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Abstract

The paper provides general matrix formulas for extraction of a nonstationary signal in non-

stationary noise, for a finitely sampled time series. These formulas are quite practical, in that

they provide a ready intuition for the filtering operation, as well as being simple to implement

on a computer. Applications to signal extraction diagnostics are discussed.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the author and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Signal extraction for nonstationary time series data has a long history, including Hannan (1967),

Sobel (1967), Cleveland and Tiao (1976), and Bell (1984). Bell and Hillmer (1988) treats the finite

sample case, presenting matrix formulas for the optimal time-varying filters, and McElroy and

Sutcliffe (2004) provides certain relations between the various component filters. One drawback of

Bell and Hillmer’s approach is the separate estimation of initial values for nonstationary signals,

resulting in formulas that are awkward to implement. McElroy and Sutcliffe (2004) furnishes an

improvement, but only for a specific type of unobserved components model. The paper at hand

provides general matrix formulas for extraction of a nonstationary signal from nonstationary noise;

these formulas are quite practical, in that they produce a ready intuition for the filtering operation,

as well as being simple to implement on a computer.

In the context of model-based signal extraction, one popular approach – e.g., utilized in SEATS

of Gómez and Maravall (1997) – has been to use the bi-infinite filters of Bell (1984) on forecast

and backcast extended data, with the aid of the algorithm of Tunnicliffe-Wilson (see Burman
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1980). While being easy to implement, this method confounds any intuition about the time-

varying filters. Moreover, it cannot produce correct finite-sample Mean Squared Errors (MSEs) for

the signal estimates. Another approach is to formulate the model in State Space Form (Durbin

and Koopman, 2001) and construct the appropriate state space smoother (Kailath, Sayed, and

Hassibi 2000). Efficient algorithms exist to obtain the time-varying signal extraction filters from

the Kalman smoother, if desired (Koopman and Harvey, 2003); of course, these methods do not

provide formulas, only numbers, and thus also fail to provide intuition. Neither of the above

approaches can provide the full covariance matrix of the signal error, which quantity is useful

in diagnostic applications (Findley, McElroy, and Wills 2004). Hence, there is a definite need and

appeal for having explicit, readily implemented matrix formulas for nonstationary signal extraction.

This paper first discusses background material and the main theoretical results in Section 2, and

provides some applications in Section 3, including the topic of signal extraction diagnostics. Proofs

are provided in a final appendix.

2 Matrix Formulas

Consider a nonstationary time series Yt that can be written as the sum of two possibly nonsta-

tionary components St and Nt, the signal and the noise:

Yt = St + Nt (1)

Following Bell (1984), we let Yt be an integrated process such that Wt = δ(B)Yt is stationary,

where B is the backshift operator and δ(z) is a polynomial with all roots located on the unit circle

of the complex plane (also, δ(0) = 1 by convention). This δ(B) is the differencing operator of the

series, and we assume it can be factored into relatively prime polynomials δS(z) and δN (z) (i.e.,

they share no common zeroes), such that

Ut = δS(B)St Vt = δN (B)Nt (2)

are stationary time series. Note that included as special cases are δS = 1 and/or δN = 1, in which

case either the signal or the noise or both are stationary. We let d be the order of δ, and dS and

dN are the orders of δS and δN ; since the latter operators are relatively prime, δ = δS · δN and

d = dS + dN .
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There are many examples from econometrics and engineering that fit into this scheme. The signal

could be a trend plus irregular component, in which case δS(z) could be (1− z)2, and the noise is a

seasonal with δN (z) = 1+ z + z2 + · · · z11 for monthly data. This is essentially the case explored in

McElroy and Sutcliffe (2004). Alternatively, the signal could be a business cycle (typically modelled

as stationary with δS(z) = 1) and the noise is trend plus irregular. In a third application, the noise

could be a stationary sampling error with δN (z) = 1, and the signal is seasonal plus trend plus

irregular.

As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds on the component

decomposition, and we treat the case of a finite sample with t = 1, 2, · · · , n. Assumption A states

that the initial d values of Yt, i.e., the variables Y1, Y2, · · · , Yd, are independent of {Ut} and {Vt}.
For a discussion of the implications of this assumption, see Bell (1984) and Bell and Hillmer (1988).

Note that mean square optimal signal extraction filters derived under Assumption A agree exactly

with the filters implicitly used by the Kalman smoother, see Kohn and Ansley (1986, 1987). A

further assumption that we make is that {Ut} and {Vt} are uncorrelated time series.

