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Disclaimer

This report is released to inform interested parties of ongoing re-
search and to encourage discussion of work in progress. The views
expressed on statistical, methodological, technical, or operational
issues are those of the authors and not necessarily those of the U.S.
Census Bureau.

1. Introduction

The most common moving holiday effect found in U. S. economic
flow series is the Easter effect. For many retail sales series, levels
of sales are elevated in the period just before the Easter holiday
(which varies between March 22 and April 25). Because of this,
X-12-ARIMA has long had a built-in regressor corresponding to
the Easter holiday.

The Easter regressor within X-12-ARIMA follows the simplest
model of Bell and Hillmer (1983); it assumes that the level of activ-
ity changes on the w−th day before the holiday for a specified w,
and remains at the new level until the day before the holiday. For
a given effect window w, the Easter regressor E(w, t) is generated
as

E(w, t) = 1
w×[no. of the w days before Easter falling in month t]

−µw,t

where µw,t are the long-run monthly (or quarterly) means of the
first part of the E(w, t) equation corresponding to the first 400-year
period of the Gregorian calendar, 1583-1982. The µw,t capture
the seasonal component, and thus their removal yields a regressor
E(w, t) which does not estimate effects belonging to the seasonal
component of the series. This enables the seasonal factors of the
series to be estimates of all seasonal movement in the series. Table
1 gives the value of µw,t for commonly used values for w.

In the X-12-ARIMA input, E(w, t) is specified as easter[w];
this is how Easter regressors will be referred to in this document.

An earlier study, Findley and Soukup (2000), shows how com-
paring AIC values and analyzing graphs of out-of-sample forecast
errors can be used to determine if regARIMA models should in-
clude moving holiday terms.

This study seeks to provide guidance for practical concerns ana-
lysts have when including Easter regression effects in regARIMA
models for economic time series. We seek to answer the fol-
lowing questions regarding the use of Easter regressors in reg-
ARIMA models of economic data as they are incorporated into
X-12-ARIMA:

• How many years of data are needed to detect Easter holiday
effects with high reliability?

• How many years of data are needed to obtain useful estimates
of the Easter effect (estimates that improve the seasonal ad-
justment)?

• How often does X-12-ARIMA produce “false positives,” i.e.
select an Easter effect when none exists? What is the impact
of March and April outliers on the number of false positives?

• How often does X-12-ARIMA misidentify the Easter effect
length, e.g. select easter[15] when the true effect is easter[8]?

• How does the estimation of trading day effects affect Easter
effect detection?

These questions were investigated using synthetic series with
Easter effects constructed to conform to the models assumed by
X-12-ARIMA.

In addition, we examine an alternate model for Easter effects
in Section 8. This model will incorporate Easter Monday into the
estimated Easter effect.

2. Construction of series with known Easter
effects

We used 30 simulated series, representing 12 years of monthly
data (144 observations) that were constructed for an earlier pa-
per (Hood, Ashley, and Findley 2000).1 Each series combines a
known trend, seasonal factor and irregular, as described in Table
2. The trends designated st1, st2, and st3 come from SEATS
adjustments of three different series, while the trends designated
xt1, xt2, and xt3 come from the X-12-ARIMA adjustments of
the same three series. Designations for seasonal factors are similar.
SEATS trends were combined with X-12-ARIMA seasonal com-
ponents, and vice versa. Hood, Ashley, and Findley (2000) sam-
pled irregulars from pooled SEATS and X-12-ARIMA irregulars.
The irregulars used for the original study appeared less random
(showed more local autocorrelation) than one would expect from
a typical X-12-ARIMA or SEATS irregular. Therefore we created
new irregulars in the same size ranges by resampling from the same
files Hood, Ashley, and Findley (2000) used to sample the original
irregulars.

We created series with small (0.01 coefficient), moderate (0.03
coefficient) and large (0.08 coefficient) Easter effects for each of

1Hood, Ashley, and Findley (2000) also consider 18 synthetic series with an
extremely large irregular factor range (0.4 - 1.9). With such series, Easter effects of
the size we consider are not detectable. We do not present results for these series,
nor for six other series from their study that appeared to have an Easter effect we
were unable to completely remove.



