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Abstract

Methods are developed for estimating
trends in time series subject to level shifts. The
approach is based on specifying stochastic mod-
els for breaks as part of the model structure, us-
ing heavy-tailed densities to allow for a positive
probability of such a large change at any given
time. Examining changes in trend movements,
estimated from the dynamics of the dataset,
provides more information than a yes/no crite-
rion for making decisions on level shift events.
Continuous-valued innovations in the trend are
assessed using a statistical model; with the ar-
rival of a data point that constitutes a break,
timely warning is given with a smooth shift
in the assessment. The empirical illustrations
show how more robust trend estimates are ob-
tained in practice.
KEY WORDS : Level shifts, Unobserved com-
ponents, Heavy-tailed density, Non-Gaussian
model, Robustness, Trend estimation

1. Introduction

Many economic series are subject to occa-
sional sudden, large changes that have a lasting
impact. Widespread recognition of the impor-
tance of level shifts or structural breaks in time
series has motivated a great deal of econometric
research. One approach is to assume that the
breaks have occurred at fixed points in time.
Bai (1997) develops a testing procedure for the
case where there may be multiple breakpoints
in the sample. In this paper, I investigate mod-
els where breaks in the trend occur stochasti-
cally. This is an appealing feature, as in prac-
tice, except in situations of planned interven-
tion, the timing of large shifts in the level of a
process is unknown in advance.

By using a continuous classification for
large changes, the method also allows for sto-
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chastic variation in the magnitude and direc-
tion of shifts. In this article I implement unob-
served components models where the trend in-
novation is assigned a continuous heavy-tailed
probability density. This means that large
shifts in the level, whose timing and size are
stochastic, are directly specified as part of the
model. Aston and Koopman (2003) provide an
analogous treatment of series with outlying ob-
servations, showing how estimates of seasonal
components may be made more robust, com-
pared to binary procedures for outlier detection
and removal.

The rest of this paper develops the frame-
work for trend estimation with stochastic level
shifts and provides empirical illustrations. The
methods are straightforward to implement and
general formulations are discussed in Durbin
and Koopman (2001). The calculations are
performed by a computer program written in
the Ox language of Doornik (1999) and rely on
the SsfPack library of routines of Koopman et.
al (1999). The aim is to make efficient use
of state space methods available for the wide
range of linear Gaussian time series models,
by embedding them in simulation routines de-
signed to handle the non-Gaussian extensions.

Below, I discuss the details of the estima-
tion method in the important special case of
the local level model with t-disturbances for the
trend. The computational strategy focusses
on the use importance sampling in a multivari-
ate setting, to handle the intractable and high-
dimensional non-Gaussian density of the series
of smoothed components. Explanation of the
robust local level model case helps one under-
stand the basic issues.

Section 2 first reviews the most basic
model for trend analysis and sets the founda-
tion for the application of the Student-t class
of probability distributions. In Section 2.1 the
estimation of the smoothed trend series and
the likelihood function are discussed for non-
Gaussian models. Section 2.2 introduces the
use of the Student-t density for the trend er-
ror process within the local level model. The



approach is illustrated in Section 3; compu-
tational issues and simulation results are dis-
cussed, and I investigate some real time series.
Section 4 concludes.

2. Non-Gaussian local level model

Interest centers on the use of heavy-tailed
distributions to model level shifts, and I start
with the most basic framework. A simple
model for a series subject to nonstationary
trend and irregular movements is the local level
model:

yt = µt + εt, t = 1, ..., T (1)

µt+1 = µt + ηt, t = 1, ..., T

where εt is serially independent with mean zero
and constant (finite) variance σ2ε, and likewise
for ηt. In the Gaussian case, this is equiva-
lent to assuming white noise error terms, that
is, a process whose values are uncorrelated at
different time periods. However, in using more
general distributions, the serial independence
condition is stronger than the white noise as-
sumption. In the case of uncorrelated non-
Gaussian processes, there may be dependencies
over time in the error process that are difficult
to interpret. In assuming serially independent
disturbances, it becomes clear that for each in-
novation, the values at different points in time
are unrelated.

