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Abstract. The problem of disseminating tabular data such that the amount of information provided satisfies

the public need while protecting individually identifiable data is a problem in all governmental statistical agencies.

The problem falls into the category of Statistical Disclosure Control and provides many difficult policy and technical

challenges for these agencies. In order to achieve the double mission of dissemination and confidentiality protection,

the agencies must balance conflicting objectives. Traditionally, agencies have relied on selective suppression of sensitive

cells. Because of the difficulty of suppressing optimally and the problems that may result from publishing tables with

omitted cell values, new ideas have been proposed based on selective adjustment of cell values. One such method is

Controlled Tabular Adjustment by Cox and Dandekar [2002]. In this paper we discuss the theoretical, computational

and practical issues of these two approaches to Statistical Disclosure Control.
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Introduction. The mission of a governmental statistical agency is to collect, process, and dissem-

inate statistical data. The government’s on-going, long-term, effectiveness in collecting accurate

data from its respondents relies critically on their trust and good will and this is attained by pro-

viding and honoring assurances to protect their identity and confidentiality. Since, at the same

time, the government is interested in maximizing the amount of information disseminated by the

statistical reports, there emerges a clear conflict between two issues of public interest: confiden-

tiality and quantity of information. This creates a uniquely governmental problem, and it is the

source of many difficult policy and technical challenges.
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This important trust between the government and its constituents has been codified and leg-

islated into laws that clearly define the government’s role and obligations. The charter for the

modern Census Bureau includes the specific provision in Title 13 of the U.S. Code where it is

specifically stated that the confidentiality of the suppliers of information for use by the Census

Bureau to generate statistics will be strictly protected. The Census Bureau has operated under

these laws and we can attribute to them its success in fulfilling its mission while maintaining a

high degree of public trust.

Other federal statistical agencies also deal with the acquisition and dissemination of data. When

these agencies obtain their data independently of the Census Bureau, they operate outside of the

protections of Title 13, although in many cases they operate under laws that require some degree

of protection. Recognizing the need for strong protection guarantees for information providers to

these statistical agencies, Congress passed into law the Confidentiality Information Protection and

Statistical Efficiency Act of 2002 (CIPSEA). In the bill, it is stated that

Pledges of confidentiality by agencies provide assurances to the public that information about

individuals or organizations or provided by individuals or organizations for exclusively statis-

tical purposes will be held in confidence...†

The overarching preoccupation for protecting the confidentiality of information providers limits

the amount of detail that can be released by the statistical agencies for many data products. De-

termining the maximum amount of detail that can be released while still protecting confidentiality

provides continual policy and technical challenges for the agencies. In this paper we discuss some

of the technical Statistical Disclosure Control solutions that have been proposed in response to the

specific problem of disseminating quality statistical information while protecting the identity of its

providers specifically for the case of tabular data.

Architecture of a Table. Statistical data is classified into microdata and tabular data. In this

paper we are focused on issues arising in tabular data; that is, tables intended for publication that

summarize microdata.

Tables can be further classified into two types: frequency or count tables and magnitude tables.

Frequency tables present cardinal quantities of instances or occurrences of the items about the

subject of the table. The entries in a magnitude table are numerical values representing an amount

such as production or sales. Tables 1 and 2 are illustrations of these two types of tables:

† http://frwebgate2.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107 cong public laws&docid=f:publ347.107.pdf
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gasoline kerosene paraffin diesel Total
Location 1 9 11 5 7 32
Location 2 5 7 1 19 32
Location 3 26 2 32 23 83

Total 40 20 38 49 147

Table 1. Count of Refineries for Four Petroleum Products for 3 sites.

gasoline kerosene paraffin diesel Total
Location 1 600 800 900 400 2700
Location 2 500 400 300 600 1800
Location 3 700 550 700 800 2750

Total 1800 1750 1900 1800 7250

Table 2. Petroleum Distillates Production (millions of gallons) for 3 sites.

Any one of the two tables above illustrates other relevant properties and characteristics of tables.

These are simple 2-dimensional tables. Each value is in a position of the table called a cell. There

are two types of cells here: interior and marginal. Marginal cells contain the sum total of a row

or column. Notice that there are two types of marginals: those that contain the sum of interior

cells and the one that contains the sum of the marginals themselves. This is the grand total which

resides, in our example, at the lower right-hand corner of the table. A row or a column in a

2-dimensional table is called a shaft. When a table has two dimensions, each cell belongs to two

shafts. Tables can have more than two dimensions if cells belong to more than two shafts. We can

visualize a simple 3-dimensional table as being contained in a cube. In such a table there would

be three types of marginals: “third level marginals” associated with totals for individual shafts,

“second level marginals” where the totals of third level marginals are located and a final “first level

marginal” which is the grand total.

Tables need not be simple in which case they may be hierarchical. In a hierarchical architecture,

the table contains additional subtotals. This concept can be generalized to that of linked tables.

Such tables summarize data from a common data base and are connected to each other by values at

individual cells; i.e., a value at a given cell may be a marginal from another table. Often disclosure

methods for magnitude tables assume that the cell values are nonnegative; however, such methods

can be generalized to allow negative values.

Disclosure Control Background. Statistical Disclosure Control (or “Disclosure Avoidance” or

“Disclosure Limitation”) is the aspect of the generation and dissemination of statistical informa-

tion concerned with the management of the risks of disclosing information about respondents in

tables and microdata. The effort to limit disclosure becomes considerable when it is combined with
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the objective of maximizing the amount of information released. The efforts of statistical disclo-

sure control groups produce “protected” microdata and tables that somehow provide the required

protection of the identities of individual respondents.

Statistical agencies assume the existence of individuals willing to make extraordinary efforts

and able to perform sophisticated analyses to extract information from protected microdata or

tables beyond the intended protected levels. These individuals are referred to as “attackers” (or

“intruders” or “snoopers”). The production of protected statistical products must take into account

the analyses and techniques attackers might employ as part of the assessment of the protection

level. Although the term used to describe these individuals might connote nefarious intent, we must

assume that all consumers of the statistical products are potential attackers in this sense, and we

must admit that even ourselves, at times, might be challenged to try to make inferences that will

lead to revelations about protected microdata or tables beyond what appears to be available from

a superficial inspection of the product.

For the case of tabular data, the process of disclosure control starts with the identification of

the sensitive cells in a table. Decisions as to when a cell in a table is sensitive depend on whether

the table is a frequency or magnitude table. For the case of frequency tables, a cell is defined to be

sensitive when the number of respondents is less than a predefined threshold. In magnitude data,

each respondent’s contribution to the cell value differs. Therefore, primary disclosure rules must

rely on the specific contributions of the individual respondents. Typically these considerations

involve the contributors with the largest proportion of the contribution to the cell value. There are

several rules. For example, the “(n, k)-rule” requires protection of a cell if n or fewer contributors

account for k% or more of the total cell value.

Statistical agencies have an overriding interest in protecting their sources, especially when the

data is acquired under confidentiality assurances. This is important not just to protect specific

information providers from damaging disclosure or unwanted confidentiality breaches but also for

the long term quality and integrity of all statistical agencies. The law recognizes this and there are

specific statutes in place to provide a legal framework under which government statistical agencies

must operate. Another aspect of the mission of statistical agencies is to maximize the quantity

of information that is disseminated every time a product is released. These two objectives are at

odds with each other and cannot be easily reconciled. Technical solutions employing mathematical

models that somehow incorporate the two dissonant objectives are available. In the next section

we discuss the most widely used of these techniques, cell suppression for tabular data.
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Cell Suppression in Statistical Disclosure Control for Tabular Data. There is a choice

of techniques for protecting the value of sensitive cells in a table. One approach is to restructure

the table and combine categories. Enough collapsing of cells will eventually protect any table

containing sensitive cells. Unfortunately, this protection is attained at the cost of information

from entire categories and wholesale loss of detail. Frequency tables can also be perturbed using

methods such as random or controlled rounding. The perturbation may be applied to the source

microdata file as in “confidentiality editing” (OMB 1994).

