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Abstract

We consider two modi�cations of SEATS�
diagnostics for determining whether, for an
estimated seasonal decomposition component,
there is underestimation or overestimation,
meaning inadequate or excessive suppression of
the other components. The new diagnostics are
calculated from time-varying variances associ-
ated with the �nite-length �lters actually used.
They thereby avoid SEATS�diagnostics�strong
bias toward identifying underestimation. Tests
for the statistical signi�cance of any indicated
misestimation are presented and analyzed.

Disclaimer. This report is distributed to
inform interested parties of ongoing research
and to encourage discussion. Any views ex-
pressed are those of the authors and not neces-
sarily those of the U.S. Census Bureau.

1. Introduction

Let Yt; 1 � t � N be a series modeled by
a seasonal ARIMA model that has a seasonal-
trend-irregular decomposition

Yt = St + Tt + It; 1 � t � N: (1)

The component models lead to estimates Ŝt,
T̂t, and Ît that are Gaussian conditional means,
e.g.

Ît = E (ItjYs; 1 � s � N) =
t�1X

j=t�N
cIj;t (N)Yt�j :

(2)
Speci�cally, the cIj;t (N) are chosen to minimize

E
�
It �

Pt�1
j=t�N c

I
j;tYt�j

�2
under assumptions

that make it possible to evaluate this expecta-
tion by treating the values of model parame-
ters as if they were correct. (For simplicity, we
shall usually suppress the dependence of the
estimates on N , the models, and the decompo-
sition.) Here and throughout, E denotes the
mean calculated according to the model speci-
�ed for the data, whether or not this model is
correct. When the model is incorrect, we use
Etrue to denote the mean calculated using the

true distribution of the data (which is known
for simulated time series). Model inadequacy
can lead to inadequacies in this decomposition.
The most fundamental inadequacy is the pres-
ence of an easily detectable seasonal component
in the adjusted series, Ât = Yt�Ŝt, or in the de-
trended seasonally adjusted series Ît = Ât� T̂t,
i.e., the estimated irregular component. There-
fore seasonal adjustment programs need a diag-
nostic (or several) to detect residual seasonal-
ity. Spectrum estimates are the most developed
and widely used diagnostics for the detection of
essentially periodic components such as season-
ality and trading day e¤ects and are part of the
automatic output of X-12-ARIMA, see Findley
et al. (1998).

Instead of a spectrum estimate, SEATS
(Maravall and Gomez, 1997) has a diagnostic
for �underestimation� and �overestimation.�
Maravall (2003) de�nes underestimation of the
seasonal component heuristically to mean that
its estimate fails to capture all of the seasonal
variation, and overestimation means too much
variation has been assigned to this component.
To have a heuristic de�nition that applies to
all components, we interpret underestimation
of the component of interest to mean that the
signal extraction �lters used do not adequately
suppress the other component or components.
This will be the case for the seasonal adjust-
ment �lters, for example, if the dips in their
squared gain functions at the seasonal frequen-
cies are too narrow. Overestimation means too
much suppression, as happens if these dips are
too wide. The irregular �lters provide suppres-
sion both around the seasonal frequencies and
also around near-zero frequencies associated
with trend, so misestimation of It could also
result from inappropriate suppression of low-
frequency (long-period) components. Some ex-
amples of squared gains of irregular compo-
nent extraction �lters illustrating overestima-
tion and underestimation are given in Fig.1.

2. The Basic Diagnostic

We focus on detecting misestimation of
the irregular component because the model for
this component is stationary and usually fully



speci�ed by a constant variance, �2I = EI2t .
As a consequence, the signal extraction �l-
ter formulas are simpler than for the other
components, and so are the formulas of the
over/underestimation diagnostics.

