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Abstract

A model-based diagnostic for signal extraction was first
described in Maravall (2003), and this basic idea was
modified and studied in Findley, McElroy, and Wills
(2004). The paper at hand improves on the latter work
in two ways: central limit theorems for the diagnostics
are developed, and two hypothesis-testing paradigms
for practical use are explicitly described. A further
modified diagnostic provides an interpretation of one-
sided rejection of the Null Hypothesis, yielding general
notions of “over-smoothing” and “under-smoothing.”
The new methods are demonstrated on a U.S. Census
Bureau time series exhibiting seasonality.
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1 Introduction

The model-based approach to signal extraction, while
elegant and optimal under certain conditions, is still
in need of a suite of diagnostics capable of identify-
ing the quality of the procedure. Certainly, model in-
adequacy – assessed for example through Ljung-Box
statistics – will imply a poor signal estimate, but the
inverse statement need not hold, i.e., goodness of model
fit, as indicated through standard ARIMA model diag-
nostics, need not indicate the goodness of the corre-
sponding signal extraction method. This is the case,
because deviations of the data from the fitted ARIMA
model, deemed harmless according to standard ARIMA
goodness-of-fit measures, may cause serious problems
from the perspective of estimating an ambient signal
accurately. One reason for this phenomenon, is that
the maximum likelihood procedure for fitting ARIMA
models typically fits the best model to the data, with-
out regard to the postulated component models. This

is the case even with a structural components approach
(Harvey 1989), since poorness of fit of the component
models is only assessed in a composite sense. Thus, for
some series, the quality of the signal extraction may be
in doubt and can be assessed through various spectrum
diagnostics, assuming a frequency-based characteriza-
tion of signal and noise – see Findley, Monsell, Bell,
Otto, and Chen (1998).

A model-based diagnostic for signal extraction was
first described in Maravall (2003), and this basic idea
was modified and studied in Findley, McElroy, and
Wills (2004). The concept is to measure the variation
of an estimated signal – assessed through a variance
estimate of the appropriately “differenced” signal ex-
traction – and compare this quantity to what we would
expect if our model were true. Thus, extreme values
of variation, relative to a benchmark computed from a
hypothesized model, would indicate model inadequacy
with respect to the component model for the desired
signal. It turns out that the diagnostics proposed in
Findley, McElroy, and Wills (2004) can be further mod-
ified so that this interpretation of model rejection is
mathematically correct.

1.1 Signal Extraction Notations

Since we wish to consider mean square optimal signal
extraction from a finite sample, we follow the approach
of McElroy (2005). Consider a nonstationary time se-
ries Yt that can be written as the sum of two possibly
nonstationary components St and Nt, the signal and
the noise:

Yt = St + Nt (1)

Following Bell (1984), we let Yt be an integrated pro-
cess such that Wt = δ(B)Yt is stationary, where B is
the backshift operator and δ(z) is a polynomial with
all roots located on the unit circle of the complex plane
(also, δ(0) = 1 by convention). This δ(B) is the dif-
ferencing operator of the series, and we assume it can
be factored into relatively prime polynomials δS(z) and
δN (z) (i.e., they share no common zeroes), such that

Ut = δS(B)St Vt = δN (B)Nt (2)



are stationary time series. Note that included as special
cases are δS = 1 and/or δN = 1, in which case either
the signal or the noise or both are stationary. We let d
be the order of δ, and dS and dN are the orders of δS

and δN ; since the latter operators are relatively prime,
δ = δS · δN and d = dS + dN .

For example, the noise could be a nonstationary sea-
sonal with trend plus irregular signal (or nonseasonal),
in which case δS(z) could be (1− z)2, and the noise
has differencing operator δN (z) = 1 + z + z2 + · · · z11

for monthly data. This is the appropriate setup for
seasonal adjustment, in which case we are interested in
estimating St.