Another protection technique that applies to both frequency and magnitude tables is the sup-

pression of sensitive cells in the final published table. Suppression consists of the omission of

sensitive cell values. It is clear that suppressing only sensitive cells may not be enough to pro-

tect the table from an attacker since simple addition and subtraction on any shaft where there

is a single suppressed cell can reconstitute the original value. Therefore, additional “secondary”

or “complimentary” suppressions may be necessary to attain real protection for selected sensitive

cells. Even this, however, may not be enough since a determined attacker, although not able to

infer the exact value of a suppressed cell, may be able to calculate an interval containing this

value that is sufficiently close to violate established protection levels. Therefore, it is important to

select the right suppression pattern that will not reveal from within itself any more than intended

amounts of information to any conceivable attack. As we will see, this is a difficult technical prob-

lem. Suppression is the most widely practiced statistical disclosure control technique for tables

and it is the topic of this section.

We will motivate and develop the technique of cell suppression for tabular data by introducing

the notion of an “audit” of a protected table. Consider the following simple 2-dimensional magni-

tude table where the cell in position (3,3) for row “Product 3” and column “Region C” has been

determined to be sensitive:

Region
A B C Total

Product 1 11 21 23 55
Product 2 15 20 35 70
Product 3 19 9 32 60

Total 45 50 90 185

Table 3. 2-Dimensional Unprotected Table.

The statistical agency decides to protect the sensitive cell with the following suppression pattern

where the asterisks represent suppressed cells:
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A B C Total
1 11 21 23 55
2 * 20 * 70
3 * 9 * 60

Total 45 50 90 185

Table 4. 2-Dimensional Table Protected by a Suppression Pattern.

There are a total of four suppressions in this pattern: cells (2,1), (2,3), (3,1) , (3,3). Of these, one

is a “primary” suppression, the original sensitive cell, cell (3,3) . The remaining three suppressions

are “secondary” or “complementary” suppressions. Note that this suppression pattern satisfies the

minimum requirement that the value of the original sensitive cell cannot be discovered by simple

arithmetic since all suppressions are paired in whatever row and column they appear. Note also

that, as it stands, an attacker cannot distinguish between primary and secondary suppressions.

This adds a measure of protection to the table.

An attacker will exploit any opportunity to extract additional information from the suppressed

table. The purpose of a suppression pattern audit is to expose this additional information and test

its compliance with the required protection standards for the table.

An attacker wants to know as much as possible about the original values for cells (2,1), (2,3),

(3,1) , (3,3). These being unknown quantities, the first step in a mathematical approach is to

assign to them variables. The table can be represented as a matrix where the four variables are

y21, y23, y31, and y33 as follows:




A B C Tot

1 11 21 23 55

2 y21 20 y23 70

3 y31 9 y33 60

Tot 45 50 90 185




At every row and column where a variable appears, there is an algebraic relation modeling the

additivity of the table. Since variables appear in rows 2 and 3 and columns 1 and 3 there are four

linear equations:

Row 2:

Row 3:

Col A:

Col B:




y21 +y23 = 50

y31 +y33 = 51

y21 +y31 = 34

y23 +y33 = 67

Other conditions on the variables may apply in addition to having to satisfy the four linear equa-

tions. For example, it may be surmised from the nature of the table that the values for the variables
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are nonnegative. This, indeed, will be our assumption here. Even though this is a 4 × 4 system,

it is important to note that its rank is not full. To see this note how when the linear system is

expressed in matrix form after negating the last two equations:




1 1

1 1

−1 −1

−1 −1







y21

y31

y23

y33


 =




50

51

−34

−67




A dependency among the rows is evident since their sum produces the ‘0 = 0’ result. This means

that the system actually has fewer than four independent equations and, therefore, if it has one,

it has multiple solutions. As we will see, this multiplicity of solutions is related to an equivalence

between suppression patterns and cycles in networks. The nonnegativity restriction on the variables

does not exclude multiplicity since once a nonnegative (nontrivial) solution is at hand, it is always

possible to generate alternate nonnegative solutions by the convexity of the solution set.

Any solution y21 ≥ 0, y23 ≥ 0, y31 ≥ 0, and y33 ≥ 0 to the system of linear equations above is

said to generate a consistent table; that is, a table that maintains the additivity of all rows and

columns. Naturally, the original values y21 = 15, y23 = 35, y31 = 19, and y33 = 32 satisfy the

nonnegativity conditions and solve the linear system. This provides an assurance that at least one

solution exists and, therefore, many other values for these four variables are possible.

The information available to an attacker consists of the system of linear equations and the fact

that its solution must be nonnegative. A good place to start to try to extract useful information

about the original table is to focus on certain solutions of interest. For example, if variable, y21,

can have many values, let us look at its largest. A formal statement of this question is to find the

solution to the following problem:

maximize y21

such that

y21 +y23 = 50,

y31 +y33 = 51,

y21 +y31 = 34,

y23 +y33 = 67,

y21 ≥ 0, y23 ≥ 0, y31 ≥ 0, y33 ≥ 0.

This is a well defined instance of a linear program. It is a small instance of one, and it is one that

can be easily solved. The optimal objective function value to this linear program is y∗21 = 34. This
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indicates that, no matter what choice of values for the other three variables, in order for the table

to remain consistent, the variable y21 will take on values that are less than or equal to 34. Since

the same question can be asked of the other three variables, there are three other linear programs

the solutions of which provide information about the maximum value of the variables y23, y31, and

y33 and, conversely, four others that answer the symmetric questions about the minimum value

attainable in order to maintain consistency in the table. The solution to the eight linear programs

are summarized in the following table:

Variable Min Max Actual Mid
y21 0 34 15 17
y23 16 50 35 33
y31 0 34 19 17
y33 17 51 32 34

Table 5. Protection Intervals for Suppressed Cells.

For each variable it is possible to obtain an interval in which the corresponding cell value must be

located in order for the table to remain consistent. For the case of our sensitive cell in this example

(cell (3,3) ) the interval is [17, 51]. This means that an attacker cannot know anything more about

this cell value given the current suppression pattern other than the fact that the original value is

somewhere within this interval.

Let us focus on the protection provided by the current suppression pattern on cell (3,3). The

interval [17, 51] can be thought of providing a ‘protection level’. This level can be quantified

by taking the smaller of the two distances from the true cell value, 32 − 17 and 51 − 32, and

calculating the corresponding percentage change it represents with respect to the original value;

thus, the protection level is 46.975% = (32 − 17)/32 Typically, the statistical agency will define

a minimum protection level p∗, to be applied symmetrically around the sensitive cell value. For

obvious reasons, this minimum protection level is not publicly divulged. Any suppression pattern

that generates intervals with upper and lower limits proportionately further away from the sensitive

values, for all sensitive cells, than required by the official minimum protection level, p∗, is said that

to “pass” the audit. Therefore, if the official minimum protection level was, say, 15%, then the

current suppression pattern amply passes the audit.

A parting observation about the intervals generated by the audit based on extremal values for

variables corresponding to suppressed cells is that, in this particular example, midpoints provide

apparently unreliable information. For example, the original value of protected cell (3,3) is 32

whereas the midpoint of the protection interval is 34. It would appear that using the midpoint as

an “estimator” may yield some information.
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Suppression Patterns in 2-Dimensional Tables and Networks. All simple 2-dimensional

tables have an equivalent representation using bipartite networks (see D. Gusfield (1988) and L.

Cox 1995). A network is a collection of nodes and directed arcs where each arc connects a pair of

nodes. In the case of bipartite graphs, the set of nodes are partitioned into two subsets and arcs

connect pairs of nodes from different sides of the partition. The network representation for Table

3 is as follows:




A B C Tot

1 11 21 23 55

2 15 20 35 70

3 19 9 32 60

Tot 45 50 90 185


 −→
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In this bipartite network, nodes on the left correspond to the rows, and nodes on the right to

columns except for nodes labeled r0 and c0 which correspond to the marginals. The arc parameters

can be treated as flows. Note that each node is “balanced” in the sense that the total flow into

the node equals the total flow leaving it.

