the limit

in probability of extreme spacings. Finally, Rojo (1996) develops an approach that relaxes the

smoothness conditions required in Schuster (1984).

This paper provides a new semiparametric estimator for classifying tail behavior. The technique

we develop uses the logarithm of the density-quantile function and provides a natural framework for

separately estimating both the left and right tail index. This paper is organized as follows. In Sec-

tion Two we introduce Parzen’s density quantile function and develop the general framework for our

method. Additionally, this section presents a rigorous derivation for a mapping between αc and αp,

the classical tail index and the tail index proposed by Parzen respectively. Section Three contains

theoretical results that establish the asymptotic behavior of the tail index estimator. Specifically,

we provide results for the consistency and asymptotic normality of the tail index estimator. The

methodology we develop is tested in Section Four; simulations provide an indication of the mean
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square error of our estimator for finite sample sizes and different underlying distributions. Section

Five contains an empirical study, and Section Six has a discussion. For convenience of exposition

all proofs are left to the appendix.

2 Tail Exponents and Indices

Parzen (1979) discusses an approach to classifying tail behavior or probability laws. The method

he suggests considers the limiting behavior of the density-quantile function fQ(u) as u approaches

0 or 1. Using the notation of Parzen (2004), suppose F is a continuous distribution function and

let Q denote the quantile function, then F (Q(u)) = u for all u. Thus, by taking derivatives, it

follows that

f(Q(u))Q′(u) = 1. (1)

Here f(Q(u)) = fQ(u) is defined to be the density quantile function and q(u) = Q′(u) is defined

to be the quantile density. Therefore, (1) implies

fQ(u) =
1

q(u)
. (2)

Furthermore, let J(u) denote the score function where

J(u) = −(fQ(u))′ = −f ′(Q(u))
fQ(u)

.

Following Parzen (2004) we assume, in practice, the representation near 0 and 1 to be given by

regularly varying functions

fQ(u) = uα0L(u) u ∈ [0, 1/2) (3)

fQ(1− u) = uα1L(u), u ∈ (1/2, 1] (4)

where L(u) is a slowly varying function. That is, L(u) satisfies the condition that for a fixed y > 0

L(yu)
L(u)

−→ 1 as u −→ 0.

Note that in Parzen (2004), the above relations only hold asymptotically as u → 0 and u → 1,

respectively. However, by redefining L we can easily obtain the exact relations (3) and (4). In

this context we call α0 and α1 the left and right tail exponents respectively and they are used as a

measure of tail behavior. Parzen (1979) shows that

α0 = lim
u→0+

−uJ(u)/fQ(u), (5)

α1 = lim
u→1−

(1− u)J(u)/fQ(u), (6)

and classifies tail behavior as short (α < 1), medium (α = 1) and large (α > 1). Subsequently,

Schuster (1984) further divides the medium class to include medium-short, medium-medium, and

medium-long.
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Examples. The uniform distribution on the unit interval has F (x) = x, and the density quantile

is fQ(u) = 1 for u ∈ [0, 1]. Thus α0 = α1 = 0. The exponential distribution has F (x) = 1− e−λx,

so that the density quantile is fQ(u) = λ(1 − u) for a positive rate λ. So the right tail index is

α1 = 1. Finally, the Cauchy distribution has F (x) = (arctanx)/π, and the density quantile is

fQ(u) = 1
π cos2(πu). Using a Taylor series expansion, we find that α0 = α1 = 2.

The estimator we develop begins with the representations in (3) and (4). More specifically, we

define L(u) by

L(u) = exp

{
θ0 + 2

∞∑
k=1

θk cos(2πku)

}
,

and using obvious notation we write

L(u, p) = exp

{
θ0 + 2

p∑
k=1

θk cos(2πku)

}
. (7)

It then follows easily that

lim
u→0

L(yu, p)
L(u, p)

= 1,

and thus L(u, p) constitutes a slowly varying function. Additionally, since the system

C = {1, 2 cos(2πu), 2 cos(2π2u), . . .} (the Fourier representation) is complete for the class of func-

tions on C[0, 1], the continuous functions on [0, 1], L(u, p) converges to L(u) in mean square as

p −→ ∞, see Hart (1997). That is, the system C forms an orthogonal basis for C[0, 1]. The sig-

nificance of defining log L(u) in terms of its Fourier representation is that it provides a method of

estimating the tail index without having to specify a functional form for L(u) a priori.

In order to expand the utility of our estimator we provide a mapping between the “classical” and

“Parzen” tail index estimators. The equivalence formula we derive presupposes that the distribution

under consideration is symmetric. To this end, consider a heavy-tailed random variable X of index

α > 0. This is defined as follows. First, let F (x) denote the cdf and G(x) = 1− F (x). Then

F (−x) =
c1 + o(1)

xα
L(x) G(x) =

c2 + o(1)
xα

L(x)

as x →∞, where c1 and c2 are non-negative (and not both zero) and L is a slowly varying function;

compare with Embrechts et al. (1997, p.75). Further, suppose that the probability density function

f is ultimately monotone, i.e., it is monotone on (z1,∞) and (−∞, z2) for some z1 and z2. Then

by Theorem A3.7 of Embrechts et al. (1997, p.568), we have

f(x) ∼ c1αx−(α+1)L(x) as x →∞,

f(x) ∼ c2α(−x)−(α+1)L(−x) as x → −∞.
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Now, Parzen’s left and right tail exponents are given by the limits

α0 = lim
u→0+

log fQ(u)
log u

,

α1 = lim
u→1−

log fQ(1− u)
log u

.