As in Bell and Hillmer (1988), we assume Assump-
tion A of Bell (1984) holds on the component decom-
position, and we treat the case of a finite sample with
t = 1, 2, · · · , n. Assumption A states that the initial d
values of Yt, i.e., the variables Y1, Y2, · · · , Yd, are inde-
pendent of {Ut} and {Vt}. For a discussion of the impli-
cations of this assumption, see Bell (1984) and Bell and
Hillmer (1988). A further assumption that we make is
that {Ut} and {Vt} are uncorrelated time series.

Now we can write (2) in a matrix form, as follows.
Let ∆ be an n−d×n matrix with entries given by ∆ij =
δi−j+d (the convention being that δk = 0 if k < 0 or k >
d). The matrices ∆S and ∆N have entries given by the
coefficients of δS(z) and δN (z), but are n− dS × n and
n − dN × n dimensional respectively. This means that
each row of these matrices consists of the coefficients of
the corresponding differencing polynomial, horizontally
shifted in an appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where Y is the transpose (denoted by Y ′) of
(Y1, Y2, · · · , Yn), and W , U , V , S, and N are also col-
umn vectors. It follows from the equation

Wt = δN (B)Ut + δS(B)Vt (3)

that we need to define further differencing matrices ∆N

and ∆S with row entries given by the coefficients of
δN (z) and δS(z) respectively, which are n− d× n− dS

and n − d × n − dN dimensional. Then we can write
down the matrix version of (3):

W = ∆NU + ∆SV (4)

We will be interested in estimates of U and V . The min-
imum mean squared error signal extraction estimate is
Ût = E[Ut|W ], which is expressed as some linear func-
tion of the differenced data vector W when the data

are Gaussian; putting this together for each time t, we
obtain the various rows of a matrix F :

Û = FW = E[U |Y ].

We note that the various rows of F differ (unlike in the
bi-infinite filtering case), since only a finite number of
Yt’s are available to filter. The last row of F , for ex-
ample, corresponds to the concurrent filter, i.e., a one-
sided filter used to extract a signal at “time present.”

For any random vector X, let ΣX denote its covari-
ance matrix. With these notations in hand, we can now
state the signal extraction formulas, which are given in
Proposition 1 of McElroy (2005):

Û = ΣU∆
′
NΣ−1

W W = FW

which implicitly defines F .

1.2 Hypothesis Testing Framework

In this paper, we must make a distinction between
a specified model for W – whose covariance matrix is
denoted ΣW – and the actual covariance matrix for W ,
based on the true underlying Data Generating Process
(DGP) – denoted by Σ̃W . The perspective is that a
specified ΣW – determined either via ad hoc principles
or through maximum likelihood estimation – will differ
from Σ̃W . However, we assume that at least the or-
ders of the differencing operators dS and dN have been
correctly ascertained.

Let us denote a particular choice of model – our Null
model – by ΣW , the model’s covariance matrix under
the Null Hypothesis. This Null Hypothesis is simply
a particular choice of AR and MA polynomials that
determine the ARMA model for Wt. The alternative
space consists of any other ARMA model for Wt, in-
cluding different polynomial orders, coefficients, and in-
novation variance. However, the differencing orders dS

and dN are the same for both the Null and Alternative
models. Note that ΣW could in practice be determined
by parameter estimates, which are then treated as fixed
rather than random. This perspective is motivated by
the difficulty of stipulating a random quantity for the
Null model. So our testing framework is

H0 : Σ̃W = ΣW (5)

H1 : Σ̃W 6= ΣW

In Section 2.2 we consider a modified testing frame-
work that does not make any assumptions about the
innovation variance of Wt. Note that the alternative
space has no particular directionality that is naturally



associated with it, i.e., conducting a one-sided test is
nonsensical. We later argue that the spectrum provides
an appropriate tool for determining directionality of re-
jection of H0, in the context of estimating signals. The
basic idea is, model inadequacy can be assessed in the
context of signal extraction by measuring an estimated
component’s deviance from H0 in an appropriate spec-
tral range; this will allow for meaningful one-sided tests.