Easter window (w) µw,March µw,April

1 0.2350 0.7650
8 0.3534 0.6466

15 0.4695 0.5305

Table 1: 400-year means for easter[w] of selected window lengths w

Trend descriptions
st /xt = SEATS trend / X-12-ARIMA trend from same series

st1/xt1 complex cyclical trend
st2/xt2 trend in between smooth and complex trend
st3/xt3 smooth trend

Ranges for seasonal factors and irregular
ss /xs = SEATS seasonal /

X-12-ARIMA seasonal from same series

Seasonal factors
ss1/xs1 very small 0.96-1.06
ss2/xs2 large 0.5 -1.2
ss3/xs3 moderate 0.85-1.12

Irregular
rs2 very small 0.95-1.04
rs3 moderate 0.9 -1.13

Table 2: Trends, seasonal factors and irregulars of simulated series

three Easter effect lengths: easter[1], easter[8] and easter[15]. To
impose these effects on the simulated series, we added an Easter
regressor with a coefficient of -0.01, -0.03 or -0.08 to the reg-
ARIMA model for the series, and used X-12-ARIMA to remove
the effect of the regressor. To adjust for the negative coefficient,
X-12-ARIMA adds a corresponding effect to the series, resulting
in a positive Easter effect.2 The resulting maximum and minimum
Easter factors for the 12-year period ending April 2002 appear in
Table 3.

3. Detection

We investigated how reliably X-12-ARIMA detected the simulated
Easter effects created in the series above. The main test used by
X-12-ARIMA utilizes AICC, which is a version of Akaike’s Infor-
mation Criterion (also called the F-corrected AIC) which contains
a correction for sample size. Among competing models for a given
time series, the model with the smallest AICC value is the model
preferred by the criterion. For more information on AICC, see Hur-
vich and Tsai (1989).

When performing the AICC test, X-12-ARIMA estimates the
regARIMA model separately with each of the regressors easter[1],
easter[8] and easter[15], and without an Easter regressor. It then se-
lects the regressor yielding the smallest AICC or the model without

2Note that the actual imposed Easter effect is smaller than the coefficient would
imply, because X-12-ARIMA deseasonalizes the Easter effect.

Maximum Minimum
Easter Easter
factor factor

0.08
easter[8]

1.0531 0.9496

0.03
easter[8]

1.0196 0.9808

0.01
easter[8]

1.0065 0.9936

0.08
easter[15]

1.0434 0.9584

0.03
easter[15]

1.0160 0.9842

0.01
easter[15]

1.0053 0.9947

0.08
easter[1]

1.0631 0.9406

0.03
easter[1]

1.0232 0.9773

0.01
easter[1]

1.0077 0.9924

Table 3: Maximum and minimum Easter factors for 12 years end-
ing April 2002.

Easter if its AICC is smallest.
To obtain the ARIMA part of the model, we used the automatic

model identification capability in version 0.3 of X-12-ARIMA
(Build 154, compiled September 6, 2005), also with automatic
outlier detection. As part of this procedure, a final check of the
t-statistic generated from the Easter regressor is performed, and
the program rejects the Easter regressor if the t-statistic indicates
the effect is not significant. For more information on the automatic
model identification procedure in version 0.3 of X-12-ARIMA, see
Monsell (2002).

3.1 Years of data required for detection

Table 4 gives the number of series (out of 30) for which the au-
tomatic model identification procedure of X-12-ARIMA selects a
model without an Easter regressor, when the series in fact contains
the Easter effect indicated in the column heading. The time period
is the number of years in the row heading, ending April 2002. Ta-
ble 4 also shows that large/moderate effects (coefficient 0.08/0.03)
are detectable with high reliability with four years of data. In the
period ending April 2002, similar success for small (1%) effects



can be achieved with twelve years of data. However, Section 3.2
illustrates that detection of the 1% effect for eight years of data or
less depends on the specific sequence of Easter dates considered.

Table 5 gives the number of series (out of 30) for which the X-
12-ARIMA AICC test alone (without the additional check of the
t-statistic of the Easter regressor) selects a model without an Easter
regressor; note that the number of rejections is noticeably lower in
most cases for the small Easter effect.

3.2 How dates of Easter affect detection

We investigated how detection was affected by the sequence of
Easter dates in the years we chose to associate with the simulated
data. We considered several eight- and six-year spans of data over
the 12-year period of the study. Table 6 provides the dates of Easter
for reference.