This can be seen by considering the definition of the exponents α0 and α1 given in Parzen (2004):

fQ(u) ∼ uα0L(u), (8)

fQ(1− u) ∼ uα1L(u), (9)

where the asymptotics are as u tends to zero and one, respectively. Note that (8) and (9) slightly

differ from the exact representations in (3) and (4) in that here we use the asymptotic formulation

of Parzen (2004). Furthermore, by taking logarithms of (8) and (9) and dividing by log u, we obtain

the above expression by noting that

log L(u)/ log u → 0

as u → 0, for any function L that is slowly-varying at zero. The proof of this result is straight

forward for functions K that are slowly-varying at infinity, using the representation Theorem A3.3

of Embrechts et al. (1997, p. 566). With the relation L(x) = K(1/x), the above result is easily

obtained.

In what follows we focus on deriving the equivalence relation for the left index. The limit can be

achieved by using the sequence 1/n as follows:

α0 = lim
u→0

log fQ(u)
log u

= − lim
n→∞

log fQ(1/n)
log n

Let an = Q(1/n), with Q(x) equal to the quantile function. Then we can write an = n1/αK(n) for

some slowly-varying function K(x) (see Embrechts et al. (1997, p. 78) for a similar statement). It

then follows that

fQ(1/n) ∼ c1αa−(1+α)
n L(an)

= αn−(1+1/α)K(n)−1

so that

− log fQ(1/n)
log n

= (1 + 1/α)− log α

log n
+

log K(n)
log n

.

Thus α0 = 1 + 1/α. For the right tail index, we use the sequence u = 1 − 1/n and utilize the

expression for G instead of F . Therefore, for the given heavy-tailed variable with equal right and

left tail index, we have

αL = 1 + 1/α = α1. (10)
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That is, for symmetric distributions, the relationship in (10) provides an equivalence between the

classical approach and approaches using Parzen’s density quantile function. The mapping between

αc and αp is illustrated in the following examples.

Example 1 A stable variable has characteristic exponent ν ∈ (0, 2], with ν = 2 corresponding

to the Gaussian distribution. When ν < 2, the stable variable is heavy-tailed with classical α = ν.

Note that ν = 1 corresponds to the Cauchy distribution. Thus, for the Cauchy the Parzen tail

index is 2, and more generally, for stable variables, we get all values between ∞ (the heaviest case)

and 1.5.

Example 2 Another class of heavy-tailed variables is given by the Pareto, with F (x) = 1 −
(1 + x)−α for α ∈ (0,∞) and x > 0. The corresponding Parzen tail indexes are α1 = 1 + 1/α and

α0 = 1. For the left-tail, observe that Q(1/n) tends to the constant zero, and f(0) is constant as

well; finally log f(0)/ log n → 0. The right Parzen tail attains any value between 1 and ∞.

Distributions with exponentially decaying tails, such as the Gaussian or exponential, do not fit

into the heavy-tailed description for X, and thus this mapping does not apply. Roughly speaking,

they correspond to α = ∞, since their tails decay faster than any polynomial power of x. This

maps into a Parzen tail index of 1.

3 Tail Exponent Estimators

In order to estimate α0 and α1 we consider log fQ(u) for u ∈ (0, uL] and log fQ(1 − u) for

u ∈ [uR, 1) respectively. Now using (7) we write

log fQ(u) = α0 log(u) + θ0 + 2
p∑

k=1

θk cos(2πku),

and

log fQ(1− u) = α1 log(u) + θ0 + 2
p∑

k=1

θk cos(2πku).

Further, let q̃(uj) denote an estimator of q(u) obtained from the data, where uj = (j − .5)/n.

Then, using (2), f̃Q(uj) = 1/q̃(uj) and the form for log f̃Q(uj) follows. For the remainder of this

section we consider only left tail index estimation (i.e. α0) and note that right tail index estimation

follows analogously.

Let y = log f̃Q(u) be given, where u = (u1,u2, . . . ,uL)′ and Gk = cos(2πku). Then for

any positive integer p, define X = [G∗, G0, 2G1, . . . , 2Gp] where G∗ = log(u). Finally, define
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β̂p = (α̂0, θ̂0, θ̂1, . . . , θ̂p)′ = (X ′X)−1X ′y which can be viewed as the ordinary least squares estimator

of βp = (α0, θ0, θ1, . . . , θp)′.

Given this framework, one question that naturally arises in practice is how to choose q̃(uj),

the estimated quantile density function (qdf). There have been many research efforts aimed at

estimating the qdf, see Cheng and Parzen (1997), Xiang (1994) and Falk (1986) for a more detailed

discussion. In what follows we provide some examples of possible qdf estimators.

3.1 Sample spacings

Consider a sample X1, X2, . . . , Xn with order statistics X(1;n) < X(2;n) < · · · < X(n;n) then one

estimator of q(u) is expressed in terms of the sample spacings

q̃(uj) = n{X(j+1;n) −X(j;n)}, (11)

for uj = (j − 0.5)/n (j = 1, 2, . . . , n − 1), see Parzen (1982). Using (11) as a starting point in

the estimation of α0 provides an asymptotically unbiased estimate. However, the variability in

this estimate is unsatisfactory contributing to a large mean squared error. Therefore, we find this

estimator unsatisfactory for use in finite sample sizes.

