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Abstract

We consider two modifications of SEATS’ diagnostics for determining whether, for an

estimated seasonal decomposition component, there is underestimation or overestimation,

meaning inadequate or excessive suppression of the other components. The diagnostic

of SEATS depends on variance estimates that assume an infinitely long filter has been

applied. This results in substantial bias toward indicating underestimation. Our modified

diagnostics are calculated from time-varying variances associated with the finite-length

filters actually used. Tests for the statistical significance of any indicated misestimation

are presented and analyzed. Our diagnostics and tests also apply to structural model-

based approaches to seasonal decomposition.
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1 Introduction

The most widely used ARIMA model-based approach to seasonal decomposition of a time

series is the “canonical” decomposition approach of Hillmer and Tiao (1982) and Burman

(1980), as implemented in SEATS (Gómez and Maravall, 1997) and in other software under
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development – see Monsell, Aston and Koopman (2003). There are also the “structural”

ARIMA model-based approaches of DECOMP (Kitagawa 1981, 1985) and STAMP (Koopman,

Harvey, Doornik, and Shepherd, 1995). All of these approaches assume that, after a logarithmic

transformation if necessary, and after removal of any trading day, holiday, and outlier effects

estimated with the regression component of the fitted regARIMA model, the time series to be

seasonally adjusted, Yt, 1 ≤ t ≤ N, can be decomposed into a sum of ARIMA seasonal, trend,

and irregular components denoted by St, Tt, and It respectively,

Yt = St + Tt + It, 1 ≤ t ≤ N. (1.1)

The component models lead to estimates Ŝt, T̂t, and Ît that are Gaussian conditional means,

e.g.

Ît = E (It|Ys, 1 ≤ s ≤ N) =
t−1∑

j=t−N

cI
j,t (N)Yt−j . (1.2)

Specifically, the cI
j,t (N) are chosen to minimize E

(
It −

∑t−1
j=t−N cI

j,tYt−j

)2

under assumptions

that make it possible to evaluate this expectation by treating the values of model parameters

– specified or estimated from the data via maximum likelihood – as if they were correct. Ŝt

and T̂t are defined analogously. (For simplicity, we shall usually suppress the dependence of

the estimates on N , the models, and the decomposition.) Here and throughout, E denotes

the mean calculated according to the model specified for the data, whether or not this model

is correct. When the model is incorrect, we use Etrue to denote the mean calculated using

the true distribution of the data, which is known for simulated time series. The additivity

property of conditional means yields the seasonal decomposition Yt = Ŝt + T̂t + Ît, 1 ≤ t ≤ N.

Model inadequacy can lead to inadequacies in this decomposition. The most fundamental

inadequacy is the presence of an easily detectable seasonal component in the adjusted series,

Ât = Yt − Ŝt, or in the detrended seasonally adjusted series Ît = Ât − T̂t, i.e., the estimated

irregular component. Therefore seasonal adjustment programs need a diagnostic (or several)

to detect residual seasonality. Spectrum estimates are the most developed and widely used

diagnostics for the detection of essentially periodic components such as seasonality and trading

day effects and are part of the automatic output of X-12-ARIMA, see Findley, Monsell, Bell,

Otto, and Chen (1998).

SEATS (Gómez and Maravall, 1997) does not yet have spectrum diagnostics for detecting

residual seasonality. Instead, it provides a diagnostic for detecting “underestimation” and
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“overestimation.” Maravall (2003) defines underestimation of the seasonal component heuristi-

cally to mean that its estimate fails to capture all of the seasonal variation, while overestimation

means too much variation has been assigned to this component. To have a heuristic definition

that applies to all components, we interpret underestimation of the component of interest to

mean that signal extraction filters used do not adequately suppress the other component or

components. This would be the case for the seasonal adjustment filters, for example, if the

dips in their squared gain functions at the seasonal frequencies are too narrow. Overestima-

tion means too much suppression, e.g., these dips are too wide. The irregular filters provide

suppression both around the seasonal frequencies and also around near-zero frequencies asso-

ciated with trend, so misestimation of It could also result from inappropriate suppression of

low-frequency (long-period) components. Some examples of squared gains of irregular com-

ponent extraction filters illustrating overestimation and underestimation are given in Figure 1

below. There are no formal studies of the consequences of overestimation and underestimation,

but Table 10 of Findley, Monsell, Shulman, and Pugh (1990) indicates that both can greatly

increase the amount of seasonal adjustment instability observed when more recent observations

are added to the time series and the earliest observations are deleted.

In Section 2, after describing the SEATS diagnostic for detecting underestimation and over-

estimation, we show it is biased toward identifying underestimation even when the estimate

is optimal. Simulation analyses of two modified diagnostics that are essentially unbiased are

provided in Section 3. We develop significance tests for the modified diagnostics in Section

4 and in the Appendix, for the situation in which the distribution of the stationary time se-

ries obtained from differencing operations has neither skewness nor kurtosis. (Specifically, we

assume that all third and fourth cumulants are zero.) In Section 5, the significance tests are

applied with some success to two official time series for which misestimation is suspected. Sec-

tion 6 discusses some conclusions and extensions. Certain required formulas are derived in the

Appendix.

