RESEARCH REPORT SERIES
(Computing #2003-01)

Preorder and Set Covering
in the DISCRETE Edit System

Bor-Chung Chen and William E. Winkler

Statistical Research Division
U.S. Bureau of the Census
Washington D.C. 20233

Report Issued: September 10, 2003

Disclaimer: This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone
a Census Bureau review more limited in scope than that given to official Census Bureau publications. This paper is
released to inform interested parties of ongoing research and to encourage discussion of work in progress.

Preorder and Set Covering in the DISCRETE Edit System™

Bor-Chung Chen and William E. Winkler

Abstract

Most combinatorial problems are very big—bigger than what can be handled
efficiently on most fast computers—and hence the development and implementa-
tion of fast algorithms is very important. The DISCRETE edit system, based on
the Fellegi and Holt model [1976] of editing, contains a combinatorial problem:
the set covering problem (SCP). The two major components of the edit system
are edit generation and error localization. The SCP is formulated many times in
both components. Therefore, an efficient set covering algorithm is critical to the
overall performance of the DISCRETE edit system. The preorder of traversing a
tree is one of the structures used in the design of a set covering algorithm for the
DISCRETE edit system. In this paper, we will describe a simple implementation
of the preorder of traversing a tree used in a new set covering algorithm proposed

by Chen [1998].

KEY WORDS: Redundant Covers, Subcovers, Integer Programming, Optimiza-
tion, Lexicographic Ordering, Minimal Change Ordering, Ranking, Unranking,
Successor

1 Introduction

The information gathered in any survey may contain inconsistent or incorrect data. These
erroneous data need to be revised prior to data tabulations and retrieval. The revisions of the
erroneous data should not affect the statistical inferences of the data. One of the important
steps of this systematic revision process is computer editing. Fellegi and Holt [1976] provided
the underlying basis of developing a computer editing system. The DISCRETE edit system
(Winkler and Petkunas [1996]) is designed for general edits of discrete data. It utilizes the
Fellegi-Holt model of editing and contains two major components: edit generation and error
localization. An edit-generation algorithm, called the EGE algorithm, for the DISCRETE
edit system was described in Winkler [1997]. The EGE algorithm is a much faster alternative
to Algorithm 1, called the GKL algorithm, of Garfinkel, Kunnathur, and Liepins [1986]. In
both of the EGE and GKL algorithms, the set covering routine is invoked many times to
generate new implicit edits. Therefore, an efficient algorithm for the set covering problem
becomes highly desirable to reduce the computation time of the edit generation. In error
localization, the set covering problem, which, in fact, is an integer linear programming

*This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a more limited
review than official Census Bureau publications. This report is released to inform interested parties of research and to encourage
discussion.

problem, is used to identify the minimum number of fields in an erroneous record to change
to pass all the edits. In this paper, an enhancement of the set covering algorithm, proposed
by Chen [1998], for the DISCRETE edit system is described. The enhancement significantly
reduces the storage requirements of the preorder of traversing a tree while keeping other
computations as fast as possible.

The SCP in the DISCRETE edit system is applied twice, one in edit generation and the
other in error localization. The first application in error localization is to find the minimal
set of fields (the optimal solution) of a failed record to be modified to satisfy all explicit and
implicit edits. The SCP is invoked once for each failed record. The second application in
edit generation is to find all the minimal sets of edits that are unioned to cover all possible
values of a field, called generating field (see Section 2). The second application is NOT to
find an optimal solution but to find all prime cover solutions to the SCP. A prime cover is a
cover in which each set in the cover is not redundant.

A detailed description of the set covering algorithm is given in Chen [1998]. Its preorder
storage required is exponentially increasing with the survey size, measured in the number of
fields in a record for error localization or the the number of explicit edits originally specified
for edit generation. This storage requirement is generally making the algorithm difficult
to be programmed and implemented. In this paper, we will discuss the elimination of the
storage required in the set covering algorithm proposed by Chen [1998] and provide some
enhancements to the implementation of the algorithm used in the DISCRETE Edit System.