Tables 7, 8 and 9 present the number of series (out of 30)
for which the automatic model identification procedure rejects all
Easter regressors (selecting a model without Easter), when the se-
ries in fact contains easter[8] (Table 7), easter[15] (Table 8) or
easter[1] (Table 9). The tables also present the number of rejections
of a 0.01 coefficient Easter effect when March 1993 is included in
the regression as an additive outlier. Visual inspection of the rs3
irregular indicates that March 1993 is an outlier in the 15 series
having this irregular, but has a t-statistic below the threshold set by
X-12-ARIMA for automatic outlier detection, and is thus not ad-
justed for; see Section 5. In the series with a 0.01 coefficient Easter
effect and the rs3 irregular, the t-statistics for this outlier ranged
from 2.33 to 3.17 with 12 years of data, compared with the cutoff
of 3.89 used by X-12-ARIMA.

To assess the effect of outliers in April, we constructed additive
outliers for April 1998. (This date was chosen for the included out-
lier because each of the 6-year spans considered included it.) The
outlier regression coefficient of 0.04 (and -0.04) was selected so
that the t-statistics for the April 1998 outlier would be comparable
to those for the March 1993 outlier. Tables 7, 8 and 9 illustrate the
profound effect of this outlier on detection.

The tables indicate that while detection of the 0.03 coefficient
Easter effect is insensitive to Easter date, detection of the 0.01 co-
efficient effect is sensitive to both dates and the presence of out-
liers.

4. Estimation

We investigated the accuracy of Easter effect estimation by com-
paring seasonal adjustments with and without an Easter regressor
to the series adjusted for the correct (synthetic) seasonal factors
(the “true adjusted series”). For series containing an Easter effect,
adjustment with a good estimate of the Easter coefficient should
consistently produce results closer to the true adjusted series than
adjustment without an Easter regressor. However, if there are not
enough data to accurately estimate the Easter coefficient, the ad-
justment with Easter may differ more from the true adjusted se-
ries than the adjustment without Easter. Since the original series
were constructed from known trend, seasonal and irregular com-
ponents, we were able to obtain the true adjusted series by dividing

the original series (without an Easter effect) by the seasonal com-
ponent. We used X-12-ARIMA to seasonally adjust each series
both with an Easter effect (either of the true length or of an incor-
rect length), and with no Easter regressor. For each adjustment, we
calculated a relative root mean squared deviation (RRMSQD) and
a relative mean absolute deviation (RMAD) from the true season-
ally adjusted series, as shown below:

RRMSQD =

√√√√N−1

N∑
t=1

(xt − x̂t)2

x2
t

,

RMAD = N−1
N∑

t=1

|xt − x̂t|
xt

,

where xt is the true adjusted series and x̂t is the estimated adjusted
series. Only the March and April values of the seasonally adjusted
series were used in the calculation of the RRMSQD and RMAD.
The adjustment with the smaller RRMSQD or RMAD was consid-
ered to be the better adjustment.

Table 10 gives the average March/April RRMSQD and RMAD
for all 30 adjusted series. The columns labeled “Easter better” give
the number of series for which the adjustment with Easter was the
better adjustment. The table shows that moderate effects (0.03 co-
efficient) are estimable with four years of data when adjusting with
the correct Easter length (8). Small effects (0.01 coefficient) are
estimable with eight years of data for most series when adjusting
with the correct Easter length. However, the reduction in RRM-
SQD and RMAD produced by estimating the Easter effect is very
small for these small effects.

We checked whether misidentifying the Easter length, e.g. ad-
justing with easter[15] when the true Easter is easter[8], would lead
to worse adjustments. With 12 years of data, for all series, adjust-
ing an 0.03 easter[8] effect as easter[15] results in a better adjust-
ment than adjusting without an Easter regressor. (For results on
misidentification of an 0.03 easter[8] effect with 12 years of data,
please see Section 6.) The results for adjusting 8 years of data with
a true 0.01 easter[8] effect are surprising. Adjusting with an in-
correct easter[15] length results in more series with an improved
adjustment than adjusting with the correct length, easter[8]. We ex-
amined the Easter coefficient for the four series for which easter[8]
gives a worse adjustment than no Easter, while easter[15] gives a
better adjustment than no Easter. In each case, the easter[15] coeffi-
cient was closer to the true 0.01 value than the easter[8] coefficient.
It would appear that a better estimate of the Easter coefficient leads
to a better adjustment in these cases.

