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Abstract

From an invertible linear relation between stock and �ow trading
day regression coe¢ cients that is derived, it is shown how �ow day-
of-week e¤ect constraints can be imposed upon the day-of-week e¤ect
component of the stock trading day model of Bell (1984) used in X-
12-ARIMA. We illustrate the use of the general formulas obtained
by deriving the one-coe¢ cient stock regression model determined by
the constraints that give rise to the one-coe¢ cient weekday-weekend-
contrast �ow trading day model of TRAMO and X-12-ARIMA.
KeyWords: Time series; Trading day adjustment; One-coe¢ cient

stock trading day model

1 Formulas Relating Flow and Stock Trading
Day Coe¢ cients

With i = 1; : : : ; 7 indexing the weekdays from Monday through Sunday, and
with t = 1; 2; : : : indexing the months of the span of interest for a monthly
time series, let Xi;t denote the number of times the i-th weekday occurs
in month t. Then

P7
i=1 �iXi;t is the basic formula for �ow series trading

day e¤ects from which regression models are derived for estimation of such
e¤ects with regARIMA models, see Bell and Hillmer (1983) and Findley,
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Monsell, Bell, Otto and Chen (1998), for example. From the decomposition
of
P7

i=1 �iXi;t into day-of-week and length-of-month e¤ects,

7X
i=1

�iXi;t =

7X
i=1

~�iXi;t + ��mt; (1)

where ~�i = �i � �� with �� = 1
7

P7
i=1 �i and mt =

P7
i=1Xi;t (the length of

month t), Bell (1984,1995) derived a regression model for the cumulative
end-of-month stock trading day e¤ects

tX
j=1

7X
i=1

�iXi;j: (2)

The day-of-week component of Bell�s model was derived from the day-of-week
component of (1),

7X
i=1

~�iXi;t =
6X
i=1

~�iX
�
i;t; (3)

where X�
i;t = Xi;t�X7;t, i = 1; : : : ; 6. The right hand side of (3), which arises

from
7X
i=1

~�i = 0; (4)

de�nes the regression model for the day-of-week component of (1). In this
section, we derive complementary formulas connecting the coe¢ cient vector

~� =
�
~�1

~�2 : : : ~�6
�0

(5)

of this model and the coe¢ cient vector of Bell�s day-of-week e¤ect model.
To present Bell�s formula for the stock day-of-week e¤ects, for k = 1; : : : ; 7,

we de�ne It (k) = 1 if the stock is measured on the k-th weekday in month t
and It (k) = 0 otherwise. Let k0 be the index of the type of day on which the
stock is measured in the month preceding month 1. From (3), the derivation
on pp. 5�7 of Bell (1984), but with the more general de�nition of k0 just
given to permit any pattern of days for stock measurements, shows that the
(detrended) day-of-week e¤ect of (2) is given by

7X
k=1

~
kIt (k) , (6)
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with ~
k = 
k � �
 and �
 = 1
7

P7
k=1 
k, where


7 = �
k0X
i=1

~�i

and


k =
kX
i=1

~�i + 
7, k = 1; : : : ; 6: (7)

Since
7X
k=1

~
k = 0; (8)

setting I�t (k) = It (k)� It (7), k = 1; : : : ; 6, we have

7X
k=1

~
kIt (k) =
6X
k=1

~
kI
�
t (k) : (9)

In the case of end-of-month stocks, or of �w-th day of the month stocks,
where, for �xed 1 � w � 31, �w = w in months with at least w days, and
�w is the �nal day of the month for shorter months, the r.h.s. of (9) de�nes
the regression model for stock day-of-week e¤ect regression models used by
X-12-ARIMA (Findley et al., 1998). A. Maravall has informed us that the
same regression models will be implemented in a future version of TRAMO
(Gómez and Maravall, 1996). For these cases, the day-of-week e¤ect de�ned
by (6) has no seasonal component, see the Remark below.
To obtain the invertible linear relation between the coe¢ cient vector

~
 =
�
~
1 ~
2 : : : ~
6

�0
and ~�, note �rst that, with

L =

26666664
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

37777775 ;
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(7) is equivalent to

L~� =
�

1 � 
7 
2 � 
7 : : : 
6 � 
7

�0
:

Next, using (8), observe that


k � 
7 = ~
k � ~
7 = ~
k +
6X
j=1

~
j = 2~
k +
X
j 6=k

~
j:

Thus, de�ning

M =

26666664
2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

37777775 ;

we have
L~� =M~
:

Since

L�1 =

26666664
1 0 0 0 0 0

�1 1 0 0 0 0
0 �1 1 0 0 0
0 0 �1 1 0 0
0 0 0 �1 1 0
0 0 0 0 �1 1

37777775 ;

we are led to
~� = N~
; (10)

with

N = L�1M =

26666664
2 1 1 1 1 1

�1 1 0 0 0 0
0 �1 1 0 0 0
0 0 �1 1 0 0
0 0 0 �1 1 0
0 0 0 0 �1 1

37777775 : (11)
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Also, since

M�1 =
1

7

26666664
6 �1 �1 �1 �1 �1

�1 6 �1 �1 �1 �1
�1 �1 6 �1 �1 �1
�1 �1 �1 6 �1 �1
�1 �1 �1 �1 6 �1
�1 �1 �1 �1 �1 6

37777775 ;

a special case of Ex. 5.18 of Noble (1969, p. 148), we have

~
 = N�1~�; (12)

with

N�1 =M�1L =
1

7

26666664
1 �5 �4 �3 �2 �1
1 2 �4 �3 �2 �1
1 2 3 �3 �2 �1
1 2 3 4 �2 �1
1 2 3 4 5 �1
1 2 3 4 5 6

37777775 :

Remark. When precise interpretations of the estimated seasonal factors
of a time series are desired, it could be important that the day-of-week factors
be free of seasonal e¤ects. The argument on p. 7 of Bell (1984) reveals that
the stock day-of-week e¤ects (6) always have this property if and only if the
It (k) have identical long-term calendar month means,

lim
N!1

1

N

NX
n=1

Ij+12n (k) =
1

7
; 1 � j � 12; (13)

for k = 1; : : : ; 7. That is, in each of the twelve calendar months, over time the
seven days of the week must be stock days with the equal frequency. This hap-
pens with end-of-month and �w-th day of month stocks because the monthly
calendar repeats every twenty-eight years (ignoring an exception every four
hundred years). (13) does not hold, for example when It (7) is de�ned to be
zero for all t in the situation in which Sunday stocks are never measured.
When (13) fails for some k, then to obtain regressors that yield day-of-week
factors with no seasonal component the long-term calendar-month means of
the I�t (k) must be removed; see Bell (1984, pp. 1-3).
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2 The E¤ect of Flow-Coe¢ cient Constraints

With stock series, it can happen that there is information about the as-
sociated �ow series which constrains the coe¢ cients �i in (1). When the
constraint is linear with coe¢ cients summing to zero, i.e., is a contrast, it is
equivalent to a constraint on ~� of the form

H~� = 0; (14)

for some matrixH. From (10) and (12), the constraint (14) on ~� is equivalent
to the constraint

HN~
 = 0 (15)

on ~
.

2.1 An example with one constraint

We �rst consider the simple contrast

�6 � �7 = 0; (16)

used for series in which the level of economic activity can be assumed to be
the same on Saturday and Sunday. It is equivalent to ~�6� ~�7 = 0, and, from
(4), also to

P5
i=1
~�j + 2

~�6 = 0. This is the same as (14) with

H =
�
1 1 1 1 1 2

�
: (17)

From (11),
HN =

�
1 1 1 1 0 3

�
;

so, from (15), the constraint (16) is equivalent to

~
6 = �
1

3

4X
k=1

~
k:

Consequently, the regression model for the constrained stock day-of-week
e¤ect is given by the r.h.s. of

6X
k=1

~
kI
�
t (k) =

5X
k=1

~
kDt (k) ;
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with
Dt (k) = I

�
t (k)�

1

3
I�t (6) , k = 1; : : : ; 4;

and
Dt (5) = I

�
t (5) :

2.2 Models from multiple constraints

In order to illustrate a general approach to obtaining constrained regression
models outlined in Silvey (1975, p. 60), we now consider the one-coe¢ cient
weekday-weekend-contrast �ow day-of-week e¤ect model of TRAMO and
X-12-ARIMA. This model imposes constraints on the weekday coe¢ cients
�1; : : : ; �5 as well as on �6 and �7,

�1 = �2 = � � � = �5; �6 = �7; (18)

resulting in the constraint matrices

H =

266664
1 �1 0 0 0 0
0 1 �1 0 0 0
0 0 1 �1 0 0
0 0 0 1 �1 0
1 1 1 1 1 2

377775
and

HN =

266664
3 0 1 1 1 1

�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
1 1 1 1 0 3

377775
for ~� and ~
, respectively.
To obtain the regression model resulting from imposing (18) on

P6
k=1 ~
kI

�
t (k),

we create an auxiliary matrix by adding a row to HN in such way that an
invertible matrix results: with

J =

26666664
3 0 1 1 1 1

�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
1 1 1 1 0 3
0 0 0 0 1 0

37777775 ;