We will use the following notations in this paper: a= (a1, as, ..., a,) has n fields. a; € A;
for each ¢ 1 < ¢ < n, where A; is the set of possible values or code values which may be
recorded in Field 7. |A;| = n;. If a; € A7 C A, we also say

ac A=A XAy x .. XA XA X A XX A, (1)
The code space is A; x Ay x ... x A, = A. A record y fails edit £ if

E) A
j=1

contains y. If A% is a proper subset of Aj;, then field j is an entering field of £" or field j
enters V.

2 Background

The objective of error localization is to find the minimum number of fields to change if
a record fails some of the edits. It can be formulated as a set covering problem. Let
E={FE'E* ... E™} be a set of edits failed by a record y with n fields, and consider the

set covering problem:

Minimize 2o €

x> 1, i=1,2,--,m (2)

L a)

subject to i a

o { 1, if field j is to be changed;
YT 0, otherwise,
where '
0 — {1, if field 5 enters £°;
“ 10, otherwise,

and ¢; is a measure of “confidence” in field j. We need to get £ from a complete set of edits
to obtain a meaningful solution to (2). A complete set of edits is the set of explicit (initially
specified) edits and all essentially new (the definition of essentially new is given later in this
section) implied edits derived from them. The dimension of the constraint matrix (a,;) of
0’s and 1’s associated with (2) is m x n. The size of the preorder forest of the set covering
algorithm described in Chen [1998] is 2" — 1. The preorder forest is a collection of tree data
structures that provide a sequence, called ranking, of the n column vectors in the constraint
matrix (a;;)mxn to be included in a possible cover solution to (2). The size of a preorder
forest is the number of nodes in its collection of tree data structures and is therefore one of
the important factors that affect the efficiency of a set covering algorithm.

If @ is a prime cover solution to (2) and K = {r | «, =1} C {1,2,---,n}, then for each
k € K we may change the value of field k to a value from

By = U Ay =1 4 (3)
jed J€d
where J = {j | 1 < j < m, field k is an entering field of £’}. The new imputed record y;,
which has different value for field £V & € K from the record y, will pass all edits. Note that
By # 0. If Bf, were a empty set, then U;¢; Ai would be equal to Aj and an essentially new
implicit edit would have been generated and included in the set of F.

To obtain a complete set of edits, implicit edits are needed. Implicit edits may be implied
logically from the initially specified edits (or explicit edits). Implicit edits give information
about explicit edits that do not originally fail but may fail when a field in a record with an
originally failing explicit edit is changed. Lemma 1 gives a formulation on how to generate
implicit edits.

Lemma 1 (Fellegi and Holt [1976]): If £" are edits V r € S, where S is any index set,

E (VA =F, V reb. (4)
7=1
Then, for each ¢ (1 <7 < n), the expression
(A =F (5)
=1

is an implied edit, where

A=A 40 j=1,---i—1i+1,---,n

res

Ar=J A #0.

res

If all the sets A7 are proper subsets of A;, i.e., A7 # A, (field ¢ is an entering field of edit
E"YY r e S, but A7 = A;, then the implied edit (5) is called an essentially new edit. Field
¢, which has n; possible values, is referred to as the generating field of the implied edit. The
edits £” V r € S from which the new implied edit £* is derived are called contributing edits.

Therefore, in order to generate an essentially new implicit edit, we must have the following
three conditions:

LAT#0, V), 1<) <n;
2. AT £ A;,Vr e S, where AT #£ 0);
3. AT = A,

Conditions 2 and 3 indicates that the set {A7 | » € S} is a cover of A; and are the foundations
of the following set covering formulation in (6).

