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Abstract

The Hodrick-Prescott (HP) filter is widely used in the field of economics to estimate trends

and cycles from time series data. For certain applications – such as deriving implied trend and

cycle models and obtaining filter weights – it is desirable to express the frequency response of

the HP as the spectral density of an ARMA model; in other words, to accomplish the spectral

factorization of the HP filter. This paper presents an exact approach to this problem, which

makes it possible to provide exact algebraic formulas for the HP filter coefficients in terms of

the HP’s signal-noise ratio.

Keywords. Nonstationary time series, filtering, business cycle.

Disclaimer This paper is released to inform interested parties of ongoing research and to encour-

age discussion of work in progress. The views expressed on statistical, methodological, technical,

and operational issues are those of the authors and not necessarily those of the U.S. Census Bureau.

1 Introduction

The Hodrick-Prescott (HP) filter is widely used in the field of economics to estimate trends and

cycles from time series data. Although the filter has been informally used in many fields for many

decades, it was more recently introduced to the study of business cycles by Hodrick and Prescott

(1997). This filter can be interpreted as a Mean Squared Error (MSE) optimal signal extraction

filter for the trend in the smooth trend model (see Harvey, 1989); this is also discussed in Harvey

and Trimbur (2003). In recent years the filter has been used in the seasonal adjustment program

SEATS (Gómez and Maravall, 1997) to produce cycle estimates from the program’s trend-cycle

output (see Kaiser and Maravall, 2005). Conceptually, this results in “implied” models for the

cycle and the trend, such that applying the HP filter results in MSE optimal estimates. This latter

paper provides the main application for the present work.

In order to determine these implied models, it is necessary to obtain the spectral factorization

of the HP filter. Namely, if we view the frequency response of the HP filter as the spectral density
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of an ARMA process, the problem of spectral factorization amounts to the determination of the

coefficients of the AR polynomial (the MA coefficients are trivial). A knowledge of these AR

coefficients, along with the corresponding roots, facilitates the construction of implied cycle and

trend models. These models are actually necessary for any finite-sample implementation of the

HP filter; if one wishes to use the State Space smoother (Durbin and Koopman, 2001) to obtain

cycle estimates, then one must know the actual implied cycle model. Equivalently, a matrix based

approach to signal extraction requires knowledge of the autocovariance function of the (differenced)

trend and cycle (McElroy, 2005). This application provides the primary motivation for obtaining

the spectral factorization of the HP; a secondary motivation lies in determining the exact filter

weights of the HP filter. These would typically be computed from a knowledge of the zeroes of the

AR polynomial, thus avoiding the need to perform numerical integration.

Of course, the general problem of spectral factorization has been solved, and their are various

numerical recipes for computing the polynomial coefficients – see Pollock (1999) for a discussion.

These algorithms are numerical, and hence inexact. Note that Kaiser and Maravall (2005) provides

an algorithm for computing the exact AR coefficients, though the dependence on the signal-noise

ratio (SNR) q is somewhat obscured. The paper at hand provides exact algebraic formulas for the

AR coefficients, the zeroes of the AR polynomial, and the HP filter coefficients, all of which only

depend upon the SNR q. The advantages of the exact formulas are the following: higher precision

of the filter quantities (discussed in Section 4), easier software implementation, faster computation

time, and mathematical insight. This last aspect pertains to the HP filter coefficients: the exact

formulas allow us to see both the geometric decay of the weights as well as the side-lobe behavior,

and how these qualitative features depend on the choice of q. In addition, a simple relationship

between q and the cycle-periodicity of an implied cycle model can easily be traced.

The plan of this paper is as follows. Section 2 defines the mathematical problem and traces

the derivation of the spectral factorization. We also determine the roots of the AR polynomial

associated with the HP, focusing on the factorization that results in zeroes outside the unit circle

of complex plane. These results are summarized in equations (10) through (13). In Section 3

we discuss two applications: obtaining the implied cycle and trend models discussed in Kaiser

and Maravall (2005) that result from applying the HP filter to a trend-cycle process with known

ARIMA structure, and determining exact formulas for the HP filter weights using the theory of

residues from complex analysis. The formula for the filter weights is given in (19). We demonstrate

the practicality of this work in Section 4 through a simple illustration of these two applications; the

formulas are trivial to encode in software. Note that we do not advocate taking an exact approach

to the general problem of spectral factorization; it works out well for the HP filter because its

associated AR polynomial is of order 2, which is sufficiently low to guarantee success. But since
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the HP enjoys such a wide use in economics (and other sciences as well), the effort involved in

obtaining the exact formulas seems worthwhile.