Findley, McElroy, and Wills (2004) presented a test
statistic for any differenced signal U . That work
claimed asymptotic normality of the test statistic un-
der H0; in Section 2, this claim is verified under two
different scenarios. Section 3 presents a modified test
statistic, which arguably offers a ready interpretation
to the rejection of H0; also the power of the procedure
is discussed.

2 Theoretical Results

The test statistic involves computing the sample sec-
ond moment of Ût and comparing this to its expectation
under H0; this quantity is not scale-invariant, so it is
then normalized by its standard error under H0. We
consider two different testing scenarios below; the first
is more simplistic, while the second offers an interpre-
tation that is more applicable. Our basic statistic is

T̂n =
Û
′
Û

n
=

W ′Σ−1
W ∆NΣUΣU∆

′
NΣ−1

W W

n
. (6)

It will be necessary to discuss spectra to an extent, so
for any stationary process {Xt} we denote its spectral
density by fX(λ); this is related to ΣX by the formula

[ΣX ]jk =
1
2π

∫ π

−π

fX(λ)ei(j−k)λ dλ.

2.1 Fixed Parameters Case

Suppose that an ARMA model for Wt is completely
specified. When following the Hilmer and Tiao (1982)
approach, it may be possible to obtain a canonical de-
composition and thereby derive ARMA models for Ut

and Vt. Or if a structural approach is adopted (Harvey
1989), the models for Ut and Vt could be specified di-
rectly. Note that model-based filters do not depend on
innovation variance (see McElroy 2005), but the mean
squared errors of such do, and the mean and variance
of (6) will as well. The following theorem summarizes
the asymptotics of T̂n, as well as a normalized version
denoted by τn, which is defined below.

Theorem 1 Assume that Assumption A holds on the
model decomposition (1), and that {Ut} and {Vt} are

independent and purely nondeterministic. Also suppose
that the third and fourth cumulants of the true DGP of
Wt are zero, and that the true autocovariance function
γ̃W satisfies

∑
h |h|γ̃W (h) < ∞. Then the true mean

and variance of T̂n are given by

ET̂n =
1
n

tr(A) (7)

V arT̂n =
2
n2

tr(A2)

where tr denotes the trace of a matrix, and

A = ΣU∆
′
NΣ−1

W Σ̃W Σ−1
W ∆NΣU .

Moreover, the mean and variance have limiting values
as n →∞

ET̂n → 1
2π

∫ π

−π

g(λ) f̃W (λ) dλ

tr(A2)/n → 1
2π

∫ π

−π

g2(λ) f̃2
W (λ) dλ

where g(λ) = f2
U (λ)|δN (e−iλ)|2/f2

W (λ) and f̃W denotes
the spectral density for the true DGP of Wt. The fol-
lowing Central Limit Theorem holds as n →∞:

τn =
√

n

(
T̂n − tr(A)/n

)
√

2 tr(A2)/n

L=⇒ N (0, 1).

In order to compute the mean and standard error, it
is necessary to assume something about the DGP, such
as H0. In practice, one could use Theorem 1 as follows:
estimate a model for Wt, and declare this to be the Null
model described by ΣW , now viewed as fixed (nonran-
dom) parameters. Then an α probability of Type I
error has the interpretation that an independent repli-
cate, i.e., a series with DGP given by ΣW , with filters
computed without re-estimation of model parameters,
would have probability α of falsely rejecting H0. Note
that if we were to re-estimate model parameters for the
independent replicate, H0 would no longer be true for
that series (since its DGP given by ΣW would in gen-
eral differ from maximum likelihood estimates of that
DGP). It makes no sense to think of ΣW as random
in our Null hypothesis, since this amounts to assuming
that our m.l.e.’s are without any error. The only sensi-
ble path is to treat estimated parameters as fixed and
derive the corresponding interpretation.