Let {E" | r € S} be the set of the s edits with field i entering, then the set covering
problem related to the generating field ¢ is

Minimize 3}, cg2,

subject to 2.5 géT:I;T >1, 3=1,2,---,n (6)

. { 1, if £" is in the cover;
" 10, otherwise,
resS

where i i , i ,
1, if E" contains the jth element in field ¢;

Jir = {0, otherwise,

is the jth element in field ¢ of edit E” (r € S). If @ is a prime cover solution to (6) and
K =1{r]z, =1} C S, then UyexA¥ = A;. A prime cover solution is a nonredundant set
of the edits whose ith components cover all possible values of the entering field, which is
the generating field to yield an essentially new implicit edit. This paper will concentrate
on the enhancement of the set covering algorithm that finds all the prime cover solutions to
the SCP (6), which is also referred to as a SCP with constraint matrix G= (g%,)n,xs. The
set covering algorithm with the enhancement has been implemented in the DISCRETE edit
system. The size of the preorder forest of the set covering algorithm described in Chen [1998]
is 2° — 1.

3 Preorder and Combinatorial Generation

In the sections hereafter, we will use n to denote the number of column vectors in the
constraint matrices (a;;)mxn, of (2) and (géT)niXS of (6). We also assume that (a;;) and (géT)
are the reduced constraint matrices, meaning that they do not contain any identical column
vectors and the optimal solution of (2) or the prime cover solutions of (6) found will not
include any column unit vectors.

A preorder sequence (Knuth [1973]) is a traversal of the combinations of the n column
vectors of the constraint matrices of (2) and (6) with a tree data structure. The preorder
traversal is (a) visiting the root; (b) traversing the left subtree; and (c) traversing the right
subtree. An example is illustrated in Figure 1 with n = 4, in which the node (12) means the
column vectors 1 and 2. A node containing n is called a leaf node. Nodes (24) and (1234)
are leaf nodes. Nodes with the same parent are sibling nodes. Nodes (12), (13), and (14)
are sibling nodes. Suppose that S = {1,2,---,n} is the set of the ordinal numbers of the
n column vectors of a constraint matrix and R consists of the 2" — 1 nonempty subsets of
S. We will use, for example, (123) to denote the subset {1,2,3}. Given a nonempty subset
T C S, let us define the characteristic vector of T (Kreher and Stinson [1998]) to be the
n-tuple

N(T) = [$n7$n_17...7x1]7 (7)

where .
o { 1, ifeeT;
i 0, otherwise.

The ranking (or lexicographic ordering) on the set of nonempty subsets of S is induced by
the ranking of the characteristic vectors. Table 1 illustrates the ranking of the 15 nonempty
subsets of S = {1,2,3,4}. Table 1 also shows their binary representations and the equivalent
decimal numbers.

230

Figure 1: Preorder Tree Data Structure.

The transformation of the characteristic vector of a given node T' € R into the equivalent
decimal number is given by

Table 1: Ranking and Characteristic Vectors of 15 Nonempty Subsets of S = {1,2, 3,4}

. Decimal
Node (7) | (M0 e o | Number | rank(T)
4,T3,T2, 27 p (\I/(N(T)))
(1) [0,0,0,1] 0001 1 1
(12) [0,0,1,1] 0011 3 2
(123) [0,1,1,1] 0111 7 3
(1234) [1,1,1,1] 1111 15 4
(124) [1,0,1,1] 1011 11 5
(13) [0,1,0,1] 0101 5 6
(134) [1,1,0,1] 1101 13 7
(14) [1,0,0,1] 1001 9 8
(2) [0,0,1,0] 0010 2 9
(23) [0,1,1,0] 0110 6 10
(234) [1,1,1,0] 1110 14 11
(24) [1,0,1,0] 1010 10 12
(3) [0,1,0,0] 0100 4 13
(34) [1,1,0,0] 1100 12 14
(4) [1,0,0,0] 1000 8 15
BOT)) = Y w2 (3)
=1

We now describe a generation algorithm that will provide the preorder sequence such that
a(rank(T)) = W(N(T)),)
where « is an array with 2" — 1 elements. The ranking function, rank(7'), is a bijection:
rank: R — {1,2,---,2" — 1}. (10)
It defines a total ordering on the elements of R by the rule of
T\ < T, <= rank(T}) < rank(T). (11)

