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Abstract

Seasonal heteroskedasticity exists in a num-
ber of monthly time series from major statistical
agencies. Accounting for such variation in calen-
dar month effects can be important in estimating
seasonal and trend movements. In the context of
seasonal adjustment, the standard procedure uses
nonparametric (X-11) filters of different lengths in
the signal extraction routine of X-12-ARIMA. This
serves as a simple, pragmatic procedure that is,
however, limited in its ability to adapt to different
datasets. In this paper I extend the model-based
methodology introduced recently by Proietti (2004)
and Bell (2004). I discuss different forms of the sea-
sonal specific model, showing examples of estimation
and analysis of trend and seasonal components. A
statistical test for seasonal heteroskedasticity is pre-
sented and applied to a number of Census Bureau
series on housing starts and building permits. It
is shown how seasonal noise can be separated from
nonsystematic noise and included in the seasonal ad-
justment of a time series.

KEYWORDS: seasonal heteroskedasticity, time
series, trends, unobserved components.

JEL classification: C22, C51, C82

1. Introduction

Seasonal heteroskedasticity exists in a number
of monthly time series from major statistical agen-
cies. Often the data are nonstationary and, since
the estimation of seasonal and trend movements
are naturally intertwined, both component estimates
can be improved by using an econometric model that
is specifically designed to handle variation in calen-
dar month effects. In this paper I concentrate on
Census Bureau construction series, though the dis-
cussion of methodology is relevant for any seasonally
heteroskedastic economic variable.*

The X12-ARIMA seasonal adjustment program
(see Findley et. al, 1998) provides a simple way to
account for seasonal heteroskedasticity on a coarse
level by using X-11 seasonal filters of different

*Disclaimer. This report is released to inform inter-
ested parties of ongoing research and to encourage discussion
of work in progress. Any views expressed on statistical or
methodological issues are those of the author and not neces-
sarily those of the U.S. Census Bureau.

lengths. This procedure is, however, limited in its
ability to adapt to the diversity of seasonal patterns
found in real datasets. Furthermore, the nonpara-
metric framework gives no clear way to test for the
presence of seasonal heteroskedasticity or to evalu-
ate the plausibility of the heteroskedastic effects as
a description of the dynamics of the time series.

This paper concentrates on statistical analy-
sis of seasonal heteroskedasticity. The framework
is provided by the seasonal specific models intro-
duced recently by Proietti (2004) and by the alterna-
tive model-based approach developed by Bell (2004).
The major aims are first, to develop methodological
improvements and extensions, and second, to show
how the models can be used to gain a better under-
standing of seasonal heteroskedastic movements.

The paper proceeds as follows. Section 2 re-
views the seasonal specific levels model implemented
in Proietti (2004). The goal is to clarify and explain
the structure of the model, which differs from most
standard time series models. A modified definition
of the trend is introduced to preserve consistency
with the standard interpretation of seasonality. In
Section 3, I estimate the model and components for
a highly heteroskedastic dataset to illustrate the ap-
plication of the framework. Results for estimated
trend and seasonal components are compared with
the seasonal adjustment output from X-12-ARIMA.

Section 4 extends the framework by introduc-
ing a statistical test for the presence of seasonal het-
eroskedasticity. Finite sample effects and depen-
dence on model parameters are accounted for by us-
ing Monte Carlo simulation to estimate the correct
critical values for each series. I also consider the
alternative seasonal specific model that is suggested
by the modeling strategy used in Bell (2004); this
gives an important benchmark for comparison that
allows one to check the robustness of the test.

Also, by comparing the results of model esti-
mation, it becomes clear how the different strategies
are reflected in the extracted components and this
leads to suggestions for how heteroskedasticity may
be handled in seasonal adjustment. In particular,
Section 5 shows how the seasonal noise may be ex-
tracted from a series to produce a fully adjusted se-
ries that could be useful in some applications. Sec-
tion 6 summarizes the main issues and concludes.