2 Spectral Factorization

Let B denote the backshift operator, and let B = B−1 = F , so that the “conjugate” of the

backshift operator is the forward shift operator F . Now for a given SNR q > 0, the HP filter is

defined as

H(B) =
q

q + |1−B|4 , (1)

which has symmetric coefficients ϕj . Some authors refer to (1) as giving the HP “low-pass” filter,

since it is appropriate for trend estimation. The HP “high-pass” filter is just 1 − H(B), and is

frequently used to estimate cycles from trend-cycle data. For a model-based interpretation of the

HP filter, see Harvey and Trimbur (2003). We will focus on the spectral factorization of the HP

low-pass (1), since the factorization of the HP high-pass will follow easily. Now although we make

reference to spectral methods, our calculations will actually take place in the time domain. The

main idea is that the frequency response of the HP filter (1) can be conceived of as an ARMA

model, in which case there exist polynomials θ(B) and φ(B) and a constant c such that

H(B) =
θ(B)θ(F )
φ(B)φ(F )

c.

Here we follow the Box and Jenkins (1976) convention that the leading coefficient of polynomials

should equal 1 (so θ(0) = 1 = φ(0)), but we do not adopt the minus convention for AR polynomials.

In particular, φ(B) = 1+φ1B+φ2B
2; it is simple to see from (1) that we must have θ(B) = 1. So if

we view the HP frequency response as the spectral density of an ARMA process, then that process

is actually an AR(2). Our task then, is to determine φ1, φ2, and c in terms of q. Mathematically,

it will be simpler to formulate the problem equivalently as

q + |1−B|4 = ψ(B)ψ(F ) (2)

where ψ(B) = x + yB + zB2, for x, y, and z to be determined. Once we’ve solved for these

quantities, we can divide through by x to determine φ1, φ2, and c. Now expanding both sides of

(2) and matching coefficients of B and F yields the following three equations:

1 = x z (3)

−4 = x y + y z (4)

6 + q = x2 + y2 + z2. (5)

Now these can be combined (or alternatively let B = 1 in (2)) to yield

q = (x + y + z)2,
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from which the algebraic necessity of q ≥ 0 is clear. From this we obtain x + y + z = ±√q, and we

proceed in two cases. First suppose that x + y + z =
√

q. Then

x + z =
√

q − y

and by (4), y2 −√qy − 4 = 0. Applying the quadratic formula yields

y =
√

q ±√q + 16
2

. (6)

Hence we have

x + z =
√

q ∓√q + 16
2

. (7)

Multiplying this through by x and using (3), we get

x2 +
(−√q ±√q + 16

2

)
x + 1 = 0.

We again apply the quadratic formula, noting that complex roots are a possibility:

x =

√
q ∓√q + 16±

√
2q ∓ 2

√
q
√

q + 16

4
. (8)

This actually refers to a set of four possible solutions; the first ∓ and last ∓ above must have the

same sign, being the opposite of the ± sign in (6). The ± in (8) is independent of the ∓ signs.

Now from (7) we obtain

z =

√
q ∓√q + 16∓

√
2q ∓ 2

√
q
√

q + 16

4
. (9)

Here the first and last ∓’s are as in (8) above, but the middle ∓ must have the opposite sign as

the ± in (8). Now we note that q−√q
√

q + 16 < 0, so that the case y = (
√

q +
√

q + 16)/2 results

in complex coefficients; we seek real coefficients, so these solutions are rejected. This leaves us the

two triples (x, y, z) given by


√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16

4
,

√
q −√q + 16

2
,

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16

4






√

q +
√

q + 16−
√

2q + 2
√

q
√

q + 16

4
,

√
q −√q + 16

2
,

√
q +

√
q + 16 +

√
2q + 2

√
q
√

q + 16

4


 .