For each ranking function, there is a unique unranking function associated with it. This
function is also a bijection:

unrank: {1,2,---,2" — 1} — R, (12)
which is the inverse function of rank, i.e., we have
rank(7') = i <= unrank(:) =T (13)

forall '€ R and all 7 € {1,2,---,2" — 1}. Given a ranking function, rank, a successor
function can be defined to satisty the rule of

successor(7y) = Ty <= rank(Ty) = rank(7}) + 1, (14)

6

in which successor(T}) is undefined if rank(7;)= 2" — 1, i.e.,

unrank(rank(7y) + 1) if rank(7y) < 2" — 1; (15)
undefined if rank(7y) = 2" — 1.

The generation algorithm is very simple. We need recursive calls to generate the preorder
sequence. The generation algorithm is given in Algorithm 1.
PREORDER(n) requires

successor(1}) = {

Tt -1 =2"-n-1 (16)
=1
multiplications (or left shifts) and 2" — n — 1 additions. The efficiency of the algorithm is
the order of 2", i.e., O(2"). It also requires 2" — 1 units of integer storage to hold the array
a. For a survey with moderate number of fields, such as n = 20, this algorithm is inefficient
and requires a huge amount of storage.

Algorithm 1: PREORDER(n)
a[l] « 1
if n =1 then return(a)
else
begin
b — PREORDER(n — 1)
for k —2""1 +1to2" —1
begin alk] « b[k — 2] x 2; a[k — 27" 4+ 1] « a[k] + 1 end
return(a)
end

4 Lexicographic Ordering of Preorder Sequence

Given the characteristic vector of a node 7' € R, we define ¢(x},) V k € S as following:

0 fe,=0Vie{kk+1,-- nk

20k ifxp,=0andnot all z; =0 Vi€ {k+1,---,n}
The algorithm, CounT(x, n, k), of calculating ¢(x}) is given in Algorithm 2, which requires
at most n — k 4+ 3 comparisons. In the algorithms hereafter, x; = z[f]] Vi € S.

Algorithm 2: Count(z, n, k)
if x[k] =1 then return(l)
if e[i]=0forall e =k, k+1,---,n then return(0)
return(2"%)

With respect to the preorder sequence, the rank of a nonempty subset T' of S is

n

rank(7) = > c(ay). (18)
k=1
An example with n = 4 is illustrated in Table 1 and the algorithm, RANK(x, n), of calculating
rank(7') is given in Algorithm 3. The unranking algorithm, UNRANK(r, n), is given in
Algorithm 4.

Algorithm 3: RaNK(z, n)
r«— 0
for k +— 1ton
r «— r + CounNT(z, n, k)

return(r)
Algorithm 3 requires at most
n 2 5
Sn—k+3) = "1 (19)
k=1 2

comparisons and n additions. The efficiency of the algorithm is O(n?).

Algorithm 4: UNRANK(r, n)
ter
for k «— 1ton
begin
if t > 2"=% then begin z[k] « 0; t +— t — 2"~% end
else if > 0 then begin 2[k] < 1;¢ «— ¢ — 1 end
else x[k] «— 0
end
return(z)

Algorithm 4 requires at most n multiplications, 2n comparisons, bn assignments, and 2n
subtractions. The efficiency of this algorithm is O(n). An implementaion of the set covering
algorithm using the preorder sequence is given in Algorithm 5.

Algorithm 5: SETCOVERI(n)
forr — 1to2"—1
begin
&« UNRANK(r, n)
if x is a cover then call STOREPRIMECOVER(2)
end

Algorithm 5 eliminates the 2" — 1 units of integer storage required in Algorithm 1. It still
visits every node of the preorder tree structure, that is a total of 2 — 1 nodes. Therefore
SETCOVERI(n) is not very efficient. The function STOREPRIMECOVER(z) is a subroutine
that stores the prime subcovers of x and is given a detailed description in Chen [1998].