2 The Basic Diagnostic

We focus on detecting misestimation of the irregular component, because the model for this

component is stationary and usually fully specified by a constant variance, σ2
I = EI2

t . As a

consequence, the signal extraction filter formulas are simpler than for the other components,

as are the formulas of the over/underestimation diagnostics. (For the seasonal, trend, and
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seasonally adjusted components, the SEATS diagnostic is calculated for the “stationary trans-

formation” of each component, meaning the output of the differencing operation specified by

the component’s ARIMA model.) Because of this greater simplicity, Agust́ın Maravall attaches

more importance to the over/underestimation diagnostic of the irregulars than to the corre-

sponding diagnostics for the other components (personal communication). Our study seems to

be the first systematic investigation of this kind of diagnostic.

In SEATS, the term estimator is used for the theoretical Wiener-Kolmogorov estimate that

applies with bi-infinite data. To have a specific formula for the variance of the estimator of the

irregular component used by SEATS, suppose the (estimated or fixed) ARIMA model for the

Yt is written in the usual backshift operator polynomial notation as

δ (B)φ (B)Yt = η (B) at. (2.1)

Thus δ (B) = 1 − δ1B − · · · − δdB
d denotes the differencing operator which transforms Yt to

stationarity, e.g. δ (B) = (1 − B)2
(
1 + B + · · ·+ Bs−1

)
, at is the one-step-ahead prediction-

error process (with variance parameter σ2
a), etc. Here s is the number of observations per year

(s = 12 in our analyses): φ (0) = η (0) = 1, and the zeros of φ (z) have magnitudes exceeding

one. For simplicity, the same will be assumed of η (z). The spectral density of the model for

the differenced series yt = δ(B)Yt is

g(λ) =
σ2

a

2π

∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

. (2.2)

For j = 0,±1, · · · with

cI
j =

σ2
I

4π2

∫ π

−π

cos jλ

g(λ)
|δ(e−iλ)|2 dλ (2.3)

the Wiener-Kolmogorov estimator IWK,t of It from bi-infinite data, i.e., the Gaussian condi-

tional expectation E(It|Ys,−∞ < s < ∞), has the formula IWK,t =
∑∞

j=−∞ cI
jYt−j SEATS’

variance of the estimator, σ2
WK,I = EI2

WK,t, has the formula σ2
WK,I = σ2

IcI
0. The estimate of

It is the model’s conditional mean from the data:

Ît = E(It|Ys, 1 ≤ s ≤ N) =
t−1∑

j=t−N

cI
j,tYt−j . (2.4)
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SEATS’ variance of the estimate is defined to be the sample second moment1

Î2 =
1
N

N∑
t=1

Î2
t , (2.5)

and, conceptually for SEATS, overestimation is indicated when Î2 > σ2
WK,I and underesti-

mation when Î2 < σ2
WK,I . However, the calculations that produce the component models in

SEATS and other software yield variances such as σ2
I and σ2

WK,I calculated as though the

innovation variance of (2.1) were equal to one. We shall denote these unscaled variances by

σ2
I/σ2

a and σ2
WK,I/σ2

a. Thus, in place of σ2
WK,I , for some estimate σ̂2

a, the scaled quantity

σ̂2
aσ2

WK,I/σ2
a is used. Let σ2

a,mle denote the maximum likelihood estimate of σ2
a given by (A.1)

in the Appendix. Following SEATS, we use the bias-corrected estimate of Ansley and Newbold

(1981),

σ̂2
a =

N − nδ,φ

N − nδ,φ − ncoeffs
σ2

a,mle (2.6)

where nδ,φ = d (or d plus the degree of φ(z) if SEATS’ conditional estimate of φ(z) is used), and

ncoeffs is the number of estimated ARMA coefficients in the model. Note that when ncoeffs =

0, e.g. in the fixed-coefficient case, then σ̂2
a = σ2

a,mle. SEATS’ criterion is Î2 > σ̂2
aσ2

WK,I/σ2
a for

overestimation, and Î2 < σ̂2
aσ2

WK,I/σ2
a for underestimation.

The following simple Proposition shows that SEATS’ over/underestimation criterion is biased

toward indicating underestimation.

Proposition 1 For the estimates Ît (2.4) of the stationary irregular component It, we have

EÎ2 ≤ σ2
WK,I (2.7)

with σ2
WK,I − EÎ2 = N−1

∑N
t=1

(
E(It − Ît)

2 − E(It − IWK,t)
2
)

. Strict inequality necessarily

holds in (2.7) when the moving average polynomial η(B) in (2.1) has positive degree.

Proof. For covariance calculations based on the assumed model, the estimate Ît and its error

It− Ît, which sum to It, are treated as uncorrelated. The same is true for IWK,t and It−IWK,t.