Now we can write (2) in a matrix form, as follows. Let ∆ be a n − d × n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d). The matrices ∆S and

∆N have entries given by the coefficients of δS(z) and δN (z), but are n − dS × n and n − dN × n

dimensional respectively. This means that each row of these matrices consists of the coefficients of

the corresponding differencing polynomial, horizontally shifted in an appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where Y is the transpose of (Y1, Y2, · · · , Yn), and W , U , V , S, and N are also column vectors. We

will denote the transpose of Y by Y
′
. It follows from the equation

Wt = δN (B)Ut + δS(B)Vt (3)

that we need to define further differencing matrices ∆N and ∆S with row entries given by the

coefficients of δN (z) and δS(z) respectively, which are n−d×n−dS and n−d×n−dN dimensional.

It then follows from Lemma 1 of McElroy and Sutcliffe (2004) that

∆ = ∆N∆S = ∆S∆N . (4)
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Then we can write down the matrix version of (3):

W = ∆NU + ∆SV (5)

The minimum mean squared error signal extraction estimate is Ŝt = E[St|Y ], which is expressed

as some linear function of the data vector Y when the data is Gaussian; putting this together for

each time t, we obtain the various rows of a matrix F :

Ŝ = FY = E[S|Y ].

We note that the various rows of F differ (unlike in the bi-infinite filtering case), since only a finite

number of Yt’s are available to filter. The last row of F , for example, corresponds to the concurrent

filter, i.e., a one-sided filter used to extract a signal at “time present.”

For any random vector X, let ΣX denote its covariance matrix. With these notations in hand,

we can now state the signal extraction formulas.

Theorem 1 Assume that Assumption A holds on the model decomposition (1), and that {Ut} and

{Vt} are independent and purely nondeterministic. Then the minimum mean square error linear

estimate of S is given by Ŝ = FY , where

F =
(
∆S

′
Σ−1

U ∆S + ∆N
′
Σ−1

V ∆N

)−1
∆N

′
Σ−1

V ∆N . (6)

It also follows from our assumptions that all matrix inverses exist.

Remark 1 As demonstrated in the proof, the invertibility of

M = ∆S
′
Σ−1

U ∆S + ∆N
′
Σ−1

V ∆N (7)

depends on δS and δN being relatively prime.

Theorem 2 Under the same assumptions as Theorem 1, the covariance matrix of Ŝ − S is given

by M−1, where M is defined in (7).

3 Applications

The formula (6) for the signal extraction filter F is important for providing intuition. One first

applies ∆N to the data Y , which reduces the noise component N to stationarity; the signal will not
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be affected in this way, since no zeroes of δS are in common with δN . In particular, (6) establishes

that each row of F is a convolution of a certain filter with the coefficients of the polynomial δN (z),

and hence that δN (e−iλ) is a factor in the transfer function in every row of F . See Findley and

Martin (2003) for applications of this observation.

3.1 Estimating Component Models

In order to implement these results, it is necessary to estimate the component models for St and

Nt from the data. Together with (2), specifying ARMA models for Ut and Vt will fully specify an

ARIMA model for St and Nt. In the structural approach of Harvey (1989), the ARMA model for

Wt is determined by the component models. The Gaussian likelihood for Wt depends directly on

ΣW , which in turn depends on the ARMA models for Ut and Vt. Therefore maximization of the

likelihood provides estimates of the ARMA parameters for both Ut and Vt. This approach differs

from the canonical decomposition technique of Hillmer and Tiao (1982), where an ARMA model for

Wt is specified first; one estimates the ARMA parameters for Wt, and then one tries to decompose

the model for Wt into component models, using (3). Below we provide some details on these two

approaches.

Suppose that ARMA models are specified for Ut and Vt such that

φU (B)Ut = θU (B)εU
t φV (B)Vt = θV (B)εV

t ,

and denote their spectral densities by fU and fV . Then it follows from (3) that the spectral density

for Wt is

fW (λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ)

=
σ2

εU |δN (e−iλ)|2 |θU (e−iλ)|2 |φV (e−iλ)|2 + σ2
εV |δS(e−iλ)|2 |θV (e−iλ)|2 |φU (e−iλ)|2

|φU (e−iλ)|2|φV (e−iλ)|2
(8)

If we were to specify a spectral density for Wt using an ARMA model, without reference to the

component models, it would have the form

fW (λ) = σ2
εW

|θW (e−iλ)|2
|φW (e−iλ)|2

. (9)

In the structural approach, the additional structure of the specification (8) for the spectral density

of Wt allows for the structure of the component models. In contrast, the canonical decomposition

procedure of Hillmer and Tiao (1982) would start by estimating parameters for the model (9),
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and hope that the resulting spectral density can be decomposed in the form (8). By imposing

the structure of (8) from the outset, we avoid admissability problems. The expense to be paid is

that the structural approach generally involves more parameters, and in practice often has poor

goodness of fit properties.