5 An Efficient Implementation of Preorder Sequence

In this section, we will discuss a more efficient set covering algorithm using the preorder tree
structure. We use the idea of the successor function, successor(7'), described in Section 3
to develop the function NEXTNODE(2, n), i.e.,

N(successor(7')) = NEXTNODE(z, n), (20)

where @ = X(T') and T C 5. NEXTNODE(x, n) is given in Algorithm 6. Algorithm 6 is
more efficient than Algorithm 4 because the k in the for loop of UNRANK(z, n) is from 1 to
n while of NEXTNODE(z, n) from n — 1 downto the first & with x; = 1.

In the preorder sequence and the characteristics of the set covering problem, if a node T
is a cover, any node of the subtree with root node T" will not be a prime cover. Therefore, if
node T'is a cover, we may skip the visits of the rest of the subtree and move to the next

Algorithm 6: NEXTNODE(x, n)
if [n] =1 then
begin
z[n] 0
for k <~ n —1 downto 1
if 2[k] = 1 then begin z[k] «— 0; [k + 1] «— a2[k+ 1]V 1; £k — 0 end
end
else
for k < n —1 downto 1
if [k] =1 then begin z[k + 1] « a2[k+ 1]V 1; £k — 0 end
return(z)

sibling of T'. Algorithm 7 provides a very simple implementation of skipping nodes in the
subtree. Compared to UNRANK(x, n), NEXTSIBLING(z, n) is also very efficient. If 7' is a leaf
node, NEXTNODE(z, n) = NEXTSIBLING(z, n).

Algorithm 7: NEXTSIBLING(z, n)
for £ <+ n — 1 downto 1
if 2[k] = 1 then begin z[k] «— 0; [k + 1] « z[k+ 1]V 1; k — 0 end
return(z)

Now, a new set covering algorithm using the preorder tree structure is very straightfor-
ward. The algorithm, SETCOVER2(n), is given in Algorithm 8.

Algorithm 8: SETCOVER2(n)
z[l] « 1
while U(z) < 2" do
if « is a cover then
begin
call STOREPRIMECOVER(x)
& «— NEXTSIBLING(x, n)
end
else v «— NEXTNODE(z, n)

The efficiency of SETCOVERI(n) and the worst case of SETCOVER2(n) is still O(2"). However,
SETCOVER2(n) is more efficient because (i) NEXTNODE(2, n) and NEXTSIBLING(x, n) in
SETCOVER2(n) are more efficient than UNRANK (2, n) in SETCOVERL(n); (ii) SETCOVER2(n)
may skip nodes if a cover is found; (iii) in SETCOVER2(n), if a cover is found at a high
ranking node (i.e., low ranking number), the number of nodes skipped is enormous.

Table 2: The Modified Gray Code of 15 Nonempty Subsets of S = {1,2,3,4}

. Decimal
Node (T) E NJET?Y}_J}] Repl]?elsr(lei?;tion Number rank(T’)

3 22,21 (W(N(T)))
(1) [0,0,0,1] 0001 1 1
(12) [0,0,1,1] 0011 3 2
(123) [0,1,1,1] 0111 7 3
(1234) [1,1,1,1] 1111 15 4
(124) [1,0,1,1] 1011 11 5
(14) [1,0,0,1] 1001 9 6
(134) [1,1,0,1] 1101 13 7
(13) [0,1,0,1] 0101 5 8
(3) [0,1,0,0] 0100 4 9
(34) [1,1,0,0] 1100 12 10
(234) [1,1,1,0] 1110 14 11
(23) [0,1,1,0] 0110 12
(2) [0,0,1,0] 0010 2 13
(24) [1,0,1,0] 1010 10 14
(4) [1,0,0,0] 1000 3 15

The (iii) above can be achieved by sorting the column vectors of the constraint matrix
on the number of 1’s in descending order. In other words, the lowest ordinal number of the
column vector has the highest number of 1’s in the vector. With this type of rearrangement
of the column vectors, the chance of having a cover at a high ranking node is increased. That
will reduce the number of visited nodes in the preorder tree data structure.