The table and the bipartite network are equivalent. There is also an equivalence between a

suppression pattern in the table and a subset of the network’s arcs. The arcs corresponding

directly to the suppressed cells constitute the subnetwork in the bipartite graph as follows:




A B C Tot

1 11 21 23 55

2 � 20 � 70

3 � 9 � 60

Tot 45 50 90 185


 −→
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Suppression pattern. Equivalent bipartite subnetwork.

Notice how we can trace a sequence of arcs in the subnetwork in the figure above as follows: 2

→ C → 3 → A → 2. This sequence starts and ends at node 2 and some of the arcs are traversed

against the direction of the arrow. This sequence of arcs tracing a path that starts and ends at the
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same node is called a cycle. The presence of this cycle implies a nontrivial suppression pattern and

provides a way of calculating the upper and lower limits of the protection interval for any of the

protected cells in the following way. Consider an increase in flow in the arc from node 2 to node C

from its current value of 22. If this flow were to be increased, in order to maintain a conservation

of flow into each of the nodes in the cycle there would need to be a reduction of flow into node C

from node 3 which triggers a need to increase flow from 3 to A which forces a reduction in flow

from 2 to A. Fortunately, this last reduction must equal the original increase from this initial node,

node 2, and flow conservation is restored throughout. Graphically this sequence of adjustments

caused by the original flow increase from 2 to C appears as follows:

....................................................
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........................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

........................

.......................

........................................................................................................................................................................................................................................................................................ .......................

The maximum value of the flow adjustment parameter δ such that the flow remains nonnegative

everywhere in the cycle is δ∗ = 15. Beyond this value, the flow over arc (2,A) will become negative.

This means that the maximum flow possible on the arc from 2 to C is 35+δ∗=50 which agrees with

the maximum value for variable y23 (see Table 5) obtained from solving a linear program. This

same analysis can be applied to all four arcs in the subnetwork to obtain maximum and minimum

flow values and these values will correspond to the solutions to the eight linear programs solved to

obtain the entries in Table 5.

The equivalence between flow problems in a network and the solution to linear programs asso-

ciated with suppression patterns is evidence of the general relation between suppression problems

and networks. This is good news since network problems, which are a special case of linear pro-

grams†, can be solved much faster than unstructured LPs. This equivalence applies to single and

2-D tables with a hierarchical structure of any depth. The relation is lost in other types of tables.

This apparently convenient relation does not mean, however, that there is an easy way to find an

optimal suppression pattern.

The realization that finding an optimal suppression pattern is difficult comes from the observa-

tion that there are a combinatorial number of potential patterns in any table. Consider the simple

example with which we have been working. Below are two more of the many suppression patterns

and corresponding subnetworks that are possible to protect cell (3,3):

† For a reference on linear programming see Chvátal (1983).
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


A B C Tot

1 � 21 � 55

2 15 20 35 70

3 19 � � 60

Tot � � 90 185


 −→
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Suppression Pattern 2: a unique cycle with six arcs and a marginal.




A B C Tot

1 � 21 � 55

2 � 20 � 70

3 � 9 � 60

Tot 45 50 90 185


 −→
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B
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C

11
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.......................
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Suppression Pattern 3: multiple cycles.

These two new suppression patterns illustrate how all sorts of subsets of cells in a table can be

used to compose a suppression pattern. They also serve to illustrate different types of patterns.

In Suppression Pattern 2 the equivalent subnetwork contains more than the minimum four arcs.

Suppression Pattern 3 offers an example of a more complicated situation where nodes in the

subnetwork have more than two incident arcs. Notice also how it is possible to include marginal

cells in a suppression pattern. Since this is at heart a network structure, such LPs can be solved

at greatly accelerated speeds.

Zeroes in tables play a special role. Cells with zero values are assumed to be structural. In this

context, structural means that no data can fall into the cell – as opposed to sampling zeroes where

the cell value happens to be zero. This means that any protected table must maintain its original

cells with zero values unsuppressed. Therefore, cells with zero values are never sensitive and they

cannot be part of a suppression pattern.

When searching for an optimal suppression pattern in a table, one must consider all possible

suppression patterns. The number of these patterns is combinatorial. Since this is a discrete prob-

lem, this search is potentially explosive. The world of combinatorial searches for optimality leads

naturally to mathematical programming formulations involving binary integer variables. There

are tools for solving binary integer linear programs that offer some hope for solutions for these

problems.
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Mathematical Programming for Optimal Cell Suppression. Searching for an optimal

solution implies an objective function. Suppression causes information loss. One objective in

finding an optimal suppression pattern can be to minimize a measure of information loss. This

objective function must be linear if the mathematical program to be used is a Mixed Integer Linear

Program (MILP).

The cell suppression problem can be modelled as a MILP formulation. This is the notation that

will be used for this purpose (development and notation based on Fischetti and Salazar (2001)).

- a = {a1, .., an}: the set of cell values that define the table. Note that we have switched to

single subscripts. There are, therefore, n cells in this table. The cell values are the ais.

- I = {1, . . . , n}: the index set of the cells in the table.

- P = {i1, . . . , ip}: the index set of the sensitive cells.

- S ⊆ {1, . . . , n}: index set of suppression pattern S. Note, P ⊂ S.

- li and ui; i = 1, . . . , n: lower and upper limits of an interval known to any attacker as

containing the value of cell i. That is, if this cell is suppressed, it is assumed that an attacker

knows that the original value is in the interval [li, ui]. Typically, statistical agencies consider

the lower limit to be one half of the true cell value and the upper limit double this value

although the interval may be [0,∞].

A consistent table with respect to the suppression pattern S is any set of values, y = y1, . . . , yn,

that satisfy the system:

My = 0

li ≤ yi ≤ ui ∀ i ∈ S
yi = ai ∀ i 	∈ S.

(1)

where the linear system My = 0 represents all the additivity relations of the table; one for each

row and column. Other linear relations that model hierarchy can be part of this system.

Observations

1. Each of the cells in the table generates a variable in System (1).

2. The conditions on the variables li ≤ yi ≤ ui; ∀i ∈ S are necessary if the attacker knows that

the original value of a suppressed cell lies within a given interval. These constraints assure

that no values for the protected cells that are known to be impossible by the attacker will be

considered consistent.

3. Condition yi = ai; ∀i 	∈ S means that the value of any of the variables not in the suppression

pattern will take on the original cell value.
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This representation of a consistent table with respect to suppression pattern S can be restated

using binary variables. A binary variable is an integer valued variable that takes on the value of

either 0 or 1. Define xi to be a binary variable such that:

xi =
{ 0 if cell i is not suppressed

1 otherwise.

We can use this binary variable in the following transformation:

{
li ≤ yi ≤ ui ∀ i ∈ S

yi = ai ∀ i 	∈ S
⇐⇒ ai − Lixi ≤ yi ≤ ai + Uixi; ∀i ∈ I

where Li = ai − li; Ui = ui − ai.

The system becomes:

My = 0

ai − Lixi ≤ yi ≤ ai + Uixi; ∀i ∈ I
(1′)

Systems (1) and (1’) are equivalent. The latter system, however, is an expression that can be

evaluated with knowledge of values for all the variables whereas the former requires a logical

inclusion/exclusion test for membership in the set S. This makes the system with binary variables

more amenable for use in a mathematical programming formulation.

In order to formulate this mathematical program we proceed to define two more parameters:

- Lik
and Uik

: the lower and upper limits of the smallest protection interval for sensitive cell

ik. Note Lik
≤ aik

≤ Uik
.