The most efficient method of estimating the structural model (8) is to map the component models

into State Space Form, construct the overall state space of Wt, and utilize a state space approach

to maximizing the resulting likelihood. This is described in Durbin and Koopman (2001), and

implemented in the SsfPack software package (Koopman, Shephard, and Doornik, 1999). The State

Space approach is generally preferred, because the matrix operations typically involve matrices of

dimension equal to the size of the state vector, which can be considerably less than the sample size

n. The alternative is to directly compute Σ−1
W , which involves order n2 operations – Golub and

Van Loan (1996). In comparison, the State Space approach to maximum likelihood estimation is

computationally efficient.

3.2 Signal Extraction Diagnostics

Findley, McElroy, and Wills (2004) describe model-based signal extraction diagnostics, based on

the original diagnostic for “underestimation” and “overestimation” of the components of a seasonal

time series, which is described in Maravall (2003). The diagnostic of Findley et al. (2004) is

based on the sample second moment of an estimated differenced signal of interest, i.e., the sample

variance of Û = ∆SŜ. In the original approach of Maravall (2003), S was taken to be the seasonal

component, in which case δS(z) = 1 + z + z2 + · · · z11. However, Findley et al. (2004) focuses on

S being a stationary irregular component, in which case ∆S is the identity matrix. The expected

value of the sample variance is given by trace(ΣÛ )/n, which utilizes (10) below; the formula for

the standard error of the signal extraction diagnostic requires all of the entries of ΣÛ . Below we

provide the formula for Û and ΣÛ .

Proposition 1 Under the same assumptions as Theorem 1,

Û = ΣU∆
′
NΣ−1

W W

ΣÛ = ΣU∆
′
NΣ−1

W ∆NΣU (10)

The formula (10) is the most expedient for the calculation of the standardized signal extraction

diagnostic of Findley et al. (2004), since the Kalman smoother only produces the diagonal entries
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of M−1. The work of de Jong and MacKinnon (1988) provides an approach to this problem, but is

far less direct. If bt denotes the state vector at time t, and b̂t is its estimate from the data, then some

linear combination of the entries of b̂t will produce Ût. De Jong and MacKinnon (1988) present

formulas for the covariance matrix of b̂t and b̂s for any t and s, from which one could obtain the

covariance of Ût and Ûs. Since each such calculation involves matrix multiplications and inversions,

with matrix dimension equal to the size of the state vector, and since order n2 such calculations are

needed to produce ΣÛ , the procedure is cumbersome and indirect. In contrast, the matrix formulas

(10) are simple and involve fewer operations; although computation of Σ−1
W involves the inversion

of a n×n matrix, ΣW has a Toeplitz structure that can be utilized to make an order n2 calculation

– see Golub and Van Loan (1996). So asymptotically, use of (10) is at least as fast as the approach

of de Jong and MacKinnon (1988), and is easier to implement.

3.3 Connections to the Bi-infinite Case

The minimum mean square error signal extraction filter under Assumption A is given by (see

Bell 1984)

H(B) =
δN (B)δN (F )γU (B)

γW (B)

with

γU (B) =
θU (B)θU (F )
φU (B)φU (F )

σ2
εU

γW (B) =
θW (B)θW (F )
φW (B)φW (F )

σ2
εW .

Defining

γV (B) =
θV (B)θV (F )
φV (B)φV (F )

σ2
εV ,

the filter H(B) can be rewritten as

H(B) =
δN (B)δN (F )/γV (B)

δN (B)δN (F )/γV (B) + δS(B)δS(F )/γU (B)

which can be compared with (6), with 1/γV (B) playing the role of Σ−1
V , etc. The Fourier Transform

of the filter is

H(e−iλ) =
1/fN (λ)

1/fN (λ) + 1/fS(λ)

where fN and fS denote the pseudo-spectral densities of Nt and St, i.e.,

fN (λ) =
fV (λ)

|δN (e−iλ)|2
fS(λ) =

fU (λ)

|δS(e−iλ)|2
.
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Thus by analogy, the quantity ∆
′
NΣ−1

V ∆N plays the role of the inverse covariance matrix of N . In

the case that the noise is stationary, this is exactly correct, since then δN = 1 and V = N . This

provides an interpretation for the formula (6).

4 Appendix

Proof of Theorem 1. First note that all covariance matrices for U , V , and W are invertible, since

the processes are purely nondeterministic – see Proposition 5.1.1 of Brockwell and Davis (1991).