2. Seasonal specific levels model

The rationale for the modeling approach used in
Proietti (2004) is to handle seasonality directly by
setting up separate processes for the different calen-
dar months. This means that the series of successive
January observations is assumed to follow the basic
specification with certain parameter values. The
same equation also applies to the February series
but with distinct disturbances and possibly differ-
ent parameter values, and similarly for the other
months. Once the model parameters are deter-
mined, the division of the dynamics into long-term,
or trend movements, and seasonal movements can
be addressed. The assumed covariance structure of
the disturbances across the season-specific equations
determines the form of the heteroskedastic property.

Especially when focussing on trends, one may
initially consider the strategy of incorporating the
heteroskedasticity into the season-specific level equa-
tions. Thus, it is assumed that the disturbances
driving the level processes may contain an idiosyn-
cratic part that varies across seasons This gives the
following specification :

yt = z
′

tµt + εt, t = 1, ..., T (1)

µt+1 = µt + ιβt + ιηt + η
∗

t , var(ηt) = σ
2
η

βt+1 = βt + ζt, ζt ∼ NID(0, σ
2
ζ)

where εt ∼ NID(0, σ2ε) and η∗t ∼ NID(0,Nη).
The symbol ι stands for an s × 1 vector of ones,
with s denoting the number of seasons in a year,
that is s = 12 for monthly data. The vector
µt = (µ1t, ..., µst)

′ contains the month-specific lev-
els, and zt is an s × 1 selection vector that has a
one in the position j = 1 + (t − 1)mod s and ze-
roes elsewhere. The jth trend process µj,t evolves
each period by a slope βt that is common to all s
elements. The disturbance ζt that drives the time-
varying slope is assumed independent of the other
disturbances in the model.

The s elements arranged in the vector η∗t =
(η∗1t, ..., η

∗

st)
′ are idiosyncratic level disturbances.

The variance of η∗jt depends on the season j, and we
will assume throughout that Nη is diagonal, which
ensures identifiability of the model (1). The distur-
bance ηt is uncorrelated with all η∗jt and represents
the part of the level shocks shared by the different
µj,t. The irregular εt is uncorrelated with the other
disturbances in the model and accounts for the non-
systematic noise in yt.

Model (1) will be called the seasonal specific lev-
els model. This model formed the basis for the illus-
trations in Proietti (2004); in Section 4, I will report

test results based on its application to a set of con-
struction time series from the Census Bureau. I will,
however, use a different trend estimator throughout
the paper. Although the rationale for Proietti’s
(2004) estimator is clear, it suffers from a major
drawback of giving biased measures of the level and
seasonal. As explained in Bell and Trimbur (2005),
the appropriate measure of the trend is given by an
equal weighted average of the seasonal specific levels,
that is µt = w

′µt with w =ι/s. Likewise, the im-
plied seasonal γt is computed at each time t by sub-
tracting off the trend from the month-specific level
for that time, that is γt = z

′

t(Is − ιw
′)µt.

In (1), the process that determines the rate of
growth, βt, and the common level disturbance, ηt,
link the various µjt together in forming the long run
dynamics of the series. The model is similar in
form to a multivariate local linear trend model. If
one were to set ηt = 0, (1) would tend to produce
smoother estimated trends; with var(ηt) > 0, the
estimated trend will usually appear more responsive
to temporary changes in the series. For the current
problem, it is desirable to use the general local linear
trend form since it can provide a better fitting model
that is more informative about the time-variation in
the seasonal and trend components.

3. Model-based estimation of trend and

seasonal components

In (1) the relative variation in the η∗jt’s deter-
mines the heteroskedastic structure. In setting up
the model, there are a large number of variance pa-
rameters for the month-specific level shocks. How-
ever, a parsimonious model can be constructed on
the basis of prior experience.

This section illustrates the use of the model for
trend estimation and makes a comparison with X-12-
ARIMA results for seasonal adjustment. Parameter
estimates and results of testing for heteroskedastic-
ity are presented. I consider nine regional housing
starts and building permits series in the analysis.