We have the tools to formulate a proper MILP that will achieve the desired result. We use the

model and notation of Fischetti and Salazar (2001). Note that superscripts refer to sensitive cells

and a single subscript is used to identify each of the n general cells independently of the dimension

of the table. The minimization is performed simultaneously for all sensitive cells.
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min
∑
i

wixi

s.t.k=1,...,p Mfk = 0

fk
i ≥ ai − Lixi i = 1, . . . , n;

fk
i ≤ ai + Uixi i = 1, . . . , n;

fk
ik

= aik
− Lik

Mgk = 0

gk
i ≥ ai − Lixi i = 1, . . . , n;

gk
i ≤ ai + Uixi i = 1, . . . , n;

gk
ik

= aik
+ Uik

xik
= 1, ik ∈ P;

xi ∈ {0, 1}∀i; fk ≥ 0, gk ≥ 0; k = 1, . . . , p.

The mixed integer linear program above for the optimal solution of the tabular suppression

problem is known as the “Kelly” formulation, for Kelly (1990). It is a general formulation that

applies to any sort of table including multidimensional hierarchical tables.

Several measures of information loss have been proposed. If we associate a weight wi ≥ 0 with

each suppressed cell, different weighting schemes provide different measures of information loss.

These are some of the possibilities:

1. wi = 1. In this weighting scheme the suppression of any one cell is as important as any other

cell. No preference is given during optimization to the suppression of any particular cell.

2. wi = ai. Here, the weight is the actual cell value. The magnitude of the cell value guides the

optimization to attempt to include low valued cells in the suppression pattern. This method

might be better suited for magnitude tables. Notice how there is a beneficial tendency to

change interior rather than marginal cells with this scheme since marginals in nonnegative

tables have values that are at least as great as any individual cell and will tend to penalize

more the objective function when they are included in a suppression pattern.

3. wi = log(1+ai) or any such calculation involving logarithms. This is more likely to attenuate

the effect of large fluctuation in the cell values. These types of measures are more in tune

with practices in information theory.

Once the weighting scheme has been selected, the objective function equals the sum of weights

for those cells in a suppression pattern being evaluated (since xi = 1 for those cells in the pattern
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and xi = 0 for those not in the pattern). Thus, the optimal value of the objective function is the

minimum value of the sum of weights over all possible suppression patterns.

Since the formulation is a well defined instance of an MILP, it can be the input of an application

such as CPLEX 8.0 MILP Solver (ILOG (2002)). Supposing that the solver actually returns

an optimal solution to the problem, the output will be a value for each element of the vectors

of variables fk and gk along with values for each of the binary variables xi; i = 1, . . . , n. To

implement the solution it is sufficient to know the values of the binary variables. Recall that if

xi = 0, cell i will not be suppressed and the table will be published with its value fully disclosed. If

xi = 1 at optimality, then cell i will belong to the optimal suppression pattern and its value will be

suppressed for publication. The values for the fk and gk are important in determining the results

of an audit on cell k in the optimal suppression pattern. For all unsuppressed cells, these are the

original values in the table. For the suppressed cells these will turn out to be the the upper (fk
i )

and lower (gk
i ) limits of the protection interval for cell i.

Access to a solver, even one as powerful as CPLEX 8.0, does not mean that an optimal, or even

a feasible, solution will be found. The state-of-the-art for MILP solvers still does not guarantee

finding optimal solutions in reasonable time especially for large problems and the general MILP

formulation above generates massive problems even for relatively small simple tables.

Let us analyze the size of a problem resulting from the MILP formulation for tabular suppression

presented above. When the matrix M contains the usual additive relations for a simple two-

dimensional m by n table, the vector fk contains m × n variables for each k, where k is the

index counter for the total number of sensitive cells in the table; that number is p. Therefore, the

number of variables represented by the vector fk is m× n× p. This means that fk represents 107

variables in a 100×100 table with 1000 (10%) protected cells. This represents just half of the total

number of continuous variables since the same number results from counting the gk. Consider, in

addition that there is one binary variable, xi, for each cell. The grand total in variables is therefore

2(m × n × p) + (m × n) = (m × n)(2k + 1).

Relaxing integer conditions in an MILP can greatly simplify solving it and may, in some cases,

provide useful solutions. In the case of the optimal suppression pattern formulation, a relaxation of

the binary variables is rather meaningless and still leaves behind a massive LP. All this makes the

original Kelly formulation impractical for all but the smallest problems, at least for the foreseeable

future.

Recent work on the optimal cell suppression problem has resulted in some advancements. Recall

that simple two-dimensional tables have an underlying network structure. This structure has been

successfully exploited by Fischetti and Salazar (1999). Employing the max flow/min cutset network

duality theory, these researchers propose a new MILP formulation for the simple two-dimensional

problem. A relaxation of the MILP can yield meaningful solutions upon the addition of several
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different types of constraints. The resulting formulations can have large numbers of constraints

but the authors report substantial improvements in solution times on both real and synthetic

problems. Some of the inherent structure of two-dimensional tables has been extended into three

dimensions as network problems with side constraints in Castro (2002). Finally, the dual ideas

about network cut capacities and how they constrain suppressions have been adapted to the general

cell suppression problem for a new MILP in Fischetti and Salazar (2001).

The optimal cell suppression problem for tabular data is an especially intractable NP-Hard

problem. The MILP formulations that are available can solve problems that, in current practices,

are relatively small. Although new formulations, better MILP solvers, and faster hardware increase

the scale of these problems, statistical agencies cannot count on a day in the foreseeable future

when optimal approaches can be applied in production especially since the size and complication

of the tables they handle are ever increasing. Production of protected tables, therefore, requires

effective tools and techniques. In the next section we describe current practices for production of

protected cells using suppression.

Production Practices: Sequential LP-Based Heuristics. There is a clear need for procedures

to protect tables with sensitive cells that are effective and can be implemented efficiently. One of

the most widely used methods for this is a heuristic for suppressing sensitive cells based on solving

a sequence of LPs.

The sequential LP-based suppression heuristic originally proposed by Sande (1984) borrows on

the notion of “flows” from networks to protect sensitive cells. The idea is to focus on a single

sensitive cell at a time and protect it by adjusting values of other “secondary” or “complimentary”

cells to maintain additivity. As with networks, the formulation uses a variable definition that

measures increase and decrease in flow. For each LP that will be solved we define the following

variables: {
y+

i Increase from current cell value, ai;

y−i Decrease from current cell value, ai.

As before, there is a set of constraints to assure the additivity of the table as well as other

possible relations. These are encapsulated in the following system of linear equations:

M(y+ − y−) = 0

Nonnegativity is required as is the constraint that the reduction of flow can never exceed the actual

cell value:

y+ ≥ 0; y− ≥ 0; y−i ≤ ai; ∀i.
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The procedure proceeds as follows. A single specific sensitive cell, ik̂, is selected and either

{
y+

ik̂
= Uik̂

− aik̂

y−ik̂
= 0

}
or

{
y+

ik̂
= 0

y−ik̂
= aik̂

− Lik̂

}

depending on whether we wish to establish a suppression pattern to pass the audit for the upper

or lower protection limit. The objective function is:

min
∑

i

wi(y+
i + y−i ).

All this defines an LP the solution to which will be used to determine a suppression pattern to

protect specific sensitive cell, ik̂. If the value of a flow variable is strictly positive, i.e., y+
i > 0 or

y−i > 0, the corresponding cell i becomes part of the pattern. Note that the pair of LPs, one where

y+
ik̂

= Uik̂
− aik̂

and the other where y−ik̂
= aik̂

−Lik̂
, need to be solved to obtain a pattern that will

protect cell ik̂.

A pattern determined by the optimal solution to the LP when, say, y+
ik̂

= Uik̂
− aik̂

, protects cell

ik̂ because aik̂
= Uik̂

is a feasible solution for the audit LP, e.g., (1). The union of the two patterns

obtained when the two LPs where y+
ik̂

= Uik̂
− aik̂

and y−ik̂
= aik̂

− Lik̂
therefore provide the full

protection for this cell.

The effectiveness of the procedure based on the LP formulation above relies on the fact that

the union of suppression patterns provide simultaneous protection for the individual cells that

generate them. Therefore, the successive solution of LPs, one pair for each sensitive cell, generates

a sequence of suppression patterns the union of which protects all the sensitive cells.