I further assume that εt and ηt are in-
dependent of each other contemporaneously
and across all time periods. The vector
of sample observations is written as y =
(y1, ..., yT )

′, while the series of values for the
level is arranged in a T × 1 vector denoted by
µ = (µ1, ..., µT )

′. Similarly, the disturbance
series are denoted by η = (η1, ..., ηT )

′, ε =
(ε1, ..., εT )

′. To begin, the irregular is assumed

to be normally distributed, εt
iid∼ NID(0, σ2ε),

so that the focus lies on probabilistic descrip-
tion of breaks in the trend.

Level shifts are directly incorporated into
the specification of model (1) by allowing for
the random occurrence of very large |ηt|. By
using a continuous probability density, consis-
tency is maintained in defining the process.
There is a significant possibility of unusual in-
novations in the level, that constitute shifts,
but there is also a steady fall in probabilities
at the extremes. This is a plausible frame-
work where the size of breaks varies, and the

chance of a break, exceeding a certain thresh-
old, declines gradually with the magnitude of
the threshold.

The Student-t class of distributions allows
for a flexible degree of mass in the tails of the
distribution. Its density function is

tυ(x;µ, σ
2) = C(υ, σ)

(
1 +

(x− µ)2
υσ2

)− 1

2
(υ+1)

(2)

C(υ, σ) =
Γ((υ + 1)/2)

Γ(υ/2)
√
υπσ

(3)

for −∞ < x < ∞, where υ > 0 is the degrees
of freedom parameter, µ gives the location, and
σ2 is the scale parameter of the density. The
mean and mode are both equal to µ, as long as
υ > 1. The variance of the Student-t is given
by σ2υ/(υ − 2), υ > 2. As υ → ∞ the shape
becomes Gaussian with variance σ2. For finite
υ > 2, the coefficient υ/(υ − 2) > 1; for lower
values, the total variance of the distribution is
significantly higher than the scale, due to the
contribution made by the increasing probabil-
ity mass at the extremes. The second moment
rises indefinitely as υ → 2+.

Values in the range 2.5 < υ < 12 are suf-
ficient to produce a good deal of variation in
the tail thickness. This is illustrated in Figure
1, which shows the density functions for the
upper and lower bound of the range, as well
as an intermediate value, for the standardized
(σ2 = 1) Student-t with mean zero. Com-
pared with the other two curves, the height of
the tails is significantly greater for the distrib-
ution with υ = 2.5 so the probability of a draw
exceeding any given magnitude is considerably
higher. Setting υ = 12 already produces a
rough approximation to the Gaussian case.

For the random disturbances that under-
pin the stochastic trend processes, I assume
Student-t densities centered at zero as part of
the time series model. Thus the independent
errors have a density function with µ = 0 de-
noted by tυ(x;σ2). Working with logarithmic
expressions is often helpful for computational
reasons. The logarithm of the t-density func-
tion is

log tν(x;σ
2) = −1

2(ν+1) log
(
1
ν

[
ν + x2

σ2

])

+ log [Γ((v + 1)/2)]− log [√νπσΓ(ν/2)]
The use of such a heavy-tailed distribu-

tion for the trend innovation process enables
one to anticipate, within the model structure,
level shifts of varying magnitude.



−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4
ν = 2.5 
ν = 5 
ν = 12 

Figure 1: Probability density function for a
standardized (scale factor equal to one) Stu-
dent-t random variable with different degrees
of freedom.

2.1 Trend estimation

This section describes how the non-
Gaussian case is treated in applications. The
expectation of the trend series, conditional on
the information in the data, is of key interest.
Estimation may be conducted efficiently by
way of the importance sampling method, which
has been widely applied in Bayesian applica-
tions in econometrics and statistics. Though
the approach taken in this paper is classical,
the link with Bayesian methodology arises since
there is conditioning on the sample, just as in
computation of a posterior density. State space
methods, combined with the importance sam-
pling technique, provide a convenient route to
computing conditional expectations of interest.
Below I describe how trend and parameter esti-
mates are obtained for non-Gaussian models.