Now the same type of analysis in the case that x + y + z = −√q provides another two solutions:

−√q −√q + 16 +

√
2q + 2

√
q
√

q + 16

4
,
−√q +

√
q + 16

2
,
−√q −√q + 16−

√
2q + 2

√
q
√

q + 16

4





−√q −√q + 16−

√
2q + 2

√
q
√

q + 16

4
,
−√q +

√
q + 16

2
,
−√q −√q + 16 +

√
2q + 2

√
q
√

q + 16

4


 .
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However, these latter two triples are just minus one times the first two triples. At this point, we

divide off by x (note by (3) that it must be nonzero) and obtain the two solution pairs (φ1, φ2):


 2(

√
q −√q + 16)

√
q +

√
q + 16 +

√
2q + 2

√
q
√

q + 16
,

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16





 2(

√
q −√q + 16)

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
,

√
q +

√
q + 16 +

√
2q + 2

√
q
√

q + 16
√

q +
√

q + 16−
√

2q + 2
√

q
√

q + 16


 .

Of course, this recognizes that x has two possible signs; but the sign of x will be irrelevant in

the AR representation (see below). In particular, we note that c = q/x2. Now one of the above

solutions corresponds to φ(B) with roots outside the unit circle, and the other with roots inside;

we prefer the representation indicated by the former solution, since it will generate a stationary

AR representation. The discriminant for the former solution pair is

φ2
1 − 4φ2 =

8(q −√q
√

q + 16)
(√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16
)2 ,

which is negative, indicating complex roots. The roots ζ are

ζ =
−(
√

q −√q + 16)± i
√

2
√

q
√

q + 16− 2q

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
,

where i =
√−1. The squared magnitude works out to

|ζ|2 =
16

(√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
)2 .

Now
√

q +
√

q + 16−
√

2q + 2
√

q
√

q + 16 < 4 iff

(
√

q +
√

q + 16)
2 −

(√
2q + 2

√
q
√

q + 16
)2

< 4(
√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16),

which holds iff

4 <
√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16.

But this latter condition is always true for q > 0, which implies that |ζ|2 > 1, indicating that the

former pair of solutions have roots outside the unit circle. In summary, the invertible (stationary)
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AR solution is given by

c =
16q

(√
q +

√
q + 16 +

√
2q + 2

√
q
√

q + 16
)2 (10)

φ1 =
2(
√

q −√q + 16)
√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16
(11)

φ2 =

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16
(12)

ζ =
(
√

q + 16−√q)± i
√

2
√

q
√

q + 16− 2q

√
q +

√
q + 16−

√
2q + 2

√
q
√

q + 16
. (13)

Of course an explosive AR solution also exists, but there seems to be little interest in this given the

intended applications. The behavior of the roots can be further investigated by writing ζ = |ζ|eiθ,

now letting ζ denote the root in the first quadrant. We at once obtain

|ζ| =
(√

q +
√

q + 16 +
√

2q + 2
√

q
√

q + 16
)

/4 (14)

θ = tan−1




√
2
√

q
√

q + 16− 2q
√

q + 16−√q


 = tan−1

(√
2q + 2

√
q
√

q + 16/4
)

. (15)

Now (14) tells us that |ζ| is increasing in q at the rate of q1/2. Also π/2 − tan−1(
√

q) ∼ 1/
√

q as

q →∞, which gives a sense of θ’s dependence on q asymptotically.

3 Applications

Our first application stems from the work of Kaiser and Maravall (2005), which forms a primary

motivation for this paper. Suppose that we are given a process Yt with a known ARIMA structure.

For example, following Kaiser and Maravall (2005) we might think of Yt as the trend-cycle estimate

that is the output of some model-based signal extraction procedure; assuming that the model

used for the signal and noise components match the Data Generation Process (DGP), it would be

possible in theory to know the exact ARIMA model of Yt. Or Yt might just be some data, for

which we believe that our ARIMA model matches the DGP. In any event, we describe Yt via the

difference equation

ϕ(B)Yt = ϑ(B)ξt, (16)

where ξt is white noise, denoted by WN(0, σ2). The polynomials ϕ and ϑ follow the same conven-

tions discussed in Section 2, but note that they may contain unit roots. Now if we apply the HP
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filter to Yt, the resulting output has pseudo-spectral density

H(e−iλ)fY (λ) =
q

q + |1− e−iλ|4
|ϑ(e−iλ)|2
|ϕ(e−iλ)|2

σ2.