The performance of this approach can be improved by judicious interventions. A haphazard

sequencing of the LPs and independent treatment can lead to unnecessary oversuppression. Sta-

tistical agencies practice sequencing schemes to reduce this problem. One practice is to process

sensitive cells in descending order of desired protection. Protection is not usually a fixed percentage

of the cell magnitude, so the order of desired protection and the order of cell magnitude may be

different. Objective function cost coefficients of complementary cells selected by the solution of an

LP to protect a given sensitive cell can be set to zero in the next LP. This is a way of “coercing” the

optimization to recycle previously selected secondary suppressions and discourage the involvement

of new ones. Suppression patterns based on solutions to a sequence of LP formulations are not

guaranteed to be optimal and there may be oversuppression.

Large LPs can be solved efficiently. Moreover, the LP formulations that are also network pro-

grams are even faster to solve. This means that a sequential LP-based procedure such as the one

described above can be used in production for processing large tables. This is the reason statistical

agencies use this approach in their operations.
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The sequential LP heuristic can be enhanced. One obvious enhancement is to take advantage of

symmetry in protection intervals. When the upper and lower protection limits are equidistant from

the original value, the suppression pattern obtained from setting y+
ik̂

= Uik̂
− aik̂

also protects cell

ik̂ from below (by “reversing” flows). The only additional precaution required in the formulation is

that y+
i ≤ ai, ∀i, in order to maintain nonnegativity. Other enhancements are based on judicious

ordering of the LP sequencing and manipulation of the objective function. For example, making

the sequence less haphazard may lead to less over-suppression. This is the idea behind ordering the

sensitive cells by their magnitude from largest to smallest. The expectation is that larger valued

sensitive cells will generate suppression patterns that can also serve for other cells especially if

subsequent LPs add components to the objective function to encourage the use of cells already

involved in secondary suppressions.

The intractability of optimal methods for statistical disclosure control using suppression make

practical heuristics necessary. Statistical agencies, however, pay a price for having to release over-

suppressed tables that deprive the public of useful information. Suppressed tables in themselves,

even when optimally derived, present other drawbacks. These concerns have led to exploration

for alternatives to suppression as a form of disclosure control. A recent idea is Controlled Tabular

Adjustment (CTA) by Dandekar and Cox (2002). We will treat this method for disclosure control

in the next section.

Controlled Tabular Adjustment. CTA is a recent contribution to statistical disclosure control

by L. Cox and R. Dandekar and (2002). This technique addresses directly some of the problems

that arise in protecting tables with sensitive cells. Its domain is precisely the same as that for cell

suppression; that is, a table where a specified subset of its cells must be protected to within specific

protection intervals. As we have seen, an optimal suppression pattern for such a table requires

the solution of an especially difficult MILP making it impractical for production purposes for all

but the smallest and simplest tables. This new technique offers a different approach which can

substantially extend the scale of production to larger tables but not without a price which needs

to be carefully considered.

The idea behind CTA is based on perturbation. Perturbing tables to protect cells is not new;

what is innovative about CTA is that there are two different sorts of perturbations applied to a

table with sensitive cells: one applies to the sensitive cells themselves and the other to the rest of

the table.

CTA works on the following premise. Assuming that the specification from the statistical agency

is that the true value of a sensitive cell may not be knowable to within a specific interval around

its original value, replacing the value in a sensitive cell by a value greater than the interval’s

upper limit or less than the interval’s lower limit must, therefore, satisfy the agency’s protection

requirement. To justify this argument consider an optimal suppression pattern. An audit on any
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particular sensitive cell necessarily generates an interval with a lower and upper limit that satisfies

the agency’s protection requirements for that cell. Since anybody can perform this audit on the

protected table, knowledge of some feasible upper and lower limits on a protection interval can be

considered publicly available and therefore releasing one of them in advance at the time the table

is published does not compromise the security requirements imposed by the agency on this table.

The second type of perturbation applies to the nonsensitive cells and corresponds to an ad-

justment of their value to restore additivity in the table after having changed the values of the

sensitive cells. It is hoped that this second type of perturbation is as small as possible and as much

as possible applied to internal, rather than marginal, cells.

The optimal solution to an MILP provides an “optimal” CTA implementation. The formulation

of this MILP uses the familiar “flow” variable framework as follows:

{
y+

i Increase from current cell value, ai;

y−i Decrease from current cell value, ai;

for all cells 1, . . . , n. Also as before, we introduce a binary variable, xk; k = 1, . . . , p, used to

determine the cell value of a sensitive cell in the final protected table:

xk =

{
1 If protected cell k will be at its upper protection limit Uk;

0 If protected cell k will be at its lower protection limit Lk;

The variables are restricted as follows. Additivity must be maintained:

M(y+ − y−) = 0.

Additional restrictions on the variables depend on whether or not they correspond to sensitive

cells. For variables associated with nonsensitive cells, the restrictions are simply a nonnegative

lower bound and an upper bound at some specified level, ui or li, depending on whether there is

increase or decrease in flow at that cell. These limits are typically calculated as some percent of

the original cell value. For protected cells, the flow variables are determined by the limits of the

protection intervals set by the statistical agency. The values of the sensitive cells will either be

greater than or equal to the upper limit of the protection interval, or less than or equal to the

lower limit; the final values of the binary variables, xik
; k = 1, . . . , p, will determine this. Thus

Unprotected Cells Protected Cells
0 ≤ y+

i ≤ ui

0 ≤ y−i ≤ li

}
∀i 	∈ {i1, . . . , ip};

y+
ik

≥ (Uik
− aik

)xik

y−ik
≥ (aik

− Lik
)(1 − xik

)

}
∀k ∈ {1, . . . , p}, x ∈ {0, 1}.
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The objective function is as before:

min
∑

i

wi(y+
i + y−i ).

Requiring the flow variables associated with the protected cells to take on values such that

the cell is either at its upper or lower protection value is restrictive. This condition may result

in infeasible programs. This could happen when a table has a shaft composed entirely of either

sensitive cells or zeroes (zeroes in tables cannot be perturbed). The inequality condition for these

variables, however, may lead to solutions where both flow variables are strictly positive. To see

this, consider the following simple two-dimensional table:

Total
7 5 12
8 5 13

Total 15 10 25

The single sensitive cell is in the first column of the first row; its protection interval, (L1,U1),

is (6,8). The inequality condition on the flow variables for the protected cells permit the solution

x1 = 1, y+
1 = 1, y−1 = 1 with all other flow variables at zero. One way to avoid having both flow

variables be positive is to modify the objective function. If the coefficients for these variables are

made sufficiently large, the nontrivial presence of both pairs in a solution becomes impossible. This

means, however, a loss of control on the properties of the optimal adjusted table.

If the weights, wi, in the objective function are such that wi = 1, ∀i, the optimal solution

minimizes the absolute deviation between the original and the adjusted cells. If wi = ai the optimal

solution minimizes a weighted absolute deviation. This last measure may result in a desirable effect

of favoring adjustments to interior cells rather than marginals in a table with nonnegative entries.

The MILP above to find the optimal “Controlled Tabular Adjustment” is much simpler than

the one for the optimal cell suppression pattern. For one, the number of variables is many fewer

than that used in the suppression formulation. The optimal CTA MILP formulation has as many

continuous variables as twice the number of cells, but what is more significant, the number of

binary variables is just the number of protected cells. Comparing these values with those for the

optimal suppression MILP means that the CTA MILP is a much more manageable mathematical

program.
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Controlled Tabular Adjustment: Heuristics. Due to the combinatorial nature of CTA, a

natural approach is to explore heuristics. A heuristic is a procedure that is intended to provide

practical solutions to difficult problems quickly at the expense of foregoing a guarantee of optimal-

ity.

Nearly all heuristics proposed so far for CTA are based on the setting of the binary variables

(which determines up/down perturbations) for the sensitive cells followed by an adjustment of the

the values in the rest of the cells to produce a table that satisfies additivity as follows:

General Heuristic for Controlled Tabular Adjustment

Step 1. Set the binary variables for the sensitive cells.