3.2 Kernel quantile density estimators

Kernel quantile density estimators provide a rich class of estimators for the qdf and were first

introduced by Parzen (1979). Specifically, let Q(u) = inf{x : F (x) ≥ u}, 0 < u < 1, be the quantile

function associated with F (x) and, as before, q(u) = Q′(u) the quantile density function. Then,

one expression for the kernel quantile density estimator is

q̂n(t) =
1
h2

n

∫ 1

0
F−1

n (x)K ′
(

x− t

hn

)
dx (12)

for some kernel K where F−1
n (x) = inf{u : Fn(u) ≥ x}, see Xiang (1994). Moreover, Xiang (1994)

suggests the quantile density estimator

q̂n(t) =
1

nh2
n

n∑
i=1

K ′
(

i/n− t

hn

)
X(i)

as an easier to calculate alternative to (12).

In the sequel we consider a kernel smoothed estimator q̂(u), as a starting point for tail index

estimation, that satisfies assumptions K1 − K7 of Cheng (1995). Specifically, one estimator we

consider is the boundary-modified Bernstein polynomial. Let ε be such that U ⊂ [ε, 1− ε] ⊂ (0, 1),

7



Lε = 1−2ε and tj = ε+(j/k)Lε, j = 0, 1, . . . , k. Then the kth degree boundary-modified Bernstein

polynomial qdf estimator on U can be expressed as

q̂B
n =

1
Lk

ε

k−1∑
j=0

Q̃n(tj+1)− Q̃n(tj)
1/k

(
k − 1

j

)
(u− ε)j(1− ε− u)k−1−j , (13)

where Q̃n(tj) is the sample quantile. Letting k = kn ↑ ∞ as n ↑ ∞, Cheng (1995) shows assumptions

K1−K7 are satisfied. Finally, with y = log f̂Q(u) = − log q̂B
n (u) we can form an estimate of α0 via

(X ′X)−1X ′Y as before.

Remark 1 Using the boundary-modified Bernstein polynomial requires the choice of user-selected

parameters. Additionally, the values k = dδne, for δ = .95 and .99, performed well in simulation

and satisfy the necessary assumptions.

4 Asymptotic Results

When estimating the qdf, in the context of tail index estimation, the issue of how to choose the

percentiles u arises. For the asymptotic results below, we will suppose them to be of the form

uk = k/n, with k ranging between 1 and bnxc, where x ∈ (0, 1/2] is a user-selected parameter. For

many situations, x = 1/2 is appropriate; however, lower values may be selected.

For the following consistency result, we suppose that the quantile-density function q(u) is esti-

mated with a kernel-smoothed estimator q̂(u), as in Cheng (1995). The kernel that such an esti-

mator relies upon must satisfy some basic assumptions, such as K1 through K7 of Cheng (1995).

One example of such an estimator is given in (13). Additionally, some regularity conditions on the

quantile-density are also necessary: assumptions Q1 through Q3 of Cheng (1995). For convenience

these latter assumptions are discussed below.

Q1 (SMOOTHNESS). The qdf is twice differentiable on (0, 1).

Q2 (CONTROLLED TAIL). There exists a γ > 0 such that sup
u∈(0,1)

u(1− u)|J(u)|/fQ(u) ≤ γ.

Q3 (TAIL MONOTONICITY). Either q(0) < ∞ or q(u) is nonincreasing in some interval (0, u∗),

and either q(1) < ∞ or q(u) is nondecreasing in some interval (u∗, 1).

Taking the lower percentiles, we have q(u) = u−α0/L(u) for u < 1/2, so that Q1 is satisfied if L

is twice differentiable in (0, 1/2). Q2 is automatically satisfied, given that the limits (5) and (6)

exist. Q3 may or may not be satisfied in general, depending on the form of L(u). Certainly, the

assumption of Q1 and Q3 places no burdensome restriction on the slowly varying function L(u).
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Again, since log fQ(u) = − log q(u), we let log f̂Q(u) = − log q̂(u), and consider percentiles of

the form uk = k/n, with 1 ≤ k ≤ bnxc. Thus we can write regression equations for both the

left-hand and right-hand tail indexes, i.e., α0 and α1:

log f̂Q(uk) = α0 log(uk) + θ0 + 2
p∑

t=1

θt cos(2πtuk) + ε(uk)

log f̂Q(1− uk) = α1 log(uk) + θ0 + 2
p∑

t=1

θt cos(2πtuk) + ε(1− uk),

where ε(u) = − log{q̂(u)/q(u)}. Note that in this formulation, we have substituted L(u, p) for L(u),

which involves some approximation error. The asymptotic result ignores this substitution since the

deterministic approximation error can be made as small as desired by choosing p sufficiently large.

Theorem 1 Suppose that the density-quantile function q(u) satisfies Q1 through Q3, and we con-

struct a kernel-smoothed estimator q̂(u) with kernel satisfying K1 through K7 of Cheng (1995).

Moreover, suppose that we consider each regression with the percentiles restricted to some closed

subset U = [a, b], with regressor functions chosen such that (X
′
X)/n converges to an invertible

matrix. Then the estimates α̂0 and α̂1 are consistent at rate B(q;Kn)+dn, where these are defined

in Theorem 2.1 of Cheng (1995). In particular, a simple convolution kernel yields a best rate of

n−2/5log n2/5.