Hence, this gives the following application for power
studies: if a model Σ̂W is fitted to a series, then we
set the Null model equal to the estimate, and simu-
late series (assuming some distribution) from H0; then,



since the Null model is correct for each simulation, we
construct model-based filters based on H0, without re-
estimating model parameters for each simulation. The
quantiles of the test statistic’s empirical distribution
function form estimates of the testing procedure’s crit-
ical values. Next, selecting any other choice of ΣW ,
we can compute filters and test statistics based on the
false Alternative model, and compute the probability of
Type II error for a given critical value, thus obtaining
a power surface. An example is given in Section 2.3
below.

2.2 Estimated Innovation Variance
Case

Let σ2
a denote the innovation variance of Wt, and

hence W/σa and U/σa do not depend on σa. Thus
ΣW/σa

is computed from the ARMA model for Wt but
assuming a unit innovation variance; ΣU/σa

is based on
the ARMA model for Ut with innovation variance given
in units of σ2

a. Hence we can write F = ΣU/σa
∆
′
NΣ−1

W/σa

which no longer requires estimation of σa. Thus, we can
compute T̂n without prior knowledge (or estimation) of
σa, but the matrix A does depend on the innovation
variance:

A = ΣU/σa
∆
′
NΣ−1

W/σa
Σ̃W Σ−1

W/σa
∆NΣU/σa

= σ̃2
aΣU/σa

∆
′
NΣ−1

W/σa
Σ̃W/σ̃a

Σ−1
W/σa

∆NΣU/σa

where σ̃2
a is the innovation variance of the true DGP

of Wt. Hence, in order to calculate the expected value
of T̂n, we must know σ̃a; in this section, we consider
maximum likelihood estimation, i.e.,

σ̂2
a =

1
n− d

W ′Σ−1
W/σa

W (8)

which depends on the hypothesized unit innovation
variance model for Wt. Let us denote by Â the fol-
lowing “innovation-free” version of A:

Â = ΣU/σa
∆
′
NΣ−1

W/σa
Σ̃W/σ̃a

Σ−1
W/σa

∆NΣU/σa

which can be calculated under a specified hypothesis
on the model for Σ̃W/σ̃a

. In this section we consider a
testing framework that is a slightly modified version of
(5):

H
′
0 : Σ̃W/σ̃a

= ΣW/σa
(9)

H
′
1 : Σ̃W/σ̃a

6= ΣW/σa

This only assesses the model parameters, apart from
the innovation variance; hence it is an “innovation-free”
version of (5). Thus under H

′
0,

Â|H′
0

= ΣU/σa
∆
′
NΣ−1

W/σa
∆NΣU/σa

by (9). Then, under H
′
0, the computable quantity

σ̂2
atr(Â)/n is an estimate of the Null hypothesis mean

of T̂n. It turns out that T̂n and σ̂2
a are highly corre-

lated, and each is asymptotically normal. Therefore,
it is necessary to compute a new standard error for

T̂n − σ̂2
atr(Â); simply using

√
2σ̂4

atr(Â2)/n will not be

correct. The mean and variance of T̂n − σ̂2
atr(Â) are

given by

E[T̂n − σ̂2
atr(Â)/n] (10)

=
σ̃2

a

n
tr(Â)

(
1−

tr(Σ−1
W/σa

Σ̃W/σ̃a
)

n− d

)

V ar[T̂n − σ̂2
atr(Â)]

=
2σ̃4

a

n

(
tr(Â2)

n
− 2

tr(B̂)tr(Â)
n(n− d)

+
tr(Ĉ)(tr(Â))

2

n(n− d)2

)

where the matrices Ĉ and B̂ are defined by

Ĉ = Σ−1
W/σa

Σ̃W/σ̃a
Σ−1

W/σa
Σ̃W/σ̃a

B̂ = ΣU/σa
∆
′
N ĈΣ−1

W/σa
∆NΣU/σa

.

Under H
′
0, the mean becomes zero and the variance

simplifies greatly to

2σ̃4
a

n


 tr((Â|H′

0
)
2
)

n
−

(tr(Â|H′
0
))

2

n(n− d)


 (11)

which can be computed by substituting σ̂a for σ̃a. The
asymptotics of such a standardized statistic, which we
denote by τn, are presented below.

