Optimum Nonresponse Subsampling Rate for the American Community Survey

Anthony Tersine and Michael Starsinic US Census Bureau

Outline

- American Community Survey Design
- Methodology
- Results
- Conclusions

American Community Survey Design

- Large Monthly Survey
 - 250,000 Unique Addresses per Month
 (3 Million Unique Per Year)
- Sample Spread Across the Entire Country
- Mail Survey With Telephone Follow-up (CATI)
- 1/3 of Nonrespondents Followed Up In Person (CAPI)
 - 2/3 of Nonmailable Addresses

American Community Survey Design

- Mail Component
 - Initial Letter
 - Questionnaire
 - Reminder Card
 - Second Questionnaire
 - Telephone Failed Edit Follow-Up Operation
 - Incomplete Forms
 - Large Households (6 or more)

Methodology

- Determine the cost function
 - Data collection costs for housing units in US
- Determine the variance function
 - Choose a reliability
 - Solve for the sample size (n)
 - Only as a function of the sampling parameters
- Replace n in cost function
- Minimize the resulting function

Definitions and Costs

- Mail
- Telephone
- Personal Visit

Mail Definitions

```
n 3,000,000 total annual sample
     0.96 proportion of sample mailable
P_d
     0.90 proportion of sample in occupied
P
           housing units
     1/3 fraction of mail returns needing TFEFU
R_{mf}
R_{m}
     0.50 proportion of mailables returned
     0.40 proportion of mail returns needing
R_{m2}
           second mailing
     0.56 proportion of occupied deliverables
           returned
```

Mail Costs

```
C_{m0} 3.92 cost for each mailout case C_{mr} 14.85 additional cost for each mail return case C_{mb} 8.88 cost for mailback and processing returns C_{m2} 2.33 cost for each second mailing C_{mf} 15.10 cost for each TFEFU
```

The value of C_{mr} is calculated as follows:

$$C_{mr}$$
 = C_{mb} + R_{mf} C_{mf} + R_{m2} C_{m2}
= $8.88 + (1/3) * 15.10 + 0.4 * 2.33$
= 14.85

Telephone Definitions

e _t	0.32	proportion of mail non-returns eligible for CATI (good phone numbers)
f _t	1.00	proportion of mail non-returns selected for CATI (current value)
R _t	0.60	proportion of CATI eligible cases interviewed
R _{to}	0.75	proportion of occupied CATI eligible cases interviewed

Telephone Costs

C_{ti} 50.94 cost for each telephone interview

C_{tni} 12.73 cost for each telephone noninterview

Personal Visit Definitions

 $\begin{array}{lll} f_{pd} & 1/3 & \text{fraction of mailable noninterviews selected for} \\ & \text{CAPI} \\ f_{pu} & 2/3 & \text{fraction of non-mailables selected for CAPI} \\ R_{p} & 0.86 & \text{proportion of CAPI cases interviewed} \\ R_{po} & 0.82 & \text{proportion of occupied CAPI cases interviewed} \\ & (\text{assume all vacants interviewed}) \ N_{pio} \ / \ n_{p} \end{array}$

N_{pio} 298,342 number of occupied interviews in CAPI n_p 363,840 number of occupied units selected in CAPI

USCENSUSBUREAU

Personal Visit Costs

C_{pi} 145.58 cost for each personal visit

interview

C_{pni} 72.79 cost for each personal visit

noninterview

Sample Proportions

 proportion of occupied units represented by mail respondents
 s_m = 0.533333

 proportion of occupied units represented by CATI interviews
 s_t = 0.102400

Sample Proportions

 proportion of occupied units represented by CAPI universe

$$s_p = 0.364267$$

 s_p can be split into two components representing mailable and unmailable addresses

Sample Proportions

 proportion of occupied units represented by unmailable CAPI cases

$$s_{pu} = 0.040000$$

 proportion of occupied units represented by mailable CAPI cases

$$s_{pd} = 0.324267$$

Sample Sizes

 number of sample cases representing occupied unit mail respondents

$$n_{\rm m} = 1,440,000$$

number of sample cases representing occupied unit CATI interviews

$$n_t = 276,480$$

Sample Sizes

number of sample cases representing occupied unit CAPI universe

$$n_p = 363,840$$

 n_p can be split into two components representing mailable and unmailable addresses

Sample Sizes

number of sample cases representing CAPI universe of unmailable occupied units

$$n_{pu} = 72,000$$

number of sample cases representing CAPI universe of mailable occupied units

$$n_{pd} = 291,840$$

Cost per Interview - Mail

$$C_{m} = C_{m0} / R_{m} + C_{mr} + [(1 - R_{m}) / R_{m}] C_{m2}$$

$$= 3.92 / 0.5 + 14.85 + [(1 - 0.5) / 0.5] * 2.33$$

$$= 25.02$$

Cost per Interview - CATI

$$C_t = C_{ti} + [(1 - R_t) / R_t] C_{tni}$$

$$= 50.94 + [(1 - 0.6) / 0.6] * 12.73$$

$$= 59.43$$

Cost per Interview - CAPI

$$C_p = C_{pi} + [(1 - R_p) / R_p] C_{pni}$$

$$= 145.58 + [(1 - 0.86) / 0.86] * 72.79$$

$$= 157.43$$

Optimization of Subsampling Rates

- Optimize the subsampling rates f_t, f_{pd}, and f_{pu}
- Minimize cost/variance function
- Use Cauchy-Schwartz inequality
- Two ways
 - 1. Calculated f_t
 - 2. Set $f_t = 1$

Results - Optimal Rates 1

•
$$f_t = 0.648863$$

•
$$f_{pd} = 0.519043$$

•
$$f_{pu} = 0.374116$$

Results – Optimal Rates 2

•
$$f_t = 1.0$$

•
$$f_{pd} = 0.372223$$

•
$$f_{pu} = 0.413479$$

Results - Variances 1

Variable	Current Rates	Actual Rates (Option 1)	Rounded Rates (Option 2)
f _t	1.000000	0.648863	0.666667
f_{pd}	0.333333	0.519043	0.500000
f _{pu}	0.666667	0.374116	0.400000
SE	0.020979	0.021577	.021565
CV	20.98%	21.58%	21.57%
90% CI	6.55%, 13.45%	6.45%, 13.55%	6.45%, 13.55%
Total Cost	115,800,000	105,950,000	106,100,000

USCENSUSBUREAU

Results – Variances 2

Variable	Actual Rates (Option 3)	Rounded Rates 1 (Option 4)	Rounded Rates 2 (Option 5)
f _t	1.000000	1.000000	1.000000
f_{pd}	0.372223	0.400000	0.333333
f _{pu}	0.413479	0.400000	0.400000
SE	0.020599	0.020258	0.021210
CV	20.60%	20.26%	21.21%
90% CI	6.61%, 13.39%	6.67%, 13.33%	6.51%, 13.49%
Total Cost	117,950,000	122,140,000	111,580,000

USCENSUSBUREAU

Future Research

- Look at the affect on small areas
- Sensitivity analysis
- Parameters after full implementation of ACS

Conclusions

- Efficiency could be improved
 - Start subsampling in CATI
- Decrease costs by \$10 million (Option 2)
 - Almost 3 percent larger standard error
- Decrease costs by \$4 million (Option 5)
 - 1 percent larger standard error

Anthony Tersine

Anthony.G.Tersine.Jr@census.gov