5. Rates of false detection

We used the original simulated series without Easter effects added
to investigate false positive results, i.e. how often X-12-ARIMA
detected an Easter effect not present in the data. With as few as
four years of data for the period ending April 2002, X-12-ARIMA
produced no false positives.

However, additive outliers in March and April readily induce
false detections. For the twelve years of data ending April 2002,
adding two such outliers (in April 2000 and March 2002) was suffi-
cient to cause false Easter effect identifications for 23 of 30 series.



Rejections (among 30 series) for period ending April 2002
easter[8] easter[15] easter[1]

0.08 0.03 0.01 0.08 0.03 0.01 0.08 0.03 0.01
12 yr 0 0 0 0 0 1 0 0 0
10 yr 0 0 10 0 0 11 0 0 7
8 yr 0 0 5 0 0 7 0 0 3
6 yr 0 0 9 0 0 11 0 0 8
4 yr 0 0 30 0 0 29 0 0 30

Table 4: Rejections of Easter effect when effect was present (periods end April 2002).

AICC rejections (among 30 series) for period ending April 2002
easter[8] easter[15] easter[1]

0.08 0.03 0.01 0.08 0.03 0.01 0.08 0.03 0.01
12 yr 0 0 0 0 0 0 0 0 0
10 yr 0 0 2 0 0 3 0 0 1
8 yr 0 0 0 0 0 2 0 0 0
6 yr 0 0 7 0 0 8 0 0 7
4 yr 0 0 24 0 0 24 0 0 28

Table 5: Rejections of Easter effect when effect was present, using the AICC test alone with no check of the Easter regressor’s t-statistic
(periods end April 2002).

The outliers were generated with a coefficient of 0.04, a choice for
which their t-statistics are below the threshold set by X-12-ARIMA
for automatic outlier detection.

6. Misidentifications

We investigated how often the moderate (0.03 coefficient) Easter
effect was detected but misidentified, e.g. AICC prefers easter[15]
for a series with known easter[8], in periods ending April 2002.

With 12 years of data, 14 of 30 series with easter[8] with a
known 0.03 coefficient were misidentified as easter[15] (Table 11).
With 10 years of data, 12 of the 30 series were misidentified. How-
ever, with 8 years of data, the number of misidentifications dropped
to zero. All the misidentified series had the rs3 irregular, and vi-
sual inspection of this irregular suggested that March 1993 might
be an outlier. When March 1993 was included as an additive outlier
in the regression for series that were misidentified, no series were
misidentified with 10 or 12 years of data. The t-statistics for the
March 1993 additive outlier ranged from 2.36 to 3.06 with 12 years
of data. (These t-statistics are below the threshold set by X-12-
ARIMA for automatic outlier detection.) Adjusting the misiden-
tified series with the inappropriate easter[15] regressor would still
result in a better adjustment than adjusting without an Easter re-
gressor, as noted in Section 3.

With 6 years of data, 17 of 30 series with known easter[15] were
misidentified as easter[8], and one of the series was misidentified
as easter[1]. Most of the misidentified series had the rs2 irregular.
For three of these series, March 1997 had a t-statistic greater than
2 when included as an additive outlier regressor. In all three cases,
easter[15] was correctly identified when the additive outlier was
included.

We found no misidentifications of easter[1] in any length time

period ending April 2002.

7. Easter detection when a trading day regressor
is estimated

Since many Census economic series are affected by both Easter
holiday and trading day effects, we investigated what impact es-
timating the trading day effect has on Easter detection. To 30
series having a moderate (0.03 coefficient) easter[8] effect, we
added a one-coefficient (weekday/weekend) trading day effect
(“td1coef” in X-12-ARIMA) with an 0.03 coefficient. We spec-
ified the td1coef regressor and allowed X-12-ARIMA to perform
the AICC test for an Easter effect.

With eight years or more of data (ending April 2002), AICC
correctly accepts the Easter effect for all 30 series. At least eight
years of data are recommended for accurate estimation of trading
day effects (Findley, Monsell, Bell, Otto, and Chen 1998). With
six years of data, AICC correctly accepts the Easter effect for all
series. However, with four years of data, AICC rejects the Easter
effect for 19 series. (By comparison, when no trading day effect is
present, AICC accepts the Easter effect for all 30 series.)