Suppose the (estimated or �xed) ARIMA
model for the Yt is written in the usual back-
shift operator polynomial notation as

� (B)� (B)Yt = � (B) at: (3)

Thus � (B) = 1 � �1B � � � � � �dB
d de-

notes the di¤erencing operator which trans-
forms Yt to stationarity, e.g. � (B) = (1 �
B)2

�
1 +B + � � �+Bs�1

�
, at is the one-step-

ahead prediction-error process (with variance
parameter �2a), etc. Here s is the number of
observations per year: (s = 12 in our analy-
ses), � (0) = � (0) = 1, and the zeros of � (z)
have magnitudes exceeding one. For simplicity,
the same will be assumed of � (z).

We begin with our basic diagnostic and de-
scribe how it di¤ers from SEATS�diagnostic.
Both start with

Î2 =
1

N

NX
t=1

Î2t ; (4)

which SEATS calls the �variance of the esti-
mate�. Set �2t = EÎ

2
t . We reformulate SEATS�

diagnostic to be that overestimation is indi-

cated when Î2 > EÎ2(= N�1PN
t=1 �

2
t ), un-

derestimation when Î2 < EÎ2. The variances
�2t depend on t. In their place, SEATS� ac-
tual diagnostic uses the variance �2WK;I of the
Wiener-Kolmogorov �estimator�of It from bi-
in�nite data, IWK;t = E (ItjYs;�1 < s <1),
which does not depend on t but requires in-
�nitely many Ys values when the degree of
� (B) is positive as in (9) below. In this
case, �2t < �2WK;I holds for all t, because of

E(It � Ît)2 > E(It � IWK;t)
2 and

EI2t = EI2t + E
�
It � Ît

�2
= �2WK;I + E (It � IWK;t)

2
;

see Findley et al. (2003). Consequently, EÎ2 <
�2WK;I , with the result that SEATS�diagnos-
tic is biased toward indicating underestimation.
(Some quantitative bias results are given in
Section 3.3).

In practice, the calculations that produce
the component models in SEATS yield vari-
ances such as �2I , �

2
t and �

2
WK;I calculated

as though the innovation variance of (3) were
equal to one. We shall denote these unscaled
variances by �2I=�

2
a , �

2
t=�

2
a and �

2
WK;I=�

2
a.

Thus, they must be scaled by multiplication
with some estimate �̂2a. Let �2a;mle;N denote
the maximum likelihood estimate of �2a given
by (17) in the Appendix. Following SEATS, we
shall use the bias-corrected estimate of Ansley
and Newbold (1981),

�̂2a =

[(N � n�;�) = (N � n�;� � ncoeffs)]�2a;mle;N ;
(5)

where n�;� = d (or d plus the degree of � (B) if
SEATS�conditional estimate of � (B) is used),
and ncoeffs is the number of estimated ARMA
coe¢ cients in the model. When ARMA para-
meters are �xed, as in some of our simulations
below, then ncoeffs = 0 and �̂2a = �2a;mle;N .

SEATS� criteria are Î2 > �̂2a
�
�2WK;I=�

2
a

�
for

overestimation, and Î2 < �̂2a
�
�2WK;I=�

2
a

�
for

underestimation. Instead we use

Î2 >
�̂2a
N

NX
t=1

�2t
�2a

(6)

for overestimation and

Î2 <
�̂2a
N

NX
t=1

�2t
�2a

(7)

for underestimation. A formula for
N�1PN

t=1 �
2
t=�

2
a is given in Subsection

6.2. One-sided tests of (6) and (7) will be
described in Section 4.

3. Investigating and Modifying the Di-
agnostic

3.1 Mean performance of (6) and (7)

In the numerical results we present, Yt fol-
lows the Box-Jenkins airline model,

(1�B)(1�B12)Yt =
�
1� ~�B

��
1� ~�B12

�
~at;

(8)
with �2~a denoting the variance of ~at. To ob-
tain a "proof of concept" of our modi�cation
(6) and (7) of SEATS�s diagnostic, we compare
the means of their left- and right-hand sides
for zero mean Gaussian data Yt satisfying (8)
with ~� = 0:6 = ~� and with SEATS seasonal
adjustments from speci�ed models