6 Discussion

We described the preorder tree data structure to implement the set covering algorithm. This
structure fits the algorithms described nicely to eliminate the storage requirements of the
preorder tree while maintaining the efficiency of the algorithms. There are alternatives to
implement the lexicographic order of the nonempty subsets of S. One of them is to generate
the 2" —1 nonempty subsets of S sequentially so that any two consecutive nonempty subsets
have distance one (the smallest possible). Here, the distance between two nonempty subsets

T,,T, C S is defined (Kreher and Stinson [1998]) as
dist(Ty, Ty) = [T\ ATy, (21)
where TyAT, is the symmetric difference of Ty and Ty and defined as
TAT, = (T, — Ty) U (T, — Tb). (22)

This means that any nonempty subset can be obtained from the previous one by either
deleting a single element or adding a single element. Such an ordering of the 2" —1 nonempty

10

subsets of S is called a minimum change ordering. An example with n = 4 is given as
following

(1),(12),(2), (23), (123), (13), (3), (34), (134), (1234), (234), (24), (124), (14), (4) (23)

which is a minimal change ordering. The characteristic vectors of the nonempty subsets in a
minimal change ordering form a structure known as a Gray code. From the minimal change
ordering given above, the following Gray code is obtained:

0001,0011,0010,0110,0111,0101,0100,1100,1101,1111,1110,1010,1011,1001,1000. (24)

The Gray code presented does not have the preorder tree structure given in Figure 1.
Therefore, we can not take the advantages of the structure described in Section 5 with the
Gray code (24). If the Gray code is modified to have the sequence given in Table 2, it is
able to fit into the preorder tree structure illustrated in Figure 2. The modified Gray code
becomes

0001,0011,0111,1111,1011,1001,1101,0101,0100,1100,1110,0110,0010,1010,1000. (25)

Figure 2: Minimal Change Ordering (The Modified Gray Code).

Comparing the structures in Figures 1 and 2, we realize that the modified Gray code
doesn’t have the advantage of sorting the column vectors of the constraint matrix based on
the number of 1’s in the vectors. Therefore, the Gray code and the modified one are inferior
to the one given in Figure 1 in terms of the performance of implementing the set covering
algorithm.

11

7 Summary

We have described a new algorithm to implement the preorder sequence used in the set
covering algorithm of Chen [1998]. First, we eliminated the storage required in PREORDER(n)
to obtain the algorithms, SETCOVERL(n) and SETCOVER2(n). Then, these two algorithms
were compared and we concluded that SETCOVER2(n) is potentially more efficient than
SETCOVERI(n) as described in Section 5. We also discussed the alternative sequences to the
preorder sequence given in Figure 1 and concluded that the alternatives, the Gray code and
the modified GRay code in Figure 2, are inferior in the implementaion of the set covering
algorithm.

References

[1] B. Chen. Set covering algorithms in edit generation. In Proceedings of the Statistical
Computing Section, pages 91-96. American Statistical Association, 1998.

[2] 1. P. Fellegi and D. Holt. A systematic approach to automatic edit and imputation.
Journal of the American Statistical Association, 71:17-35, 1976.

[3] R. S. Garfinkel, A. S. Kunnathur, and G. E. Liepins. Optimal imputation of erroneous
data: Categorical data, general edits. Operations Research, 34:744-751, 1986.

[4] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, Vol. 3. Addison
Wesley, Reading, Massachusetts, 1973.

[5] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation, Enumeration,
and Search. CRC Press LLC, Boca Raton, Florida 33431, 1998.

[6] W. E. Winkler. Set-covering and editing discrete data. Technical report, Bureau of the
Census, 1997.

[7] W. E. Winkler and T. F. Petkunas. The DISCRETE Edit System. Statistical Research
Division Research Report, Bureau of the Census, 1996.

12

	rrc2003-01t.pdf
	Page 1