8. An alternate Easter regressor

Many countries around the world recognize Easter Monday as a
national holiday. For these countries, the Easter regressor within
X-12-ARIMA can give inadequate results. This is because there
is often increased economic activity before Good Friday but de-
creased activity from Good Friday through Easter Monday. To
alleviate this, we consider an alternate form of the Easter regres-
sor based on research for Australian time series given in Zhang,
McLaren, and Leung (2003).



Dates of Easter
31st March 1991 19th April 1992 11th April 1993 3rd April 1994
16th April 1995 7th April 1996 30th March 1997 12th April 1998
4th April 1999 23rd April 2000 15th April 2001 31st March 2002

Table 6: Dates of Easter in the periods considered in Tables 7, 8 and 9

easter[8] - Rejections (of 30)
0.01 0.01

0.01 (AO1993.Mar (AO1998.Apr, (AO1998.Apr,
0.03 0.01 in regression) b = 0.04) b = - 0.04)

8 years ending Apr 2002 0 5 NA 0 26
8 years ending Apr 2000 0 10 1 2 30
8 years ending Apr 1998 0 6 2 0 26
6 years ending Apr 2002 0 9 NA 0 30
6 years ending Apr 2000 0 3 NA 0 27
6 years ending Apr 1998 0 14 2 2 30

Table 7: Effect of Easter date sequence and outliers on detection of easter[8]

easter[15] - Rejections (of 30)
0.01 0.01

0.01 (AO1993.Mar (AO1998.Apr, (AO1998.Apr,
0.03 0.01 in regression) b = 0.04) b = - 0.04)

8 years ending Apr 2002 0 7 NA 1 26
8 years ending Apr 2000 0 12 2 2 30
8 years ending Apr 1998 0 8 3 0 30
6 years ending Apr 2002 0 11 NA 0 30
6 years ending Apr 2000 0 5 NA 0 28
6 years ending Apr 1998 0 21 4 2 30

Table 8: Effect of Easter date sequence and outliers on detection of easter[15]

easter[1] - Rejections (of 30)
0.01 0.01

0.01 (AO1993.Mar (AO1998.Apr, (AO1998.Apr,
0.03 0.01 in regression) b = 0.04) b = - 0.04)

8 years ending Apr 2002 0 3 NA 0 22
8 years ending Apr 2000 0 8 2 1 29
8 years ending Apr 1998 0 0 0 0 23
6 years ending Apr 2002 0 8 NA 0 28
6 years ending Apr 2000 0 4 NA 0 26
6 years ending Apr 1998 0 13 3 1 29

Table 9: Effect of Easter date sequence and outliers on detection of easter[1]



RRMSQD RMAD
true Easter years adjustment with Easter no Easter Easter better with Easter no Easter Easter better

0.03
easter[8]

4 easter[8] 0.0044 0.0148 30/30 0.0037 0.0130 30/30

0.03
easter[8]

12 easter[15] 0.0055 0.0149 30/30 0.0046 0.0125 30/30

0.01
easter[8]

8 easter[8] 0.0053 0.0065 25/30 0.0043 0.0052 25/30

0.01
easter[8]

8 easter[15] 0.0052 0.0065 26/30 0.0041 0.0052 28/30

Table 10: Average RRMSQD in March/April

easter[8]
easter[8] 0.03 easter[15] easter[1]

0.03 AO1993.Mar 0.03 0.03
12 yr 141 0 0 0
10 yr 121 0 0 0
8 yr 0 NA 12 0
6 yr 0 NA 172,12 0
4 yr 41,33 NA 123 0

Table 11: Misidentifications in 30 series for periods ending April 2002

1 = misidentified as easter[15]; 2 = misidentified as easter[8];
3 = misidentified as easter[1].

The alternate form for the Easter regressor we consider assumes
that one can break the Easter effect into two parts: a pre-Easter
effect of w days before Good Friday, and an Easter Holiday effect
starting on Good Friday and lasting through Easter Monday. This
takes the form of two regressors – a pre-holiday effect (where sales
are expected to be elevated) and an effect for the duration of the
holiday (where sales are expected to decline).