Not only are the estimates we obtain consistent, but as the following theorem shows, our estimates

are also asymptotically normal under some additional assumptions. For this result, we suppose that

q(u) is estimated by a kernel estimator given by convolution as in (12). Furthermore, to establish

the result we need the following additional notation: let G∗(u) = log(u) and Gk(u) = cos(2πku)

for k = 0, · · · , p. Also let the (w∗, w0, · · · , wp) denote the first row of the limiting inverse matrix of

(X
′
X)/n. Then we define

G(u) = w∗G∗(u) + w0G0(u) + · · ·+ wpGp(u). (14)

For convenience, we formulate the result in terms of a general estimate α̂, which is either α̂0 or α̂1

depending on the choice of a and b.

Theorem 2 (Asymptotic Normality) Suppose the same assumptions as in Theorem 1, and in ad-

dition that the kernel satisfies assumption K8 and (20). Let G(u) be given by (14), and assume that

its derivative g(u) = G
′
(u) exists, with both g and G uniformly bounded on U . Let hn be chosen

such that nh2
n →∞ but hn → 0 as n →∞. Then

√
n(α̂− α) L=⇒ G(b)W (b)−G(a)W (a)−

∫ b

a
W (u)

(
g(u)−G(u)

q
′
(u)

q(u)

)
du,

where W (u) is a Brownian Bridge.
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In order to prove Theorem 2, we need to establish a convergence of stochastic processes. This is

done by first establishing some basic results on weak convergence, and then adapting these to the

density quantile estimate. Let C[0, 1] denote the space of continuous functions from [0, 1] into the

real numbers; this is made into a metric space via the metric (4.1) of Karatzas and Shreve (1997).

We commence with a result analogous to Theorem 4.9 of Karatzas and Shreve (1997). First, let us

define the concept of the modulus of continuity on [0, 1]:

mT (ω, δ) = max
|s−t|≤δ, 0≤s,t≤T

|ω(s)− ω(t)|.

Proposition 1 A set A ⊆ C[0, 1] has compact closure if and only if the following two conditions

hold:

sup
ω∈A

|ω(0)| < ∞ (15)

lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0 for everyT ∈ (0, 1). (16)

In condition (15), the time point 0 can be replaced by the time point 1.

Next we consider an adaption of Theorem 4.10 of Karatzas and Shreve (1997). By B(C[0, 1]) we

denote the σ-field generated by open sets in C[0, 1]. Recall that a sequence of probability measures

{Pn}∞n=1 is tight, by definition, if for every ε > 0 there exists a compact set K in C[0, 1] such that

Pn(K) ≥ 1 − ε for all n. The following result gives two sufficient conditions for tightness that are

easier to work with.

Proposition 2 A sequence {Pn}∞n=1 of probability measures on (C[0, 1],B(C[0, 1])) is tight if

lim
λ↑∞

sup
n≥1

Pn[ω : |ω(0)| > λ] = 0, (17)

lim
δ↓0

sup
n≥1

Pn[ω : mT (ω, δ) > ε] = 0 ∀T ∈ (0, 1), ε > 0. (18)

In condition (17), the time point 0 can be replaced by the time point 1.

The preceding Propositions 1 and 2 are of general interest, and may be used to establish the

weak convergence of stochastic processes. In what follows, we consider the kernel quantile estimator

related to (12)

Q̂n(t) =
∫ 1

0
F−1

n (x)h−1
n K

(
t− x

hn

)
dx,

which is introduced in Falk (1985). In a like manner, an approximation to the true F−1
n (t) is given

by

Q̃n(t) =
∫ 1

0
F−1(x)h−1

n K

(
t− x

hn

)
dx.
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Now Theorem 1.3 of Falk (1985) states that for any u1, u2, · · · , ud ∈ U = [a, b] under certain

conditions,

√
n
{(

Q̂n(u1)− Q̃n(u1)
)

, · · · ,
(
Q̂n(ud)− Q̃n(ud)

)}
L=⇒ {Wu1 , · · · ,Wud

}

as n →∞, where the Wuj ’s are jointly Gaussian with mean zero and covariance q(ui)q(uj)ui(1−uj)

for ui ≤ uj . From this result we may guess that
√

n(Q̂n(u)−Q̃n(u)) as a stochastic process converges

to the process q(u)W (u), where W (u) is a Brownian Bridge, since the respective finite-dimensional

distributions converge. The following theorem gives conditions under which this convergence is

true. We require the following additional condition on the kernel K:

(K8) sup
u∈U

∣∣∣∣h−1
n K

(
s− u

hn

)
− h−1

n K

(
t− u

hn

)∣∣∣∣ ≤ Cn|t− s|β

Here the Cn’s are positive constants with supn≥1 Cn = C, a positive constant as well. The rate β

can be any positive number. We also require an additional technical concept: let (Ω,F , P) be a

probability space on which the random variables X1, X2, · · · are defined, and let Pn be the measure

induced by
√

n(Q̂n(u)− Q̃n(u)) on the space (C(U),B(C(U))).

Theorem 3 Suppose that F−1 has bounded derivative on U , and suppose that K(x) has bounded

support on U , integrates to one, and satisfies condition (K8). Then

√
n(Q̂n(u)− Q̃n(u)) L=⇒ q(u)W (u),

i.e., the induced measures Pn corresponding to
√

n(Q̂n(u)− Q̃n(u)) on the space (C(U),B(C(U)))

converge weakly to a measure P , the distribution of q(u)W (u).