Step 2. Adjust values of non-sensitive cells (including marginals) to restore additivity.

Initialization in Step 1 consists of an assignment for each sensitive cell either at (or above) its

upper protection value or at (or below) its lower protection value. The total number of possible

initializations for a table with p sensitive cells is 2p; a potentially explosive number. Initializations

can be performed in a number of ways. For example, Cox and Dandekar propose a random decision

as to whether the value of a sensitive cell will be greater than or equal to its upper protection level

or less than or equal to its lower protection level. Another idea also proposed by the original

authors is to sort the sensitive cells based on their original values and proceed to instantiate above

or below protection levels alternating between one and the other.

We may expect that the execution of Step 1 will destroy the table’s additivity. In the original

paper by Cox and Dandekar (2002) the change in the values for the rest of the cells in Step

2 is achieved by solving an LP. The variables of this LPs are positive and negative “flows” for

each nonsensitive cell, including those on the margins. The variables are constrained to restore

additivity and to be within standard limits, usually a percentage of the original value. The objective

function is a minimization of the weighted sum of the absolute deviations. This objective function

is prescribed if the formulation is to remain an LP but it may be worthwhile to explore nonlinear

objective functions such as quadratics especially when the software and hardware permit it. This

would allow using a measure involving square deviation as an optimization criterion. The results of

this quadratic program would result in protected CTA tables with desirable second order properties.

The following small example helps explore some solutions using CTA for disclosure control. (The

original table appears in Cox and Dandekar (2002)).
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Total
200 40 50 200 120 610
20 70 60 100 120 370
40 90 250 100 30 510

100 150 30 80 150 510
Total 360 350 390 480 420 2000

Table 6. Sample Magnitude Table from Cox and Dandekar (2002):
Sensitive cells are in bold face type.

In this table, all sensitive cells are internal. Cox and Dandekar work assuming that the protection

levels required for the six sensitive cells are set at ±10%. This is also the maximum adjustment

allowed (±10%) for the nonsensitive cells. The MILP formulation that provides the optimal CTA

protection using the absolute deviation, “ΣAbsDev”, (i.e., wi = 1) minimization criterion for this

table is quite easily done and results in the following protected table:

Total
189 36 45 220 120 610
22 70 56 90 132 370
37 81 275 90 27 510

110 165 27 73 135 510
Total 358 352 403 473 414 2000

Table 7. Optimal Adjusted Table:z = min ΣAbsDev (from Cox and Dandekar (2002)).
ΣAbsDev = 198 (optimum), ΣWgtAbsDev = 36120.

A few observations are in order. A total of 23 (76.67%) of the cells have been adjusted; this

includes five marginals. Since the protection values of the sensitive cells are determined by the

optimal solution, their adjustment above or below the original value will not be known in advance.

In this solution, four of the six sensitive cells end up being adjusted upwards.

The optimal solution proposed by Cox and Dandekar is not unique. Two other optimal solutions

to the same formulation are:

Alternate Optimum 1
189 36 45 220 120 610
20 68 54 90 131 363
37 81 275 90 27 510
110 165 27 80 135 517
356 350 401 480 413 2000

Alternate Optimum 2
192 36 45 220 117 610
22 70 54 90 132 368
36 81 275 93 27 512
110 165 27 73 135 510
360 352 401 476 411 2000

Table 8. Alternate Optimal Adjusted Tables. Alt.Opt.#1: z = min Σ AbsDev=198 (optimum), Σ WgtAbsDev=38120.
Alt.Opt.#2: z = min Σ WgtAbsDev=35820 (optimum), Σ AbsDev=198 (optimum).
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The three optimal solutions in Tables 7 and 8 solve the same CTA MILP formulation but display

different characteristics. For example, the second alternate optimum table in Table 8 (Alt.Opt.#2)

has more marginals affected by the adjustment than the other two solutions. This in spite of fact

that it also minimizes the weighted absolute deviation (Σ WgtAbsDev=35820). This may surprise

since minimizing the weighted absolute deviation would seem to result in fewer changes in the

values of the marginals, typically the largest values in a nonnegative table. However, we must keep

in mind that the constraints of the problem limiting adjustments to within 10% of the original cell

value can be much more determining in an optimization problem such as this one.

Let us explore how the LP based heuristic performs on this problem. Step 1 of the heuristic

requires an initialization of the protected cells at either their upper or lower protection levels.

There are several ways of doing this. Two of the 26 = 64 ways are to sort the protected cells

from largest to smallest magnitude and execute the initialization starting with the assignment of

the largest magnitude cell to either its lower or upper protection level and continue alternating

between upper and lower protection level assignments. This approach was used in the two tables in

Table 9. The first table was instantiated beginning with the largest magnitude cell set at its lower

protection level. The second table shows what happens when this initialization sets the largest

sensitive cell value to its upper protection level. Both tables are the result of solving an LP that

minimizes the sum of the absolute deviation z = min Σ AbsDev.

Instantiation 1:
Largest Mag Adjusted at Lower Protection.

186 36 50 220 120 612
20 70 66 90 124 370
44 91 225 100 33 493
110 165 30 80 135 520
360 362 371 490 412 1995

Instantiation 2:
Largest Mag Adjusted at Upper Protection.

214 44 50 180 120 608
20 70 54 110 120 374
36 82 275 90 27 510
90 135 30 88 165 508
360 331 409 468 432 2000

Table 9. LP Heuristic Adjusted Tables. Objective Function: z = min Σ AbsDev.
Instantiation 1: z = min Σ AbsDev=214, Σ WgtAbsDev=65650.
Instantiation 2: z = min Σ AbsDev=222, Σ WgtAbsDev=51260.

The two adjusted tables above are quite different, although the optimization criterion in both

was the same. The first initialization attains an objective function value that is less than the one

in the second (214 vs 222). As we might expect, this value is greater than the minimum absolute

deviation value of 198 obtained by solving the MIP to optimality. Interestingly, the weighted sum

of absolute deviations, Σ WgtAbsDev, is better in the second table (51260 vs 65650). Notice too

that the first table adjusts eight of the ten marginals, including the grand total. The second table

leaves the grand total untouched.

When the objective function of the LP is the minimization of the weighted sum of the absolute

deviations, z = min Σ WgtAbsDev, we get the following two tables; the first when the largest
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magnitude sensitive cell is instantiated at its lower protection limit and the second when it is

instantiated at its upper protection limit.

Instantiation 1:
Largest Mag Adjusted at Lower Protection.

187 36 47 220 120 610
19 63 66 90 132 370
44 99 225 109 33 510
110 165 28 72 135 510
360 363 366 491 420 2000

Instantiation 2:
Largest Mag Adjusted at Upper Protection.

213 44 53 180 120 610
21 77 54 110 108 370
36 81 275 91 27 510
90 135 32 88 165 510
360 337 414 469 420 2000

Table 10. LP Heuristic Adjusted Tables. Objective Function: z = min Σ WgtAbsDev.
Instantiation 1: z = min Σ WgtAbsDev=43820, Σ AbsDev=224.
Instantiation 2: z = min Σ WgtAbsDev=43820, Σ AbsDev=224.

The two tables in Table 10 serve to illustrate the impact of incorporating the table’s cell values

as weights in the objective function. The tables in Table 9 show adjustments in 80% and 70% of

the marginals, respectively. The tables in Table 10 have only 30% of their marginals adjusted. It

will be interesting to explain why and how the two tables in Table 10, although differing in 73.33%

of the cells, are effectively alternate optima for two different optimization problems; the one where

the sum of the absolute deviations is minimized and the one where the sum of the weighted absolute

deviations is minimized.