In setting up model (1), each calendar month
is classified as having either a high or low variance
of the seasonal specific disturbance. The groupings
of the months are displayed in table 1. Typically,
the winter months, especially January, tend to clus-
ter in the set of high variability months, though the
precise classification depends on the series. The
groupings are based on the knowledge and previ-
ous experience of Census Bureau staff in modeling
and seasonal adjustment. With the exception of
single-unit Northeast housing starts, where the high
variance months are suggested by the analysis in Bell
(2004), the groupings in table 1 represent the official



basis for the published seasonally adjusted data.
Figure 1 indicates monthly totals for the num-

ber of building permits issued in the Midwest region
from January 1992 to December 2003. After the
removal of trading day effects using X-12-ARIMA,
logarithms of the series were taken. The trough
of the series occurs with regularity in January, but
the extent of the winter decline varies considerably
throughout the sample. Overall, the amplitude of
the seasonal component seems to fall off after 1999.

Series Calendar months
Permits, MW, Tot Jan-Mar, Dec
Permits, MW, 1U (Mar, Aug, Sep)
Permits, NE, Tot (Jul, Aug)
Permits, NE, 1U Jan, Feb, Dec
Permits, S, Tot (May)
Permits, W, 1U Jan, Dec
Starts, MW, 1U Jan, Feb
Starts, NE, 1U Jan, Feb
Starts, S, 1U Jan, Nov, Dec

Table 1 : Grouping of months used in heteroskedas-

tic models for Census Bureau construction data. In the

Series column, ‘Permits’ = Building Permits, ‘Starts’ =

Housing Starts. ‘MW’ = Midwest region, ‘NE’ = North-

east, ‘S’ = South, ‘W’ = West as W. ‘Tot’ = Total num-

ber of structures, ‘1U’ = number of One-Unit structures.

The second column shows the high variance months if

this set contains six or fewer months; otherwise, the low

variance months are shown enclosed by parentheses.
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Figure 1: Estimated trends for total Midwest building

permits (in logarithms), based on seasonal specific levels

model for heteroskedastic and homoskedastic cases. The

sample period is January 1992 to December 2003.

Model (1) is applied with the high and low idio-
syncratic variances denoted by σ2η∗,h and σ2η∗,l, re-
spectively. Parameter estimation was carried out
through maximum likelihood. In particular, the

likelihood function is evaluated for a given set of
parameter values based on the prediction error de-
composition, as described in Harvey (1989). The
prediction errors are computed using the Kalman
filter applied to the state space form of the model.

Maximum likelihood estimation was conducted
using the BFGS algorithm to locate the optimum
of the likelihood surface. This algorithm is an ef-
ficient quasi-Newton type method where the opti-
mum is reached by an iterative updating procedure.
Care must be taken in choosing starting values that
yield the global maximum. The applications were
performed by programs written in the Ox language
of Doornik (1999) and relied on the Ssfpack library
of routines for state space calculations described in
Koopman et. al (1999). Parameter estimates are
reported in Bell and Trimbur (2005).

For the series of Midwest total building per-
mits, the variability in the seasonal-specific level
rises by about 70% for January to March and De-
cember. Figure 1 shows the extracted trend. This
series was computed by first estimating the vector of
monthly levels, µ̃t = (µ̃1t, ..., µ̃st)

′, t = 1, ..., T , with
the Kalman smoother algorithm, and second, taking
the product w′µ̃t. This gives the MMSE estimate
of the level at each time t. Figure 1 also shows,
for comparison, the trend produced under the ho-
moskedastic restriction, that is var(η∗jt) = σ2η∗ for
all j. The trend computed from the signal extrac-
tion routine of X-12-ARIMA is typically close to the
homoskedastic trend. Note that in each case, an ad-
ditive decomposition is used for the logarithms of the
original data, to ensure comparability of results.