The pre-holiday effect is generated as

BE(w, t) = 1
w×[no. of the w days before Good Friday falling in

month t] −µBE
w,t ,

and the effect during the holiday is generated as

DE(t) = 1
4×[no. of days between Good Friday and Easter

Monday (inclusive) falling in month t] −µDE
t .

where again, µBE
w,t and µDE

w,t are the “long-run” monthly (or quar-
terly) means used to center the respective Easter regressors.

8.1 Application to the Australian Total Retail Turnover Series

An example comparing the default X-12-ARIMA Easter effect
with the alternate Easter regressors is now given using the Aus-
tralian Total Retail Turnover series from Zhang, McLaren, and Le-
ung (2003). The base model for this series was found to be an
ARIMA (0 1 1)(0 1 1) model, and trading day regressors were
found to be significant.

To determine which Easter regressor should be used, we use two
approaches. The first utilizes likelihood-based model selection cri-
teria by comparing the values of AICC.

In addition to easter[w], the default X-12-ARIMA Easter
regressor with window length w, we now define easter2[w2],
the alternate Easter regressor, with a window length of w2 for the
pre-Easter effect. Table 12 shows that the alternate Easter regressor
easter2[6] has a much lower AICC than the other regressors
– so AICC prefers this regressor. Note that the window for the
pre-Easter effect of the easter2[6] regressor assumes that the
elevation in the Easter effect starts on the Saturday before Good
Friday – which is the same as the easter[8] regressor.

Easter Regressor AICC
No Easter 2651.4425
easter[1] 2653.5009
easter[8] 2639.0764

easter[15] 2639.4447
easter2[6] 2624.9873
easter2[13] 2634.1864

Table 12: AICC values for different Easter regressors fit to Aus-
tralian Total Retail Turnover series (source: Australian Bureau of
Statistics)

Another method for determining which Easter regressor to
choose is to examine out-of-sample forecast error plots available



from X-12-Graph (Hood 2002). X-12-ARIMA’s history spec
is used to obtain differences of the accumulating sums of squared
forecast errors between the competing models for forecast leads of
interest (in this case, 1 and 12). If the direction of the accumulat-
ing differences is predominantly upward, then the forecast errors
are predominantly larger for the first model (in this case, the model
with the X-12-ARIMA Easter regressor), and we prefer the second
model.

Figure 1 shows a slight preference for the easter2 regressor,
as the increasing nature of the plot for 12-step ahead forecasts im-
plies that forecasts for the model with easter2 have lower out-
of-sample forecast error than those of X-12-ARIMA’s Easter re-
gressor, though the difference in the forecast errors appears to level
off towards the end of the series. It’s troubling to see the blips in the
12-step ahead forecast error graph in March and April of 1997 and
1999 - they seem to imply that the model with the easter2 re-
gressor does a better job of forecasting for March, while the model
with the traditional X-12-ARIMA regressor is slightly better for
April in those years.

Figure 1: Forecast error plot comparing forecasts from models with
different Easter regressors for Australian Total Retail Turnover
(source: Australian Bureau of Statistics)

For more information on forecast error plots, see Findley and
Soukup (2000) and Findley (2005); for an application to Italian
economic series, see Findley and Hood (1999).

The alternate Easter regressors and regressors for other Lunar
holiday effects (Lin and Liu 2002) described in this section can
be generated easily using the Census Bureau’s GENHOL pro-
gram. This program is available on the Census Bureau website:
http://www.census.gov/srd/www/x12a/ .

9. Conclusions

We can take several points away from our examination of simulated
series:

• Large/moderate effects (coefficient 0.08/0.03) are detectable
with four years of data.

• Detection of the 0.01 coefficient effect depends on the se-
quence of Easter dates. Detection is sensitive to March and

April outliers.

• Moderate effects (0.03 coefficient) are estimable with four
years of data. Small effects (0.01 coefficient) are estimable
with eight years of data for most series.

• With as few as four years of data for the period ending April
2002, X-12-ARIMA produced no false positives for the Easter
effect. However, two outliers in March/April are sufficient to
induce false positives in most series.

• Outliers with relatively small t-statistics can result in misiden-
tification of Easter effect length.

• Estimating a trading day effect has some impact on Easter de-
tection for short series, possibly because there are not enough
data for accurate estimation of the trading day effect.

We have also shown an example of an alternate Easter regressor
that could prove useful for modeling series from areas where Easter
Monday is recognized as a holiday.
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