Theorem 2 Make the same assumptions as Theorem
1. Then the following limit theorem holds:

τn =

(
T̂n − σ̂2

atr(Â)− E[T̂n − σ̂2
atr(Â)/n]

)
√

V ar[T̂n − σ̂2
atr(Â)]

L=⇒ N (0, 1)

as n → ∞. The limits of the mean and variance are
given as follows:

E[T̂n − σ̂2
atr(Â)/n] →

(
1
2π

∫ π

−π

g(λ)f̃W (λ) dλ

) (
1− 1

2π

∫ π

−π

f̃W (λ)
fW (λ)

dλ

)

nV ar[T̂n − σ̂2
atr(Â)] →

2
(

1
2π

∫ π

−π

g2(λ)f̃2
W (λ) dλ

)

− 4

(
1
2π

∫ π

−π

g(λ)
f̃2

W (λ)
fW (λ)

dλ

) (
1
2π

∫ π

−π

g(λ) f̃W (λ) dλ

)

+ 2

(
1
2π

∫ π

−π

f̃2
W (λ)

f2
W (λ)

dλ

)(
1
2π

∫ π

−π

g(λ)f̃W (λ) dλ

)2



The application and interpretation of Theorem 2 is
similar to that discussed for Theorem 1. For an es-
timated model, an independent replicate with innova-
tion variance re-estimated would falsely reject the H

′
0

with probability α, given the appropriate critical value.
Note that in this case, the “unit-innovation variance”
DGP for the replicate and the model used for the fil-
ters exactly coincide, so H

′
0 is true. If instead we were

to re-estimate the non-innovation variance parameters
for the replicate, then we would obtain parameter esti-
mates that would in general be different from the DGP
parameters, and thus H

′
0 would be false. So only the

innovation variance is to be re-estimated in this inter-
pretation.

To compute τn under H
′
0, our estimate of the stan-

dard error is

2σ̂4
a

n


 tr((Â|H′

0
)
2
)

n
−

(tr(Â|H′
0
))

2

n(n− d)




which has the same asymptotics as (11) by Slutsky’s
Theorem. In the case that estimated parameters are
actually used to compute the H

′
0 filters, the estimated

standard error will simplify to

2
n

(
tr((A|H′

0
)2)

n
−

(tr(A|H′
0
))2

n(n− d)

)

which is less than the H0 standard error of τn:

2
n

(
tr((A|H′

0
)2)

n

)

This reduced variation is due to the fact that the vari-
ability in estimating the innovation variance has been
accounted for. Hence it is easier to reject H

′
0 than H0

for the same series. The trade-off is that rejection of
H
′
0 provides less information than rejection of H0 does.

To summarize, letting Ȧ = σ̂2
aÂ|H′

0
,

τn =
√

n
T̂n − Ȧ√

tr(Ȧ2)
n − tr2(Ȧ)

n(n−d)

L=⇒ N (0, 1)

as n →∞, when H
′
0 is true.

2.3 Example

Consider the following application of Theorems 1 and
2 to the series of U.S. Exports of Other Agricultural
Materials (non-Manufactured), from January 1989 –
December 2001 (N = 156). Suppose that we wish to

estimate a trend from the logged series, fitted to the
Box-Jenkins airline model:

Wt = (1−B)2U(B)Yt = (1− θB)(1−ΘB12)at

where U(z) = 1+z+z2+· · ·+z11. So St is a trend, and
Nt represents seasonal plus irregular. The maximum
likelihood estimates are θ̂ = .799, Θ̂ = .801, and σ̂2

a =
.011. Based on a sample size of n = 156, we find the
values

T̂156 = 0.00000535
τ156 = 1.459
τ156 = 2.101

which indicate a rejection of H0 and H
′
0 with p-values

.144 and .036 respectively (using two-sided alterna-
tives). The interpretation of the rejection of H0 is that
an independent replicate of the DGP (θ = .799, Θ =
.801, σ2

a = .011) using that model for a filter, would
only have such an extreme τ156 statistic with probabil-
ity .144. But the rejection of H