The concept in Kaiser and Maravall (2005) is to let this be the pseudo-spectral density for the

trend component Tt; likewise, (1−H(e−iλ))fY (λ) is assigned to be the spectral density of the cycle

Ct. Note that we typically want cycles to follow stationary models, so the |1− e−iλ|4 factor in the

numerator of (1 − H(e−iλ)) should cancel with any unit root factors in the denominator of the

pseudo-spectrum fY (λ). Using our spectral factorization results from Section 2, we find that the

trend and cycle have the following implied models:

φ(B)ϕ(B)Ct = (1−B)2ϑ(B)ξC
t (17)

φ(B)ϕ(B)Tt = ϑ(B)ξT
t , (18)

where ξC
t is WN(0, σ2c/q) and ξT

t is WN(0, σ2c). Again, the unit root factors of ϕ (if any) must

be canceled by the (1−B)2 factor in the cycle model in order for the cycle to be stationary. The

implied models (17) and (18) are easily computed from (10)-(13) and a knowledge of the parameters

in (16). Now as discussed in Kaiser and Maravall (2005), the leading frequency associated with a

stochastic cycle following an ARMA model of the type (17) is given by the angular portion of the

AR roots; in this case the frequency is θ (15). The formula 2π/θ gives the period corresponding

to frequency θ, and this should be renormalized to determine the period in years; if the data is

monthly, we divide by 12. Clearly, (15) allows us to determine the exact functional relationship

between q and the implied cycle period; this is illustrated in Figure 1 below. Values of q were chosen

at intervals of 10−4, ranging from .2 down to zero. For this range, the cycle period varies between

roughly one and seven years. This plot and the accompanying formula provide cycle analysts with

a simple method of determining q, given a desired cycle periodicity.

Our second application involves the computation of exact HP filter weights; here we consider the

low-pass weights associated with (1). The jth weight ϕj is the integral of the frequency response

against eijλ; since the frequency response is an even function, it suffices to consider j ≥ 0, as the

weights will be symmetric. So our formula for the weight is

ϕj =
1
2π

∫ π

−π

c

φ(eiλ)φ(e−iλ)
eijλ dλ.

Of course we can write φ(B)|ζ|2 = (B − ζ)(B − ζ); here we let ζ denote the root in the upper half

of the complex plane (so ζ is in the first quadrant and ζ lies in the fourth quadrant). Since the

integral is a rational function in eiλ, we use the standard technique (Henrici, 1974, p. 249-250) of
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substituting z = eiλ. Letting γ denote the unit circle in the complex plane, we have

ϕj =
1

2πi

∮

γ

c|ζ|4
(z − ζ)(z − ζ)(z−1 − ζ)(z−1 − ζ)

zj−1 dz

=
1

2πi

∮

γ

c|ζ|2
(z − ζ)(z − ζ)(z − ζ−1)(z − ζ

−1)
zj+1 dz

by change of variable (dz = i z dλ) and simplification. Now since j ≥ 0, the only poles of the

integrand are at ζ, ζ, ζ−1, and ζ
−1. The roots are distinct so long as q > 0 – see (13) – which is

always the case; therefore the poles are all simple. By the Cauchy integral formula (Henrici, 1974,

Theorem 4.7b), we can compute the integral by summing the residues of the integrand over poles

within γ; since ζ, ζ are outside the unit circle, this means the relevant poles are ζ−1 and ζ
−1. Thus

ϕj =
c|ζ|2zj+1

(z − ζ)(z − ζ)(z − ζ
−1)

|z=ζ−1 +
c|ζ|2zj+1

(z − ζ)(z − ζ)(z − ζ−1)
|
z=ζ

−1

=
c|ζ|2ζ−(j+1)

(ζ−1 − ζ)(ζ−1 − ζ)(ζ−1 − ζ
−1)

+
c|ζ|2ζ−(j+1)