The expectation of the trend series, given
the dataset y is

E[µ | y, σ2η, σ2ε] =
∫
µp(µ | y, σ2η, σ2ε)dµ (4)

The smoothed trend gives optimal estimates
of how the underlying level has evolved over
the sample period, using all the information
in the data. However, direct computation of
the quantity in (4) is not viable in many ap-
plications of interest, and in general it is diffi-
cult to draw from p(µ | y, σ2η, σ2ε) in the non-
Gaussian case. A viable strategy may be found
by rewriting (4); first, consider the following
equivalent formulation:

E[µ | y, σ2η, σ2ε] =
∫
g(µ | y)µ

p(µ | y, σ2η, σ2ε)
g(µ | y) dµ

(5)
This represents the expectation, of the quan-
tity in brackets, taken with respect to g(µ | y),
which is referred to as the importance, or candi-
date, density. There is flexibility in the choice
of importance density; in practice, the desirable
properties are that the density is easy to sample
from and that it provides a sufficiently good ap-
proximation for the application at hand. Here,
g(µ | y) refers to a Gaussian importance den-
sity. In particular, I consider the class of
distributions derived from a local level model
with normally distributed errors, whose vari-
ance may change over time.

Hence, the target density p(µ | y, σ2η, σ2ε)
is approximated by g(µ | y, {σ̃2η,t, σ̃2ε,t}), where

{σ̃2η,t, σ̃2ε,t} denotes the set of Gaussian vari-
ances for model (1) for t = 1, ..., T . Thus the
candidate densities derive from linear Gaussian
state space models with time-varying sys-
tem matrices. Random draws from g(µ |
y, {σ̃2η,t, σ̃2ε,t}) are easily produced, for instance
by the simulation smoother of Durbin and
Koopman (2002). A simple criterion for se-
lecting the parameters {σ̃2η,t, σ̃2ε,t} is to com-
pute those values that match the multivari-
ate modes of the candidate and target den-
sity. Once the preferred approximating density
g(µ | y, {σ̃2η,t, σ̃2ε,t}) is obtained, then a number
of key quantities are easily estimated. Further
details on applying the importance sampling
method may be found in Trimbur (2004).

2.2 Student-t trend innovations

In (1), to model the possibility of large in-
novations to the trend I specify a Student-t dis-
tribution for the level disturbances. That is,
ηt = µt+1 − µt, t = 1, ..., T , is independently
and identically distributed with density func-
tion p(ηt | σ2η) = tυ(ηt;σ

2
η). An example is

shown in Figure 2, where υ = 5 for a sample of
60 observations generated from the local level
model, with σ2η = 1, σ

2
ε = 4. The signal-noise

ratio q = σ2η/σ
2
ε is equal to 1/4 for the simu-

lated series.
A shift in the level is apparent near the

beginning of the series. Over the simulation
period numerous moderate changes in the level
are accompanied by occasional large ones, that
occur more frequently and that vary more in
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Figure 2: Simulated data (T = 60) gener-
ated from local level model in (1) where trend
innovations ηt have a Student-t distribution
with 5 degrees of freedom and scale parameter
σ2η = 1. The irregular component is Gaussian
with variance σ2ε = 4. The signal-noise ratio
q = σ2η/σ

2
ε = 0.25.

size than could be accounted for by a Gaussian
structure. Many economic and financial se-
ries may be better characterized by models ac-
counting for such additional variation. This
would be reflected in the quality of smoothed
trend estimates and forecasts. Later I consider
examples where clear breaks in the level of the
process are present, and illustrate robust trend
estimation in some real time series.

Signal-noise ratios, defined as quotients of
innovation variances, provide summary mea-
sures of time series dynamics. For the artificial
dataset in Figure 2, q is less than one, reflecting
the smaller relative variation in the trend inno-
vation. Note that q has been defined in terms
of the scale parameter of the Student-t density.
In the limit as υ becomes very large, the den-
sity becomes Gaussian and q is equal to the ra-
tio of innovation variances. However, for lower
degrees of freedom, the scale parameter σ2 in
(2) may be more representative of overall den-
sity shape than the variance νσ2/(ν− 2). The
variance of the t-distribution becomes inflated
by the increase in tail thickness as ν decreases
toward two (even moderate increments, in the
probability of draws with large magnitude, may
have a significant impact on the variance), and
in general the scale parameter may serve as a
better basis for comparison.

The degrees of freedom was set to 5 in the
simulated process in Figure 2. Lower values of

ν would give rise to more frequent and larger
shifts. In practice, the appropriate value will
naturally depend on the particular dataset as
the nature and importance of level breaks will
differ across time series. As discussed in Trim-
bur (2004), the potential for precise estimation
based on the properties of the likelihood may
be limited, due to the finite length of the series,
as the frequency of large movements, needed to
characterize the density tail shape, is typically
low. Thus, it may be desirable to fix ν to
help ensure the effectiveness of the method for
treating the stochastic level shift problem.