′
0 implies that an inde-

pendent replicate of the DGP (θ = .799, Θ = .801, σ2
a =

.011), with filter derived from this model with innova-
tion variance re-estimated (but assuming this model to
compute (8)), would only have such an extreme τ156

statistic with probability .036. The rejection of H
′
0 in-

dicates model inadequacy. Since the average sum of
squares of the differenced trend estimate is too large,
this may indicate that insufficient smoothing in the low
frequencies has taken place, possibly pointing us to ad-
justing θ downward. However, there is little theoretical
basis for this conclusion at this point, because there is
no natural directionality to the alternative hypothesis
for these statistics.

3 Extensions

By modifying T̂n slightly, we can improve the inter-
pretability of the signal extraction diagnostics, which
will allow us to determine a form of directionality for
rejection of H0.

3.1 Modifying the Diagnostics

The covariance matrix ΣU has a Cholesky factoriza-
tion ΣU =

√
ΣU

′√
ΣU ; consider a modified estimate of

U :

Ǔ =
√

ΣU

′−1

Û =
√

ΣU∆
′
NΣ−1

W W

So T̂n defined in (6) is modified to

Ťn =
Ǔ
′
Ǔ

n
=

W ′Σ−1
W ∆NΣU∆

′
NΣ−1

W W

n
.



Essentially the same results carry through for this mod-
ified statistic, but with ΣUΣU replaced everywhere by
ΣU . Note that under H0, the mean and variance of Ťn

are innovation-free, so there is no need to estimate σa.
Hence, we will focus on the analogue of Theorem 1.

Further, let a noise extraction estimate be V̌ =√
ΣV ∆

′
SΣ−1

W W , so that our corresponding diagnostic
is

V̌
′
V̌

n
=

W ′Σ−1
W ∆SΣV ∆

′
SΣ−1

W W

n

from which it follows that the sum of both diagnostics
is

Ǔ
′
Ǔ

n
+

V̌
′
V̌

n
=

W ′Σ−1
W W

n

which is proportional to the m.l.e. for the innovation
variance. Hence, the signal and noise diagnostics are in-
versely related, since their sum is a constant that does
not depend on the component models. Moreover this
additivity property, which captures some of the intu-
itive notions motivating Maravall (2003), does not hold
for the original diagnostics of (6). We summarize the
asymptotics of Ťn below.

Theorem 3 Make the same assumptions as Theorem
1. The true mean and variance of Ťn are given by (7),
where A is now defined as

A = ∆NΣU∆
′
NΣ−1

W Σ̃W Σ−1
W . (12)

Moreover, the mean and variance have limiting values
as n →∞

EŤn → 1
2π

∫ π

−π

g(λ) f̃W (λ) dλ

tr(A2)/n → 1
2π

∫ π

−π

g2(λ) f̃2
W (λ) dλ

where now g(λ) = fU (λ)|δN (e−iλ)|2/f2
W (λ). The fol-

lowing Central Limit Theorem holds as n →∞:

τn =
√

n

(
Ťn − tr(A)/n

)
√

2 tr(A2)/n

L=⇒ N (0, 1).

Note that the function g can be written

g(λ) =
fU (λ)|δ(e−iλ)|2

f2
W (λ)

=
fS(λ)
fY (λ)

1
fW (λ)

where fS and fY are the pseudo-spectral densities of St

and Yt under H0. Hence the limiting expectation of Ťn

under H0 is

1
2π

∫ π

−π

fS(λ)
fY (λ)

f̃W (λ)
fW (λ)

dλ

which is a weighted average of the discrepancy between
model spectrum fW and DGP spectrum f̃W , with high
weight being given to those frequencies pertaining to
the signal spectrum fS . This observation will allow
us to give a directionality to the rejection of H0, as
discussed below.