Thus we have

σ2
I = EÎ2

t + E(It − Ît)
2

= σ2
WK,I + E(It − IWK,t)

2
. (2.8)

1Instead of Î2, SEATS uses the sample variance,
∑

t (Ît − Ît)
2
/(N − 1) where Ît is the sample mean. This

is N/(N − 1) u 1 times the smaller quantity Î2 − (Ît)
2
. Therefore, the bias results of Proposition 1 apply to

the sample variance as well as to the sample second moment.
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It follows from (2.8) that (2.7) is valid, because E(It − IWK,t)
2 ≤ E(It − Ît)

2
due to E(It − Ît)

2
=

E(It − IWK,t)
2+E(Ît − IWK,t)

2
. This identity holds because, for covariance calculations based

on the assumed model, IWK,t, being the minimum mean square estimator from the larger data

set, is treated as uncorrelated with Ît − IWK,t. Strict inequality holds in (2.7) whenever (2.1)

has a moving average component, because then infinitely many coefficients in (2.3) are nonzero,

so that E(Ît − IWK,t)
2

> 0. ¤

Suppose the model considered is the Box-Jenkins airline model,

(1−B)(1−B12)Yt = (1− θB) (1−ΘB) at. (2.9)

Let σ2
WK,I denote the variance of the canonical irregular component of the sort produced

by SEATS for this model. For the case θ = 0.6, Table 1 shows values of the relative bias

σ2
WK,I/EÎ2 for sample sizes N = 72, 144 and various Θ. The relative bias values are quite

similar for other values of θ with 0.1 ≤ θ ≤ 0.9 (not shown).

Table 1. Relative Bias σ2
WK,I/EÎ2 for Various Θ (θ = 0.6) and N

Θ N = 72 N = 144

0.1 1.1900 1.0875

0.2 1.1726 1.0795

0.3 1.1588 1.0736

0.4 1.1462 1.0685

0.5 1.1365 1.0639

0.6 1.1293 1.0599

0.7 1.1274 1.0563

0.8 1.1363 1.0546

0.9 1.1633 1.0614

3 Modification of SEATS’ Diagnostic

The above results, documenting substantial bias, suggest that in place of the constant vari-

ance σ2
WK,I that applies to the bi-infinite case, the average of the time-varying variances

σ2
t = EÎ2

t should be used, calculated as though the estimated or specified model were correct.

That is, Î2 should be compared to N−1
∑N

t=1 σ2
t instead of to σ2

WK,I . However, the values

usually available for σ2
t are calculated as though the estimated or specified model for Yt had
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innovation variance one, so the values must be scaled by a factor σ̂2
a. We will use σ2

t /σ2
a to

denote a model-specified variance of It that requires scaling; σ2
t /σ2

a can be obtained directly

from (A.7). Thus, the role of N−1
∑N

t=1 σ2
t is replaced by

1
N

N∑
t=1

σ2
t

σ2
a

, (3.1)

multiplied by the scaling factor σ̂2
a. That is,

Î2 >
σ̂2

a

N

N∑
t=1

σ2
t

σ2
a

(3.2)

indicates overestimation and

Î2 <
σ̂2

a

N

N∑
t=1

σ2
t

σ2
a

(3.3)

indicates underestimation.

3.1 Mean performance of (3.2) and (3.3)

To obtain a “proof of concept” of our modification (3.2) and (3.3) of SEATS’ diagnostic, we

compare the means of their left and right hand sides for zero mean Gaussian data Yt satisfying

(3.4) with θ̃ = 0.6 = Θ̃,

(1−B)(1−B12)Yt =
(
1− θ̃B

)(
1− Θ̃B

)
ãt, (3.4)

where the variance of ãt is σ2
ã. We consider irregular component estimates from models with

θ = θ̃ = 0.6 and Θ = 0.3, 0.4, . . . , 0.9. Similar results were obtained with other values of θ̃

and Θ̃. The mean of the left hand side, EtrueÎ2, is given by (A.6) in the Appendix. With

σ2
a,mle(θ, Θ) denoting the value of σ2

a,mle (see (A.1)) specified by (2.9), the right hand side

mean is the product {
1
N

N∑
t=1

σ2
t

σ2
a

}
Etrueσ2

a,mle(θ, Θ) (3.5)

which can be calculated from (A.2) and (A.7) of the Appendix. Values of the ratio of EtrueÎ2

divided by (3.5) are given in Table 2. Graphs of the squared gains
∣∣∣∑t−1

j=t−N cI
j,t (N) ei2πjλ

∣∣∣
2

,

−0.5 ≤ λ ≤ 0.5 from SEATS’ decompositions of (2.9) show that overestimation occurs when

Θ < Θ̃ and underestimation occurs when Θ > Θ̃; see Figure 1 for the case t = [N/2] + 1

(midpoint) and Θ̃ = 0.6.
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Table 2 shows that Θ < 0.6 leads to ratio values greater than one and therefore to (3.2) on

average, whereas Θ > 0.6 leads to ratio values less than one, hence to (3.3) on average. Thus,

on average, (3.2) and (3.3) provide the correct diagnoses. The ratios are closer to 1.0 in the

case of underestimation, suggesting this will be more difficult to detect than overestimation.