3. Empirical Illustrations

In this section, some examples are pre-
sented to illustrate the methodology. First,
an annual time series that exhibits a definitive
level shift, associated with a known historical
event, is examined. This example illustrates
how, once an extreme observation occurs, its
classification adapts smoothly over time, and
there is a gradual increase in the recognition
of a level shift. The weighting function for
estimating the trend is updated in an optimal
fashion that depends on the information that
becomes available after the occurrence of the
event.

Next, a series is analyzed where the level
shifts are more frequent and vary in their dy-
namics. This type of situation may be com-
monly encountered in practice, and it helps to
illustrate the versatility of the model-based ap-
proach. The occurrence of the level shifts and
their role in the evolution of the series is ana-
lyzed in a consistent framework. As the trend
innovations may take on a continuous range,
more information is available in characterizing
changes in the level of the series, and the rela-
tive role of irregular fluctuations and level shifts
is more precisely quantified.

Once an extreme observation occurs, its
classification adapts smoothly over time, and
there is a gradual increase in the recognition
of a level shift. The weighting function for
estimating the trend is updated in an optimal
fashion, that depends on the information that
becomes available after the occurrence of the
event. This is illustrated for the annual time
series of observations on the average level of the
Nile over a hundred year period. In this case, a
clear level shift is present, for which the under-
lying cause is known. A Gaussian model has
some difficulty in pinpointing the change, while



the method adopted in this paper provides a
clear indication of the magnitude and timing
of the shift in the level. Further, the implied
weighting pattern, that is used in estimating
the trend, is examined at different time points,
which shows exactly how the model-based es-
timates adapt to the shift in the level of the
series.

I also examine the quarterly average oil
price over the last 25 years. For this economic
series, large changes in the level of the series are
apparent on a number of occasions. However,
the occurrence and relative influence of shifts
in the trend, in relation to the large irregular
movements, is unclear from casual inspection.
The model-based approach provides a consis-
tent basis for making a quantitative assessment
of how the trend in the market has evolved.

3.1 Computational issues

A key issue is to what extent the tail thick-
ness may be assessed in practical situations,
as reflected in the degrees of freedom for the
Student-t trend innovation. As a general is-
sue, one may expect the parameter υ to be diffi-
cult to discern, particularly for series of shorter
length, as the frequency of extreme events is, by
their nature, relatively low. Thus it would not
be surprising if the available information about
the extremes of the distribution was typically
limited, and this would be reflected in a good
deal of uncertainty in estimates of the degrees
of freedom parameter. Another important con-
sideration is the performance of the importance
sampling method as a means of obtaining max-
imum likelihood estimates.

A simulated example is given in Trimbur
(2004) where υ is set to 3. The results for this
example produce estimates well above the true
value, thus illustrating the challenges in esti-
mating the crucial degrees of freedom parame-
ter; in contrast the remaining parameters are
estimated more effectively. The heavy-tailed
characteristic enables one to emulate occasional
large changes in the level of a series. However,
given the computational difficulties that may
be involved in unrestricted estimation, in ap-
plications where the level shift problem is of
particular interest, it may be useful to assign a
relatively low value to ν. This strategy guaran-
tees a certain probability of such events. In a
similar way, one may assume particular values
for the signal-noise ratio to reflect the relation-
ship between the disturbances driving the non-

stationary and stationary parts of the model.

3.2 Shift in Nile level

1870 1890 1910 1930 1950 1970

500

750

1000

1250

year

Series 
Estimated Trend 

Figure 3: Annual recordings of the average
downstream level of the Nile River over the
hundred-year period 1870 to 1969, shown with
estimated trend from model (1) with υ = 3.

Figure 3 shows recordings of the yearly
average downstream level of the Nile River
in Egypt, originally studied in Cobb (1978).
The series covers a hundred-year period during
which the construction of a large dam led to a
fall in the average water depth recorded; this
shift is somewhat apparent in the graph but
the dynamics of the transition are obscured by
noise. When model (1) is fit with the restric-
tion υ = 3, so that the possibility of large trend
movements is ensured, the smoothed trend in
Figure 3 results. The change shows up clearly
as a drop of about ∆ = µ̂t|T − µ̂t+1|T = 136.3
from year t = 1897, the year in which the con-
struction of the dam took place.