In figure 1, the trend from the heteroskedastic
model is relatively unaffected by the winter values.
Though the general level matches that of the ho-
moskedastic trend, the relative smoothness of the
heteroskedastic estimates around the winter months
marks a contrast. From 1994 to 1996, the severity of
the January trough in the series induces temporary
dips in the level for the homoskedastic model, but
the heteroskedastic estimates are essentially robust.

Figure 2 shows the seasonal component by
month plot for the heteroskedastic estimates. This
plot presents the seasonal estimates specific to each
calendar month. Thus, the lowest segment, which
indicates successive January seasonals in each year
from 1992 to 2003, gives a clear indication of the
variability in the trough over the sample period. For
comparison, the seasonal component from the of-
ficial X-12-ARIMA seasonal adjustment (using the
heterogeneous filters as noted above) is also shown.
For the heteroskedastic model, the parametric esti-
mates of the seasonal component capture an exten-
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Figure 2: Seasonal component by month plots for to-

tal Midwest building permits (in logarithms), from het-

eroskedastic levels model and from an additive seasonal

adjustment with X-12-ARIMA, sample 1992 to 2003.

sive range of movement in the highly variable calen-
dar months. The evolution of the X-12 component is
relatively smooth, for instance, the January trough
gradually drifts upward over the sample period.

The seasonal component by month plots for the
homoskedastic form of the model and for seasonal
adjustment using X-12-ARIMA with homogeneous
seasonal filters may be found in Bell and Trimbur
(2005); these indicate moderate improvement from
altering the choice of X-11 filters in the seasonal ad-
justment. However, the use of parametric modeling
gives a dimension of flexibility that is unavailable in
the nonparametric X-12-ARIMA signal extraction.
Based on continuous-valued parameters and compo-
nents, the model-based filters can be better adapted
to the characteristic dynamics of a given series.

Under the homoskedastic assumption, the vari-
ability across seasons is fixed; in model (1), this cor-
responds to setting var(η∗jt) = σ

2
η∗ for all j. Figure

1 shows that in this case the model may be forced to
account for a periodic increase in volatility through
short-term adjustment of the trend. On the other
hand, with the separation into high and low variance
months, model (1) produces a robust trend, so that
the extra variation in winter is absorbed by the sea-
sonal component. Figure 2 shows how the model
gives seasonal estimates that effectively concentrate
on the heteroskedasticity.

4. A test for seasonal heteroskedasticity in

a finite-length series

In general, it is useful to have statistical evi-
dence for the existence of seasonal heteroskedastic-
ity in any given dataset. This provides quantitative

empirical confirmation for cases such as figure 1, and
a general test allows one to assess the practical sit-
uation where the heteroskedastic property might be
less dominant. This section extends the analysis
by introducing a test for seasonal heteroskedasticity
and applying it to the series in table 1.

The homoskedastic model involves a single re-
striction relative to the heteroskedastic model with
a pair of idiosyncratic variance parameters. De-
noting the maximized log-likelihood for estimation
of the restricted model as L̃∗ and that for the unre-
stricted model as L̃, the likelihood-ratio test statistic
is constructed as LR = −2(L̃∗−L̃). Under the null
hypothesis of homoskedasticity, the asymptotic dis-
tribution of LR is chi-squared with a single degree
of freedom under regularity conditions. This gives
a benchmark for comparison, but there are some im-
portant considerations that affect the sampling dis-
tribution of LR for the current problem.

The regularity conditions require that the val-
ues assumed by the unrestricted parameter set under
the null hypothesis lie away from the boundary of the
parameter space. The restriction of homoskedastic-
ity is σ2η∗,h = σ2η∗,l in the seasonal specific levels
model with two variance parameters. Below, I use
an unrestricted alternative of σ2η∗,h �= σ

2
η∗,l; this en-

sures that, as long as the variances are sufficiently
far from zero, the parameter values lie well within
the boundary of the permissible space.