(1�B)(1�B12)Yt = (1� �B)
�
1��B12

�
at;
(9)
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Figure 1: Squared gain function of the mid-
point irregular �lters of length 144 for � = 0:6
and � = 0:3; 0:6; 0:9.

with � = ~� = 0:6 and � = 0:3; 0:4; : : : ; 0:9.
Similar results were obtained with other values
of ~� and ~�. Graphs of the squared gain func-

tions
���Pt�1

j=t�N c
I
j;t (N) e

i2�j�
���2 ;�0:5 � � �

0:5 from SEATS� decompositions of (9) show
that overestimation occurs when � < ~� and
underestimation occurs when � > ~�; see Fig.1
for the case t = [N=2] + 1 (midpoint) and
~� = 0:6.

The mean EtrueÎ2 of the left-hand-sides
of (6) and (7) is given by (22) in the Appen-
dix. With �2a;mle;N (�;�) denoting the value of
�2a;mle;N (see (17)) speci�ed by (9), the r.h.s.
mean is the product(

1

N

NX
t=1

�2t
�2a

)
Etrue�2a;mle;N (�;�) ; (10)

which can be calculated from (18) and (23) of
the Appendix. Values of the ratios(

1

N

NX
t=1

�2t
�2a

)
Etrue�2a;mle;N (�;�)

EtrueÎ2

are given in Table 1.

Table 1 shows that � < 0:6 leads to ratio
values greater than one and therefore to (6) on
average, whereas � > 0:6 leads to ratio values
less than one, hence to (7) on average. Thus,
on average, (6) and (7) provide the correct di-
agnoses.

The ratios are closer to 1.0 in the case of
underestimation, suggesting this will be more
di¢ cult to detect than overestimation. More-
over, the ratios suggest that the most extreme
underestimation case, � = 0:9, is more di¢ cult
to detect with this approach than overestima-
tion from using � = 0:7 or 0:8.

Table 1. True Means of Î2
from Series with ~� = ~� = 0:6

Compared to (10) for Various �

� EtrueÎ2 (10) Ratio
0.3 0.1634 0.1264 1.2927
0.4 0.1879 0.1607 1.1692
0.5 0.2148 0.2003 1.0724
0.7 0.2834 0.2966 0.9555
0.8 0.3356 0.3534 0.9496
0.9 0.4036 0.4135 0.9761

3.2 Local properties and a further
modi�cation

The properties revealed by Table 1 for the
average of the I2t make it natural to ask if the
average inherits these properties from analo-
gous local properties. That is, for every t, is
EtrueÎ2t less than

��2t =
�
�2t=�

2
a

	
Etrue�2a;mle;N (�;�) (11)

when there is underestimation and greater than
��2t when there is overestimation? We found for
the models of Table 1 that such a local property
holds with overestimation. It does not hold, for
certain t, with underestimation: the values of
EtrueÎ2t in this case are consistently larger than
��2t near the ends of the series. Figs.2�4 present
graphs of EtrueÎ2t and ��

2
t that illustrate these

�ndings.
The time intervals at the ends of the se-

ries over which EtrueÎ2t > ��2t are substantially
wider in Fig.4 for the case � = 0:9 than in
Fig.3 for � = 0:8. For sample sizes not too
much smaller than N = 144, these results sug-
gest that the sum in (4) and the sum

1

N

NX
t=1

�2t
�2a
; (12)

should be restricted to run from 13 to N � 12,
to obtain a second modi�cation of SEATS�di-
agnostic that might be able to identify under-
estimation more reliably. With

�
(1)
N = Î2 � �̂

2
a

N

NX
t=1

�2t
�2a

(13)
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Figure 2: EtrueÎ2t (solid) and ��
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Figure 3: EtrueÎ2t (solid) and ��
2
t (dots) from

� = 0:8

being the statistic based on (4) and (12), we
de�ne � (2)N to be analogous statistic obtained
by restricting the sums as indicated.