Moreover, the ratios suggest that the most extreme underestimation, from Θ = 0.9, is more

difficult to detect with this approach than the less extreme underestimation from Θ = 0.7 or

0.8.

Table 2. True Means of Î2 from Series with θ̃ = Θ̃ = 0.6

Compared to (3.5) for Various Θ

Θ EtrueÎ2 (3.5) Ratio

0.3 0.1634 0.1264 1.2927

0.4 0.1879 0.1607 1.1692

0.5 0.2148 0.2003 1.0724

0.7 0.2834 0.2966 0.9555

0.8 0.3356 0.3534 0.9496

0.9 0.4036 0.4135 0.9761

3.2 Local properties and a further modification

The properties revealed by Table 2 for the average of the I2
t make it natural to ask if the

average inherits these properties from analogous local properties. That is, for every t, is EtrueÎ2
t

less than

σ̄2
t =

{
σ2

t /σ2
a

}
Etrueσ2

a,mle (θ, Θ) (3.6)

when there is underestimation and greater than σ̄2
t when there is overestimation? We found

for the models of Table 2 that such a local property holds only away from the ends of the

series. In the first and final years and sometimes further in, particularly with underestimation,

the inequality goes in the opposite direction. Thus, when there is underestimation, the values

of EtrueÎ2
t are consistently larger than σ̄2

t near the ends of the series. Figures 2 – 8 present

graphs of EtrueÎ2
t and σ̄2

t that illustrate these findings. The time intervals at the ends of the

series over which EtrueÎ2
t > σ̄2

t holds are substantially wider in Figure 8 for the case Θ = 0.9

than in Figure 7 for Θ = 0.8.
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For sample sizes not too much smaller than N = 144, these results suggest that the sum in

(2.5) and the sum
1
N

N∑
t=1

σ2
t

σ2
a

, (3.7)

should be restricted to run from 13 to N − 12, to obtain a second modification of SEATS’

diagnostic that might be able to identify underestimation more reliably. With

τ
(1)
N = Î2 − σ̂2

a

N

N∑
t=1

σ2
t

σ2
a

(3.8)

being the statistic based on (2.5) and (3.7), we define τ
(2)
N to be analogous statistic obtained

by restricting the sums in this way.

3.3 Basic performance of the modified diagnostics

We begin our exploration of τ
(1)
N and τ

(2)
N by investigating how often, in a simulation exper-

iment, their signs, and the sign of the corresponding SEATS diagnostic,

τSEATS
N = Î2 − σ̂2

a

(
σ2

WK,I/σ2
a

)
(3.9)

are correct. 5000 independent realizations of (3.4) with θ̃ = Θ̃ = 0.6 of length 144 were obtained

from simulated standard normal innovations ãt. Always using θ = 0.6, overestimated irregulars

were obtained from SEATS by specifying decomposition via a model (2.9) with Θ < 0.6,

underestimated irregulars by specifying Θ > 0.6. Table 3 lists the underestimation percents.

The SEATS diagnostic has a strong bias toward incorrectly indicating underestimation when

0.4 ≤ Θ ≤ 0.6. Thus it is not a reliable diagnostic for residual seasonality. τ
(1)
N and τ

(2)
N show

no such strong bias. τ
(2)
N has a conspicuous advantage over τ

(1)
N only when Θ = 0.9, which is

the most difficult case for correct detection. Thus, as suggested by Table 1, underestimation

is more difficult to detect than overestimation in the situations considered.
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Table 3. Percents of Simulated Airline Model Series with θ̃ = Θ̃ = 0.6 for Which

Underestimation is Indicated by Diagnostics of Adjustments Produced from

Estimated θ and Θ and with Specified Incorrect Θ’s

Θ τSEATS
N τ

(1)
N τ

(2)
N

0.3 12.1 1.4 2.1

0.4 32.2 6.9 8.6

0.5 62.7 22.0 24.4

estimated θ, Θ 100 47.4 48.2

0.7 96.6 75.0 73.3

0.8 99.1 84.1 84.0

0.9 98.4 66.7 81.4

4 Tests for the Significance of Over- or Underestimation

For significance testing, we interpret the value of τ
(1)
N by reference to an estimate σ̂N (τ (1)

N )

of its standard deviation given by the right hand side of (A.9) in the Appendix. This estimate

accounts for the variances of Î2 and σ̂2
a and their covariance by treating the model coefficients

as non-random, as they are for the simulation results. An analogous σ̂N (τ (2)
N ) is used with

τ
(2)
N . For a given size (significance level) α, and with z denoting an N (0, 1) variate, let z1−α

denote the value for which P {z > z1−α} = P {z < −z1−α} = 1−α. We performed simulation

experiments to determine, for various α and Θ, the proportion of simulated series for which

τ
(i)
N > z1−α σ̂N (τ (i)

N ) (4.1)

occurs, which is interpreted to indicate overestimation (at the α level of significance), or for

which

τ
(i)
N < −z1−α σ̂N (τ (i)