3.2 Power and Interpretations of Test
Rejection

We can compute asymptotic formulas for the power
of the diagnostic based on Ťn. Let A0 denote the matrix
A of (12) computed under H0, whereas A1 is computed
under H1. Using the asymptotic normality of Ťn, we
reject H0 at level α if Ťn is outside the interval

tr(A0)/n± z1−α/2

√
2tr(A2

0)/n√
n

Hence β, the probability of Type II error, is by Theorem
3 approximately equal to

Φ




z1−α/2

√
2tr(A2

0)/n√
n

+ tr(A0 −A1)/n
√

2tr(A2
1)/n√

n




− Φ




zα/2

√
2tr(A2

0)/n√
n

+ tr(A0 −A1)/n
√

2tr(A2
1)/n√

n




where Φ denotes the standard normal cumulative dis-
tribution function. Now asymptotically,

tr(A0 −A1)/n → 1
2π

∫ π

−π

fS(λ)
fY (λ)

(
1− f̃W (λ)

fW (λ)

)
dλ

(13)
as n → ∞. Let us refer to the range of frequencies
where fS is high relative to fY as the “spectral range”
of St. Now if f̃W >> fW in the spectral range of
St, then (13) is negative and Ťn is too large. But if
f̃W << fW in the spectral range, then (13) is positive
with an upper bound of trace(A0)/n, and Ťn is too
small. Now when f̃W << fW in a spectral band, the
model is too chaotic for those frequencies, and hence it
oversmoothes (or over-estimates) the data. Conversely,
f̃W >> fW indicates the model is too stable, and hence
it undersmoothes (or under-estimates) the data. Out-
side the spectral range of St these interpretations are
not meaningful, since the pseudo-spectrum of St will
damp discrepancies between model and DGP spectrum.

These observations can be used to form a meaningful
one-sided testing procedure. First we summarize the



logic:

τn is significantly negative ⇔ Ťn is too small

⇔ f̃W << fW

⇔ over − smoothing

τn is significantly positive ⇔ Ťn is too large

⇔ f̃W >> fW

⇔ under − smoothing

Now let the functional D be defined, for given fS and
fY , by

D(g, h) =
1
2π

∫ π

−π

fS(λ)
fY (λ)

(
g(λ)
h(λ)

− 1
)

dλ.

Then the upper one-sided test has hypotheses

H0 : f̃W = fW

H1 : D(f̃W , fW ) > 0

and H0 is rejected with confidence 1− α if τn > z1−α,
which indicates significant under-smoothing in the rel-
evant spectral band. The lower one-sided test has hy-
potheses

H0 : f̃W = fW

H1 : D(f̃W , fW ) < 0

and H0 is rejected with confidence 1 − α if τn < zα,
which indicates significant over-smoothing in the ap-
propriate spectral band.

For example, if St is a trend, then the spectral range
consists of the low frequencies. In an airline model,
θ governs the trend behavior; a significantly high Ťn

means that there is undersmoothing, which indicates
that the value of θ is too high. A significantly low Ťn

indicates oversmoothing, or that θ is too low. Of course,
one might also try to fix the problem by adjusting Θ
upwards or downwards respectively, since the trend di-
agnostic is inversely related to the seasonal plus irregu-
lar diagnostic. However, the example below shows this
may not be a wise approach.

3.3 Example

Continuing the example of subsection 2.3, we now
compute Ť156 and τ156 for the trend:

Ť156 = 0.00094 τ156 = −3.537

with (two-sided test) p-value 0.0002, which strongly
suggests oversmoothing of the trend. By adjusting the
value of θ from .799 upwards, we can try to correct the

oversmoothing. For a filter using θ = .98 (and the same
Θ), we obtain

Ť156 = 0.00042 τ156 = −1.526

with p-value 0.063, which is no longer significant. Ad-
justing Θ downwards is less effective, since using the
model θ = .799, Θ = .01 yields

Ť156 = 0.0014 τ156 = −2.991

with p-value 0.0014. The diagnostic tells us that the
trend is oversmoothed, and increased smoothing of the
seasonal-irregular will not ameliorate this deficiency.
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