One may, however, prefer to rule out the pos-
sibility σ2η∗,h < σ2η∗,l by specifying the unrestricted

alternative as σ2η∗,h ≥ σ2η∗,l. Thus, in setting up
and implementing the model for the Census con-
struction data, the assumption is that the sets of
higher variability months have been correctly iden-
tified. The question would be whether, under the
null σ2η∗ = σ

2
η∗,h = σ

2
η∗,l, estimation of homoskedas-

tic and heteroskedastic models would lead to a rejec-
tion of σ2η∗,h = σ

2
η∗,l in favor of σ2η∗,h > σ

2
η∗,l. The

constraint σ2η∗,h ≥ σ
2
η∗,l can be imposed directly in

estimating the unrestricted model. Alternatively,
one could reparametrize the model (1) so that the
variance differential σ2η∗,h−σ

2
η∗,l is reflected in an ad-

ditional noise term that is present only in the months
of high variability; using this approach, as in Bell
(2004), implicitly guarantees the prior assumption
σ2η∗,h ≥ σ2η∗,l by virtue of the model specification.
Under the null hypothesis, an extra variance para-
meter would be set to zero. In this case, the (as-
ymptotic) null distribution of LR would be a mix-
ture of discrete mass at zero (probability 1/2) and
a continuous density. Instead, in what follows, I
assume σ2η∗,h �= σ

2
η∗,l for the unrestricted model; this

approach is conservative and simplifies the analysis.



As the construction series are of modest length,
the actual behavior of test statistics may deviate in
important ways from asymptotic limits. These finite
sample effects will in general depend on the model
and parameter values for each case. For some of the
construction series, As an example, when the com-
mon idiosyncratic variance σ2η∗ is close to zero for the
estimated null model, which is the case for several
of the construction indicators, then this parameter
has a clear and specific effect on the behavior of the
test for model (1).

To draw from the true sampling distribution of
LR, the true parameter values for the homoskedastic
model for each series are required. This is clearly
impossible since the parameters are unknown, but
the ML estimates may be used as substitutes. It will
be assumed that this gives an acceptable approxima-
tion for the purpose of studying the sampling distri-
bution of LR. Using the estimated homoskedastic
model for each series as the data generating process,
5000 artificial series are generated. For each of
the artificial series, re-estimation of homoskedastic
and heteroskedastic models yields a likelihood ratio,
which gives a draw for LR under the null.

For each of the construction series in table 1,
I compiled an empirical density as a histogram for
the 5000 draws for LR. Estimates of critical val-
ues for the test statistic may be formed by the ap-
propriate percentiles. Figure 3 shows the resulting
null distribution for the model fitted to the series of
single-family Northeast housing starts; for compar-
ison, the density function for a χ2(1) is shown as a
solid curve.

0 0.5 1 1.5 2 2.5 3 3.5

Simulated distribution, LR test statistic 

Chi−squared 

Figure 3: Distribution of likelihood ratio test statistic

for simulations from homoskedastic model fitted to sin-

gle-unit Northeast housing starts. The area of the solid

black bar on the left gives the probability of zero.

In figure 3, the solid black bar on the bottom-
left has area equal to the probability of obtaining
a value of zero for LR. It is well-known that when

an unobserved components model has a variance pa-
rameter that is equal to or close to zero, the finite
sample estimate of that variance will come out as
exactly zero with positive probability; see Tanaka
(1996), for instance. Apparently, a similar pile-up
at zero occurs for the idiosyncratic variance parame-
ters in the season-specific levels model (1), and fur-
ther, the distribution of LR inherits this property,
as I now explain.