Our next result develops some asymptotic theory for the regression estimate given by

1
n

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n). (19)

Later we will need the following deterministic approximation to q(u):

q̃n(u) =
∫

U
F−1(x)h−2

n K
′
(

u− x

hn

)
dx.

The function G(u) is a fairly arbitrary regressor function. We formulate a general theory for the

asymptotics of expressions (19), which may then be applied to obtain the asymptotic of the tail

index estimators. We require an additional assumption on the kernel K(x):

|K ′′
(x)| ≤ C/|x| (20)

for some constant C > 0, and |x| sufficiently large. Our main theorem is stated below:
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Theorem 4 Suppose that the density quantile function q(u) satisfies Q1 through Q3, and we con-

struct a kernel-smoothed q̂n(u) with kernel satisfying K1 through K7 of Cheng (1995), as well as

K8 and (20) above. Let G(u) be a regressor function with derivative g(u) = G
′
(u), with g and G

uniformly bounded on U . Let hn be chosen such that nh2
n →∞ but hn → 0 as n →∞. Then

n−1/2

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n)

L=⇒ G(b)W (b)−G(a)W (a)−
∫ b

a
W (u)

(
g(u)−G(u)

q
′
(u)

q(u)

)
du,

where W (u) is a Brownian Bridge.

5 Empirical Study

In contrast to classical tail index estimation, the theory we propose applies to distributions having

both symmetric and asymmetric tails. To this end, the benefit of our method is fully realized when

estimating a left or right tail index from a distribution having asymmetric tails. However, if one

wishes to estimate the tail index of a symmetric distribution our method may still be implemented.

In order to evaluate the utility and finite sample performance of our estimators we present the

results of a simulation study. The study we conducted, however, does not compare our estimator

with other popular estimators such as the Hill or Pickands since those methods apply only to

symmetric distributions. Such a comparison would not be entirely meaningful since the two methods

are not strictly compatible. Further, we acknowledge that if one has prior knowledge that the

distribution under consideration has symmetric tails that other methods slightly out-perform ours

and thus might be advantageous.

Even though there are a few other methods for estimating left and right tail indices within the

density quantile framework, see for example Rojo (1996), to our knowledge none of them presents

the asymptotic distribution of the proposed estimator. Additionally, previous efforts at estimating

left and right tail indices lack simulation studies evaluating their effectiveness in finite sample sizes.

Therefore, we restrict our attention to the tail index estimators that we propose.

The simulation study we undertake uses (13) as an estimate of q(u). Specifically, we choose

the number of grid points (i.e. uj) equal to the sample size, δ = .975, ε = .01, and p = 2.

As noted previously, this choice of parameters does not constitute an optimal choice of “tuning”

parameters. However, this choice performs well in practice and is thus used here as an illustration.

Furthermore, in order to simulate data from a distribution of a specified tail index we utilize an α-

stable distribution (symmetric tails) and calculate the tail index using our formulation from (10).

12



This procedure was carried out for several values of the tail index α, using 1000 repetitions of

sample sizes 200 and 1000. Finally, we only consider the left tail index and note that the right tail

index yielded similar results.

Table (1) shows the results of the empirical study for both sample size 200 and 1000. Even though

the estimator produced a slight upward systematic bias the mean square errors were relatively small.

One thing to notice is that the variance (of αp) decreases as αc increases. Thus, it seems that tail

index estimation in the density quantile framework performs better when estimating lighter tailed

distributions. The superior estimation is due to the fact that the low tail thickness corresponds

to values of αp close to unity, whereas αc is tending to infinity. Specifically, it will be easier to

estimate values close to one than around infinity. Thus, intuitively, the variance will tend to be

lower. In summary our estimator improves for larger values of αc.

Additionally, Figure (1) presents the histogram of the distribution of the studentized estimators

for αp = 2 (n = 1000); for convenience the Normal(0,1) pdf is superimposed. This plot illustrates

that the asymptotic distribution is achieved even in finite samples. Similar plots were constructed

for the distribution of each studentized tail index in Table (1) (for n = 1000) with all results being

similar and thus are not displayed.

6 Discussion

In this paper we developed a new method of tail index estimation. The approach we propose is

semiparametric and evolves naturally out of the density quantile framework for classifying proba-

bility laws via tail behavior. Moreover, we argue that our method is rather flexible, allowing for

separate left and right tail index estimation when little or nothing is known about the distribution

a priori. The only implicit requirement we impose is that the data don’t exhibit any strong depen-

dence. If one wishes to estimate the tail index for dependent data, there are several methods; for

example, see McElroy and Politis (2006) and the references therein.

In order to increase the utility of our estimator we provide a mapping between our estimator

and the classical estimator. Additionally, under fairly mild conditions, we show that our tail index

estimator is both consistent and asymptotically normal. Furthermore, in the development of the

asymptotic theory we provide results of independent interest that can be used to establish weak

convergence of stochastic processes.

To illustrate the finite sample performance of our estimator we provide the results of an em-

pirical study. This study is facilitated by simulating from an α-stable distribution, making use of

13



equivalence formula (10), and includes the mean, standard error and mean square error for sev-

eral different values of αp. The results indicate good performance for the estimator we develop.

Additionally, our estimator improves (i.e. has both smaller variance and mean square error) for

larger values of αc and thus is better for getting at lighter tailed distributions. Furthermore, we

display a histogram of the distribution of the studentized estimator with the pdf of a Normal(0,1)

superimposed. This plot shows convergence to the asymptotic distribution even in finite sample

sizes.