3.3 Basic performance of the modi�ed
diagnostics

We begin our exploration of � (1)N and � (2)N
by investigating how often, in a simulation ex-
periment, their signs, and the sign of the cor-
responding SEATS diagnostic,

�SEATSN = Î2 � �̂2a
�
�2WK;I=�

2
a

�
(14)

are correct. 5000 independent realizations of
(8) with ~� = ~� = 0:6. of length 144 were
obtained from pseudo-IN (0; 1) innovations ~at.
Always using � = 0:6, overestimated irregu-
lars were obtained from SEATS by specifying
adjustment via a model (9) with � < 0:6,
underestimated irregulars by specifying � >
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Figure 4: EtrueÎ2t (solid) and ��
2
t (dots) from

� = 0:9

0:6. Table 2 lists the underestimation per-
cents. The SEATS diagnostic has a strong bias
toward incorrectly indicating underestimation
when 0:4 � � � 0:6, so it is not a reliable di-
agnostic for residual seasonality. � (1)N and � (2)N
show no such strong bias. � (2)N has a conspic-

uous advantage over � (1)N only when � = 0:9,
which is the most di¢ cult case for correct de-
tection. Underestimation is more di¢ cult to
detect than overestimation in the situations
considered.

Table 2. Percents of Simulated Airline
Model Series with ~� = ~� = 0:6 for Which

Underestimation is Indicated for
Irregulars Produced from Estimated �

and � or from Incorrect �
� �SEATSN �

(1)
N �

(2)
N

0.3 12.1 1.4 2.1
0.4 32.2 6.9 8.6
0.5 62.7 22.0 24.4

estimated �;� 100.0 47.4 48.2
0.7 96.6 75.0 73.3
0.8 99.1 84.1 84.0
0.9 98.4 66.7 81.4

4. Tests for the Signi�cance of Over-
or Underestimation

For signi�cance testing, we interpret the
value of � (1)N by reference to an estimate

�̂N (�
(1)
N ) of its standard deviation given by the

r.h.s. of (25) in the Appendix. An analogous
�̂N (�

(2)
N ) is used with � (2)N . For a given size

(signi�cance level) �, and with z denoting an
N (0; 1) variate, let z1�� denote the value for



which P fz > z1��g = P fz < �z1��g = 1��.
We performed simulation experiments to deter-
mine, for various � and �, the proportion of
simulated series for which

�
(i)
N > z1���̂N (�

(i)
N ); (15)

occurs, which is interpreted to indicate overes-
timation (at the � level of signi�cance), or for
which

�
(i)
N < �z1���̂N (� (i)N ) (16)

occurs, indicating underestimation, for i = 1; 2
for 1000 series of length N = 144 simulated
from (8) with ~� = ~� = 0:6.

Table 3. Speci�ed vs. Observed Sizes
of (15) and (16): � = 0:6;� = 0:4

proport. of proport. of
(15) (16)

��� �
(1)
144 �

(2)
144 �

(1)
144 �

(2)
144

.05 .432 .394 0 .001

.10 .559 .533 0 .003

.15 .662 .641 .003 .009

.20 .733 .713 .006 .013

.25 .795 .760 .010 .022

Table 4. Speci�ed vs. Observed Sizes
of (15) and (16): � = 0:6;� = 0:9

proport. of proport. of
(15) (16)

��� �
(1)
144 �

(2)
144 �

(1)
144 �

(2)
144

.05 .044 .004 .113 .242

.10 .025 .018 .178 .362

.15 .051 .030 .241 .442

.20 080 .052 .314 .523

.25 .119 .065 .390 .586

A minimal �power� requirement for a us-
able test would seem to be that the propor-
tion of detections of the correct kind of mises-
timation should exceed 0:5. Our experiments
showed that (15) easily satis�es this minimal
power requirement for detecting moderately
strong overestimation, � � 0:4, for i = 1; 2
when � � 0:10, see Table 3. However, for (16),
and � � 0:8, � � 0:20 must be used, and for
� = 0:9, � (2)N is required, see Table 4.