Recall that, for each of the nine construction
indicators in table 1, the ML estimates for the ho-
moskedastic model are taken as the ‘true’ parameter
values for the Monte Carlo simulations. That is, the
estimated homoskedastic model is used as the data
generating process. When the ‘true’ value of σ2η∗
for a given indicator is near zero, then for a mod-
erate fraction of the 5000 artificial series generated
on this basis, the maximum likelihood estimates of
both σ2η∗,h and σ2η∗,l for the heteroskedastic model*

will be zero. When this happens, the ML estimate
of the homoskedastic variance σ2η∗ must also be zero
for the simulated series; in this case, the maxima for
homoskedastic and heteroskedastic models coincide,
ensuring that LR = 0.

Series LRη∗ 5% Pr(0)
Permits, MW, Tot 19.6 2.37 0.025
Permits, MW, 1U 36.9 2.58 0.016
Permits, NE, Tot 32.4 2.16 0.063
Permits, NE, 1U 9.30 1.65 0.365
Permits, S, Tot 2.08 2.29 0.041
Permits, W, 1U 5.50 1.64 0.367
Starts, MW, 1U 9.72 2.28 0.036
Starts, NE, 1U 7.31 2.00 0.085
Starts, S, 1U 4.56 1.74 0.205

Table 2 : For each series, LR =−2(L̃∗−L̃) where

L̃∗ is the maximized log-likelihood under the null of ho-

moskedasticity, and L̃ is the maximized log-likelihood

for the unrestricted heteroskedastic model. Estimated

5% critical values, shown in the ‘5%’ column, are based

on 5000 Monte Carlo draws taking the estimated ho-

moskedastic model as the true model.

The estimated probability mass for the pile-up
at zero is reported in table 2. For the series of single-
unit Building Permits in the West and in the North-
east, the value of σ2η∗ for the simulations is zero (this

*Of course, even though for any null model the true values
satisfy σ2

η∗,h
= σ2

η∗,l
, in general, the estimates for any par-

ticular artificial series will differ from the true values and will
not be equal to one another. The event where both σ2

η∗,h

and σ2
η∗,l

are estimated as zero guarantees the event LR = 0.



being the MLE from estimation of the homoskedas-
tic model for these two series), and there is about a
37% chance that the log-likelihood ratio is exactly
zero under the null. The minimum probability for
LR = 0 is 1.6% for single-unit Midwest permits.

Generally, relative to a χ2(1), the probability
mass for LR is shifted toward the origin. In the
example of figure 3, even after renormalizing the his-
togram to account for the pile-up at zero, the empir-
ical sampling distribution lies above the chi-squared
between 0 and 0.5, and it decays more rapidly than
the chi-squared for LR > 1. The thinner tail has the
effect of lowering the critical value.

Table 2 shows results for the likelihood ratio
tests. In eight out of nine cases, we reject the
null hypothesis at a 5% level of significance in fa-
vor of seasonal heteroskedasticity. The 5% critical
values range from 1.64 for single-unit West Build-
ing Permits to 2.58 for single-unit Midwest Building
Permits; all lie well below the χ2(1) value of 3.84,
implying that the usual likelihood-ratio test is con-
servative. In five out of nine cases, the test statistic
is highly significant with LR > 9, which leads to a
decisive rejection of the null. Even if the inflated
critical value of 3.84 were used, one would reject the
null for all but one of the series.

In (1), the heteroskedastic structure is built di-
rectly into the specification of the month-specific lev-
els, and the additional volatility in winter is captured
in the seasonal component obtained from the model.
An alternative approach is to specify the irregular as
a seasonally heteroskedastic component, as adopted
in Bell (2004). In (1) the analogue is produced
by shifting the heteroskedastic part of the model
from the level processes to the irregular, which is
then assigned a time-varying variance that changes
with the season j. Thus, the homoskedastic form
of model (1), where η∗t ∼ NID(0, σ2η∗I), is gener-
alized to include a heteroskedastic irregular, that is
var(εt) = σ

2
εj .

The random shocks εt are uncorrelated across
seasons, and their variance depends only on the
season index j. In this heteroskedastic irregular
model, the pattern of heteroskedasticity is now de-
termined by how σ2εj varies according to calendar
month. This leads to different model properties
and a distinct decomposition into seasonal, trend,
and noise.