Although the method we propose is fairly general it still requires some user defined choices. For

example, the qdf estimator and its associated “tuning” parameters all need to be chosen by the

practitioner. Even though we have made recommendations for suitable choices we do not provide

optimal selection criteria.

Appendix

Proof of Theorem 1. We focus on the α0 case, since the α1 case is similar. It follows from basic

linear regression that

α̂0 − α0 = e
′
1(X

′
X)

−1
X

′
ε

with e
′
1 = (1, 0, · · · , 0) and ε the vector of ε(uk) such that the percentiles all lie in the set U . This

amounts to considering uk with dnae ≤ k ≤ bnbc. Let γ = X(X
′
X)

−1
e1, so that

|α̂0 − α0| =

∣∣∣∣∣∣
bnbc∑

j=dnae

γjε(uj)

∣∣∣∣∣∣ ≤
 bnbc∑

j=dnae

γ2
j

1/2 bnbc∑
j=dnae

ε2(uj)

1/2

by the Cauchy-Schwartz inequality. Now

bnbc∑
j=dnae

γ2
j = e

′
1(X

′
X)

−1
e1,

where the matrix X
′
X has the following form:

X
′
X =


∑bnbc

j=dnae log2(j/n)
∑bnbc

j=dnae log(j/n) 2
∑bnbc

j=dnae log(j/n) cos(2πj/n) · · ·∑bnbc
j=dnae log(j/n) bnbc − dnae 2

∑bnbc
j=dnae cos(2πj/n) · · ·

...
...

...
...


By the definition of Riemann integration, X

′
X/n → M(a, b) as n →∞, where M(a, b) is given by

M(a, b) =


∫ b
a log2(u) du

∫ b
a log(u) du 2

∫ b
a log(u) cos(2πu) du · · ·∫ b

a log(u) du b− a 2
∫ b
a cos(2πu) du · · ·

...
...

...
...

 .

14



This matrix is symmetric and is invertible by assumption. Thus it follows that

|α̂0 − α0| ≤ C

n−1

bnbc∑
j=dnae

ε2(uj)

1/2

for some constant C > 0. Now

ε(k/n) = − log
(

1 +
q̂(k/n)− q(k/n)

q(k/n)

)
to which we can apply a Taylor Series expansion. Since k is chosen such that k/n is bounded away

from 0 and 1, q(k/n) is bounded away from zero. Now by Theorem 2.1 of Cheng (1995)

sup
u∈U

|q̂(u)− q(u)| = OP (B(q;Kn) + dn),

and it follows that by the use of Taylor Series that supdnae≤k≤bnbc |ε(k/n)| = OP (B(q;Kn) + dn) as

well. Finally, it follows thatn−1

bnbc∑
j=dnae

ε2(uj)

1/2

= OP (B(q;Kn) + dn).

This proves the consistency of α̂, given that the kernel is selected such that B(q;Kn)+dn → 0. The

last assertion of the theorem follows from the discussion following Theorem 2.1 of Cheng (1995).

2

Proof of Proposition 2. Assume (17) and (18). Fix η > 0, and consider any positive integer L,

which defines T via T = 1− 1/(L + 1). Additionally, choose λ > 0 such that

sup
n≥1

Pn[ω : |ω(0)| > λ] ≤ η2−L,

which is guaranteed by property (17). Next, for each positive integer k, choose δk > 0 such that

sup
n≥1

Pn[ω : mT (ω, δk) > 1/k] ≤ η2−(L+k),

which is guaranteed by property (18). Define the sets

AL = {ω : |ω(0)| ≤ λ, mT (ω, δk) ≤ 1/k, k = 1, 2, · · · }

for L = 1, 2, · · · . Also let A =
⋂∞

L=1 AL. Now if ω ∈ A, then supω∈A |ω(0)| ≤ λ and condition (15) is

satisfied. Now since mT (ω, δ) ≤ mT
′
(ω, δ) if T ≤ T

′
, it follows that m1−1/(L+1)(ω, δk) ≤ 1/k implies

mT (ω, δk) ≤ 1/k for every T ≤ 1−1/(L+1). So if ω ∈ A, then mT (ω, δk) ≤ 1/k for k = 1, 2, · · · and

for all T ∈ (0, 1). Thus, for every T ∈ (0, 1), supω∈A mT (ω, δk) ≤ 1/k for k = 1, 2, · · · , which implies

condition (16). Hence by Proposition 1, the set A has compact closure. But by the continuity of

mT (·, δ) (see Karatzas and Shreve (1997, p.62)), each AL is closed, and hence so is A.
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In order to show tightness of {Pn}∞n=1, we must demonstrate that Pn(A) ≥ 1 − η for all n ≥ 1.

Now Pn(AL) ≥ 1− η2−L+1 is easily shown. Finally,

Pn(A) ≥ 1−
∞∑

L=1

Pn(Ac
L) ≥ 1− η

where Ac
L denotes the complement of AL. This proves the proposition. 2

Proof of Theorem 3. First, we note that Propositions 1 and 2 can be extended from C[0, 1]

to C(U) trivially. The idea of the proof is to adapt the ideas from Theorem 4.15 of Karatzas and

Shreve (1997) – merely adapt from C[0,∞) to C(U) using the same arguments – and verify the

conditions of Proposition 2 for the particular process at hand. Now recalling that U = [a, b], the

first condition is (17), which becomes

sup
n≥1

P
[√

n
∣∣∣Q̂n(a)− Q̃n(a)

∣∣∣ > λ
]
→ 0 (A.1)

as λ →∞, using the definition of the induced measure Pn. Now Theorem 1.3 of Falk (1985) holds,

due to the conditions in our theorem, so

lim
n→∞

P
[√

n|Q̂n(a)− Q̃n(a)| > λ
]

= P[|Wa| > λ].