Our simulation results suggest that test-
ing with � = :20 will provide adequate to ex-
cellent power against a broad range of alterna-
tives and that � (2)N need only be used when �
is rather close to one. We also produced results
(not shown) for the sample size N = 72. For

this sample size, testing with � = :25, there is
reasonable power for detecting overestimation
with 0:3 � � � 0:4 but not adequate power for
detecting underestimation.

5. Empirical Results

We now apply � (1)N and � (2)N to model-based
adjustments of two series. The �rst is the series
of dollar values of U.S. Exports of Other Agri-
cultural Materials (Manufactured) from Janu-
ary, 1989-December, 2001 (N = 156), which we
abbreviate as Export. Because of its heteroge-
nous nature, its seasonal pattern is not very
well de�ned and it is not seasonally adjusted by
the Census Bureau. SEATS�seasonal adjust-
ment has left some seasonality, as indicated by
the one seasonal peak in the spectrum of the ir-
regular component, at the highest seasonal fre-
quency (0.5 cycles/month), see Fig.5. This is
the only frequency at which the spectrum of
the (di¤erenced, logged) original series has a
seasonal peak (not shown). The peak in Fig.5
is visually signi�cant according to the criterion
used by X-12-ARIMA; see Soukup and Findley
(1999).

Figure 5: Spectrum of the Irregulars of Ex-
port. Note the seasonal peak at 6/12 cy-
cles/month.

For i = 1; 2, let p(i)N denote the probability
that a standard normal variate z has a value
at least as extreme as �� (i)N = �

(i)
N =�̂N (�

(i)
N ),

i.e. p
(i)
N = pr

n
z � �� (i)N

o
if �� (i)N < 0 and

p
(i)
N = pr

n
z � �� (i)N

o
if �� (i)N > 0. The �rst row

of Table 5 provides the �� (i)N and p(i)N values for



Export. Both �� (i)N values are negative, commen-

surate with underestimation, but the p(i)N val-

ues show that only the test based on � (2)N in-
dicates signi�cant underestimation. The �tted
model is an airline model with both coe¢ cients
equal to 0.80 to this level of precision. The Box-
Ljung statistics of the model residuals are poor
(p-values below 0.05) at lags 3�6 but accept-
able at higher lags (p-value of 0.289 at lag 24).
There are no indications of skewness or kurtosis
in the model residuals. This example con�rms
the utility of � (2)N .

SEATS�analogue of � (1)N , i.e. �SEATSN de-
�ned in (14), has the value -0.033. SEATS
provides no estimate of the standard error of
�SEATSN (Maravall, 2003 provides an approach
to an estimate.)

Table 5. Values of �� (i)N and p(i)N , i = 1; 2
��
(1)
N ; p(1)N ��

(2)
N ; p(2)N

Export �0:546; 0:292 �2:177; 0:015
Vol 0:299; 0:383 0:142; 0:443

Whereas the spectrum can call attention
to the possibility of underestimation, the main
source of evidence for oversmoothing, which
we interpret to mean overestimation, has been
the opinions of data experts. We denote by
Vol the sales volume series for large depart-
ment stores (Grands Magasins) from January,
1990 through March, 2004 (N = 171) produced
by the Chamber of Commerce and of Indus-
try of Paris (CCIP). Mr. J. Anas of CCIP
communicated the concern of CCIP that the
model-based adjustment of SEATS produced
with TRAMO�s automatically chosen (0 1 2)(0
1 0) model, and hence with � = 0, might
be oversmoothing. We used the outlier treat-
ment preferred by CCIP, modeling a temporary
change outlier for October, 1995 but not two
other outliers indicated by the automatic out-
lier identi�cation procedure. We were not able
to obtain enough information about the holi-
day adjustment method used by CCIP for this
series to able to replicate it, so we used instead
the Easter and trading day e¤ect modeling op-
tions of X-12-ARIMA, thereby ignoring several
French holidays. In spite of this compromise,
our model diagnostics were mostly good: the
Box-Ljung Q statistics for the model residuals
had p-values greater than 0.11 at all lags, with a
value slightly greater than 0.90 at lag 24. There

were no indications of skewness or kurtosis in
the model residuals.