Maximum likelihood estimation was con-
ducted with J = 1000 draws in the importance
sampler; convergence to the candidate density,
computed for each set of parameters using the
mode-matching algorithm explained earlier, oc-
curred within 12 iterations or less. The compu-
tations were implemented in the Ox program-
ming language of Doornik (1999) with a quasi-
Newtonian method used to optimize over the
free parameters. The implementation of the
state space methods relied on the functions pro-
vided in the SsfPack package documented in
Koopman et. al (1999). The initial values used
in the maximization were σ2η = 10

3, σ2ε = 10
4,

and the algorithm converged strongly (in the
sense that numerical second derivatives gave



clear indication of local optimality based on
the curvature of the likelihood surface) after
16 steps, with resulting parameter estimates of
σ̂η = 31.7, σ̂ε = 120.1. The signal noise ratio is

then approximated as q̂ = σ̂2η/σ̂
2
ε = 0.07. Note

that the trend shown in Figure 3 was calculated
using J = 10, 000 draws from the importance
sampler. As the summation need only be per-
formed once when obtaining the final smoothed
estimates of the component, it is computation-
ally inexpensive to increase precision by sam-
pling at greater frequency, compared to the pa-
rameter estimation procedure whereby each it-
eration uses an additional J draws from the
simulation smoother.

The smoothed trend in Figure 3 is able
to capture the relatively large changes in level
in the late 1890’s, as the choice of degrees
of freedom reflects the assumption of heavy-
tailed trend innovations that allow for stochas-
tic level shifts. This result may be compared
with those for a Gaussian model, as in Koop-
man et. al. (1999), where the change in the
level of the series around the construction of
the dam is spread over several years, in which
case the characterization of the break is impre-
cise. It is clear from Figure 3 that a number
of extreme observations in individual periods
are also present, and an outlier process may be
included in model (1) to reflect this. Hence,
εt would be assigned a Student-t density, as in
Aston and Koopman (2003), and the impor-
tance sampling method, explained previously
for the heavy-tailed trend disturbance, natu-
rally extends to this setup. Details may be
found in Durbin and Koopman (2001).

The implied weighting pattern for estimat-
ing the trend immediately prior to the struc-
tural break, that is in 1897, is shown in Figure
4. The corresponding graph for the following
year, where the break occurred, is displayed in
Figure 5; now there is a striking transition in
the weighting kernel for computing the level.
Note that both patterns are naturally asym-
metric as a consequence of the ability to accom-
modate level shifts. In Figure 5, the emphasis
has flipped dramatically toward those observa-
tions that follow the time of the break in the
sample. This shows what the models are do-
ing in assessing a rapid shift in the level of the
series.

The robust quality refers to how the trend
estimator adapts quickly and makes a more
transparent distinction of the break. The tail
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Figure 4: Weights for extracting the trend in
the annual Nile time series immediately prior
to the level shift (t = 1897).
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Figure 5: Weights for extracting the trend in
the annual Nile time series immediately follow-
ing the level shift (t = 1898).

thickness of the Student-t density depends cru-
cially on the degrees of freedom parameter in
formula (2), particularly for values of ν that
approach the lower limit of 2. Hence, in the
Nile example, choosing values slightly below 3
can make a difference in how well the event of
the level shift is pinpointed. This is illustrated
in Figure 6, which shows the results of trend
estimation with ν fixed at 2.8. This repre-
sents a relatively minor reduction of only 0.2,
or about 6.7% in ν, and yet the level shift is
now significantly more discernible. The es-
timated magnitude of the underlying change
around t = 1897 has risen by around 50%, to
∆ = µ̂t|T − µ̂t+1|T = 179.6.

On a real-time basis, one may look at how
the detection of a level shift evolves as infor-
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Figure 6: Annual recordings of the average
downstream level of the Nile River over the
hundred-year period 1870 to 1969, shown with
estimated trend from model (1) with υ = 2.8.

mation accrues. Naturally, it is a practical
impossibility to immediately detect an under-
lying change in the trend, as initially, all that
is known is that a sudden large innovation in
the series has occurred. Thus, one aims for a
method where the classification of each time
point adjusts optimally, and where large in-
novation outliers do not have an adverse im-
pact on parameter estimation. The use of
robust models provides these advantages; fur-
thermore, as there is a continuous-valued com-
ponent, these models provides a great deal of
information. One may expect outlier and level
shift detection, in such a model-based frame-
work, to be both more timely and more infor-
mative. An example of how trend estimates
adapt over time for the Nile series is shown in
Trimbur (2004).