In the heteroskedastic levels model, (1), a large
shock in a high variance month j at time t carries
over into future periods. If seasonal changes in vari-
ability are linked to temporary influences such as
unusual weather in certain months, then the het-
eroskedastic irregular model may give a better de-

scription of the dynamics; the heteroskedastic shocks
εt are stationary, each shock being a simple one-
period effect. The variability in month j is directly
expressed in the variance σ2εj . It is less straightfor-
ward to link the variance parameters in (1) to indi-
vidual calendar months because the twelve month-
specific processes are nonstationary, and the idiosyn-
cratic shocks have persistent effects over time.

Table 3 shows results of likelihood-ratio tests for
the heteroskedastic irregular model. Now there are
two series where the null cannot be rejected at a 5%
level of significance. For single-unit housing starts
in the South, LRε∗ is about one-third of LRη∗; this
reduces the test statistic to below the 10% critical
value. However, most of the basic conclusions are
unchanged from table 2.

Series LRε∗ 5%

Permits, MW, Tot 19.1 4.18
Permits, MW, 1U 34.7 2.60
Permits, NE, Tot 36.0 4.33
Permits, NE, 1U 16.5 2.82
Permits, S, Tot 0.50 4.40
Permits, W, 1U 9.17 3.57
Starts, MW, 1U 9.56 4.43
Starts, NE, 1U 8.67 4.58
Starts, S, 1U 1.51 4.38

5% critical value, χ2(1) 3.84

Table 3 : For each series, LR =−2(L̃∗−L̃) where

L̃ is the maximized log-likelihood for the unrestricted

model, that is with heteroskedastic irregular.

For seven of the regional housing starts and
building permits series, the results tend to support
the use of heterogeneous filters in seasonal adjust-
ment. Relative to X-12-ARIMA, the greater adapt-
ability of the parametric model-based approach is
reflected in the estimated seasonal and trend filters,
that reflect the properties of the series through the
estimated model parameters. Though not investi-
gated in this paper, the shape of the model-based
kernel for estimating the seasonal could be directly
compared to the nonparametric X-11 filters.

5. Adjustment for seasonal noise

In the seasonal component by month plot in fig-
ure 2, the estimates for the heteroskedastic model
are considerably more variable than the nonpara-
metric output of X-12-ARIMA. For the high vari-
ance months, the heteroskedastic component spans a
wider range and undergoes larger short-term fluctu-
ations than the X-12 seasonal. Given their relative
noisiness, at least part of the extra variation in the



parametric estimates seems to be linked to seasonal
increases in volatility.

The concept of seasonal heteroskedasticity
loosely defines a changing degree of variability for
different calendar months. The precise structure of
such movements is left open, so it is natural to con-
sider different modeling approaches to the problem.

Using the statistical models for heteroskedas-
ticity, the additional variability linked to calendar
month can be measured. Thus, for instance, in (1),
the ratio of the idiosyncratic variances can be com-
pared. However, since each of the month-specific
processes µjt continues to evolve throughout the
sample, it is unclear exactly how to localize the effect
on the observation yt of a shock to µjt in month j.
For (1), in contrast, the measurement of the extra
noise by calendar month is straightforward.

1992 1994 1996 1998 2000 2002 2004

8.5

9.0

9.5
Heteroskedastic 
Homoskedastic 

Figure 4: Estimated trends for single-unit Northeast

housing starts (in logarithms). Sample period is January

1992 to December 2003.

Figure 4 shows the series of single-unit North-
east housing starts. The estimated trend based on
the heteroskedastic irregular model is less responsive
to winter volatility than is the homoskedastic trend.
In the months surrounding early 1994, the differ-
ence is especially noticeable; with the heteroskedas-
tic irregular, the level of the model-based estimates
is sustained as it passes through the unusually steep
decline arising from severe weather (reports indicate
that January 1994 was a severely cold month). The
homoskedastic model produces a trend that is influ-
enced at several leads and lags and whose growth
rate dips in the immediate vicinity of the trough.