(ζ−1 − ζ)(ζ−1 − ζ)(ζ−1 − ζ−1)

= c |ζ|2 2Re

(
ζ−(j+1)

(ζ−1 − ζ)(ζ−1 − ζ)(ζ−1 − ζ
−1)

)
,

where Re denotes the real part. Now using (14) and (15), we can determine the other quantities

in the formula for ϕj . The real part in the last expression for ϕj can be rewritten as

ζ−(j+1)

(ζ−1 − ζ)(ζ−1 − ζ)(ζ−1 − ζ
−1)

=
ζ−(j+1)(ζ−1 − ζ)(ζ−1 − ζ)(ζ−1 − ζ−1)

(|ζ|−2 − 2 cos 2θ + |ζ|2)(|ζ|−2 − 2 + |ζ|2)(2|ζ|−2 − 2|ζ|−2 cos 2θ)

= |ζ|4−j(1− |ζ|−2)
|ζ|2i sin θe−i(j+1)θ − i sin θe−i(j−1)θ

(1− 2 cos(2θ)|ζ|2 + |ζ|4)(1− 2|ζ|2 + |ζ|4)(1− cos(2θ))
.

Substituting and simplifying, we have the final formula for ϕj :

ϕj =
2 c |ζ|4−j sin θ

(
|ζ|2 sin(j + 1)θ − sin(j − 1)θ

)

(1− 2 cos(2θ)|ζ|2 + |ζ|4)(|ζ|2 − 1)(1− cos(2θ))
, (19)

which is expressed entirely in terms of c, q, |ζ|, and θ. From (19) we can see the geometric rate of

decay of the coefficients, as well as the side lobe behavior introduced by the sine functions. From

(15) we see that large values of q drive θ to π/2 at rate q1/2, which will make the sin(j + 1)θ and

sin(j−1)θ terms larger in absolute value; thus there will be more “wiggle” in the coefficient sequence

for larger values of q. Conversely, small values of q will generate less wiggle, or the appearance of

greater width in the coefficient sequence. This makes sense, since a low SNR indicates that more

smoothing is necessary, which in turn implies a need to positively weight more of the nearby data.

Section 4 below provides some illustrations of these observations.
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4 Illustrations

In the original paper of Hodrick and Prescott (1997), the authors consider the HP filter with

q = 1/1600. In this section we focus on this choice of the SNR, demonstrating the applications of

Section 3. By (10)-(12), the AR polynomial is

φ(B) = 1− 1.777091B + 0.7994438B2

with c = 0.0004996524. The magnitude of the roots is 1.118423, and the angle θ is ±0.1116866

radians. The period associated with θ is π/(6θ) expressed in years; for q = 1/1600, this becomes

π/(6θ) .= 4.688107,

a reasonable cycle period (see Harvey and Trimbur (2003) for a discussion). Of course the exact

dynamics of the implied cycle model will depend upon |ζ| and θ, as well as ϕ(B) and θ(B) in the

original model for Yt.

Next, we consider the coefficients given by (19), plotting for j = 0, 1, · · · , 100. We compare these

exact values to the coefficients found in Hodrick and Prescott (1997):

wj = cj [a1 cos(b|j|) + a2 sin(b|j|)] (20)

a1 = 0.056168, a2 = 0.055833, b = 0.11168, c = 0.8941

These correspond to q = 1/1600, and agree with ϕj up to three decimal places. The discrepancy

may be due to numerical error, assuming that numerical methods were used to generate the wj

(this is not described in Hodrick and Prescott (1997), but they refer to Miller (1946) instead). In

Figure 2 we plot the exact coefficients ϕj ; this general shape is familiar to most readers. In Figure

3 we plot the difference ϕj − wj for 0 ≤ j ≤ 100, which gives an idea of the discrepancy. The

vertical scale is in millionths for easier readability. These discrepancies are so minute, that they

would hardly affect filter output for any real data examples. Still, it is pleasing to have an exact

formula for the weights in terms of q. The computations of this section were produced using a short

R program, which is available from the author upon request (tucker.s.mcelroy@census.gov).
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Figure 1: SNR q plotted against Cycle period (in years), for monthly data.
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