Both the MIPs and LPs formulated for the CTA solution for the Cox and Dandekar example

in Table 6 found optimal solutions. This is due, in part, to the fact that the “flow” variables that

determine the amount of adjustment that the final table will have are bounded above at an ample

level of 10% of the non-sensitive cell values. When the constraint on the maximum adjustment for

non-sensitive cells is set to 1%, the MIPs are infeasible. This implies immediately that the LPs

cannot be feasible. Practical experience shows that the protection percent required for the sensitive

cells should be strictly less than the maximum allowed for the nonsensitive cells. As in the small

example above, nonsensitive cells having protection levels that are less than sensitive cells may

result in infeasible MILPs. Testing suggests that if the two protection limits are equal, the MILP,

although, still feasible, may be more time consuming to solve. When infeasibility occurs, relaxing

the restrictiveness of the level of adjustment for the non-sensitive cells will eventually result in a

feasible solution. Another approach may be to restrict the flow variables for internal cells only and

allow marginals to have greater levels of adjustments. This, however, opens the possibility of gross

distortions of the values of the marginals; a potentially undesirable effect.

The exercise of comparing CTA MIP solutions with LP-based heuristic solutions based on specific

initialization schemes can begin to show the difference in the qualities of these solutions. In either

case, protected cells will be adjusted to either their lower or upper protection levels; this aspect
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of the solution is unavoidable. It is the impact on the remaining cells that determine the quality

of the solution. Heuristics such as the LP heuristic discussed here will be used when the optimal

CTA formulation is impractical either because the problem is too large or the hardware or software

applications to solve it are inadequate. In the next section we explore the limits posed by these

factors in solving the optimal MIP formulation for CTA.

Large Scale Controlled Tabular Adjustment. The fact that the number of variables is

relatively modest for the optimal CTA problem is an encouragement for attempting to solve these

problems at relatively large scales and to answer the question of just how large this scale can be.

An experiment was performed to answer these questions. A suite of test tables was created that

would permit exploring the impact of the number of cells on the computation time. One of the

test tables, ‘hier13’, was created by R. Dandekar. This is a 3-dimensional, hierarchical, table. The

other tables, ‘jims101010’, ‘jims151515’, ‘jims202020’, ‘jims252525’, ‘jims303030’, and ‘jims353535’

were synthetically created for this experiment; all are simple three dimensional tables with 10%

zero internal cells and 15% of the non-zero designated as sensitive. Note that the name of these

test tables indicate the number of internal cells in each of the three dimensions; thus ‘jims101010’

is a 10 by 10 by 10 table with 1,000 internal cells and 1,331 total cells when the marginals are also

counted.

The experiment was also used to compare hardware and different version of the CPLEX MILP

solver. The hardware platforms used were:

Processor: Speed: Name:

UltraSpark III 750 MHz “SRDU 11”

Pentium III 2.53 GHz “GateWay”

All tables were processed using the interactive CPLEX (ILOG (2002)) MILP solver. Although

there are options controlling the search strategy for the branch-and-cut procedure used by CPLEX

for solving MILPs, the “balance optimality and feasibility” option was selected for all runs reported

here since it was found to be faster than the “optimality only” option in a sample of tests. The

formulation used was the optimal CTA MILP mathematical program presented above. The tables

were in the form of CPLEX “.LP” files with the special “BINARY” section of the file reserved to

identify the binary variables.

Access to two versions of CPLEX, 7.5 and 8.0, allowed quick tests to see how well these releases

have evolved in their ability to handle mixed integer programs. A fair comparison was possible

between versions 7.5 and 8.0 for the solution of the optimal CTA on table ‘hier13’. The results are

presented pictorially in Figure 1. These results reflect the “major enhancements” announced in

the v. 8.0 release (ILOG S.A. (2003)) compared to v. 7.5 and seem to square with the advertised

40% speed increase in the new release.
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The pressing question about the performance of the software and hardware is the relation be-

tween problem size and solution time. Our empirical results about this relation permit an assess-

ment of current performance limits and extrapolation about performance limits. The synthetic

data generated for these experiments yield results for a systematic performance analysis. These

results are depicted in Figure 2.

The chart depicted in Figure 2 summarizes the results of experiments on the different data

sets with CPLEX 8.0 and two different platforms. The first observation immediately apparent by

inspection is that the Intel Pentium III based machine running at 2.53MHz performs considerably

better than the “Risc” architecture running at 750MHz. The reasons for this are beyond the scope
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of this paper but the explanation will involve parameters such as memory and the actual CPLEX

8.0 implementations on the different machines.

Another important piece of information obtained from Figure 2 is the fact that a table with

almost 50,000 cells can be solved to optimality using CTA in less than 28 hours. This may be

practical for production purposes in those rare cases whenever several days have been allotted to

disclosure processing of a small number of tables of this size.

A more meaningful observation about the results in Figure 2, however, is the nature of the

relation between problem size and computation time. The shape of either curve is consistent with

what is expected from solving MIPs; namely, an exponential growth in solution time as the problem

size increases. Exponential growth is an inevitable fact in MIP due to the combinatorial nature

of these problems. The next problem in the series, ‘jims404040’, was stopped after several days of

execution. Advances in algorithms and more sophisticated software and hardware are continually

extending the limits of the magnitude of MIP problems that can be solved in reasonable time

although, by its nature, there will always be a sudden limit to how large these problems can be.

The final note about the MIP formulation for the optimal CTA solution proposed above refers

to the objective function. Traditionally, MIPs are formulated with a linear objective function, as in

the case of the formulation presented here. Until recently, this was a necessity since there were no

practical computational tools to deal efficiently with nonlinear objective functions directly in MIP.

This restriction is becoming less of a required practice as better algorithms and faster computers

become available. Version 8.0 of CPLEX is the first of this sophisticated optimization application

to allow quadratic objective functions in an MIP. This is of particular interest in optimization in

statistical disclosure control since it means that we may incorporate second order information in

the optimization criterion such as, say, an objective function to minimize the squared error between

the original and the adjusted tables. We may anticipate that optimization results, especially with

CTA, would result in adjusted protected tables possessing desirable properties that may make them

better suited for certain modeling purposes. Performance of the quadratic MIP using CPLEX 8.0

needs further testing.

Metaheuristics for CTA. An optimization problem is said to be convex if the objective function

is the minimization of a convex function and the feasible region is a convex set. The principal

theoretical result about convex optimization problems or convex programs is the correspondence

between local and global optima. Linear programming is the most celebrated example of a convex

program. The powerful theory behind convex programs defines a clear geometry about the problems

and is the main reason exact methods to solve these problems are possible; e.g., the simplex

algorithm for linear programming, and the new generation of interior point methods for general

convex programming. When an optimization problem is not a convex program, local optima may

be difficult to define, they may abound, and any one of them may or may not be the global
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optimum. This is a major complication in solving non-convex programs since most optimization

procedures are based on local searches directed at identifying local optima and they generally

satisfy their termination criterion when this is achieved. There is no effective way to circumvent

this problem and for this reason there is scant hope that there will ever be an efficient algorithm for

general non-convex problems. The mixed integer formulations for cell suppression and controlled

tabular adjustment, as all MIPs, involve discrete combinatorial spaces and are, therefore, nonconvex

optimization problems, and herein lies the challenge.

Any effective procedure for nonconvex optimization must employ mechanisms that prevent ter-

mination simply because a local optimum has been found. Many ideas have been proposed to

address this ranging from naive Monte-Carlo sampling of the domain to “intelligent” procedures

that direct searches and manage memory and bookkeeping through rules for transitions to different

parts of the domain to seek promising candidates for the global optimum. Examples of schemes

in this last category include, among others, simulated annealing, genetic algorithms, ant colony

optimization, and tabu search, and are referred to as metaheuristics.

Tabu search, introduced by Glover in 1989, has been adapted for use to protect tables with sen-

sitive data using controlled tabular adjustment. The adaptation of this metaheuristic to CTA was

part of a project by OptTek Systems, Inc. (2002) under contract to the Bureau of Transportation

Statistics, BTS, (see also, Kelly and Russell (2003A, 2003B)). The objective of the study was to

implement tabu search for CTA and explore the scale of the problems that can be solved with this

technique as well as the quality of the solutions in terms of how well they compare statistically

with the original values.