The values in the second row of Table 5
show support, albeit weak, for a diagnosis of
overadjustment. The Table D 9.A diagnostics
of the X-12-ARIMA adjustment of this series
suggest that the seasonal adjustment of �ve and
perhaps six of the calendar months should be
done with a standard length �lter (a 3� 5 sea-
sonal �lter, which yields an adjustment simi-
lar to a SEATS adjustment with � = 0:6, see
Findley and Martin, 2003), whereas a shorter
�lter should be used for the remaining months,
quite short for some of the months. (A SEATS
�lter from � = 0 has length about 37 months,
slightly shorter than the �lter obtained by us-
ing the shortest (i.e., the 3�1) seasonal �lter in
X-12-ARIMA.) Thus, the indications of overes-
timation may be weak because overestimation
is a problem only for half or less of the months.
For this series, from the three digit rounded val-
ues of SEATS�output, �SEATSN = 0:000, giving
no indication of overestimation.

5.1 A Simulation-Based Alternative to
Table 5

The p(i)N values presented in Table 5 were

obtained by assuming that the �� (i)N have a stan-
dard normal distribution. We also obtained
simulation-based alternatives to these p(i)N val-
ues to con�rm the conclusions obtained from
the �� (i)N values of Table 5. We simulated 5000
Gaussian series of the appropriate length from
each series�estimated model, of lengthN = 156
from Export�s estimated airline model and of
length N = 171 from Vol�s estimated (0 1 2)(0
1 0) model, reestimating model parameters for
each simulated series. From the irregular com-
ponent obtained from the reestimated model
for a given simulated series, we obtain an ana-
logue of �� (i)N which we denote by ���(i)N . The four

histograms (not shown) of 5000 ���(i)N �s obtained
for each model and for i = 1; 2 have means very
close to zero, but are skewed for i = 1, and, for
Export�s model, also for i = 2. For each his-
togram, let �p(i)N denote the proportion of the

5000 ���(i)N �s that are at least as extreme as the

corresponding �� (i)N value of Table 5. The �p(i)N
value associated with each �� (i)N is shown in Ta-
ble 6.

The simulation-based p-values of Table 6
have the advantages over those of Table 5 that
they make allowance both for uncertainty aris-



ing from parameter estimation and for devia-
tions from Gaussianity of the ��N . The extent
to which they support the conclusions drawn
from Table 5 is quite reassuring. Both series
represent challenging cases for the detection of
misestimation.

Table 6. Values of �� (i)N and �p(i)N , i = 1; 2
��
(1)
N ; �p(1)N ��

(2)
N ; �p(2)N

Export �0:546; 0:317 �2:177; 0:013
Vol 0:299; 0:297 0:142; 0:375

6. Appendix

6.1 Formulas for �2a;mle;N (�;�) and

Etrue�2a;mle;N

�
~�;�

�
A time series with spectral density ~g (�)

has autocovariances


j (~g) =

Z �

��
cos j�~g (�) d�; j = 0;�1; : : : :

For any positive integer n � 1, de-
�ne the autocovariance matrix �n (~g) =�

j�k (~g)

�
0�j;k�n�1. For the model (3), the

spectral density of yt = � (B)Yt is g (�) =
(�2a=2�)

��� �ei����2 ��� �ei�����2. If we de�ne

yd+1:N =
�
yd+1 � � � yN

�0
and g1 (�) =

(1=2�)
��� �ei����2 ��� �ei�����2, then it follows

from �N�d (g) = �2a�N�d (g1) and (3.2) of
Ansley and Newbold (1981) that the m.l.e. of
�2a is

�2a;mle;N (�=�) =
1

N � dy
0
d+1:N�

�1
N�d (g1)yd+1:N ;

(17)
with y0d+1:N denoting the transpose of yd+1:N ,
and that, with tr denoting trace of a matrix,

Etrue�2a;mle;N (�=�)

=
1

N � dtr
�
��1N�d (g1) �N�d (~g)

	
:(18)

For (9), we denote (17) by �2a;mle;N (�;�).