7



we have

J�1 =
1

35

26666664
12 �3 �10 �9 �4 �21
9 24 10 2 �3 �7
6 16 30 13 �2 7
3 8 15 24 �1 21
0 0 0 0 0 35

�10 �15 �15 �10 15 0

37777775 :
De�ning the row vector

I�t =
�
I�t (1) I�t (2) I�t (3) I�t (4) I�t (5) I�t (6)

�
;

observe that
6X
k=1

~
kI
�
t (k) = I

�
t ~
 =

�
I�t J

�1� (J~
) : (19)

Due to (15),
J~
 =

�
0 0 0 0 0 ~
5

�0
;

so the sixth column of J�1 de�nes the one-coe¢ cient regressor Dt for the
constrained regression model de�ned by the r.h.s. of (19):

6X
k=1

~
kI
�
t (k) = ~
5Dt;

with
Dt = �

3

5
I�t (1)�

1

5
I�t (2) +

1

5
I�t (3) +

3

5
I�t (4) + I

�
t (5) : (20)

From this we obtain

~
 =
�
�3
5
�1
5

1
5

3
5
1 0

�0
~
5; (21)

showing that ~
6 = 0 (so Saturday is an average day, �6 = ��) and, from (8),
that ~
7 = �~
5.
Alternatively, given the constrained form of ~�, i.e. ~� =

�
1 1 1 1 1 �5

2

�0 ~�5,
which follows from (18) and (4), it is simpler to obtain (21), and thus also
(20), from (12). Thus, from (12),

~
 =
1

7

26666664
1 �5 �4 �3 �2 �1
1 2 �4 �3 �2 �1
1 2 3 �3 �2 �1
1 2 3 4 �2 �1
1 2 3 4 5 �1
1 2 3 4 5 6

37777775

26666664
1
1
1
1
1

�5
2

37777775 ~�5 =
1

2

26666664
�3
�1
1
3
5
0

37777775 ~�5;
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which yields ~
5 =
5
2
~�5 and (21).

In general, if the constraint matrix H in (14) has r rows and full rank,
then 6� r rows must be added to HN to obtain the auxiliary matrix J for
(19). The last 6� r rows of I�t J�1 de�ne a constrained model regressor set.
Adding rows to form J that are zero except in a single location, as above,
has the important advantage that the nonzero entries of J~
 are entries of ~

and are therefore immediately interpretable.
For implementation of constrained estimation in practice, we note that,

from a preliminary unconstrained estimation of ~
, X-12-ARIMA can output
a regression matrix �le containing the values of I�t (k), k = 1; : : : ; 6 for all
t. (Use the command save=rmx in the regression spec.) From the latter
�le, a �le with the constrained model�s regression matrix can be constructed.
This �le can be input into X-12-ARIMA (or TRAMO) to obtain estimated
coe¢ cients of the constrained model and its day-of-week adjustment factors.
It should be pointed out that the general approach illustrated above can as

well be applied to �nd the �ow series regressors associated with the constraint
(14). In this case, a nonsingular J is obtained by adding 6 � r rows to H.
Then, with

X�
t =

�
X�
1;t X�

2;t X�
3;t X�

4;t X�
5;t X�

6;t

�
;

we have
6X
i=1

~�iX
�
i;t = X

�
t
~� =

�
X�
t J

�1� �J ~�� ;
and the last 6 � r rows of X�

t J
�1 de�ne a regressor set for the constrained

�ow trading day model, whose coe¢ cients are the last 6� r entries of J ~�.

3 Final Remarks

The approach to �nding regressors for the constrained model by means of
the inverse of an augmented constraint matrix J is appealing because of
its generality. But, in practice, it is usually not di¢ cult to obtain these
regressors without such a matrix inversion, as we illustrated.
Bell (1984,1995) also provides a model for the detrended and deseasonal-

ized component of the end-of-month stocks, ��
Pt

j=1mj accumulated from the
length-of-month e¤ects ��mt in (1). This model is not a¤ected by constraints
(15) and can be modi�ed to apply to �w-th day-of-month stocks, by rede�ning
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the length of month t to be the number of days between the stock measure-
ments of months t � 1 and t in the derivation of the mode. Bell (1995) has
discussions for and against estimation of this component. A future version
of X-12-ARIMA may provide a regressor for its estimation.
For day-of-week e¤ect models for quarterly series, the only changes re-

quired to the formulas of this report are (i) quantities that were de�ned in
terms of months, e.g. mt, must be rede�ned in terms of quarters; and (ii)
Ij+12n (k), 1 � j � 12 in (13) must be replaced by Ij+4n (k), 1 � j � 4.
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