Now pick any ε > 0, and find M large enough such that P[|Wa| > λ] < ε for all |λ| > M (this is

accomplished, because Wa is Gaussian with finite variance). Then find N such that∣∣∣P[
√

n|Q̂n(a)− Q̃n(a)| > λ]− P[|Wa| > λ]
∣∣∣ < ε

for all n ≥ N and |λ| > M . Then for |λ| > M ,

sup
n≥1

P[
√

n|Q̂n(a)− Q̃n(a)| > λ]

= max
1≤n<N

P[
√

n|Q̂n(a)− Q̃n(a)| > λ] + sup
n≥N

P[
√

n|Q̂n(a)− Q̃n(a)| > λ].

The second term is bounded by 2ε, and by taking |λ| still larger, the first term can be bounded by

ε. This demonstrates (A.1). Next, we consider the condition that for any ε > 0 we have

sup
n≥1

P
[

max
|s−t|≤δ

∣∣∣√n(Q̂n(s)− Q̃n(s))−
√

n(Q̂n(t)− Q̃n(t))
∣∣∣ > ε

]
(A.2)
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tends to zero as δ → 0; this formulation follows (18) using the definition of induced measure. Now

assuming (K8), take any ε > 0 and δ > 0, it follows that

sup
n≥1

P
[

max
|s−t|≤δ

∣∣∣√n(Q̂n(s)− Q̃n(s))−
√

n(Q̂n(t)− Q̃n(t))
∣∣∣ > ε

]
= sup

n≥1
P
[

max
|s−t|≤δ

√
n

∣∣∣∣∫
U
(F−1

n (u)− F−1(u))
(

h−1
n K

(
u− s

hn

)
− h−1

n K

(
u− t

hn

))
du

∣∣∣∣ > ε

]
≤ sup

n≥1
P
[

max
|s−t|≤δ

√
n

∫
U
|F−1

n (u)− F−1(u)|Cn|t− s|β du > ε

]
= sup

n≥1
P
[√

n

∫
U
|F−1

n (u)− F−1(u)| du > εδ−β/C

]
.

Now along the lines of the proof of (A.1), we can make δ smaller if needed, in order to replace the

supremum by a limit superior. Hence we have the bound of

lim sup
n→∞

P
[√

n

∫
U
|F−1

n (u)− F−1(u)| du > εδ−β/C

]
= P

[∫
U
|q(u)W (u)| du > εδ−β/C

]
,

which uses the known weak convergence result
√

n(F−1
n (u)− F−1(u)) L=⇒ q(u)W (u) (Gihman and

Skorohod, 1980, p. 437). We have applied the continuous functional of absolute integration to this

weak convergence result. Now we can let δ → 0, and obtain

lim
δ→0

P
[∫

U
|q(u)W (u)| du > εδ−β/C

]
= 0.

This establishes (A.2). Hence the induced measures Pn are tight, and the weak convergence is

proved. 2

Proof of Theorem 4. The proof proceeds in three major steps. First, we apply a Taylor Series

expansion to the logarithm. Second, we analyze the linearization of (19) and compute a Riemann

sum approximation. Third, we apply continuous functionals to the resulting expression, utilizing

Theorem 3 to obtain the stated convergence. For the first step, we expand in Taylor series as

follows:

log
(

q̂n(k/n)
q(k/n)

)
G(k/n) =

(
q̂n(k/n)− q(k/n)

q(k/n)

)
G(k/n) + Rk,n

where Rk,n is the quadratic remainder, which depends on k and n. Now by Theorem 2.1 of Cheng

(1995), which applies by our stated assumptions, there exists 0 < δ < 2/5 such that

sup
u∈U

|q̂n(u)− q(u)| = OP (n−δ).

Since G and q̃n are bounded away from infinity and zero respectively on U , the error satisfies

supk/n∈U Rk,n = OP (n−2δ). Hence, multiplying by
√

n, the error still tends to zero, i.e.,

n−1/2

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n) = OP (n1/2−2δ) + n−1/2

bnbc∑
k=dnae

(
q̂n(k/n)− q(k/n)

q(k/n)

)
G(k/n)
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as n →∞. For the second step, it will be more convenient to work with

n−1/2

bnbc∑
k=dnae

(q̂n(k/n)− q̃n(k/n))
G(k/n)
q(k/n)

;

the difference is given by

n−1/2

bnbc∑
k=dnae

(q̃n(k/n)− q(k/n))
G(k/n)
q(k/n)

.