Let 1n denote the n-dimensional identity matrix. A formula for F is given in Bell and Hillmer

(1988) – also see Bell (2004) – which we reproduce here in part. Let ∆̃S be n×n dimensional, with

the first dS rows given by [1dS
0] and the bottom n − dS rows given by ∆S ; this is an invertible

extension of ∆S . Then

F = ∆̃−1
S


 P

ΣU∆N
′
Σ−1

W ∆




follows from Bell and Hillmer (1988), for some dS × n dimensional matrix P . Thus

∆SF = [0 1n−dS
]∆̃SF = ΣU∆N

′
Σ−1

W ∆. (11)

Now clearly 1n − F is the extraction matrix for N , so by symmetry

∆N (1n − F ) = [0 1n−dN
]∆̃N (1n − F ) = ΣV ∆S

′
Σ−1

W ∆,

where ∆̃N is defined analogously to ∆̃S . If we write G = M−1∆N
′
Σ−1

V ∆N , then

G(1n − F ) = M−1∆N
′
Σ−1

V ∆N (1n − F ) = M−1∆
′
Σ−1

W ∆

which uses (4). Similarly, we obtain

(1n −G)F = M−1∆S
′
Σ−1

U ∆SF = M−1∆
′
Σ−1

W ∆

which implies that (1n−G)F = G(1n−F ), or F = G. It remains to check the invertibility of M. If

a vector x were in the Null Space of M , then due to its symmetry and non-negative definiteness, x

would have to be in the Null Space of both ∆S and ∆N . As demonstrated in Lemma 2 of McElroy

and Sutcliffe (2004), x can be nonzero only if δS(z) and δN (z) share a common zero. It follows

that only the zero vector is in the Null Space of M. 2
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Proof of Theorem 2. Note that Ŝ −S and N̂ −N have the same covariance matrix, since they

are negatives of each other. This is because N̂ = (1n−F )Y , where 1n−F = M−1∆S
′
Σ−1

U ∆S using

(6). So we have

S − Ŝ = S − FY = (1n − F )S − FN

= M−1∆S
′
Σ−1

U ∆SS −M−1∆N
′
Σ−1

V ∆NN

= M−1
(
∆S

′
Σ−1

U U −∆N
′
Σ−1

V V
)

.

Since U and V are orthogonal, the covariance of this vector is

ΣS−Ŝ = M−1
(
∆S

′
Σ−1

U ∆S + ∆N
′
Σ−1

V ∆N

)
M−1 = M−1 2

Proof of Proposition 1. The formula for Û follows from (11). Hence

ΣÛ = E[Û Û
′
] = ΣU∆N

′
Σ−1

W ∆NΣU . 2
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[11] Gómez, V. and Maravall, A. (1997), Program SEATS Signal Extraction in ARIMA Time

Series: Instructions for the User (beta version: June 1997), Working Paper 97001, Ministerio

de Economı́a y Hacienda, Dirrectión General de Análysis y Programación Presupuestaria,

Madrid.

[12] Golub, G. and Van Loan, C. (1996), Matrix Computations, Baltimore and London: The Johns

Hopkins University Press.

[13] Kailath, T., Sayed, A., and Hassibi, B. (2000), Linear Estimation, Upper Saddle River, New

Jersey: Prentice Hall.

[14] Hannan, E. (1967), Measurement of a Wandering Signal Amid Noise, Journal of Applied

Probability 4, 90 – 102.

[15] Harvey, A. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cam-

bridge: Cambridge University Press.

[16] Hilmer, S. and Tiao, G. (1982), An ARIMA-Model-Based Approach to Seasonal Adjustment,

Journal of the American Statistical Association 77, 377, 63 – 70.

[17] Kohn, R. and Ansley, C. (1986), Estimation, Prediction, and Interpolation for ARIMA Models

with Missing Data, Journal of the American Statistical Association 81, 751 – 761.

10



[18] Kohn, R. and Ansley, C. (1987), Signal Extraction for Finite Nonstationary Time Series,

Biometrika 74, 411 – 421.

[19] Koopman, S. and Harvey, A. (2003), Computing observation weights for signal extraction and

filtering, Journal of Economic and Dynamic Control 27, 1317 – 1333.

[20] Koopman, S., Shephard, N., and Doornik, J. (1999), Statistical Algorithms for Models in State

Space Using SsfPack 2.2, Econometrics Journal 2, 113 – 166.

[21] Maravall, A. (2003), A Class of Diagnostics in the ARIMA-Model-

Based Decomposition of a Time Series, Memorandum, Bank of Spain.

http://www.bde.es/servicio/software/tramo/diagnosticsamb.pdf

[22] McElroy, T. and Sutcliffe, A. (2004), An Iterated Parametric Approach to Nonstationary Signal

Extraction, Statistical Research Division Research Report Series, Statistics #2004-05, Census

Bureau, Washington, D.C. Also www.census.gov/srd/papers/pdf/rrs2004-05.pdf

[23] Sobel, E. (1967), Prediction of a Noise-distorted, Multivariate, Non-stationary Signal, Journal

of Applied Probability 4, 330 – 342.

11


	rrs2005-04t.pdf
	Page 1