Consider now a decomposition of the white
noise variation εt = ε

s
t + ε

n
t , so that a distinction is

made between seasonal and nonseasonal components
of the irregular. Therefore, εst represents the excess
volatility present in certain months, while the non-

systematic randomness present throughout the year
is captured in εnt . The series can be decomposed as

yt = µt + γt + ε
s
t + ε

n
t = µt + st + ε

n
t (2)

where st = γt+ε
s
t is the total seasonal influence and

εnt is a ‘pure’, or constant variance, irregular.
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Figure 5: Seasonal components for single-unit North-

east housing starts, sample 1992 to 2003.

Figure 5 shows the smoothed seasonal γ̃t in Jan-
uary and February for the heteroskedastic irregular
model; it is more or less flat. The rise in variability
that punctuates the winter is being absorbed by the
irregular ε̃t. The MMSE estimate of the seasonal
noise ε̃st , conditional on estimated parameters and
ε̃t, is a simple signal extraction, and figure 5 shows
the total seasonal component s̃t resulting from the
addition of ε̃st to γ̃t. For comparison, the seasonal
estimated from model (1) is shown as well.

The resemblance between s̃t and the seasonal
from (1) suggests the models show similar effective-
ness in capturing the heteroskedastic variation. The
heteroskedastic levels model directly gives a seasonal
that absorbs a good deal of short-term variation but
is less erratic than the total seasonal produced by
the second-step addition of seasonal noise. Since in
(1) the heteroskedasticity is embedded in the season-
specific level processes, which together form a sort
of multivariate trend model, this may help ensure
some persistence in the implied seasonal.

The broader definition of seasonality may be
used to produce an adjusted series that is subject
mainly to nonseasonal uncertainty. Figure 6 shows
the fully adjusted series in a plot by month format
for January and February. This enables one to ab-
stract from the seasonal volatility and focus on the
nonseasonal variation such as the trend movements
and the remaining noise ε̃nt , which is closer to con-
stant variance white noise.
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Figure 6: Seasonally adjusted series for single-unit

Northeast housing starts, sample 1992 to 2003.

The additional noise recurring in winter is still
influential for the partially adjusted series. In the
absence of additional knowledge, observations such
as the dip at the beginning of 1994 may lead to spe-
cial concern on the part of policymakers. However,
once the effect of the seasonal influence is accounted
for, it is seen that, relative to the course of events in
a typical calendar year, their severity is overstated.

The above examples show how the seasonal spe-
cific model with heteroskedastic disturbances can
give a smoothed trend that, in the presence of
heightened variability in certain months, successfully
maintains its long-run course. This is possible since
the extra noise, associated with seasonal increases in
volatility, are effectively absorbed by a separate com-
ponent. In the heteroskedastic irregular model, the
noise is separated from the smoothed seasonal, and
it is possible to extract the seasonal noise and study
its effect directly. The advantage of (1) is that the
direct estimate of the seasonal component already
captures a good deal of the seasonal noise variation
but preserves a moderate degree of smoothness.

6. Conclusions

This paper concentrates on models for sea-
sonal time series that are set up as a collection of
processes, one for each season. Unlike traditional
structural, or unobserved components time series
models, in models such as (1), the seasonal and trend
components are enmeshed in a vector of season-
specific level processes. The applications have il-
lustrated how this model structure is convenient for
handling the property of seasonal heteroskedastic-
ity when there is specific knowledge about which
months contribute to the increase in variability.

In using a likelihood ratio test of the property,

the heteroskedastic levels model gives similar con-
clusions to the heteroskedastic irregular model for a
set of Census Bureau construction series. There are,
however, some differences, and the finite sample dis-
tribution of LR under the null is better behaved for
the heteroskedastic irregular model. The empirical
analysis demonstrates the feasibility of testing series
of limited length for seasonal heteroskedasticity.
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