N ) (4.2)

occurs, indicating underestimation, for i = 1, 2; we simulated 1000 series of length N = 144

from the model (3.4) with θ̃ = Θ̃ = 0.6.
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Table 4. Specified vs. Observed Sizes of (4.1) and (4.2): θ = 0.6,Θ = 0.4

proportion of (4.1) proportion of (4.2)

α�τ τ
(1)
144 τ

(2)
144 τ

(1)
144 τ

(2)
144

.05 .432 .394 0 .001

.10 .559 .533 0 .003

.15 .662 .641 .003 .009

.20 .733 .713 .006 .013

.25 .795 .760 .010 .022

Table 5. Specified vs. Observed Sizes of (4.1) and (4.2): θ = 0.6,Θ = 0.9

proportion of (4.1) proportion of (4.2)

α�τ τ
(1)
144 τ

(2)
144 τ

(1)
144 τ

(2)
144

.05 .044 .004 .113 .242

.10 .025 .018 .178 .362

.15 .051 .030 .241 .442

.20 .080 .052 .314 .523

.25 .119 .065 .390 .586

Table 6. Specified vs. Observed Sizes of (4.1) and (4.2): θ = 0.6,Θ = 0.6

proportion of(4.1) proportion of (4.2)

α�τ τ
(1)
144 τ

(2)
144 τ

(1)
144 τ

(2)
144

.05 .045 .049 .041 .052

.10 .101 .093 .090 .103

.15 .137 .138 .145 .152

.20 .193 .193 .186 .197

.25 .242 .252 .235 .244

Tables 4 and 5 show power properties for detecting overestimation and underestimation

respectively. A minimal “power” requirement for a usable test would seem to be that the pro-

portion of detections of the correct kind of misestimation should exceed 0.5. Our experiments

showed that (4.1) easily satisfies this minimal power requirement for detecting moderately

strong overestimation, Θ ≤ 0.4, for i = 1, 2 when α ≥ 0.10; see Table 4. However, for (4.2) and

Θ ≥ 0.8, α ≥ 0.20 must be used, and for Θ = 0.9, τ
(2)
N is required; see Table 5.
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Table 6 indicates that, when the filter is obtained from the true model, each ratio τ
(i)
N =

τ
(i)
N /σ̂N (τ (i)

N ) for i = 1, 2 behaves approximately like a standard normal variate. Moreover,

standard tests applied to the histograms of the τ
(1)
N and τ

(2)
N values indicate that the distribu-

tions associated with Table 6 are symmetric with mean zero, which further motivates the use

we make of (4.1) and (4.2) in the next Section for significance testing. However, as discussed

below, the histograms of τ
(1)
N and τ

(2)
N can be skewed when parameters are estimated for each

simulated series rather than being fixed.

For the other values of Θ, the histograms have sample means and sample skewness coeffi-

cients that are, in a statistically significant sense, positive for overestimation and negative for

underestimation. The mean seems to contribute more to the power to detect misestimation

than does the skewness. These results suggest that testing with α = .20 will provide adequate

to excellent power against a broad range of alternatives and that τ
(2)
N need only be used when

Θ is rather close to one. We also produced results (not shown) for the sample size N = 72. For

this sample size, testing with α = .25, there is reasonable power for detecting overestimation

with 0.3 ≤ Θ ≤ 0.4 but not adequate power for detecting underestimation.

5 Empirical Results

5.1 Application to Two Time Series

We now apply τ
(1)
N and τ

(2)
N to model-based adjustments of two series. The first is the series

of dollar values of U.S. Exports of Other Agricultural Materials (Manufactured) from January,

1989 – December, 2001 (N = 156), which we abbreviate as Export. Because of its heterogenous

nature, its seasonal pattern is not very well defined and it is not seasonally adjusted by the

Census Bureau. SEATS’ seasonal adjustment has left some seasonality, as indicated by the one

seasonal peak in the spectrum of the irregular component at the highest seasonal frequency

(0.5 cycles/month), see Figure 9, the only frequency at which the spectrum of the (differenced,

logged) original series has a seasonal peak (not shown). The peak in Figure 9 is visually

significant according to the criterion used by X-12-ARIMA; see Soukup and Findley (1999).

For i = 1, 2, let p
(i)
N denote the probability that a standard normal variate z has a value

at least as extreme as τ̄
(i)
N = τ

(i)
N /σ̂N (τ (i)

N ), i.e. p
(i)
N = Prob

{
z ≤ τ̄

(i)
N

}
if τ̄

(i)
N < 0 and p

(i)
N =

Prob
{

z ≥ τ̄
(i)
N

}
if τ̄

(i)
N > 0. The first row of Table 7 provides the τ̄

(i)
N and p

(i)
N values for Export.