6.2 Formulas associated with Ît

To obtain standard errors of test sta-
tistics, variances and covariances of Î2 and
�2a;mle;N (�=�) are required. These can be ob-
tained fairly easily if, as usual, the model coe¢ -
cients are treated as �xed rather than random.
We �rst need the covariance matrix of the Ît.
In the notation introduced above, and with �N

denoting the (N � d) � N band matrix of the
form

�N =

264 ��d � � � ��1 1
. . .

. . .
. . .

. . .
��d � � � ��1 1

375 ;
(19)

the formula for the vector Î = Î (g;N) of esti-
mates Ît; 1 � t � N from (2) is

Î =
�2I
�2a
�0N�

�1
N�d (g1)yd+1:N ; (20)

when It is white noise with variance �2I , see
(4.3) of Bell and Hillmer (1988). Thus the co-
variance matrix �true

Î
= �Î (~g; g;N) has the

formula
�true
Î

=�
�2I
�2a

�2
�0N�

�1
N�d (g1)�N�d (~g) �

�1
N�d (g1)�N :

(21)
For 1 � t � N , EtrueÎ2t is the t-th diagonal
entry of �true

Î
, and

EtrueÎ2 = N�1tr�true
Î

: (22)

For 1 � t � N , the scaled model-based variance
�2t=�

2
a is the t-th diagonal entry of

�Î=�a =

�
�2I
�2a

�2
�0N�

�1
N�d (g1)�N ; (23)

and (12) is given by N�1tr�Î=�a .

6.3 Test statistic standard errors

We now derive formulas for the variances
of Î2 and �2a;mle;N (�=�) and their covariance
under the assumptions that the model spec-
tral density g (�) is correct, ~g (�) = g (�) =
�2ag1 (�), and that the yt have no skewness or
kurtosis. Using the special case of the formula
of McCullagh (1987, p. 65) for the covariance
of two symmetric quadratic forms of zero mean
variates Xi whose joint third and fourth cumu-
lants are zero, we obtain

var
�
Î2
�

=
2

N2

NX
j;k=1

cov2
�
Îj ; Îk

�
=

2�4a
N2

tr
n
�2
Î=�a

o
;

var
�
�2a;mle;N (�=�)

�
=

2�4a
N � d ;



and

cov
�
Î2; �2a;mle;N (�=�)

�
=

2�4a
N (N � d) tr�Î=�a :

with �Î=�a given by (23).

Writing �̂2a = kN�
2
a;mle;N (�=�), see (5),

�N = Î2 � kN�2a;mle;N (�=�)
n
N�1tr�Î=�a

o
(24)

has the variance

2�4a
N2

�
tr
n
�2
Î=�a

o
� 2kN � k

2
N

(N � d)

�
tr�Î=�a

�2�
:

For an approximate standard error for the
test statistic � (1)N , we replace the unknown �4a
with �̂4a from (5) and take the positive square
root to obtain

�̂N (�
(1)
N ) =

21=2�̂2a
N

�
tr
n
�2
Î=�a

o
� 2kN � k

2
N

(N � d)

�
tr�Î=�a

�2�1=2
:

(25)
For the test statistic � (2)N , the formula (25) is
modi�ed by leaving (N � d) unchanged but
otherwise replacing N elsewhere with (N � 24)
and by replacing the matrix �N in (23) with
the matrix �(2)N which di¤ers from �N only in
its �rst and last twelve columns by having all
entries in these columns equal to 0.

The formulas needed to implement the
analogues of the test statistic (13) for the sta-
tionary transforms of the seasonal and trend
component estimates are given in Proposition
4 of McElroy and Sutcli¤e, 2004).
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