Now
√

n(q̃n(u)−q(u)) will tend to zero uniformly for u ∈ U given a kernel K
′
with rapidly decaying

tails, as discussed in Falk (1986), so we make the replacement as indicated. Next, we have

n−1

bnbc∑
k=dnae

(q̂n(k/n)− q̃n(k/n))
G(k/n)
q(k/n)

=
∫

U

(
F−1

n (x)− F−1(x)
)
n−1

bnbc∑
k=dnae

h−2
n K

′
(

k/n− x

hn

)
G(k/n)
q(k/n)

dx,

with the inner sum being recognized as a deterministic Riemann sum. For each fixed x, we have

∫
U

h−2
n K

′
(

u− x

hn

)
G(u)
q(u)

du− n−1

bnbc∑
k=dnae

h−2
n K

′
(

k/n− x

hn

)
G(k/n)
q(k/n)

= h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

(
K

′
(

u− x

hn

)
G(u)
q(u)

−K
′
(

k/n− x

hn

)
G(k/n)
q(k/n)

)
du

+
∫ dnae/n

a
h−2

n K
′
(

u− x

hn

)
G(u)
q(u)

du−
∫ (bnbc+1)/n

b
h−2

n K
′
(

u− x

hn

)
G(u)
q(u)

du.

Using the boundedness of K
′

and G and 1/q, the latter two terms are O(n−1h−2
n ). For the first

term, we have an absolute bound of

h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

∣∣∣∣K ′
(

u− x

hn

)
−K

′
(

k/n− x

hn

)∣∣∣∣ ∣∣∣∣G(u)
q(u)

∣∣∣∣ du

+ h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

∣∣∣∣K ′
(

k/n− x

hn

)∣∣∣∣ ∣∣∣∣G(k/n)
q(k/n)

− G(u)
q(u)

∣∣∣∣ du.

Now since g is uniformly bounded on U , we can use the Mean Value Theorem to bound the second

term by O(n−1h−2
n ). For the first term, we can use (20) on the following∣∣∣∣K ′

(
u− x

hn

)
−K

′
(

k/n− x

hn

)∣∣∣∣ = |K ′′
(z∗)|

∣∣∣∣u− k/n

hn

∣∣∣∣ ,
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where z∗ is between (u− x)/hn and (k/n− x)/hn. Since u ∈ [(k − 1)/n, k/n], we obtain a bound

of hn · O(n−1h−1
n ). Hence the overall bound for the Riemann sum approximation is O(n−1h−2

n ),

uniformly in x. Therefore,

√
n

∫
U

(
F−1

n (x)− F−1(x)
)
n−1

bnbc∑
k=dnae

h−2
n K

′
(

k/n− x

hn

)
G(k/n)
q(k/n)

dx

−
√

n

∫
U

(
F−1

n (x)− F−1(x)
) ∫

U
h−2

n K
′
(

u− x

hn

)
G(u)
q(u)

du dx

≤
√

n

∫
U

∣∣F−1
n (x)− F−1(x)

∣∣ dx · O(n−1h−2
n )

and the random quantity converges weakly (again by Gihman and Skorohod, 1980, p. 437), hence

the total error is OP (n−1h−2
n ), which tends to zero. This concludes the second step of the proof.

Next, we simplify the inner integral, using integration by parts:∫ b

a
h−2

n K
′
(

u− x

hn

)
G(u)
q(u)

du

= h−1
n K

′
(

b− x

hn

)
G(b)
q(b)

− h−1
n K

′
(

a− x

hn

)
G(a)
q(a)

−
∫ b

a
h−1

n K

(
u− x

hn

)(
g(u)
q(u)

− G(u)q
′
(u)

q2(u)

)
du.

Integrating against
√

n(F−1
n (x)− F−1(x)) over x ∈ U yields

√
n
(
Q̂n(b)− Q̃n(b)

) G(b)
q(b)

−
√

n
(
Q̂n(a)− Q̃n(a)

) G(a)
q(a)

−
√

n

∫
U

(
Q̂n(b)− Q̃n(b)

)[g(u)
q(u)

− G(u)q
′
(u)

q2(u)

]
du.

At this point, we utilize Theorem 3 and apply integration against b(u) over U to the convergence

result, where

b(u) = ∆b(u)
G(u)
q(u)

−∆a(u)
G(u)
q(u)

−

[
g(u)
q(u)

− G(u)q
′
(u)

q2(u)

]
and ∆x(u) denotes the Dirac delta function at x. (Observe that evaluation at a point is a continuous

functional, which amounts to integration against the Dirac delta function at that point.) Writing

out b(u)q(u)W (u), we obtain the stated result, and the proof is complete. 2

Proof of Theorem 2. Following on from the proof of Theorem 1, we have

√
n(α̂− α) = oP (1)+

e
′
1M

−1(a, b)

n−1

bnbc∑
k=dnae

ε(k/n)G∗(k/n), · · · , n−1

bnbc∑
k=dnae

ε(k/n)Gp(k/n)

′

,
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since X
′
X/n = o(1)+M(a, b) (in the sense that each entry converges). The expression on the right

is simply

n−1/2

bnbc∑
k=dnae

ε(k/n)G(k/n).

Now, our assumptions validate the hypotheses of Theorem 4, and hence applying that result com-

pletes the proof. 2
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n = 1000 n = 200

αp αc Mean Stdev MSE Mean Stdev MSE

3 .5 3.008 .339 .115 3.279 .954 .988

2.333 .75 2.274 .279 .081 2.445 .681 .477

2 1 1.921 .236 .062 2.056 .587 .348

1.667 1.5 1.546 .208 .058 1.65 .507 .257

Table 1: Left tail index estimation (of αp) using qdf estimator (13). The simulations consisted of
1000 repetitions of sample sizes 1000 and 200.



studentized tail index

De
ns

ity

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1: This figure contains a histogram for the studentized distribution of the left tail index
estimator for αp = 2 from a simulation with 1000 repetitions and of sample size 1000.
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