12



Both τ̄
(i)
N values are negative, commensurate with underestimation, but the p

(i)
N values show

that only the test based on τ
(2)
N indicates significant underestimation. The fitted model is an

airline model with both coefficients equal to 0.80 to this level of precision. The Box-Ljung

statistics of the model residuals are poor (p-values below 0.05) at lags 3–6 but acceptable at

higher lags (p-value of 0.289 at lag 24). There are no indications of skewness or kurtosis in

the model residuals. This example confirms the utility of τ
(2)
N . SEATS’ analogue of τ

(1)
N , i.e.

τSEATS
N defined in (3.9), has the value −0.033. SEATS provides no estimate of the standard

error of τSEATS
N (Maravall (2003) provides an approach to an estimate).

Table 7. Values of τ̄
(i)
N and p

(i)
N , i = 1, 2

τ̄
(1)
N ; p

(1)
N τ̄

(2)
N ; p

(2)
N

Export −0.546; 0.292 −2.177; 0.015

Vol 0.299; 0.383 0.142; 0.443

Whereas the spectrum can call attention to the possibility of underestimation, the main

source of evidence for oversmoothing, which we interpret to mean overestimation, has been

the opinions of data experts. We denote by Vol the sales volume series for large department

stores (Grands Magasins) from January 1990 through March 2004 (N = 171) produced by the

Chamber of Commerce and of Industry of Paris (CCIP). Mr. J. Anas of CCIP communicated

the concern of CCIP that the model-based adjustment of SEATS produced with TRAMO’s

automatically chosen (012)(010) model – and hence with Θ = 0 – might be oversmoothing. We

used the outlier treatment preferred by CCIP, modeling a temporary change outlier for October,

1995 but not two other outliers indicated by the automatic outlier identification procedure.

We were not able to obtain enough information about the holiday adjustment method used

by CCIP for this series to able to replicate it, so we used instead the Easter and trading day

effect modeling options of X-12-ARIMA, thereby ignoring several French holidays. In spite of

this compromise, our model diagnostics were mostly good: the Box-Ljung Q statistics for the

model residuals had p-values greater than 0.11 at all lags, with a value slightly greater than

0.90 at lag 24. There were no indications of skewness or kurtosis in the model residuals.

The values in the second row of Table 7 show support, albeit weak, for a diagnosis of

overadjustment. The Table D 9.A diagnostics of the X-12-ARIMA adjustment of this series

suggest that the seasonal adjustment of five and perhaps six of the calendar months should be

done with a standard length filter (a 3 × 5 seasonal filter, which yields an adjustment similar
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to a SEATS adjustment with Θ = 0.6, see Findley and Martin, 2003), whereas a shorter filter

should be used for the remaining months, quite short for some of the months. (A SEATS filter

from Θ = 0 has length about 37 months, slightly shorter than the filter obtained by using the

shortest (i.e., the 3×1) seasonal filter in X-12-ARIMA.) Thus, the indications of overestimation

may be weak because overestimation is a problem only for half or less of the months. For this

series, τSEATS
N has the value 0.000 and so gives no indication of overestimation.

5.2 A Simulation-Based Alternative to Table 7

The p
(i)
N values presented in Table 7 were obtained by assuming that the τ̄

(i)
N have a standard

normal distribution. We also obtained simulation based alternatives to these p
(i)
N values to

confirm the conclusions obtained from the τ̄
(i)
N values of Table 7. We simulated 5000 Gaussian

series of the appropriate length from each series’ estimated model, of length N = 156 from

Export ’s estimated airline model and of length N = 171 from Vol ’s estimated (012)(010)

model, reestimating model parameters for each simulated series. From the irregular component

obtained from the reestimated model for a given simulated series, we obtain an analogue of

τ̄
(i)
N which we denote by τ̄

∗(i)
N . The four histograms (not shown) of 5000 τ̄

∗(i)
N ’s obtained for

each model and for i = 1, 2 have means very close to zero, but are skewed for i = 1, and, for

Export ’s model, also for i = 2. For each histogram, let p̄
(i)
N denote the proportion of the 5000

τ̄
∗(i)
N ’s that are at least as extreme as the corresponding τ̄

(i)
N value of Table 7. The p̄

(i)
N value

associated with each τ̄
(i)
N is shown in Table 8.

The simulation-based p-values of Table 8 have the advantages over those of Table 7 that they

make allowance both for uncertainty arising from parameter estimation and for deviations from

Gaussianity of the τ̄N . The extent to which they support the conclusions drawn from Table 7

is quite reassuring. Both series represent challenging cases for the detection of misestimation.