The input for any CTA solution approach requires a table along with the identification of its

sensitive cells and corresponding protection intervals as well as ranges for each of the nonsensitive

cells within which adjustment is permitted. Note that these specifications may or may not apply

to marginals. A tabu search implementation for CTA also requires an objective function which,

for the case of tabular data, measures the quality of an adjusted table with respect to the original

data. An advantage of tabu search, and metaheuristics in general, is that they are not restricted

to objective functions that must be linear or quadratic or even differentiable or analytical; any

function that can be evaluated numerically can be used as an objective function in tabu search.

Any implementation of a metaheuristic to solve a particular problem requires special adapta-

tions. This was the case of the implementation of tabu search for CTA. A basic component in

tabu search is the “feasible point”. For the CTA implementation, a feasible point is an adjusted

table where all protected cells are instantiated at their upper or lower protection values and the

nonsensitive cells are adjusted within their allowed ranges and all this, of course, while maintaining

additivity. Another fundamental concept in tabu search is that of the neighborhood of a point.

In the tabu implementation for CTA, a neighbor is another point obtained by changing either a
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sensitive or nonsensitive cell up or down: sensitive cells get changed to their protection limits,

nonsensitive change by at most one unit.

In the tabu search implementation for CTA, the procedure begins by identifying a feasible

point. This first procedure may involve randomization and, as a last resource, the relaxation

of the adjustment limits. Once a feasible point is obtained, a second procedure begins a local

search for improvements based on their definition of a neighborhood and objective function. In

this procedure, cells are randomly ordered and each cell is adjusted up and down, one at a time:

sensitive cells are moved to one of their protection limits and nonsensitive cells are modified by one

unit. If this adjustment results in a feasible table and an improvement in the objective function,

the new table is adopted as the next point in the local search in what amounts to, essentially, a

simple greedy search (i.e., a search in which short term gain is emphasized without consideration

of long term consequences). The process is repeated on random orderings of the cells until no

improvements are found. At this point, special tabu instructions are implemented to guide the

search and the iterations begin. For the case of CTA, the tabu search examines the results of a

predefined number of local searches when a set of sensitive cells are anchored at their upper or

lower protection levels and are not allowed to change. The decision about which combination of

sensitive cells to fix as well as the number of iterations they remain in this state in the local searches

is guided by performance records kept in memory and “tabu” injunctions to try to avoid previous

bad performers and wasteful repetition or force possibly non-improving moves for a prespecified

number of iterations.

This tabu search for CTA was implemented and tested on both simulated and real data. Com-

pared to the solutions obtained by solving the CTA MILP to optimality using simulated tables,

the tabu search implementation was able to come within 97.5% to 99.8% of the optimal objective

function value with the performance improving as the size of the problem increased. Although not

specified in OptTek’s final report, it can be safely assumed that the results from the tabu heuristic

were obtained in less time than that required for the optimal solutions. The largest problem solved

optimally for this comparison was a 25×25 table. Larger simulated test problems were tested.

Although no comparison with optimality was available, measures of correlation between the orig-

inal and adjusted data were given as a measure of performance. When looking at one of these

measures, Correlation All (standard linear correlation between two sets: all cells, both sensitive

and nonsensitive) the authors report values of .9999 and 1.0000.

The tabu search approach was also tested on a suite of real tables provided by BTS. The

performance of the metaheuristic on these problems was even more remarkable with all three

measures of correlation Correlation All, Correlation Sensitive, and Correlation Non-Sensitive at

1.0000. A graph reporting on the time, t, to generates CTA solutions with tabu search shows there
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is a relation somewhere between linear and quadratic with the number of internal cells in the table,

n. This relation is approximated by the function

t = n1.5/106.

The final reading in this graph shows it takes about 1000 seconds to process a problem with 1

million internal cells.

A definite advantage of tabu search for CTA is the ability to use any objective function. This

allows, for example, use of any norm, Lp, or even any ratio of norms, and not just L1 and L2 as

when LPs or MILPs are solved. This flexibility can generate adjusted tables that are close with

respect to higher order measures, e.g., L2, L3, . . ., to the original table making them more suitable

for modeling purposes. There are however, some disadvantages to this approach. Metaheuristics,

by and large, do not guarantee optimality or, for that matter, any sort of bound on the proximity

of a solution to optimality in any fixed amount of time. Therefore, there is no assurance that

results will be acceptable; that is, the metaheuristic may or may not yield a usable adjusted table.

Another problem is the reliance on probabilistic schemes at different stages of the procedure. This

means that success is essentially left up to chance. There is also no guarantee of repeatability in

the sense that two separate applications of the procedure may yield two different results.

Although the OptTek implementation of tabu search for CTA did not involve linear program-

ming, there is no reason why it could not be used. There is, in fact, good reason to believe that

linear programming can enhance the performance of this implementation of tabu search. The im-

pact of LP will probably be felt in the parts of the procedure involved in finding a feasible point

after some form of initialization has occurred. This is a frequently visited part of this implemen-

tation of tabu search. All indications are that using LP in the subproblems of restoring feasibility

after an initialization will yield faster, better, and more conclusive results.

In spite of apprehensions about metaheuristics, there is ample empirical evidence that they work

well in many difficult nonconvex problems. When properly implemented on amenable problems

they can generate usable solutions in reasonable time. Preliminary results from OptTek Systems,

Inc. appear to indicate that tabu search is a viable tool for protecting sensitive cells using CTA.

Independent testing needs to be done to verify these claims. A separate and more difficult issue is

whether or not the statistical agency believes that there are sufficient benefits to CTA for official

adoption.
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CTA vs Suppression. Cell suppression and controlled tabular adjustment are alternative method-

ologies for protecting tables with sensitive data. We have compared the two approaches in terms

of technical attributes. There are, however, other considerations that should be addressed when

comparing the two methodologies. The following “Pros” and “Cons” analysis addresses these

considerations.

‘Pros’ of Cell Suppression

- Full transparency of disclosure control actions: suppressed cells speak for themselves.

- Published values are the agency’s best, good faith, estimates.

- Added protection for sensitive cells since attackers cannot distinguish between primary and

secondary suppressions.

‘Cons’ of Cell Suppression

- Optimal suppression pattern is intractable for almost all production scale applications.

- Potentially large amounts of data are removed resulting in disappointment or dissatisfaction

from the user and potential negative public image.

- If sufficiently suppressed, the table is unsuitable for modeling purposes.

‘Pros’ of Controlled Tabular Adjustment

- Published tables are completely populated.

- Optimal adjustments are possible for relatively large tables and almost unlimited in scale for

heuristics which seem to generate good quality solutions.

- Although many, and possibly all, cell values can deviate from the originals, the adjusted table,

depending on the criteria used in its derivation, retain certain statistical properties that a

modeler can use.

- Sensitive cells enjoy additional protection since attackers have no information on which and how

data were modified.
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‘Cons’ of Controlled Tabular Adjustment

- Any and all published cell values may have been modified and some may be substantially different

from the original value especially if they correspond to a sensitive cell requiring a large protection

interval. The inaccurate information in the table may reflect adversely on the agency’s image.

Government agencies will have a difficult decision to make when they consider either suppression

or tabular adjustment to control disclosure in the tables they publish. They will have to balance

many complex issues including the intended use of the information, the level of protection they

afford, the technical complications of generating the protected tables, and, lastly, the impact of

their decision on the agency’s image.

Conclusion. Statistical disclosure control is an inherently difficult problem because there are

two opposing and contradictory objectives: to maximize the quantity and quality of information

disseminated and to assure the future availability and integrity of this information by protecting

the confidentiality of the sources. In this report, we have compared cell suppression with a form

of perturbation, viz. controlled tabular adjustment (CTA). In terms of the final protected table,

the key difference is the type of uncertainty produced in the cell values. The determination of

which type of uncertainty is best depends on the policy for releasing data of the statistical office

and on the perceived needs of the users of the tables. The way in which each type of protection

affects the types of simple uses or statistical modeling by the users is a topic that is currently being

investigated.
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