3.3 Oil price changes

The occurrence of the level shift for the
above example is relatively transparent as there
is an associated historical event. Some appar-
ent level shifts in time series data may stem
from reclassifications or definitional changes in
the quantity being measured. In other cases
there may be more fundamental shifts in the
dynamics of the economy, due to major finan-
cial or economic events, e.g., oil price shocks.
In both cases, non-Gaussian modeling strate-
gies may have some advantages. In cases of
known redefinitions in the composition of a
data series, it is sensible to incorporate the rel-
evant prior information. Some types of level

shifts, however, may stem from extreme inno-
vations that arise unexpectedly, representing
surprise changes in the economic, political, or
financial environment. Specifying the model
to allow for the possibility of such events, be-
fore they occur, makes the method potentially
valuable in forecasting applications. Statisti-
cal analysis in a setting with continuous-valued
quantities may also provide additional insight
beyond that of judgmental procedures based
on historical assessment. Individual level shift
events may vary a great deal in their dynam-
ics, and in practice, a strategy based on time
series modeling gives a good foundation in the
general situation. The economic illustration
examined next is characterized by a number of
diverse, significant changes in the level of the
series.
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Figure 7: Quarterly average oil price from
1979:1 to 2003:4, shown with estimated trend
where signal noise ratio is assumed equal to
1/10. The data are expressed as US Dollars per
barrel for the West Texas Intermediate stan-
dard blend of crude oil.

Figure 7 shows the average price of crude
oil over a recent sample of one-hundred quar-
terly observations, from 1979 to 2003 (USD
per barrel for WTI blend, Source: U.S. De-
partment of Energy). The series is rather
volatile, and the fluctuations show substantial
variation in magnitude and in degree of per-
sistence. Though consumption of petroleum
products may be linked to seasonal influences,
e.g., the increased usage of heating oil in win-
ter, seasonality is not apparent in the quarterly
price series in Figure 7. If the primary deter-
minants are related to expectations of future
market conditions, then the average price may



be expected to respond mostly to surprises in
anticipated supply and demand factors. For
instance, news of possible threats to shipments
from the Middle East will induce positive move-
ments, and if the potential supply disturbances
are deemed long-lasting, one may expect the in-
novation outlier to be incorporated in the trend
component. In contrast, temporary changes
will not represent level shifts, but will instead
be reflected in large values of εt. I estimate
(1) with the signal-noise ratio constrained to
be 0.1; this ensures a sensible degree of relative
variation in the nonstationary and stationary
parts of the model. The degrees of freedom
parameter is estimated as ν = 2.92, while the
scale parameter is 0.73. Thus, the variance of
the trend innovation is about one-third that of
the irregular.

The resulting smoothed trend, shown in
Figure 7, represents optimal estimates of the
level over the sample period. Now J = 100, 000
draws are used to better approximate the con-
ditional mean series µ̂t, t = 1, ..., T ; this pre-
caution is taken as the initial trend movements
are rather substantial (recall that a diffuse ini-
tialization is used). The sharp and lasting rise
in 1979 shows up as an upward shock in the
average level of the oil price. Similarly, the
sudden drop in the mid-80’s reflected a persis-
tent change in the market balance as world oil
demand fell and supply continued to expand
steadily. On the other hand, the temporary
price hike in the early 90’s was followed, shortly
thereafter, by an equally dramatic decline, as
the previous concerns about possible interrup-
tions in Mid-East regional oil supply rapidly
dissipated. Recent movements suggest a high
probability of an upward shift in the average
level of prices, as reflected in the estimated
trend series.

4. Conclusions

I have presented a statistical method for
treating level shifts in time series. Such
events are commonplace for many datasets in
the social sciences and other fields and can
have a substantial impact in analyses of dy-
namic properties. I have focussed on the
issue of trend estimation. Some examples
have shown how more robust trend estimates
may be obtained whereby the model structure
adapts more quickly to shifts in the underly-
ing level. The continuous classification, im-
plicit in our model-based framework, is more

informative than binary labelling of structural
changes. Since the unobserved components
model with heavy-tailed innovations is designed
to account for the probability of unexpectedly
large changes before they occur, such models
may prove useful in forecasting applications
with real time series.
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