Table 8. Values of τ̄
(i)
N and p̄

(i)
N , i = 1, 2

τ̄
(1)
N ; p̄

(1)
N τ̄

(2)
N ; p̄

(2)
N

Export −0.546; 0.317 −2.177; 0.013

Vol 0.299; 0.297 0.142; 0.375

From the results of Tables 3–6, we are encouraged by the performance of the τ̄N statistics and

recommend that they replace the over and underestimation diagnostics currently in SEATS.
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6 Conclusions and Extensions

By using finite-data signal extraction variances (in conjunction with the bias-corrected es-

timate of Ansley and Newbold (1981) of the innovation variance), one can obtain essentially

unbiased analogues of the diagnostics of SEATS for detecting over- or underestimation and, in

addition, test statistics for one-sided tests of the presence of these phenomena. In the preceding

Sections, this was demonstrated in the context of an extensive analysis of the diagnostic for

the irregular component of a seasonal adjustment decomposition. However, there are broad

generalizations of the diagnostic (3.8) and its standard error, with slightly more complex for-

mulas, that apply to time series which can be modeled as a sum of “independent” components,

each with an ARIMA model. Such formulas are given in (A.15) and (A.16) of Appendix A

for stationary transforms ût = δU (B)Ût of the estimates Ût of the component Ut of a general

two component decomposition Yt = Ut + Vt, 1 ≤ t ≤ N . By specializing these formulas to the

other components of a seasonal decomposition Yt = St +Tt + It, i.e., setting Ut equal to St, Tt,

or Tt + It, (the target seasonal adjustment), analogues of (4.1) and (4.2) can be obtained to

provide tests for replacements for the other over- and under-adjustment diagnostics of SEATS.

The exact formulas needed to implement the analogues of the test statistic (3.8) for the sta-

tionary transforms of the seasonal and trend component estimates are given in Proposition 4

of McElroy and Sutcliffe (2004). A change in the notation of the proof of Proposition 1 shows

that SEATS’ diagnostic for the stationary transforms of the seasonal, trend, and seasonally ad-

justed series are also biased toward indicating underestimation. Feldpausch, Hood, and Wills

(2004) present simulation results that show this bias.

In future work, after these tests are programmed into the X-13 program discussed in Monsell

et al. (2003), we plan to apply them to large numbers of Census Bureau time series to learn more

about what features of series and seasonal decompositions they are sensitive to. Another future

project is the establishment of a central limit theorem for τ
(1)
N /σ̂N (τ (1)

N ) and its generalizations.

A Appendix: Technical Results

A.1 Formulas for σ2
a,mle (θ, Θ) and Etrueσ2

a,mle

(
θ̃, Θ

)

A time series with spectral density g̃ (λ) has autocovariances

γj (g̃) =
∫ π

−π

cos(jλ) g̃ (λ) dλ, j = 0,±1, . . . .
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Let Σ(g̃) denote the associated covariance matrix of order N−d, i.e., Σ(g̃) = [γj−k (g̃)]1≤j,k≤N−d.

For the model (2.1), the spectral density of yt = δ (B)Yt is g (λ) = (σ2
a/2π)

∣∣η (
e−iλ

)∣∣2 ∣∣φ (
e−iλ

)∣∣−2.

If we define yd+1:N =
[

yd+1 · · · yN

]′
and g1 (λ) = (1/2π)

∣∣η (
e−iλ

)∣∣2 ∣∣φ (
e−iλ

)∣∣−2, then it

follows from ΣN−d (g) = σ2
aΣN−d (g1) and (3.2) of Ansley and Newbold (1981) that the m.l.e.

of σ2
a is

σ2
a,mle (η/φ) =

1
N − d

y′d+1:NΣ−1 (g1)yd+1:N , (A.1)

and also that, with tr denoting trace of a matrix,

Etrueσ2
a,mle (η/φ) =

1
N − d

tr
{
Σ−1 (g1) Σ (g̃)

}
. (A.2)

For (2.9) and (3.5), we denote (A.1) by σ2
a,mle (θ, Θ) and (A.2) by Etrueσ2

a,mle (θ, Θ).

A.2 Formulas associated with Ît

To obtain standard errors of test statistics, variances and covariances of Î2 and σ2
a,mle (η/φ)

are required. These can be obtained fairly easily if, as usual, the model coefficients are treated

as fixed rather than random. We first need the covariance matrix of the Ît. In the notation

introduced above, and with ∆ denoting the N − d×N band matrix of the form

∆ =




−δd · · · −δ1 1
. . . . . . . . . . . .

−δd · · · −δ1 1


 , (A.3)

the formula for the vector Î = Î (g,N) of estimates Ît, 1 ≤ t ≤ N from (2.3) under Assumption

A of Bell and Hillmer (1988) – see subsection A.4 – is

Î =
σ2

I

σ2
a

∆′Σ−1 (g1)yd+1:N , (A.4)

when It is white noise with variance σ2
I – see (4.3) of Bell and Hillmer (1988). Thus the

covariance matrix Σtrue
Î

= ΣÎ (g̃, g, N) has the formula

Σtrue
Î

=
(

σ2
I

σ2
a

)2

∆′Σ−1 (g1)Σ (g̃)Σ−1 (g1) ∆. (A.5)

For 1 ≤ t ≤ N , EtrueÎ2
t is the t-th diagonal entry of Σtrue

Î
, and

EtrueÎ2 = N−1trΣtrue
Î

. (A.6)

For 1 ≤ t ≤ N , the scaled model-based variance σ2
t /σ2

a is the t-th diagonal entry of

ΣÎ/σa
=

(
σ2

I

σ2
a

)2

∆′Σ−1 (g1)∆, (A.7)

and (3.7) is given by N−1trΣÎ/σa
.
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A.3 Test statistic standard errors

We now derive formulas for the variances of Î2 and σ2
a,mle (η/φ) and their covariance under

the assumptions that the model spectral density g (λ) is correct, g̃ (λ) = g (λ) = σ2
ag1 (λ), and

that the yt have no skewness or kurtosis. Using the special case of the formula of McCullagh

(1987, p. 65) for the covariance of two symmetric quadratic forms of zero mean variates Xi

whose joint third and fourth cumulants are zero, we obtain

var
(
Î2

)
=

2
N2

N∑

j,k=1

cov2
(
Îj , Îk

)
=

2σ4
a

N2
tr

{
Σ2

Î/σa

}

var
(
σ2

a,mle (η/φ)
)

=
2σ4

a

N − d

cov
(
Î2, σ2

a,mle (η/φ)
)

=
2σ4

a

N (N − d)
trΣÎ/σa

with ΣÎ/σa
given by (A.7).

With σ̂2
a = cNσ2

a,mle (η/φ), see (2.6),

τN = Î2 − cNσ2
a,mle (η/φ)

{
N−1trΣÎ/σa

}
(A.8)

therefore has the variance

2σ4
a

N2

[
tr

{
Σ2

Î/σa

}
− 2cN − c2

N

(N − d)

(
trΣÎ/σa

)2
]

.

For an approximate standard error for the test statistic τ
(1)
N , we replace the unknown σ4

a

with σ̂4
a from (2.6) and take the positive square root to obtain

σ̂N (τ (1)
N ) =

√
2σ̂2

a

N

[
tr

{
Σ2

Î/σa

}
− 2cN − c2

N

(N − d)

(
trΣÎ/σa

)2
]1/2

. (A.9)

For the test statistic τ
(2)
N , the formula (A.9) is modified by leaving (N − d) unchanged but

otherwise replacing N elsewhere with (N − 24) and by replacing the matrix ∆ in (A.7) with

the matrix ∆(2) which differs from ∆ in its first and last twelve columns by having all entries

in these columns equal to 0.

A.4 Diagnostic and test statistic formulas for a general decomposi-

tion Yt = Ut + Vt

Suppose the observed time series is modeled as having a decomposition Yt = Ut + Vt with

components that obey ARIMA models whose “differencing” polynomials δU (B) and δV (B), of
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degrees dU and dV respectively, have no common zeros. (If Ut, say, is covariance stationary, set

δU (B) = 1 and dU = 0.) The differenced series ut = δU (B)Ut and vt = δV (B)Vt are assumed

to be uncorrelated with one another and to have mean zero. These assumptions imply an

ARIMA model for Yt with differencing polynomial δ(B) = δU (B)δV (B) of degree d = dU +dV .

The initial value conditions associated with Assumption A of Bell (1984) or Bell and Hillmer

(1988) are assumed to hold for the ARIMA difference equations for Ut and Vt. Assumption A

states that the initial d values of Yt, i.e., the variables Y1, Y2, · · · , Yd, are independent of {ut}
and {vt}. This ensures that the standard formulas such as (2.3) yield minimum mean square

linear estimates. The diagnostics are defined for the stationary transforms of the components,

e.g. ut.

As in the development of Section A.3, we need the covariance matrix of ût. Let ∆V denote

an N − d×N − dU band matrix of the form

∆V =




−δV
dV

· · · −δV
1 1

. . . . . . . . . . . .

−δV
dV

· · · −δV
1 1


 . (A.10)

Following Bell and Hillmer (1988), our estimate of the differenced signal is the vector

û = Σu/σa
∆
′
V Σ−1(g1)yd+1:N (A.11)

where Σu/σa
is the covariance matrix of u under the assumption that yt has unit innovation

variance. Therefore,

Σtrue
û = Σu/σa

∆
′
V Σ−1(g1)Σ(g̃)Σ−1(g1)∆V Σu/σa

(A.12)

so that Etrueû2
t is the t-th diagonal entry of Σtrue

û , and

Etrueû2 = N−1trΣtrue
û . (A.13)

The scaled model-based variance of û is given by

Σû/σa
= Σu/σa

∆
′
V Σ−1(g1)∆V Σu/σa

. (A.14)

So we can define our diagnostic to be

τN = û2 − cN σ2
a,mle(η/φ)

{
N−1trΣû/σa

}
(A.15)

which, in a derivation analogous to that of (A.9), has standard error

σ̂N (τN ) =
√

2σ̂2
a

N

[
tr

{
Σ2

û/σa

}
− 2cN − c2

N

(N − d)
(
trΣû/σa

)2
]1/2

(A.16)
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where σ̂a comes from (2.6).
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Figure 1: Squared gain function of the midpoint irregular filters of length 144 for θ = 0.6 and

Θ = 0.3, 0.6, 0.9.

t

0 20 40 60 80 100 120 140

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Figure 2: EtrueÎ2
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Figure 9: Spectrum of the Irregulars of Export. Note the seasonal peak at 6/12 cycles/month.
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